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Abstract 37 

Our ability to discover effective drug combinations is limited, in part by insufficient understanding 38 

of how the transcriptional response of two monotherapies results in that of their combination. 39 

We analyzed matched time course RNAseq profiling of cells treated with single drugs and their 40 

combinations  and found that the transcriptional signature of the synergistic combination was 41 

unique relative to that of either constituent monotherapy. The sequential activation of 42 

transcription factors in time in the gene regulatory network was implicated. The nature of this 43 

transcriptional cascade suggests that drug synergy may ensue when the transcriptional 44 

responses elicited by two unrelated individual drugs are correlated. We used these results as 45 

the basis of a simple prediction algorithm attaining an AUROC of 0.77 in the prediction of 46 

synergistic drug combinations in an independent dataset. 47 

 48 

Introduction 49 

Combination therapy has become increasingly relevant in cancer treatment (1, 2). The 50 

complexity of patient-to-patient heterogeneity (3), intratumoral heterogeneity (4) and intracellular 51 

pathway dysregulation (5) provides opportunities for combining drugs to induce responses that 52 

cannot be achieved with monotherapy. Effective combinations may target multiple pathways (6) 53 

or the same pathway (7). They may also reduce the dose of individual drugs, thereby reducing 54 

toxicity, or target molecular mechanisms of resistance, thereby prolonging the effective duration 55 

of treatment (1, 8-10). 56 

 57 

Drug combinations are said to be synergistic if their activity exceeds their expected additive or 58 

independent response (3, 11). Synergistic behavior is difficult to predict, so rational 59 

combinations may not validate experimentally (12). Hypothesis-driven studies of the 60 

mechanisms of synergy and antagonism have focused on a limited set of candidate targets (13, 61 

14). Alternatively, unbiased high-throughput screening assays (15-17) can identify synergistic 62 

compounds in a systematic way by assessing cell viability reduction by individual drugs and 63 

their combinations. Unfortunately, screening all possible drug-pairs in a panel of N drugs with NC 64 

cell lines at ND doses requires a large number (½ N (N-1) ND
2 NC) of experiments, resulting in 65 

high costs that limit the practical reach of this approach. Computational methods to predict 66 

synergistic combination candidates are needed to improve the experimental cost-benefit ratio 67 

(18, 19).  68 
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 69 

To address this need, the DREAM (Dialogue on Reverse Engineering Assessment and 70 

Methods) Challenges consortium (20) conducted a community-wide competition (the NCI-71 

DREAM Drug Synergy Prediction Challenge) that fostered the development and benchmarking 72 

of algorithms for drug synergy prediction. The organizers provided a time course of post-73 

treatment transcriptomics data for each of 14 drugs administered to a lymphoma cell line, and 74 

asked participants to predict which of the 91 pairwise combinations would be synergistic (19, 75 

21). One of the key outcomes of the Challenge and other studies was that synergistic drug 76 

combinations could be partially predicted from the transcriptomics of the monotherapies (21, 77 

22). The two best-performing teams based their algorithms on the assumption that a 78 

concordance of gene expression signatures in drugs with different mechanisms of action often 79 

yield synergistic interactions (23, 24). This assumption, while plausible, has little experimental 80 

support beyond winning the Challenge. Further, the mechanism behind this phenomenon 81 

cannot be ascertained without transcriptomics data from the combination therapy, which was 82 

not provided in the Challenge due to cost. We therefore pose a fundamental question that can 83 

only be answered with matched monotherapy-combination transcriptomics data: How do two 84 

different transcriptomics profiles in cells treated with two different drugs combine to give a new 85 

transcriptomics profile when the drugs are applied together? If the combinatorial pattern of two 86 

gene expression profiles are different in synergistic versus additive drug combinations, then 87 

learning to recognize these patterns may enable us to predict synergistic combinations from the 88 

gene expression of monotherapies.  89 

 90 

In this paper we explore the relationship between the transcriptional landscape of drug 91 

combinations in relation to the profiles of the individual drugs. We performed a systematic, 92 

genome-wide analysis of matched time courses of gene expression following perturbation with 93 

individual compounds and with their combinations. Deliberately sacrificing breadth for depth, we 94 

studied the transcriptional temporal response of an empirically chosen synergistic drug 95 

combination, tamoxifen and mefloquine, in breast cancer and prostate cancer cells and 96 

compared it to that of additive combinations of withaferin with either tamoxifen or mefloquine. 97 

Rather than elucidating specific mechanisms of action for drugs and their combinations, we 98 

attempt to examine the transcriptome for molecular indicators of synergy. Our analysis shows 99 

that molecular synergy (measured by the number of genes whose expression changes 100 

significantly only in the combination), correlates with the Excess over Bliss independence, a 101 



 

 
 

 
4 

measure of the observed effect of a combination that is greater than the expected effect based 102 

on the Bliss model of additivity (11) and increases with time. We used network-based analyses 103 

to trace the transcriptional cascade as it unfolds in time in the synergistic combination. We 104 

found that transcription factors simultaneously activated by both drugs dominate the cascade. 105 

We propose that a pair of drugs with correlated expression signatures is likely to trigger a 106 

synergistic effect, even when they target different pathways. We contrast this effect with the 107 

correlated, but additive, effect of increasing dose of one drug. Correlation of monotherapies 108 

predicted synergistic drug interaction with high accuracy (AUROC=0.77) using the independent 109 

DREAM dataset. This study represents a matched monotherapy-combination transcriptomic 110 

analysis of synergy, advancing both our understanding of synergy and ability to predict it. 111 

 112 

The paper is organized as follows: First, we describe why we chose the monotherapies and 113 

combinations used in this paper and identify patterns of gene expression across synergistic and 114 

additive combinations. We analyze how those molecular patterns relate to phenotypic synergy 115 

and explore synergistic effects on biological processes over time with drug treatment. We then 116 

describe our exploration of synergistic effects on gene splicing as an alternative mediator of 117 

drug combination effect. Returning to gene expression, we study the mechanism of synergistic 118 

gene expression changes by identifying differentially active transcription factors through a 119 

transcriptional network and tracing the impact of these transcription factors in a temporal 120 

activation cascade. Then we use an independent microarray dataset to verify the hypothesis 121 

that correlation between gene expression profiles of monotherapies can be used as an indicator 122 

of synergy. Finally, we discuss the structure of the synergistic transcriptional cascade and a 123 

plausible conceptual framework for the molecular underpinnings of synergy. 124 

 125 

Results 126 

Finding reproducible synergistic and additive combinations 127 

To identify drug-pairs for the detailed time course RNA-seq analysis, we leveraged a pre-128 

existing LINCS drug combination dataset collected at Columbia University (Califano’s lab) in the 129 

