Hindawi

Computational Intelligence and Neuroscience
Volume 2020, Article ID 7631495, 20 pages
https://doi.org/10.1155/2020/7631495

Research Article

Hindawi

On Modeling the Earthquake Insurance Data via a New Member of

the T-X Family

Zubair Ahmad,' Eisa Mahmoudi®,! and Omid Kharazmi’

IDepartment of Statistics, Yazd University, P.O. Box 89175-741, Yazd, Iran
’Department of Statistics, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

Correspondence should be addressed to Eisa Mahmoudi; emahmoudi@yazd.ac.ir

Received 27 December 2019; Revised 25 August 2020; Accepted 9 September 2020; Published 19 September 2020

Academic Editor: Friedhelm Schwenker

Copyright © 2020 Zubair Ahmad et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Heavy-tailed distributions play an important role in modeling data in actuarial and financial sciences. In this article, a new method
is suggested to define new distributions suitable for modeling data with a heavy right tail. The proposed method may be named as
the Z-family of distributions. For illustrative purposes, a special submodel of the proposed family, called the Z-Weibull dis-
tribution, is considered in detail to model data with a heavy right tail. The method of maximum likelihood estimation is adopted to
estimate the model parameters. A brief Monte Carlo simulation study for evaluating the maximum likelihood estimators is done.
Furthermore, some actuarial measures such as value at risk and tail value at risk are calculated. A simulation study based on these
actuarial measures is also done. An application of the Z-Weibull model to the earthquake insurance data is presented. Based on the
analyses, we observed that the proposed distribution can be used quite effectively in modeling heavy-tailed data in insurance
sciences and other related fields. Finally, Bayesian analysis and performance of Gibbs sampling for the earthquake data have also

been carried out.

1. Introduction

In a number of applied areas such as finance and actuarial
sciences, data sets are most often positive, and the respective
distribution is unimodal hump-shaped and skewed to right
having heavier tails as compared to the well-known classical
distributions. These distributions are not much flexible to
adequately model such types of heavy-tailed data sets. For
example, (i) the Pareto distribution, which is frequently used
to model financial data sets, does not provide a reasonable fit
for many applications, for example, if we are interested in
modeling only especially moderate-to-large losses alto-
gether, then in such cases, the Pareto distribution may not be
a suitable choice to use [1], and (ii) the Weibull model is
capable of catering the behavior of small losses very closely,
but, unfortunately, fails to provide an adequate fit to the
large losses [2]. In such circumstances, the utilization of the
heavy-tailed models may be a good choice to apply. For
positive data, heavy-tailed distributions are those whose
right-tail probabilities are greater than the exponential one
[3], that is,

xgnmepx(l—F(x;f))=m, >0, (1)

where F (x; &) is the cumulative distribution function (cdf)
depending on the parameter vector & € R.

Due to the usefulness and flexibility of the heavy-tailed
models in financial and actuarial practice, actuaries are al-
ways intended to propose new statistical distributions.
Therefore, serious attempts have been made to propose new
statistical models and are still growing rapidly. The new
contribution is made via different approaches such as (i)
transformation of variables, (ii) composition of two or more
distributions, (iii) compounding of distributions, and (iv)
finite mixture of distributions, see Ahmad et al. [4].

Recent investigation of Eling [5] and Adcock et al. [6]
determined that skew-normal and skew Student’s t distri-
butions are the most excellent competitors because the
skewed distributions adjust right-skewness and high kur-
tosis; for the interested readers, one can refer to Shushi [7]
and Punzo et al. [8]. However, insurance losses and mon-
etary risks take values on the positive real line, and subse-
quently, these skew models may not be a suitable choice to
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use as they are defined on R. In such circumstances, the
transformation of variable approach, especially, the expo-
nential transformation, has demonstrated to be consider-
able; for details, see Azzalini et al. [9]. Bagnato and Punzo
[10] showed that the transformation method of introducing
new distributions is easy to use; however, most often, the
inferences become complicated.

Another useful method of proposing new versatile
heavy-tailed distributions, which provide the best fit to the
heavy-tailed losses, is the methodology of composition, see
Paula et al. [11], Klugman et al. [12], Nadarajah and Bakar
[13] and Bakar et al. [14]. However, it ought to be noted that
the new statistical models introduced via this approach
involve more than three parameters inflicting difficulties in
estimating the parameters, and more computational efforts
are needed.

Another approach of introducing new distributions to
cater data modeling adequately with unimodality is com-
pounding of distributions, see Punzo et al. [15] and Mazza
and Punzo [16]. Unfortunately, the density function of the
distributions obtained by this approach might not have a
closed-form expression that makes the estimation more
complicated as shown in Punzo et al. [15].

The method of finite mixture models is another
prominent approach to obtain new, very flexible models
which are able to capture, for example, multimodality of the
distribution under consideration, see Bernardi et al. [17],
Miljkovic and Griin [18], and Punzo et al. [15]. No doubt, the
distributions obtained via this approach are much flexible,
but the inferences become more complicated and compu-
tationally challenging.

Furthermore, Dutta and Perry [19] performed an em-
pirical analysis of loss distributions, and risk was estimated
by different approaches such as exploratory data analysis and
other empirical approaches. These authors rejected the idea
of using the exponential, gamma, and Weibull models in
modeling insurance losses due to the poor results. They
concluded that one would need to use a model that is flexible
enough in its structure. This motivated the researchers to
search for more flexible models offering greater accuracy in
fitting the heavy-tailed data.

Hence, bringing flexibility to a model by introducing
additional parameter(s) is a desirable feature [20-24]. In a
number of recent papers, serious attempts have been made
to introduce a variety of new heavy-tailed distributions, see
Ahmad et al. [25] and Ahmad et al. [26]. Due to the im-
portance of statistical distributions in financial science, a
new family of distributions, called the Z-family, is intro-
duced. The proposed family is introduced via the T-X family
approach [27]. To illustrate the usefulness of the proposed
method, a three-parameter submodel, called the Z-Weibull
distribution, is taken and studied in detail. The proposed
distribution provides a better description of the earthquake
insurance data with possibly heavy tails than the available (i)
two-parameter distributions such as Weibull, Burr-XII (B-
XII), and generalized exponential (GE), (ii) three-parameter
Weibull-claim (W-claim) and exponentiated Lomax (EL),
and (iii) four-parameter beta-Weibull (BW) distributions,
and possibly many others.
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The rest of the article is structured in the following way.
The proposed method is introduced in Section 2. The
Z-Weibull model is considered in Section 3, and the shapes
of its probability density function (pdf) are investigated in
the same section. Estimation of parameters is discussed in
Section 4. In the same section, a detailed Monte Carlo
simulation study is conducted. Actuarial measures of the
proposed method along with a simulation study are pro-
vided in Section 5. Distribution fit to the earthquake in-
surance data set is discussed in Section 6. Bayesian analysis
as well as Gibbs sampling procedure for the real data set is
discussed in Section 7. Future frame work is discussed in
Section 8. Finally, some concluding remarks are presented in
Section 9.

2. Development of the Z-Family

Let p(t) be the pdf of a random variable, say T, where
T € [n;,n,] for —co<n;,n, <o, and let W[F(x;&)] be a
function of F(x;¢&) of a random variable, say X, depending
on the vector parameter ¢ satisfying the conditions given in
the following:

(1) WIF(x;8)] € [ny,n,]

(2) W[F(x;€)] is differentiable and monotonically
increasing

(3) WIF (x;6)] — ny as x — —co and W[F(x; §)]
— 1, as X —> 00

Alzaatreh et al. [27] introduced a general method for
generating new families of distributions called the T-X
family which is defined by
WIF (x:9)]

p(t)dt, >0, 2)

G(x) =J

n

where W [F (x; £)] satisfies the conditions mentioned above.
The probability density function (pdf) corresponding to (2)
is given by

d
g(x) ={aW(F(x;f))}P(W[F(X;E)])- (3)

Deploying the T-X proposal, several new classes of
distributions have been introduced in the literature [28]. Let
X have the exponential distribution with the pdf given by

p(t)=0e" t6>0. (4)
Using 0 =1 in (4), we get
p(t)y=e', t>0. (5)

On setting W[F(x;&)] = —IOg{(l ~F(x;8)/ (ﬁF(x;f))}
and p(t) =e ' in (2), we define the cdf of the Z-family of
distributions by

1-F(x;¢)

G(x;ﬁ,£)=1—{ P } B>0,x,5eR, (6)

where F(x;&) is the baseline cdf. The expression in (6)
represents a wide family of univariate continuous
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distributions. Clearly, when 8 = 1, the cdf of the proposed
family derived in (6) becomes identical to the baseline cdf.
The pdf corresponding to (6) is given by

1+ (log B)[1 - F(x;&)]
/jF(x:E) >, x € R.

g(x;B.8) = f(x;€)<
(7)

The survival function (sf) and hazard rate function (hrf)
corresponding to (6) are, respectively, given by

1-F(x;¢)

S(x;8,8) = ﬁF(x;E) , x€R,

h(x;/if)=f(x;f){l+(1°gﬁ)[l_F(x;f)]}, xR

1-F(x;¢)
(8)

Due to induction of the extra parameter, the Z-family
provides greater distributional flexibility. The key motiva-
tions for using the Z-family in the practice are as follows:

(i) A very useful and simple method of introducing an
additional parameter to generalize the existing
distributions

(ii) To improve the characteristics and flexibility of the
existing models

(iii) To introduce new distributions having closed form
of cdf and sf, as well as hrf

(iv) To extend the existing distributions by introducing
only one parameter, rather than adding two or more
parameters

(v) To provide the best fit to heavy-tailed insurance data
sets

(vi) To provide better fits than other modified models
having same or higher number of parameters

3. The Z-Weibull Distribution

Most of the extended forms of distributions are introduced
for one of the following aims: (i) an extension of the existing
model to improve its characteristics, (ii) to obtain new
distribution having a heavy right tail, and (iii) to introduce a
model whose empirical fit is good to data. Here, we discuss
the Z-Weibull distribution that can possess at least one of
these aims. The Weibull random variable has the cdf and pdf
given by F(x;€)=1-e"" and f(x;&) = Opx®le?™,
respectively, where & = (a, y). Then, the cdf of the Z-Weibull
distribution has the following form:

a

—px

G(x;ﬁ,f)ZI—pﬁ, x>0, a,9,>0.  (9)

The corresponding density is given by

a-1_—ypx®

g B &) =2

NGl (1+(ogPe™), x>0.

(10)

The sf, hrf, and reversed hazard rate function (rhrf) of
the proposed model are given by

a

—px

e
S(X§ /3, f) = /W,

x>0,

h(x;B,8) = ocyx“"l(l + (logﬁ)e_yxa), x>0,

a1 —yx®

axyx e -
/W(“(logﬁ)e ), x>0,
4

r(x;B,8) =
(11)

respectively.
Different plots for the pdf of the Z-Weibull distribution
for selected parameter values are given in Figure 1.