MCF7 cell line, a breast cancer line that is ERalpha positive (25), and the LNCaP cell line, a 130 

prostate cancer cell line that is ERbeta positive (26). This dataset had information on all 131 

combinations of 99 drugs against 10 different drugs, each combination assessed in a matrix of 4 132 

by 4 doses at 48 hours after drug application. Among these 990 drug combinations, we found 133 
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39 synergistic combinations with a maximum Excess over Bliss (EOB) independence over the 134 

4x4 matrix of more than 30%. From these 39, to select synergistic combinations in which both 135 

monotherapies played an important role in eliciting synergy, we chose 13 combinations whose 136 

constituent monotherapies showed a variety of combinatorial behaviors across the combinations 137 

(antagonism, additivity, and synergy in different combinations) for further testing. We re-138 

assessed the synergy of these 13 pairs using a 6 x 6 dose response matrix and found that 9 of 139 

the 13 combinations remained synergistic, while 4 exhibited additive or antagonistic responses, 140 

which we removed from further study. Tamoxifen appeared in the greatest number (4) of these 141 

9 combinations. Given this data and the known clinical utility of Tamoxifen in ER+ breast cancer 142 

(27, 28), we focused on these 4 combinations. Of those 4, we sub-selected the 2 drug pairs with 143 

the highest EOB values, Tamoxifen (T) + Mefloquine (M) and T + Withaferin A (W) (EOB = 49 144 

and 43, respectively). We then further measured viability (using the high throughput Cell Titer 145 

Glo) and EOB in triplicate experiments using a 10 x 10 dose matrix at 12 hours, 24 hours and 146 

48 hours (Supplementary Files 1-2) after drug treatment, obtaining results that were consistent 147 

with the previously found synergy. Note that these two combinations were tested in at least 148 

three independent sets of experiments at this point (99x10 screen, 13 combinations, and 2 149 

combinations).  150 

 151 

We noted differences in viability, consistent with recent concerns regarding the lack of 152 

reproducibility in cell line viability experiments in response to drugs (29, 30), and yet TM 153 

remained consistently synergistic despite changes in the viability of its constituent 154 

monotherapies. In addition, we noted hormetic dose curves in response to the monotherapies, 155 

especially for W (31). These hormetic responses are evidenced by a non-monotonic dose 156 

response, with more than 100% viability with respect to control for small doses (about 3 uM for 157 

W; Supplementary File 2) or at short times after drug application (T and M at 3 hours, Figure 158 

1C-E). Many factors could contribute to hormesis. For example, it has been observed that 159 

efficient use of energetic processes in complex stress responses require biological resources to 160 

be deployed by the cell in a timely fashion (temporal hormesis) and at relatively low-doses (dose 161 

hormesis) to elicit a protective response (32, 33). The elucidation of these hormetic responses 162 

in the context of synergistic interactions could be a fruitful line of research, but goes beyond the 163 

scope of this paper.  164 

 165 
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Finally, we selected doses of these three drugs that synergized in these two combinations at 166 

both time points (20 μM T, 10 μM M, 5 μM W) for subsequent study (Supplementary Files 3-4). 167 

T and M are also synergistic at 12 and 24 hours as measured by combination index, which 168 

quantifies synergy factoring out the dose effects, but T and W are synergistic only at 24 hours 169 

(Figure 1-figure supplement 1A). For completeness, we included the combination MW in 170 

subsequent studies. 171 

 172 

We focused the rest of the study on these three drugs and their combinations (Figure 1A), in an 173 

effort to understand how synergy operates at a transcriptomic level (Figure 1B). We studied 174 

MCF7 and LNCaP cells under DMSO (vehicle control), T, M and W, and their combinations TM, 175 

TW and MW over a 48-hour time course (0, 3, 6, 9, 12, 24 and 48 hours) using nuclei counts as 176 

a direct readout of cell viability in relation to DMSO (Figure 1C-H). At these doses, TM (Figure 177 

1C,F) synergistically reduced viability as early as 6 hours, with little effect from T and M 178 

individually in MCF7 (Figure 1C) and moderate effect in LNCaP (Figure 1F). The synergistic 179 

effect of TW and MW was very small compared to TM in MCF7 (Figure 1D,E) and negligible in 180 

LNCaP (Figure 1G,H). In relation to TM, we therefore consider the effects of TW and MW to be 181 

additive and dominated by W (Supplementary Files 2,5).  182 

 183 

Finally, we wished to study the effect of drug dose on viability, as a combination treatment 184 

exposes the cells to more drug than a monotherapy, and this could mimic the effect of 185 

increasing drug dose. Additionally, M has been shown to inhibit the function of MDR1, a multi-186 

drug efflux pump (34) and its effect could therefore be simply to increase the intracellular 187 

tamoxifen concentration. We analyzed dose curves of T and M as monotherapies (Figure 1-188 

figure supplement 1B). We measured the effect of T alone at 5, 10, 20, 25, and 30 μM, and M 189 

alone at 2.5, 5, 10, and 15 μM at 24 hours in MCF7 cells. Viability in 25 and 30 μM T (37.1% 190 

and 13.7%) was similar to TM (23%), while viability of cells treated with M at 15 μM was 63.3%. 191 

We continued to observe some inter-experiment variability in the efficacy of monotherapies (e.g. 192 

T at 20 μM at 24 hours in Figure 1C and Figure 1-figure supplement 1B, the latter measured 193 

about two years after the former one). Interpreting 25 μM T as a “sham” combination of 5 and 20 194 

μM T (Figure 1-figure supplement 1B), 30 μM T as a “sham” combination of 10 and 20 μM T, 195 

and 15 μM M as a “sham” combination of 5 and 10 μM M, we observed EOBs of 31.5, 53.1, and 196 

17.5 respectively (Supplementary File 6), far lower than the EOB of about 103.9 in TM (Figure 197 

1C). Consistent with the synergistic Combination Index in TM (Figure 1-figure supplement 1A), 198 
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this suggests that the synergy we observed is a phenomenon distinct from dose response. To 199 

study the transcriptional mechanisms of drug combinations, we collected RNA from the same 200 

cultures from which we measured viability at each treatment for RNAseq (except 30 μM T, 201 

which caused too much cell death for RNA collection).  202 

 203 

Gene expression of drug combinations in relation to monotherapies  204 

For each treatment (in doses and combinations listed above) and time point up to 24 hours we 205 

collected samples in triplicate and performed RNAseq studies (Supplementary Files 7-8). The 206 

RNAseq data was reliable, with replicates showing a very high concordance and technical noise 207 

considerably smaller than the changes in expression observed under different conditions 208 

(Figure 1-figure supplement 2A-B). We first examined the gene expression over all treatments 209 

and time points in combination experiments (Figure 1I) and variable doses used for the “sham” 210 

combinations (Figure 1-figure supplement 2C) in MCF7, and combination experiments in 211 