4. Estimation and Monte Carlo
Simulation Study

Several approaches to estimate the model parameter have
been introduced in the literature, but the maximum
likelihood estimation method is the most commonly
employed. The maximum likelihood estimators (MLEs)
enjoy several desirable properties and can be used for
constructing confidence intervals and regions and also in
test statistics. The normal approximation for MLEs in
large samples can be easily handled either analytically or
numerically. So, we estimate the parameters of the
Z-family of distributions from complete samples via
the maximum likelihood estimation method. Further-
more, we perform a comprehensive Monte Carlo
simulation study to evaluate the performance of the
MLEs.

4.1. Maximum Likelihood Estimation. In this section, we
obtain the MLEs of the model parameters of the Z-family of
distributions from complete samples only. Let x1, x,, . .., X,
be the observed values from the Z-family of distributions
with parameters 8 and . The total log-likelihood function
corresponding to (7) is given by

n

(B, ) = Zlog[f(xi; §)] - ) F(x;£) (logf)

i=1
(12)

+ ilog[l +(log B) (1 - F(x;;¢))].

The partial derivatives of (12) are
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FIGURE 1: Plots for the density function of the Z-Weibull distribution.

F(x;:8))

aﬁ“ﬁ H=-3 5 Zuaogﬁ) (- F(x:0)

i=1

(13)

iﬂ(ﬁ,f) Zaff(?u )10&) z(logﬁ)aF( 15 €)/08) i OF ((x;; £)/0¢)

Setting (0/08)€ (3, &) and (0/0€)¢ (B, &) equal to zero and
solving numerically these expressions simultaneously yield
the MLEs of (83,).

4.2. Monte Carlo Simulation Study. This section offers a
comprehensive simulation study to assess the behavior of the
MLEs. The Z-family is easily simulated by inverting (6) as
follows: if U has a uniform U (0,1) distribution, then the
nonlinear equation is

log(l—u)+yx“+(1—efyxa)(log/}):o. (14)

Expression (14) can be used to simulate any special
subcase of the Z-family. Here, we consider the Z-Weibull
distribution to assess the behavior of the MLEs of the
proposed method. We simulate the Z-Weibull distribu-
tion for two sets of parameters (set 1: « = 0.9, § = 0.3, and
y =0.5 and set 2: « = 1.3, $ =0.8, and y = 1). The simu-
lation is performed via statistical software R through the
library (rootSolve) command mle. The number of Monte
Carlo replications made was 750 times. For maximizing

1"5) i=1 1+ (logﬂ)(l _F(xi;f)).

the log-likelihood function, we use the method="L-
BFGS-B” algorithm with optim(). The evaluation of the
estimators was performed via the following quantities for
each sample size: the empirical mean squared errors
(MSEs) are calculated using the R package from the
Monte Carlo replications. The MLEs are determined for
each piece of simulated data, say, (&;,79;,0;) for
i=1,2,...,750, and the biases and MSEs are computed,
respectively, by

750
1

bias (w) = <750> Z (w; —w),

(15)
750

MSE (w) = (7;()) Z (w; - w)z,

for w=a,y,f. We consider the sample sizes of
n = 25,100, 200, 300, 400, 500, 600, 700, 750. The empirical
results are given in Tables 1 and 2. Corresponding to Tables 1
and 2, the simulation results are graphically displayed in
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TaBLE 1: Simulation results for the Z-Weibull distribution.
Set 1: =0.9, $=0.3,and y = 1.2
n Parameters MLEs MSEs Bias
o 1.1150 0.1937 0.2150
25 [3 1.2490 3.6872 0.9490
y 2.0431 4.7184 0.8431
fo4 1.0456 0.1526 0.1456
50 [J’ 0.9536 2.4614 0.6536
y 1.9282 4.3933 0.7281
o 0.9970 0.0783 0.0970
100 ﬁ 0.7277 1.3741 0.4277
y 1.6722 2.3642 0.4722
o 0.9605 0.0472 0.0605
200 ﬁ 0.5478 0.6878 0.2478
y 1.4691 1.1474 0.2691
« 0.9281 0.0163 0.0281
400 ﬁ 0.3769 0.0901 0.0769
y 1.3115 0.4336 0.1115
o 0.9193 0.0085 0.0193
600 ﬂ 0.3471 0.0383 0.0471
y 1.2424 0.1812 0.0424
o 0.9128 0.0067 0.0128
800 ﬁ 0.3313 0.0279 0.0313
Y 1.2405 0.1318 0.0405
o 0.9006 0.0042 0.0076
1000 ﬁ 0.3184 0.0119 0.0184
y 1.2160 0.0928 0.0360
TABLE 2: Simulation results for the Z-Weibull distribution.
Set2: a=13,$=0.8,and y=1.4
n Parameters MLEs MSEs Bias
fo4 1.3094 0.2002 0.2094
25 B 1.9925 5.7399 1.2925
Y 2.1937 4.3061 0.7937
fo4 1.2340 0.1333 0.1340
50 /3 1.6368 4.0681 0.9368
y 2.0939 3.3865 0.6939
o 1.1766 0.0697 0.0766
100 /3 1.2543 2.1560 0.5543
y 1.8715 2.1136 0.4715
fo4 1.1396 0.0368 0.0396
200 ﬁ 0.9740 0.9313 0.2740
y 1.6771 1.0320 0.2771
o 1.1194 0.0153 0.0194
400 B 0.8080 0.2293 0.1080
y 1.5204 0.3718 0.1204
o 1.1171 0.0094 0.0171
600 ﬁ 0.7860 0.1229 0.0860
y 1.4516 0.1869 0.0516
o 1.1093 0.0065 0.0093
800 ﬁ 0.7495 0.0833 0.0495
y 1.4443 0.1219 0.0443
o 1.1050 0.0049 0.0050
1000 ﬂ 0.7807 0.0537 0.0307
y 1.4147 0.0935 0.0347




Figures 2 and 3. Based on Tables 1 and 2 and Figures 2 and 3,
the following results are concluded:

(i) Biases for all parameters are positive
(ii) The parameters tend to be stable

(iii) Estimated biases decrease when the sample size n
increases

(iv) Estimated MSEs decay toward zero when the sample
size n increases

5. Actuarial Measures

One of the most important tasks of actuarial science in-
stitutions is to evaluate the exposure to market risk in a
portfolio of instruments, which arise from changes in un-
derlying variables such as prices of equity, interest rates, or
exchange rates. In this section, we calculate some important
risk measures such as value at risk (VaR) and tail value at risk
(TVaR) for the proposed distribution, which play a crucial
role in portfolio optimization under uncertainty.
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market risk measure. It is also known as the quantile risk
measure or quantile premium principle. The VaR is always
specified with a given degree of confidence, say q (typically
90%, 95%, or 99%), and represents the percentage loss in the
portfolio value that will be equaled or exceeded only X
percent of the time. VaR of a random variable X is the g™
quantile of its cdf, see Artzner [29]. If X follows the proposed
method, then the VaR of X is

x, =G (w)=F (1), (16)

where ¢ is the solution of f'(1-g) +t—1=0.

5.2. Tail Value at Risk. Another important measure is TVaR,
also known as conditional tail expectation (CTE) or tail
conditional expectation (TCE), which is used to quantify the
expected value of the loss given that an event outside a given
probability level has occurred. Let X follow the Z-Weibull
distribution; then, TVaR of X is derived as

1 (o]
TVaR, (x) = (—) J xg(x)dx. (17)
1-q) Jva,
5.1. Value at Risk. In the context of actuarial sciences, the
VaR is widely used by practitioners as a standard financial Using (10) in (17), we get
0 at+l-1 _—ypx*
[ ay x e -
TVaR, (x) _<1 _q) jVaRq S (1+ (log e " )dx,
®© i i(_1)) oo o
TVaR, (x) :(la)/ )Z Z ( ogﬁ) (. '?' J @1y G g (18)
- q i=0 j=0 (1 - ])] VaRq
1-q9) 5 ar (i— )iyt VaR,
Recall the definition of incomplete gamma function in
the form I'(«, x) = jzo t* le~'dt, so from (18), we get
var, () <) 33 (log )’ (~1) " T((1er) + 1,y (j + (VaR, )")
A ) PNV (Va1
1) im0 (= Pljly (j+1)
(19)

1 & (logp) (-1) ) r((l/a)+1,y(j+2)(VaRq)“)

-9 5% -k’

5.3. Numerical Study of the Risk Measures. n this section, we
provide numerical study of the VaR and TVaR for the
Weibull and Z-Weibull distributions for different sets of
parameters. The process is described as follows:

1/a) (] + 2)((1/0¢)+1)

(1) Random samples of size n =100 are generated from
the Weibull and Z-Weibull models

(2) The parameters have been estimated via the maxi-
mum likelihood method
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FIGURE 2: Graphical display of the results provided in Table 1. (a) Plot of estimated parameters vs. #. (b) Plot of MSE vs. . (c) Plot of absolute

bias vs. n. (d) Plot of bias vs. n.

(3) 1000 repetitions are made to calculate the VaR and
TVaR

The numerical results of the risk measures are provided
in Tables 3 and 4 and displayed graphically in Figures 4 and 5
corresponding to each table.

The simulation is performed for Weibull and Z-Weibull for
the selected values of parameters. A model with higher values of
the risk measures is said to have a heavier tail. The simulated
results provided in Tables 3 and 4 show that the proposed
Z-Weibull model has higher values of the risk measures than the
traditional Weibull distribution. The simulation results are
graphically displayed in Figures 4 and 5, which show that the
proposed model has a heavier tail than the Weibull distribution.

6. Practical Illustration via the Earthquake
Insurance Data

The main applications of the heavy tail models are the so-
called extreme value theory or insurance loss phenom-
ena. In this section, we consider heavy-tailed earthquake
insurance data to illustrate the usefulness of the
Z-Weibull model. The data are reported by the “National
Centers for Environmental Information” available at
https://ngdc.noaa.gov/hazard/earthgk.shtml. We com-
pare the goodness-of-fit results of the Z-Weibull dis-
tribution with the other well-known heavy-tailed
distributions. The distribution functions of the com-
petitive models are as follows:


https://ngdc.noaa.gov/hazard/earthqk.shtml
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(i) W-claim: (iii) B-XII:
o(1-e Y G)=1-(1+x)% x20ck>0.  (22)
G(x) = — x2,a,9,0>0. (20) oo
1-(1 —0’)(1—6 rx )
(iv) GE:
(ii) Weibull: G(x)=(1- e‘V"“)“, x>0,a,a,7>0. (23)