LNCaP (Figure 1-figure supplement 2D). The transcriptional profiles for the monotherapies T 212 

and M were more similar to DMSO than TM. The transcriptional profiles for W, TW and MW on 213 

the other hand, were similar to each other but different from T, M, TM and DMSO over time. 214 

However, gene expression profiles from different doses of the same monotherapy were quite 215 

similar, with changes evolving gradually with increasing dose (Figure 1-figure supplement 2C). 216 

This pattern mirrors the phenotypic viability profiles (Figure 1C-H, Figure 1-figure supplement 217 

1B). Figure 1J shows a two-dimensional principal component analysis (PCA) of the 218 

transcriptional data from the combination and dose experiments in MCF7. The data for T and M 219 

monotherapies, from both the combination experiments and the dose experiments, localize 220 

slightly but distinctly above DMSO. However, their TM combination is farther from DMSO than T 221 

or M but in the same vertical plane. The PCA representation of W progresses in an almost 222 

horizontal direction, with TW and MW co-localizing with W, which dominates the combination. 223 

Therefore the 2-dimensional PCA representation of the transcriptomes after treatment suggests 224 

orthogonal synergistic and additive directions. The PCA representation of the gene expression 225 

from treated LNCaP cells indicates very similar dynamics in this distinct cell line (Figure 1-figure 226 

supplement 2E). 227 

 228 

We next examined differential expression relative to DMSO. The high concordance of replicates 229 

allowed for clear detection of differentially expressed genes (DEGs) in different conditions 230 

(Figure 2-figure supplement 1A). To determine DEGs in MCF7, we selected a false discovery 231 
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rate (FDR) cutoff at which the only DEGs at time 0 (~30 min post-treatment; see Methods) over 232 

all treatments are well-known immediate early genes (35, 36; Table). We then used this cutoff 233 

across all time points and treatments of the fixed dose experiments. To achieve consistency in 234 

our treatment of the variable dose experiments which were done separately and with fewer 235 

replicates, we chose an FDR cutoff resulting in approximately the same number of DEGs in M 236 

10 μM and T 20 μM (Figure 2-figure supplement 1B; see Methods). In LNCaP, we selected a 237 

false discovery rate (FDR) cutoff at which there were no DEGs at time 0, as we noticed no 238 

differentially expressed immediate early genes in this case (see Methods). We then quantified 239 

and examined the properties of DEGs in monotherapies and their combinations. The number of 240 

DEGs in MCF7 cells treated with TM, W, MW, and TW were 1 to 2 orders of magnitude greater 241 

than that of treatments with T and M (Figure 2A-C). We evaluated the presence of 242 

synergistically expressed genes (SEGs), which we define as genes that are differentially 243 

expressed in a combination therapy but not in either of the constituent monotherapies. 244 

Approximately 90% of DEGs in MCF7 cells treated with TM are synergistic, and not differentially 245 

expressed in either T or M alone (Figure 2A) at any time point. To test for artifacts related to the 246 

chosen FDR cutoff, we calculated the percentage of SEGs over different FDR thresholds and 247 

observed that the general trend is independent of the specific cutoff (Figure 2-figure supplement 248 

1C-D). In contrast, most DEGs in treatments TW and MW were also differentially expressed in 249 

W (Figure 2B-C). These molecular signatures parallel the effect of these drugs on viability 250 

(Figure 1C-E), reflecting the overall synergistic character of TM, and a mostly additive dominant 251 

effect of W. In LNCaP cells, we observed a similar effect of TM: more than 75% of DEGs are 252 

SEGs at any time point (Figure 2-figure supplement 2A). However, we observed that when 253 

LNCaP cells were treated with TW or MW, more than a quarter of DEGs were SEGs at any time 254 

point, and more than half at 12 and 24 hours (Figure 2-figure supplement 2B-C); in comparison, 255 

in MCF7 cells treated with MW or TW, less than a quarter of DEGs were SEGs at nearly every 256 

time point (Figure 2B-C). This highlights the ability of different cells to respond differently to 257 

drugs, and we explore it further in the next section. Interestingly, across both cell lines and 258 

including the pairs in our dose experiments, the number of SEGs correlates well (Pearson 259 

r=0.63, p=0.000044; Spearman rs=0.59, p=0.00013) with EOB for all treatments and time points, 260 

(Figure 2D). The number of SEGs and the EOB of T 25 μM and M 15 μM are similar to TW and 261 

MW and considerably smaller than TM, consistent with the interpretations that behavior of TW 262 

and MW represent additivity, and that the molecular and phenotypic synergy of TM transcends 263 

the expected behavior of a simple increase in dose. 264 
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 265 

Finally, we also observed a significant relationship between the EOB of a combination and the 266 

correlation of the transcriptional profiles of the constituent monotherapies (Figure 2E; see 267 

Methods). Conversely, the monotherapy pairs from our dose experiments (i.e. T 5 and 20 μM, M 268 

5 and 10 μM) had high correlation as expected, but low EOB. For this reason, when including 269 

the dose experiments, the direct correlation between EOB and the correlation of transcriptional 270 

profiles (see Methods) is not significant (Pearson r=0.31, p=0.068; Spearman rs=0.28, p=0.097). 271 

When we removed these sham combination pairs from the dose experiments, we observed a 272 

significant relationship between EOB and correlation of transcriptional profiles (Pearson r=0.59, 273 

p=0.00064; Spearman rs=0.54, p=0.019). This result suggests that correlated transcriptional 274 

profiles of two distinct drugs may be important in defining synergy. Further study in other 275 

contexts would be necessary to generalize this hypothesis. The possible nature of correlation as 276 

a necessary but not sufficient condition for synergy will be discussed further in a later section. 277 

 278 

Critical cancer pathways are synergistically enriched 279 

We checked for enrichment of gene sets associated with specific biological processes. 280 

Candidate gene sets were selected from gene-set libraries retrieved from the Enrichr tool (37, 281 

38), pathways implicated in the hallmarks of cancer (39), and likely drug targets of T and M (see 282 

Methods). Figure 3 shows the biological processes that are enriched in at least one of the 283 

subgroups of DEGs in MCF7 cells under treatment with T, M, TM, as well as in the set TUM, the 284 

union of DEGs under T or M, which represents the expected DEGs if T and M acted additively. 285 

If T and M act synergistically, we expect that the set of DEGs in TM should be enriched in more 286 

functional classes than TUM. Implicated biological processes fell into three classes: 1) 287 

endoplasmic reticulum stress, estrogen signaling, and kinase activity were enriched in both TM 288 

and monotherapies; 2) apoptosis, toll-like receptor and cytokine signaling, immunity, 289 

transcription, metabolic processes, and autophagy were markedly more enriched in the 290 

combination TM than in either monotherapy or TUM, an effect no recapitulated by increasing 291 

monotherapy dose at 24 hours; and 3) downregulation of the cell cycle was present in both the 292 

combination and monotherapies at 12 and 24 hours, but began to occur much earlier in the 293 

combination (Figure 3).  Classes 2 and 3 appear to be synergistically affected in TM but were 294 

not synergistic in either TW or MW (Figure 3-figure supplement 1A). 295 

 296 
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We also interrogated the dysregulated genes in the treated LNCaP cells by the same 297 

procedure. As more SEGs had appeared in LNCaP cells treated with MW and TW than in 298 

MCF7, especially at 12 and 24 hours (Figure 2D), we compared the synergistically enriched 299 

gene sets in LNCaP cells for TM, TW, and MW (Figure 3-figure supplement 1B). A few 300 

biological processes, such as autophagy, were synergistically enriched in all three 301 

combinations. Gene sets for which we observed differences between the combinations fell into 302 

two broad groups: synergistically enriched more in W combinations (W-enriched) or 303 

synergistically enriched more in TM (TM-enriched). The W-enriched gene sets included two 304 

main classes: 1) cholesterol biosynthesis and metabolism was only synergistically upregulated 305 

in MW and 2) rRNA and ncRNA processing was synergistically upregulated only in TW at 24 306 

hours, while tRNA and mitochondrial RNA processing was synergistically downregulated at 307 

some time points in both TW and MW. TM-enriched gene sets fell into three classes: 1) 308 

temporal differences: endoplasmic reticulum stress was upregulated at earlier time points in TM 309 

than in the monotherapies, whereas it was similarly enriched in W, TW, and MW at all time 310 

points except 24 hours, and intrinsic apoptosis in response to ER stress was upregulated 311 

initially in W, TW, and MW followed by normalization over time, whereas in TM it was 312 

synergistically upregulated in an increasing manner over time; 2) certain metabolic processes 313 

(generation of precursor metabolites and energy, cofactors, amino acids, and sulfur) were 314 

synergistically downregulated only in TM; and 3) genes that are repressed by estrogen receptor 315 

were synergistically upregulated only in TM. We hypothesize that the W-enriched classes 316 

represent mechanisms by which LNCaP cells counter the effects of the drug combinations and 317 

evade cell death, whereas TM-enriched gene sets, particularly class 2, may represent gene sets 318 

that function as harbingers of phenotypic synergy, distinguishing synergistic drug combinations 319 

from combinations whose effects can be resisted by cells. 320 

 321 

Finally, we assessed for enrichment in phospholipidosis (PLD) in both cell lines. Research has 322 

shown that drugs that induce lysosomal stress and lipid accumulation (phospholipidosis), 323 

including tamoxifen and mefloquine, tend to exhibit similar transcriptional profiles (40-42). We 324 

quantified enrichment in several types of gene sets with a focus on PLD (40; see Methods): 325 

cellular components, including in the top 20 gene ontology gene sets associated with PLD; a 326 

PLD gene signature (provided by authors of 40); and a set of the gene targets of two 327 

transcription factors (TFE3 and TFEB) shown to be involved in lysosomal stress. We found that 328 

some PLD-associated cellular components are synergistically affected in TM, including the 329 
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lysosome, Golgi, mitochondrion, nucleus, and nucleolus. PLD was highly enriched in all 330 

treatments in both cell lines (Figure 3-figure supplement 2), indicating a generalized toxicity-331 

associated effects of treatment. We studied the role that PLD might play in the high correlation 332 

between monotherapies in our experiments. We found that the relationship between correlation 333 

and EOB (excluding dose experiments) holds even when PLD genes were removed (r=0.59, 334 

p=0.00068; Spearman rs=0.55, p=0.0017). Furthermore, we found that genes in the PLD 335 

signature accounted for a small proportion of DEGs in all treatments (data not shown), and as a 336 

result the correlation between monotherapies is nearly identical whether we include or exclude 337 

the PLD signature genes. (A plot of the correlation between monotherapies including the PLD 338 

signature genes vs the correlation between monotherapies excluding the PLD signature genes 339 

yielded an almost perfect identity line with: r=0.9999, p=1e-65; Spearman rs=0.9995, p=2e-52). 340 

Finally, enrichment of the PLD signature gene set in TM was only slightly greater than in TUM 341 

(Figure 3-figure supplement 2A for MCF7, Figure 3-figure supplement 2C for LnCAP), indicating 342 

at best mild synergy in PLD signature genes. These results show that PLD plays a role in the 343 

treatments considered here and that some transcriptional similarity between the monotherapies 344 

may be associated with PLD. However, PLD is one of many cellular processes triggered by the 345 

drug treatments considered here, and it accounts only in a small part for the transcriptional 346 

correlation and synergistic gene expression we observed. 347 

 348 

Co-expressed genes show a synergistic temporal pattern  349 

We studied temporal patterns of drug response. We used k-means clustering (see Methods) to 350 

identify co-expressed genes with similar time evolution in T, M and TM (Source Data File 7). 351 

This unsupervised clustering method identified four distinct temporal patterns (Figure 4A): 1) 352 

upregulated in TM (2253 genes), 2) strongly upregulated in TM (421 genes), 3) downregulated 353 

in TM (1709 genes), 4) strongly downregulated in TM (718 genes). In each cluster, the average 354 

differential expression observed in the combination TM was significantly stronger than that in T 355 

+ M, in which the (log) expression in T and M are added. The trajectory over time for most 356 

genes is monotonic and saturates at 9 hours. However, we also tested for genes whose 357 

trajectories were significantly different in TM than T and M (data not shown). A minority of genes 358 

in each cluster exhibited unique temporal profiles in TM, including mixed transient and 359 

monotonic behavior, suggesting the existence of temporal synergy (e.g., Figure 4B). 360 

 361 
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We then assessed these gene classes for enrichment in biological processes (Figure 4C). 362 

Consistent with enrichment of these processes at each time point (Figure 3), upregulated genes 363 

were enriched in endoplasmic reticulum stress (clusters 1-2), and downregulated genes were 364 

enriched in cell cycle and metabolic processes (clusters 3-4). In addition, apoptosis and 365 

downregulated targets of estrogen were enriched in genes strongly upregulated in TM (cluster 366 

2), highlighting synergistic properties. Metabolic processes and the cell cycle were distinguished 367 

by clusters 3 and 4, highlighting the biological significance of the degree of downregulation. 368 

Finally, the genes with significantly different trajectories in TM account for a small but distinct 369 

subset of these synergistic biological processes (data not shown). Together, these data indicate 370 

that monotonic dysregulation dominates gene behavior and triggers important biological 371 

processes, which implies that the early transcriptional responses might be sufficient to predict 372 

synergy.  373 

 374 

 375 

Synergistically spliced and expressed genes are different 376 

We studied splicing by examining the relative exon usage for each gene. Combination treatment 377 