Gx)=1-¢", x20,a,y>0. (21) (v) EL:
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TaBLE 3: Simulation results of the VaR and TVaR for the selected values of the parameters.
Dist. Par Level of significance VaR TVaR
0.700 4.5373 7.3911
0.750 5.0945 7.9076
0.800 5.7601 8.5304
. a=12 0.850 6.5967 9.3205
Weibull y =0.85 0.900 7.7437 10.4136
0.950 9.6399 12.2384
0.990 11.4765 14.0197
0.999 19.5352 21.9150
0.700 4.3778 13.2772
0.750 5.5376 14.9465
=12 0.800 7.1015 17.1137
. e 0.850 9.3408 20.1026
Z-Weibull B _‘01‘;5 0.900 12.8999 24.6727
y=>u 0.950 20.0017 33.4043
0.990 28.2956 43.2302
0.999 80.4988 101.7184
TaBLE 4: Simulation results of the VaR and TVaR for the selected values of the parameters.
Dist. Par Level of significance VaR TVaR
0.700 1.5273 4.4325
0.750 1.9174 4.9762
0.800 2.4392 5.6792
. a=0.65 0.850 3.1801 6.6436
Weibull y=07 0.900 43463 81092
0.950 6.6444 10.8853
0.990 9.2950 13.9806
0.999 25.5667 32.0408
0.700 1.7585 6.9318
0.750 2.3222 7.9131
o = 0.65 0.800 3.1171 9.2175
. o 0.850 4.3112 11.0668
Z-Weibull B= g'g 0.900 6.3169 13.9926
== 0.950 10.6148 19.8560
0.990 16.0027 26.8019
0.999 55.1566 73.1187
G(x)=(1-(1+yx) )" x20,a,a,y>0. (24) AIC = 2k - 2¢. (26)

(vi) BW:

G(x) = Iy vy (as b), x20,a,b,a,9>0. (25)

Next, we consider certain analytical measures in
order to verify which distribution fits better the
considered data. These analytical measures include
(i) discrimination measures, such as Akaike in-
formation criterion (AIC), Bayesian information
criterion (BIC), Hannan-Quinn information cri-
terion (HQIC), and consistent Akaike information
criterion (CAIC), and (ii) two other goodness-of-fit
measures including Anderson-Darling (AD) test
statistic and —2¢. The discrimination measures are
given as follows.

(vil) Akaike information criterion is given by

(viii) Consistent Akaike information criterion is given

by

2nk
n-k-1

CAIC =

2¢. (27)

(ix) Bayesian information criterion is given by

BIC = klog(n) — 2¢. (28)

(x) Hannan-Quinn information criterion is given by

HQIC = 2klog (log (n)) — 2¢, (29)

where ¢ denotes the log-likelihood function, k is the
number of model parameters, and n is the sample

size.
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FIGURE 4: Graphical sketching of the results of the VaR and TVaR provided in Table 3.
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FIGUure 5: Graphical sketching of the results of the VaR and TVaR provided in Table 4.

(xi) The AD test statistic is given by

AD =-n —(%) Zn:(Zi - 1)[log G(x;) +log{1 - G(x,_;:1)}]>

i=1

(30)

where # is the sample size and x; is the i observation in the
sample, calculated when the data are sorted in the ascending
order.

All the computations are carried out using the optim()
R-function with the argument method=“BFGS” (see

Appendix). A model with lowest values for these measures
could be chosen as the best model to fit the data. The
values of MLEs of the parameters along with standard
errors in parenthesis are presented in Table 5, whereas the
discrimination measures are displayed in Table 6. The AD
statistic and —2¢ are provided in Table 7. Based on the
considered data set, we have observed that the Z-Weibull
distribution is the best fitted model among the above
considered models.

As we can see, the results show that the Z-Weibull
distribution provides a better fit than the other compet-
itors. Hence, the proposed model can be used as a best
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TaBLE 5: Estimated values of the proposed and other competitive models.

Dist. a y B a b c k o
Z-Weibull  2.346 (0.020) 0.564 (0.029) 2.295 (0.248)
W-claim  2.023 (0.076) 0.709 (0.056) 1.783 (0.197)
Weibull 2.110 (0.091) 0.889 (0.086)
B-XII 1.480 (0.030) 2.851 (0.107)
GE 2.283 (0.015) 4.308 (0.053)
EL 4.804 (4.910) 3.879 (5.400) 4.335 (0.054)
BW 1.609 (0.055) 0.644 (0.304) 1.616 (0.087) 2.237 (1.228)

TaBLE 6: Discrimination measures of the proposed and other competitive models.
Dist. AIC BIC CAIC HQIC
Z-Weibull 23286.95 23310.57 23289.92 23294.69
W-claim 23345.86 23364.09 23355.04 23354.73
Weibull 23379.64 23395.38 23386.84 23384.80
B-XII 24197.63 24213.37 24197.63 24202.78
GE 23846.71 23862.45 23853.57 23851.86
EL 23863.99 23887.60 23871.99 23871.72
BW 23338.24 23369.73 23343.17 23348.56

TABLE 7: Analytical measures of the fitted models.

Dist. -2¢ AD
Z-Weibull 11640.48 0.840
W-claim 11667.98 0.986
Weibull 11687.82 1.071
B-XII 12096.81 5139
GE 11921.35 4.965
EL 11928.99 5.012
BW 11665.12 0.952

candidate model for modeling insurance data sets. Fur-
thermore, in support of Tables 6 and 7, the estimated cdf
and pdfare plotted in Figure 6. The Kaplan-Meier survival
plot and PP plot are sketched in Figure 7, whereas the QQ
plot of the proposed distribution and box plot of the
earthquake data are presented in Figure 8. From the es-
timated pdf in Figure 6, it is clear that the proposed
distribution provides an adequate fit to the heavy-tailed
earthquake data. From Figures 6 and 7, we can easily
detect that the proposed distribution fits the estimated cdf
and Kaplan-Meier survival plots very closely. The PP and
QQ plots which serve as a tool for graphical display of the
analytical measures show that the Z-Weibull distribution
provides the best fit to real data. Finally, the box plot
(Figure 8) of the data is graphical evidence that the data
possess tail skewed to the right.