TM induced unique patterns of relative exon usage, compared to DMSO, T, and M. For 378 

example, many exons were less used in TM, consistent with an exon skipping modality of 379 

alternative splicing (Figure 5). As with differential gene expression, most differentially spliced 380 

genes in TM were synergistic, i.e., not differentially spliced in either monotherapy (Figure 6-381 

figure supplement 1A). This was not the case with the combinations involving W (Figure 6-figure 382 

supplement 1B-C) where the differentially spliced genes in MW and TW had substantial overlap 383 

with the differentially spliced genes in W. However, these synergistically spliced genes were 384 

generally distinct from the SEGs (Figure 6A and Figure 6-figure supplement 1D-F). Despite this 385 

distinction, the number of synergistically spliced genes correlated with the EOB score (Pearson 386 

r=0.73, p=0.002; Spearman rs=0.75, p=0.0017) over all treatments and time points (Figure 6B), 387 

as with the SEGs (Figure 2D). These data suggest that expression and splicing represent two 388 

separate mechanisms driving phenotypic synergy.  389 

 390 

Synergistic activation of transcription factors 391 

We next examined how regulation of the transcriptome can be affected synergistically. We 392 

focused on the MCF7 data for this analysis as we were able leverage a robust pre-existing 393 
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MCF7-specific transcriptional network (43). Research has shown that the activity of a 394 

transcription factor (TF) can be inferred from expression of its targets (44, 45). Because activity 395 

of a TF may be affected in many ways, including post-translational modification, co-factor 396 

binding, and cellular localization, this approach is a more robust measure of activity beyond 397 

simply measuring expression of the TF itself. We utilized a conservative method for this analysis 398 

that distinguishes positive effector and negative effector (repressor) functions of a TF (Figure 7-399 

figure supplement 1A; see Methods). Of the 1,101 TFs studied, most of the differentially active 400 

(DA) ones were uniquely active as a positive effector, suggesting that much of the response to 401 

these drugs is the result of upregulation of genes, and positive TF-gene interactions (Figure 7-402 

figure supplement 2 A-B). 403 

 404 

Similarly to the differential expression and differential splicing results, most differentially active 405 

transcription factors (DATFs) in TM were not DA in the monotherapies T and M (Figure 7A). 406 

Conversely, most DATFs in TW and MW were also DA in W (Figure 7B-C). The majority of 407 

DATFs over all treatments and times were produced from genes that were differentially 408 

expressed or differentially spliced (Figure 8A). However, some instances of DATFs did not 409 

correspond to differential expression or splicing and may represent TFs that become DA by 410 

mechanisms not captured by RNA-seq, including some that have a known connection to cancer 411 

treatment or to biological processes identified in Figure 3. For example, ATF4, one of the top 412 

DATFs in TM, is not differentially expressed nor spliced, and is a key regulator of the response 413 

to endoplasmic reticulum stress (46).  414 

 415 

Examining TF activity over time, we found that most DATFs, once DA, tend to remain so at later 416 

time points. This time course in TM was distinct from T and M (Figure 8B), whereas those of W, 417 

TW, and MW were very similar (Figure 8-figure supplement 1). In addition, the patterns of 418 

differential TF activity were remarkably similar in T and M, and in fact these two monotherapies 419 

had a higher correlation in differential activity values of significant TFs than either of the W 420 

pairings (Spearman r at 12 hours: 0.8 in T and M, 0.1 in T and W, 0.4 in M and W), echoing the 421 

differential expression data (Figure 2E). Using the set of DATFs in at least one time point in T, 422 

M, and TM (Figure 8B), we examined the enrichment of their target sets in the temporal gene 423 

clusters identified by k-means clustering (Figure 4). The genes in each cluster are significantly 424 

enriched in distinct TF target sets, suggesting that the temporal patterns are regulated by 425 

different TFs (Figure 8C). 426 
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 427 

TF activation in monotherapies can account for synergistic gene 428 

expression in combinations via a TF activation cascade 429 

We next asked how the combination of T and M gives rise to the synergistic activity of TFs in 430 

TM in MCF7. We hypothesized that DATFs in T and/or M could alter the activity of other TFs 431 

when both drugs are administered together. We examined two possible mechanisms by which 432 

this could happen in combination TM. First, distinct DATFs in each monotherapy may converge 433 

as regulators of other TFs when the two monotherapies are combined. This is an “AND” model 434 

for the activation of a TF, in that both TFs need to be active in the combination for the activation 435 

of their targets. Alternatively, the same DATF in T and M may be more strongly DA in TM due to 436 

the combined activating effects of the two monotherapies. This dose enhancement mechanism 437 

in the combination will be called the “double-down” model. We also assessed TFs that are 438 

linked through the MCF7 transcriptional network to those explained by these AND and double-439 

down models in the same time point, as multiple rounds of transcriptional effects could occur 440 

within 3 hours (Figure 9-figure supplement 1; 47). 441 

 442 

We examined the potential effect of these two mechanisms on synergistic TFs and SEGs 443 

(Figure 9 and Figure 9-figure supplement 1). At each time point, we identified the synergistic 444 

TFs that could have resulted from the AND mechanism (converging red and blue arrows in 445 

Figure 9), and the double-down mechanism (magenta arrows). At time 3 hours, for example, 446 

there are two TFs that are active in T, M, and TM: MYC and KLF10. These TFs are connected 447 

through the network to 9 TFs (Figure 9) active in TM (but not in T or M). These TFs are in turn 448 

connected to 16 additional TFs (Figure 9-figure supplement 1) active in TM (but not in T or M), 449 

giving a total of 25 TFs accounting for 42% of all synergistic TFs. Because there was no active 450 

TF in T alone, there was no AND mechanism at work. At 9 hours, 2 new TFs become active in T 451 

alone, 18 in M alone and 3 in both T and M, accounting for 12 new synergistic TFs: 6 via the 452 

AND mechanism (purple), 4 via the double-down mechanism, and 2 additional TFs due to a 453 

combination of AND and double-down models (Figure 9-figure supplement 1). At each time 454 

point after 3 hours we identified TFs connected to TFs identified at the immediately previous 455 

time point (vertical arrows). Over all time points, the double-down model alone can explain 83 456 

synergistic TFs, the AND model only explains 12 TFs, and mixed AND and double-down explain 457 

4. In total, this cascade of TF activation accounted for the majority of synergistic TFs at all time 458 

points, with 88% of the synergistic TFs at 24 hours explained by the cascade of activation 459 



 

 
 

 
15 

initiated by the 2 TFs activated at 3 hours in both T and M. The number of TFs arising from TFs 460 

synergistically activated at previous time points was substantial and accounted for the majority 461 

of identified TFs after 3 hours. 462 

 463 

We next asked how the AND and double-down mechanisms, along with the activation of 464 

synergistic TFs resulting from them, affected the larger group of SEGs. Here, we identified 465 

genes potentially affected by the AND and double-down mechanisms, as well as those 466 

connected to the newly identified TFs at the current and previous time point.  At 3 hours, 29 467 

SEGs can be ascribed to the double-down mechanism, and 146 are direct targets of the newly 468 

explained TFs (Figure 9). In all, this accounts for 175 (46%) of all SEGs. By 12 and 24 hours, 469 

the vast majority (78% and 79% respectively) of SEGs were explained by this cascade. 470 

Together, these data suggest that T and M act in concert, mostly through the double-down 471 

mechanism, to trigger a transcriptional cascade that results in substantial differential activation 472 

of synergistic TFs and genes not seen in either monotherapy. 473 

 474 

Predicting drug synergy in an independent dataset 475 

We have observed that correlation of gene expression of monotherapies is associated with 476 

phenotypic synergy in MCF7 cells treated with our three combinations (Figure 2E). We next 477 

wished to test the generalizability of this association by leveraging the independent DREAM 478 

Challenge dataset (19), which utilized microarray data from LY3 DLBCL cells treated. Of the 91 479 

drug pairs, 81% of the synergistic combinations have correlation > 0.3 (Figure 10A). Indeed the 480 

average correlation for the pairs with EOB > 2.5 (at which the average EOB in three replicates is 481 

larger than zero by more than the standard error) is 0.48 which is statistically significantly (t-test 482 

p=1.0E-8) larger than the average correlation of 0.3 for pairs with EOB < -2.5. As in our dataset, 483 

monotherapy correlation is associated with EOB (Pearson r=0.27, p=0.009; Spearman rs=0.27, 484 

p=0.01).  485 

 486 

As previous work has suggested that transcriptionally similar, but structurally different drugs are 487 

associated with PLD (40), we assessed enrichment of the PLD gene signature in the DREAM 488 

drug pairs, using the union of the DEGs in either monotherapy for each pair. We found that 489 

monotherapy correlation is associated with enrichment in PLD (Pearson r=0.28, p=0.008; 490 

Spearman rs=0.27, p=0.009), confirming prior studies. However, we found no association 491 

between enrichment in PLD and EOB (Pearson r=-0.10, p=0.36; Spearman rs=-0.12, p=0.26). 492 



 

 
 

 
16 

Additionally, as in our own dataset, the relationship between correlation and EOB holds when 493 

PLD genes are removed (Pearson r=0.27, p=0.009; Spearman rs=0.28, p=0.008). These data 494 

suggest that correlation of monotherapies may be a necessary, but not sufficient, condition for 495 

synergy. Additionally, gene expression in processes such as PLD may be significant, but 496 

additive or mildly synergistic in nature (Figure 3-figure supplement 2), and thus may play a role 497 

in the non-synergistic outcomes of correlated monotherapies. (Figure 10B) outlines a 498 

conceptual framework for this relationship. However, we note that unlike in our dataset that is 499 

more limited in breadth, correlation of monotherapies and EOB are not linearly correlated in the 500 

DREAM data (Figure 10A). Furthermore, any relationship between PLD and either molecular or 501 

phenotypic synergy has not been explicitly examined in prior studies. Therefore, validation of 502 

our findings in multiple contexts is needed to generalize these claims.  503 

 504 

Finally, we used the Pearson correlation between DEGs in monotherapies to predict synergy of 505 

their combination and compared these results to those of DIGRE, the best performing method in 506 

the DREAM Challenge (24), in predicting the 16 synergistic drug pairs out of the total 91 pairs in 507 

the DREAM dataset (see Methods). Correlation outperforms DIGRE in AUROC (Figure 10C) 508 

and AUPR (Figure 10D), with Bayes factors (48) of 3.79 and 34.71, indicating statistical 509 

significance with Bayes factors >3 (49). It is interesting that simply computing the correlation 510 

coefficient between the transcriptomic response of cells to each of a pair of drugs produces a 511 

robust predictor of the synergy of the combination. 512 

 513 

Discussion 514 

In this paper we studied gene expression data taken from cells after treatment with 515 

monotherapies and their combinations in a detailed time course analysis, to elucidate the 516 

transcriptional mechanisms underlying synergistic drug interactions. We studied three drug 517 

combinations on MCF7 breast cancer cells and LnCAP prostate cancer cells: tamoxifen and 518 

mefloquine (TM), tamoxifen and withaferin (TW), and mefloquine and withaferin (MW). Of these 519 

three combinations, TM was dramatically synergistic (Figure 1C,F). A mechanistic rationale for 520 

its efficacy is not obvious from the known target processes of T (estrogen signaling; 50) and M 521 

(autophagy; 51). However, the effect of M on estrogen receptor target gene sets (Figure 3 for 522 

MCF7, Figure 3-figure supplement 1B for LnCAP) indicates a moderate anti-estrogen effect, 523 

akin to the effect of recently developed novel quinolone derivative estrogen receptor antagonists 524 

(52-54). This suggests an unexpected overlap in the targets of T and M, even if estrogen 525 
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receptor represents an “off-target” of M, rather than a primary target, and may contribute in part 526 

to the high gene expression correlation we observed. Although these data, the in vitro synergy 527 

of TM, and mouse in vivo response to chloroquine and tamoxifen (55) makes this combination 528 

an attractive candidate for further study, we are not aware of clinical studies on it in cancer. The 529 

experiments required to validate the targets and synergistic mechanisms of TM and its in vivo 530 

effect would be beyond the scope of this study. Our aim was to shed light on the transcriptional 531 

response of the combination in terms of the monotherapies.  532 

 533 

We have explored the regulation of synergy in MCF7 by integrating our gene expression data 534 

with an MCF7-specific transcriptional network, which allowed us to estimate the differential 535 

activation of TFs. Possibly due to overlapping target sets of T and M, we find that TF activity is 536 

remarkably correlated between T and M treatments at all time points, resulting in a considerably 537 

higher correlation in gene expression for this drug pair than the other two drug pairs we 538 

examined. This correlated TF activation in response to T and M results in a “double-down” effect 539 

in the combination, where a TF activated by both drugs is reinforced in its activation in the 540 

combination at early time points, beginning with early response TFs MYC and KLF10 (36). MYC 541 

is a proto-oncogene present in a low-level amplification in MCF-7 cells, likely functioning as an 542 

oncogene (56-58). It has been implicated in regulating the unfolded protein response after 543 

prolonged tamoxifen treatment (59), suggesting it may play a role in the ER stress we observed 544 

in response to tamoxifen treatment. Conversely, KLF10 is a tumor suppressor that represses 545 