Furthermore, using the earthquake insurance data,
we obtained the values of the Kolmogorov-Smirnov (KS)
statistic of the proposed and other competing models.
Then, we applied the parametric bootstrap technique [30]
and bootstrapped the p value for all the competing
models. The KS statistic and the corresponding boot-
strapped p value are provided in Table 8. Based on the
results provided in Table 8, we conclude that the pro-
posed model is the best candidate model among the
competing distributions for modeling the insurance
claim data.

7. Bayesian Estimation

Bayesian inference procedure has been taken into consid-
eration by many statistical researchers, especially those in
the field of survival analysis and reliability engineering. In
this section, complete sample data are analyzed through the
Bayesian point of view. We assume that the parameters a, ,
and f3 of the Z-Weibull distribution have independent prior
distributions as follows:

a ~ Gamma (a, b),

y ~ Gammal (¢, d), (31)

B ~ Gammal((e, f),

where a,b,c,d,e, and f are positive. More about choosing
gamma priors, refer Kundu and Howlader [31], S. Dey and
T. Dey [32], Dey et al. [33], and Dey et al. [34]. Hence, the
joint prior density function is formulated as follows:
badCfe
(Ta) (Tc) (Te)

a-1_c-1_e-1

(e, y,f) = Y exp{-(ba +dy + fB)}.

(32)

In the Bayesian estimation, the actual value of the pa-
rameter may be adversely affected by the loss when choosing
an estimator. This loss can be measured by a function of the
parameter and the corresponding estimator. Five well-
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FiGure 7: PP and Kaplan-Meier survival plots of the Z-Weibull distribution.

known loss functions and associated Bayesian estimators
and corresponding posterior risk are presented in Table 9.

For more details, see Calabria and Pulcini [35] and Dey
et al. [36]. Next, we provide the posterior probability dis-
tribution for a complete data set. We define the function ¢ as

¢(a,y,p) = o™ 'y B exp{—(ba + dy + fB)},

(33)
~a>0,y>0,3>0, f+#1.

The joint posterior distribution in terms of a given
likelihood function L(data) and joint prior distribution
7(a,y, ) is defined as

7" (a,y, B | data)am (a, y, B)L (data). (34)

Hence, the joint posterior density of parameters «, y, and
B for complete sample data is obtained by combining the

likelihood function and joint prior density (32). Therefore,
the joint posterior density function is given by

(@9 Bl x) = Ko (a7, B ﬁ)H

a R
apx e (1 + log(B))e
ﬁliefyx;_" ’
where
=[] ] e
o Jo Jo ¢ @y ﬁ)g
(36)

_ (xyxf‘_le_yx? (1+1log(B))e 1 dadydp

ﬁl*eiyxi
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TaBLE 8: KS and the corresponding bootstrapped p value of the proposed and other models.
Dist. KS Bootstrapped p value
Z-Weibull 0.205 0.976
W-claim 0.367 0.806
Weibull 0.476 0.704
B-XII 0.954 0.408
GE 0.590 0.605
EL 0.869 0.502
BW 0.406 0.775

TABLE 9: Bayes estimator and posterior risk under different loss functions.

Loss function

Bayes estimator

Posterior risk

L,=SELF= (- d)*
L, =WSELF = (((6 - d)*)/6)

Ly=MSELF = (1 — (d/6))>

L,=PLF= (((8-d)*)/d)

E(0/x)
(E(6'/x))"!

(E(07Y/x))/ (E(0%/x))

\E(6*/x)

V (6/x)
E(0/x) — (E(6 /x))™!

1 ((E(67'/x)))/ (E(67%/x)*)

2(\JE(&*/x) — E(0/x))

Ls=KLF = (1/(d/0) — /(d/0) )

V(E@1)/ (B0 /)

2(\E@IXE@ %) —1)

Moreover, the marginal posterior density of «, y, and 3,
assuming that ® = («, y, f), is given by

n(®;] x) = J:O j:o n'(0;] x)d®;de,,  (37)

where i, j,k = 1,2,3,i# j#k, and also ©; is the i-th member
of vector ©.

From (35) and (37), it is clear that there is no closed form
for the Bayesian estimators under the five loss functions
described in Table 8. Therefore, we use the MCMC proce-
dure based on 10,000 replicates to compute Bayesian
estimators.

Because of intractable integrals associated with joint
posterior and marginal posterior distributions, one needs to

use numerical software to solve the integral equations nu-
merically. The two most popular MCMC methods are the
Metropolis-Hastings algorithm [37, 38] and the Gibbs
sampling [39]. Gibbs sampling is a special case of the
Metropolis-Hastings algorithm which generates a Markov
chain by sampling from the full set of conditional distri-
butions. Often, Bayesian inference requires computing in-
tractable integrals to generate posterior samples. In practice,
simulations related to Gibbs sampling are conducted
through special software WinBUGS. WinBUGS software
was developed in 1997 to simulate data of complex posterior
distributions, where analytical or numerical integration
techniques cannot be applied. One may also use OpenBUGS
software, which is an open-source version of WinBUGS.
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TaBLE 10: Bayesian estimates and their posterior risks of the parameters under different loss functions based on the earthquake insurance

data.

Bayes a Y 73

Loss functions Estimate Risk Estimate Risk Estimate Risk
SELF 2.34808 0.00048 0.56078 0.00113 2.35742 0.08661
WSELF 2.34787 0.00020 0.55876 0.00201 2.32162 0.03580
MSELF 2.34766 8.90e — 05 0.55675 0.00359 2.28686 0.01497
PLF 2.34819 0.00020 0.56179 0.00202 2.37572 0.03659
KLF 2.34798 8.879¢ - 05 0.55977 0.00360 2.33945 0.01536

Using Gibbs sampling, we obtain samples from the joint
posterior distribution and then use OpenBUGS software to
carry out the Bayesian analysis.