MYC expression in healthy cells and is involved in repressing proliferation and inducing 546 

apoptosis (60). It may therefore act to check unregulated MYC expression and facilitate the 547 

induction of apoptosis.  548 

 549 

The action of these TFs triggers a transcriptional cascade that expands over time and results in 550 

the emergence of a massive number of SEGs (DEGs in the combination but not in either 551 

monotherapy) not recapitulated by increasing monotherapy dose. We found that a high number 552 

of SEGs is strongly associated with the synergistic combination in MCF7, whereas all 553 

combinations produced SEGs in LNCaP, only one of which resulted in phenotypic synergy 554 

(Figure 2D). The data suggest that SEGs are a sensitive, but not specific, molecular indicator of 555 

synergistic processes in the combination, which in the case of TM includes pro-cell death 556 

processes. This phenomenon is distinct from the relationship between differential expression 557 
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and cell death, which can reflect processes triggered by single agents, unrelated to the behavior 558 

of combinations. 559 

 560 

The SEGs resulting from this cascade contribute to specific biological processes that are likely 561 

responsible for the killing effect of the combination TM, including activation of intrinsic apoptosis 562 

in response to endoplasmic reticulum stress and cell cycle arrest. While T promotes apoptosis 563 

(61), cells are rescued in part by the pro-survival activation of autophagy (62), which degrades 564 

and recycles metabolites and other cellular constituents including depolarizing mitochondria 565 

(63). Autophagy is enriched in T treated cells, likely in response to the unfolded protein 566 

response triggered by ER stress (63; Figure 3, Figure 3-figure supplement 1B), and perhaps 567 

accounting for the poor efficacy of T in the first 24 hours (Figure 1C,F). Research indicates that 568 

treatment with M (an antimalarial agent) alters regulation of autophagy in a cell-type specific 569 

manner (51, 64, 65). This effect may compromise mitochondrial recycling resulting in lower ATP 570 

levels (66). 571 

 572 

When treating cells with T and M simultaneously, we expect that the pro-survival effects of the 573 

autophagy pathway will be abrogated by M, leading to a synergistic shutdown of metabolic 574 

processes, and cell death by apoptosis (67). Indeed, we observed synergistic changes in 575 

apoptosis and autophagy in both cell lines upon TM treatment (Figure 3, Figure 3-figure 576 

supplement 1B). The large numbers of SEGs we observed in all combinations in LNCaP cells 577 

(Figure 2D) allowed us to study the distinction between SEGs in combinations with phenotypic 578 

synergy and those without. W, TW, and MW all quickly downregulated biogenesis of RNA and 579 

protein, TW upregulated RNA metabolism, and MW upregulated cholesterol metabolism, which 580 

may be physiologic responses to ER stress (68, 69), whereas cells in TM regulated these 581 

processes more slowly. Perhaps through the combined protective effects of synergistically 582 

upregulating autophagy and downregulating biogenesis, cells treated with the W combinations 583 

were able to recover from an initial upregulation of intrinsic apoptosis in response to ER stress. 584 

In TM, however, the upregulation of autophagy and downregulation of biogenesis were not as 585 

robust, and cells gradually and synergistically downregulated metabolism and upregulated 586 

intrinsic apoptosis in response to ER stress (Figure 3-figure supplement 1A). These data 587 

indicate that drug combinations can induce SEGs that represent either protective responses or 588 

cell death, only the latter of which results in phenotypic synergy. This suggests SEGs are a 589 

necessary, but not sufficient, condition for synergy. 590 
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 591 

In MCF7, cell competition induced by varying levels of the synergistically active TF MYC may 592 

activate the synergistically upregulated IRAK2 and its NFkB effectors (NFKB1, CASP8, and 593 

NFKBIA are upregulated in TM), triggering apoptosis in the less fit cells (70). Cells that are 594 

dying or undergoing ER stress produce damage-associated molecular patterns (71), which 595 

activate TLR3 signaling through a MYD88-independent (MYD88 and its adaptor IRAK1 are 596 

synergistically downregulated in TM) and TRIF-mediated pathway leading to the activation pro-597 

inflammatory NFkB signaling (72). All these biological processes (TLR3 signaling, MYD88-598 

independent and TRIF-dependent regulation of cytokines, NFkB signaling) are synergistically 599 

enriched in TM. The crosstalk between cellular stress response and innate immune signaling 600 

likely accounts for the enrichment of immunity functional classes (73). The emergence of these 601 

synergistic functional gene classes was not recapitulated by increasing monotherapy dose 602 

(Figure 3). Rather, they are unique to the combination. This suggests that a focus on known 603 

targets of monotherapies is insufficient to predict the effects of combinations. 604 

 605 

The utilization of RNAseq technology allowed us to examine synergistic effects on RNA splicing, 606 

an approach not previously available to studies of synergy that used microarrays. Splicing may 607 

alter the proteomic function by adding or deleting a key regulatory protein domain (74). We 608 

found considerable activation of alternatively spliced genes in MCF7 cells in the combination TM 609 

but not in either monotherapy. It is of interest that these alternatively spliced genes typically 610 

were not differentially expressed themselves. We found that like synergistic gene expression, 611 

synergistic splicing was dramatically higher in TM than TW and MW. This likely represents a 612 

distinct molecular mechanism of synergy (Figure 6), consistent with previous work on 613 

transcription and alternative splicing (75). Exploring this preliminary evidence further, for 614 

example with long-read technology (74), may reveal a stronger role for isoform switching in drug 615 

response than previously thought. 616 

 617 

While some previous research has indicated that synergy is context-specific (10, 76, 77), the 618 

DREAM Challenge results suggested that similarity of monotherapies is associated with 619 

synergy. We observed this phenomenon in the present study in an independent context, 620 

measuring similarity by transcriptome correlation, and validated the finding in the DREAM 621 

dataset (Figure 10A). We also examined the role of the previously identified relationship 622 
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between PLD and similarity of monotherapy transcriptomes (40), validating this relationship but 623 

finding that it does not appear to mediate the effect of correlation on synergy.  624 

 625 

Our findings have led us to hypothesize about general features of synergy. Our analysis 626 

indicates that while all synergistic combinations have correlated monotherapies, the converse is 627 

not necessarily true: some drug pairs are correlated in gene expression, but do not generate a 628 

synergistic effect. Indeed, when we combine two doses of the same drug (sham combination), 629 

whose gene expression profiles are by nature correlated, this does not result in appreciably high 630 

EOB (Figure 2E). This suggests that the mechanism whereby synergy ensues from 631 

transcriptionally correlated but not identical drugs has to include the AND type of activation even 632 

if the double-down mechanism is dominant, as was the case in the transcriptional cascade of 633 

(Figure 9). Correlated monotherapies and SEGs appear to be related phenomena that are 634 

required for synergy, but insufficient to generate it in all cases. We propose a conceptual 635 

framework for the relationship between monotherapy correlation, number of synergistically 636 

expressed and spliced genes and the activation of key pathways to account for these findings in 637 