The process is described as follows:

(i) Gibbs sampling technique is used to generate
posterior samples

(ii) 10,000 replicates are made to compute the Bayesian
estimators via OpenBUGS software

(iii) The idea of Congdon [40] was to implement and
choosea=b=c=d=e= f=0.0001 as we do not
have any prior information about hyperparameters

The corresponding Bayesian estimates and posterior risk
are provided in Table 10. Table 11 provides 95% credible and
HPD intervals for each parameter of the Z-Weibull distri-
bution. Moreover, we provide the posterior summary plots
in Figures 9-11. These plots confirm that the sampling
process is of the prime quality, and the convergence does
occur.

8. Discussion and Future Framework

Statistical decision theory addresses the state of uncertainty
and provides a rational framework for dealing with problems
of actuarial and financial decision-making. The insurance
data sets are generally skewed to the right and heavy-tailed.
The traditional distributions are not flexible enough to
counter complex forms of data such as insurance science
data.

Due to the importance of statistical distributions in
actuarial sciences, a number of papers have been appeared in
the literature aiming to improve the characteristics of the
existing distributions. Although this has been achieved,
unfortunately, the numbers of parameters have been in-
creased, and the estimation of parameters and derivation of
mathematical problems become complicated.

To provide a better description of the insurance science
data, therefore, in this study, an attempt has been made to
introduce a new family of statistical distributions aiming to
increase the flexibility of the existing distributions. A special
submodel of the proposed family offers the best fitting to the
heavy-tailed insurance science data. The maximum likeli-
hood method is adopted to estimate the model parameters,
and a comprehensive Monte Carlo simulation study is done
to evaluate the behavior of the estimators.

To show the usefulness of the proposed method in in-
surance sciences, a real-life application of the earthquake
insurance data is discussed. Analyzing the data set, it showed
that the proposed model performs much better than the
other competitive distributions.

From the above discussion, it is obvious that the re-
searchers are always in search of new flexible distributions.
Therefore, to bring further flexibility in the proposed model,
we suggest to introduce its extended versions. The proposed
method can further be extended by introducing a shape
parameter to the model.

(i) A random variable X is said to follow the extended
version of the Z-family if its cdf is given by

1-F(x; )"

G(x;a,B,8) =1 _{ gD

}, a,$>0,x,¢ eR,

(38)

where a is the additional shape parameter. For a = 1,
expression (38) reduces to (6). The new proposal may
be named as the exponentiated Z-family. For the il-
lustrative purposes, one may consider its special sub-
case, called the exponentiated Z-Weibull (EZ-Weibull)
distribution, defined by the cdf

1-(1-¢)"

G(x;a,[;’,&):l—{ } a,0,9,>0,x €R.

(39)

Due to the introduction of the additional shape
parameter, the suggested extension may be much
flexible in modeling data in insurance sciences and
other related fields.

(ii) Another extension of the Z-family is given by

1-F(x;)

4
ﬁF(x§£) } > 6)/3>0)x’£€ [Ra

G(x;0,B,8) =1 —{
(40)
where 0 is the additional shape parameter. For 6 = 1,

expression (40) reduces to (6). The model defined in
(40) may be named as the extended Z-family.
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TaBLE 11: Credible and HPD intervals of the parameters for the earthquake insurance data.
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Parameters Credible interval HPD interval
o (2.334, 2.364) (2.303, 2.388)
y (0.536, 0.585) (0.410, 0.625)
ﬁ (2.139, 2.562) (1.827, 2.883)
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FIGURE 9: Trace plots of each parameter of the Z-Weibull distribution. (a) Alpha. (b) Gamma. (c) Beta.
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FiGURE 10: Autocorrelation plots of each parameter of the Z-Weibull distribution. (a) Alpha. (b) Gamma. (c) Beta.
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FiGure 11: Histogram plots of each parameter of the Z-Weibull distribution. (a) Alpha. (b) Gamma. (c) Beta.
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(iii) Another generalized version of the Z-family can be
introduced via

. a 6
G(x;a,6,B,8) =1 _{%} ’

(41)

a,0,>0,x,¢ R,

where a and 0 are the additional shape parameters.
Clearly, for a = 1, expression (41) reduces to (40),
and for 0 =1, expression (41) reduces to (38).
However, for a = 6 = 1, expression (41) reduces to
(6). The model introduced in (41) may be named as
the extended exponentiated Z-family.

(iv) Another generalized version of the new extended
Z-family can be introduced via

1-F(x;&)"

0
ﬁF(x;E) ]», a,0,>0,x,& e R.

G(x;a,0,5,¢) =1 —{

(42)

9. Concluding Remarks

A variety of methods for proposing new heavy-tailed
distributions have been developed to model data related to
financial and actuarial sciences. We carried out this area of
research further and introduced a new heavy-tailed dis-
tribution family. Some distributional properties are de-
rived, and the method of maximum likelihood estimation
is discussed to estimate the model parameters. In addition
to distributional properties, some actuarial properties are
also derived. Based on the actuarial measures, a com-
prehensive simulation study is conducted. We focused our
concentration on a three-parameter special model called
the Z-Weibull distribution. To prove the potential and
usefulness of the Z-Weibull distribution, earthquake in-
surance data are analyzed, and its comparison is made
with the other well-known distributions. While analyzing
the earthquake insurance data, it is observed that the
proposed model performs better than the other com-
petitive models. Bayesian analysis using the earthquake
data is also provided. Finally, some new extensions are
also suggested which may further improve the charac-
teristics of the proposed family.

Appendix
R-Code for Analysis

Note: in the following R-code, a is used for a, g is used for vy,
b is used for f, and pm is used for the proposed model.

data < read.csv(file.choose(), header = TRUE)

data = data[1]

data = data[!is.na(data)]

data = data/100

data

hist(data)
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###—Probability density function

pdf_pm « function(par,x)

{

a=par[l1]

g =par[2]

b =par[3]

(a* g = (x(a—1)) * (exp(—g * xa)) * (blexp(—g * xa) —
1))) # (1 +1og(b) * exp(—g * xXa))

###—Cumulative distribution function.

cdf_pm « function(par,x)

{

a=par[1]

g =par[2]

b =par[3]

1 - (exp(—g * Xa)/(b(1 — exp(—g * xXa))))
}

set.seed(0)

goodness.fit(pdf = pdf_pm,

cdf =cdf_pm,

starts = ¢(0.5,0.5,0.5), data = data,
method = “BFGS,” domain = ¢(0,Inf),mle = NULL)
90%0%0 %0~ - -= ===
% Estimated pdf
9% % %0~ ----=== ===
x < read.csv(file.choose(), header = TRUE)
x=x[,1]
x=x[lis.na(x)]
x=x/100
x
###—Parameter values
a=2.346
g=0.564
b=2.295
pdf=(axg
* (X¥(a—1)) * (exp(—g * xa)) * (blexp(—g * Xa) —
1))) = (1 +log(b) * exp(—g * xa))
f=pdf
x = sort(x)
yrange = ¢(0,1)
xrange = c¢(min(x),max(x))
hist(x, freq=FALSE, breaks=15, xlim=xrange,
ylim = yrange,
ylab = “Estimated pdf,”xlab = “x,” main="")
par(new = TRUE)

lines(x,f, xlim = xrange, Ity =1, ylab=,” ylim = yrange,
lwd =3,

col = “blue,” xlab="")
par(new = TRUE)
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9099 Y0~ ========== === ===
%Estimated cdf

90990 %0~ ===== =
x < read.csv(file.choose(), header = TRUE)

x=x[,1]

x=x[lis.na(x)]

x=x/100

x

###—Parameter values

a=2.346

g=0.564

b=2.295

x < sort(x)

F1 « ecdf(x)

ecdf — F1(c(x))

zweibulledf — 1 — ((exp(—g * xXa)/

(b(1 - exp(—g * xa)))))

plot(x, ecdf, Ity =1, lwd =2.5, type="s,” xlab = “x,”
ylab = “Estimated cdf,” ylim = ¢(0,1), xlim = ¢(min(x),
max(x)), col = “black”)

par(new = TRUE)

plot(x, zweibullcdf,

xlab = “x,

Ity=1, Iwd=3, type=°1"

ylab = “Estimated cdf,” ylim = ¢(0,1), xlim = c¢(min(x),
max(x)), col = “blue”)

par(new = TRUE)

909 9% %0~ -========== ===
%Kaplan-Meier survival plot

909990~~~ ==
x < read.csv(file.choose(), header = TRUE)

x=x[,1]

x=x[lis.na(x)]

x=x/100

x

###—Parameter values

library(survival)

delta =rep(l,length(x))

x < sort(x)

km = survfit(Surv(x,delta)~1)
plot(km,conf.int=FALSE, ylab =“Kaplan-Meier sur-

« »

vival plot,”xlab = “x”)

a=2.346

g=0.564

b=2.295

ss « function(x)

{

(exp(—g * xXa)/(b(1 — exp(—g * xa))))

Computational Intelligence and Neuroscience

lines(seq(0, 3.5,
length.out = 100)),

col =“blue,” lwd = 3)

909090 %0 === === === =
%PP plot

96909090 ------= ===
x « read.csv(file.choose(), header = TRUE)

length.out = 100),ss(seq(0, 3.5,

x=x[,1]

x=x[lis.na(x)]

x=x/100

X

cdfLD1 =function(x, 4, g, b)

{

1 - (exp(—g * Xa)/(b(1 — exp(—g * xXa))))
}

x = sort(x)

n =length(x)

###—Empirical distribution function
Fn=seq(1,n)/n

plot(Fn, cdfLD1(x, 2.346, 0.564, 2.295), xlab = “x,”
ylab = “PP Plot,” pch =21, col = “blue,” bg = “blue”)
abline(0,1)

9099 %0 -~ == ===
%QQ plot

9090990~~~ = =
x < read.csv(file.choose(), header = TRUE)

x=x[,1]

x=x[lis.na(x)]

x=x/100

x

###—Parameter values

a=2.346

g=0.564

b=2.295

x < sort(x)

F1 « ecdf(x)

ecdf «— F1(c(x))

zweibulledf « 1 — (exp(—g * Xa)/(b(1 — exp(—g * Xa))))
qqnorm(x, pch=“@,” col = “black,” main ="")

qqline(x, pch=“®@,” col="blue,” ylab="X," lty=1,
lwd =3)

90909090~ - - - === =
%Box plot

909090 %0- -~ === oo
x < read.csv(file.choose(), header = TRUE)

x=x[,1]
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x=x[lis.na(x)]
x=x/100
x

boxplot(x, main =,” col = “blue,” ylab = “x,” xlab = “Box
Plot”)

06%6%6%6~----=nnmwxmmmmeemmmmemmmnenmeeenneenn e nneees

Data Availability

This work is mainly a methodological development and has
been applied on secondary data related to the earthquake
insurance data, but if required, data will be provided.
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