Figure 10B. In this framework, correlated monotherapies can act through the “double-down” 638 

mechanism generating a transcriptional cascade resulting in expression of many SEGs. We 639 

hypothesize that where SEGs are enriched in pro-cell death genes as in our MCF7 data (Figure 640 

3), this leads to phenotypic synergy. However, there may exist correlated drug pairs that 641 

generate only additive gene expression in biological processes such as PLD, or where SEGs 642 

appear but represent pro-survival programs or processes unrelated to cell viability, such as in 643 

LNCaP cells treated with TW or MW (Figure 3-figure supplement 2C). Under these conditions, 644 

correlated monotherapies would not result in a synergistic combination. Further studies on this 645 

theory in other contexts are necessary. However to our knowledge, only the data presented 646 

here and the DREAM dataset we used has matched post-treatment expression and viability 647 

data, limiting our ability to validate our findings regarding the gene expression patterns 648 

associated with synergy. 649 

 650 

We have shown that gene expression correlation can be used to predict synergy with higher 651 

accuracy than the best performing algorithm in the DREAM Challenge (Figure 10C-D). As the 652 

DREAM dataset consists of microarrays in a lymphoma cell line, the importance of correlation 653 

appears to be independent of both cell type and gene expression measurement technology. 654 

Additionally, the monotonicity of our gene expression time course in the combination (Figure 4A) 655 
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indicates gene expression at later time points can be predicted from earlier ones, and synergy 656 

can therefore be predicted from a single time point. These rules of synergy could therefore be 657 

used as the basis for in silico screening of drug pairs for synergy using existing gene expression 658 

datasets. This approach may be an efficient and cost-effective precursor to preclinical studies of 659 

drug synergy. 660 
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Reagent type 
(species) or 
resource 

Designation 
Source or 
reference 

Identifiers 
Additional 
information 

cell line (Homo-
sapiens) MCF7 

American Type 
Culture 
Collection 

Cat No. HTB-
22 

RRID:CVCL_0031 

cell line (Homo-
sapiens) LNCaP 

American Type 
Culture 
Collection 

Cat No. CRL-
1740 

RRID:CVCL_1379 

chemical 
compound, drug Withaferin A 

Enzo Life 
Sciences 

Cat No. BML-
CT104-0010  

chemical 
compound, drug 

Mefloquine 
hydrochloride 

Sigma-Aldrich 

Cat No. 
M2319-
100MG 

 

chemical 
compound, drug 

Tamoxifen 
citrate 

Tocris 
Bioscience 

Cat No. 0999 
 

 685 

Cell Culture 686 

MCF-7 (ATCC HTB-22) cells were obtained from ATCC. Cells were cultured according to 687 

manufacturer’s recommendations in ATCC-formulated Eagle's Minimum Essential Medium 688 

(Catalog No. 30-2003) with 10% heat-inactivated fetal bovine serum, and 0.01 mg/ml human 689 

recombinant insulin. LNCaP cells were purchased from ATCC (Cat No. CRL-1740) and stored 690 

in liquid nitrogen until use. Frozen vial was quickly thawed in 37C bath, and then cells were 691 

washed from DMSO by spinning in 15ml vial filled with 10mls of PBS. Cells were re-suspended 692 

in RPMI media (ATCC, Cat No. 30-2001) supplemented with 10% Fetal Bovine Serum (ATCC, 693 

Cat No. 30-2021) and plated into 75cm cell culture flask (Corning, Cat No. 430641). Growth 694 

media was changed every 3-4 days. After reaching confluence, cells were split at a ratio 1:6. 695 

Cultures were tested for mycoplasma periodically using MycoAlert (Lonza, Cat No. LT07-701) 696 

per manufacturer’s instructions. 697 

 698 

To split, media was removed, cells were washed with PBS, and trypsin-EDTA mix was added 699 

for 5 min. After detachment, cells were washed with growth media, collected into 50ml vial, spin 700 

down at 1000RPM, suspended in fresh media and plated into 75cm flasks. Cells were treated 701 
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with Withaferin A (Enzo Life Sciences BML-CT104-0010), Mefloquine hydrochloride (Sigma-702 

Aldrich M2319-100MG) or Tamoxifen citrate (Tocris 0999) in 0.3% DMSO for the viability time 703 

courses (Figure 1C-H, Supplementary Files 4-5) or 0.4% DMSO for dose-response curves 704 

(Figure 1-figure supplement 1 B, Supplementary File 6).  705 

 706 

Viability 707 

The cells were plated at 10,000 cells per well in a clear bottom black 96w plate (Greiner Cat. 708 

No. 655090) and a white 96w plate (Greiner Cat. No. 655083) then they were placed in an 709 

incubator.  After 24hrs, the plates were removed from the incubator and treated with drugs using 710 

the HP D300 Digital Dispenser. After the targeted drug treatment times, 100uL of Cell-Titer-Glo 711 

(Promega Corp.) was added to the wells in the white 96w plate and shaken at 500rpm for 5 712 

minutes.  The plate was then read by the Perkin Elmer Envision 2104 using an enhanced 713 

luminescence protocol to count the number of raw luminescent units per well.  For the black 714 

clear bottom 96w plates, the plate was spun at 300g for 5 minutes and all the cell media was 715 

removed.  Methanol was then added at 200ul per well and let sit at room temperature for 15 716 

minutes.  The methanol was removed from the wells and 200uL of PBS with Hoechst 33342 717 

nucleic acid stain at a final concentration of 1 uG/mL was then added to the wells.  The plates 718 

were then imaged with the GE Healthcare IN Cell Analyzer 2000 that is equipped with a CCD 719 

camera.  The IN Cell Analyzer software was used to count the number of cells detected in each 720 

well to calculate the viability. Three replicates were used for the combination experiments and 721 

two replicates for the dose experiments.  722 

 723 

Calculation of Phenotypic Synergy 724 

Excess over Bliss 725 

Suppose a given drug combination XY inhibits 𝐼𝐼𝐼percent of the cells, and the X and Y 726 

monotherapies inhibit 𝐼𝐼and 𝐼𝐼percent of the cells respectively. Note that 𝐼𝐼𝐼 = (1 − 𝐼
𝐼𝐼

) is 727 

the viability of the cells, i.e. the percentage of cells that survive after administration of drugs X 728 

and Y. Then according to the Bliss model of no interaction between drugs 𝐼 and 𝐼, the 729 

percentage of viable cells in the cell culture treated with combination 𝐼𝐼 is expected to be 730 

𝑉𝑋𝑉𝑌 = (1 − 𝐼𝑋)(1 − 𝐼𝑌). In this calculation, any negative values of  𝐼 i.e. growth promotion rather 731 

than inhibition) are converted to 0. This value is used for the “Bliss Additivity” viability in (Figure 732 

1C-H). As a result, the Excess over Bliss (EOB) independence (78) is given as  733 



 

 
 

 
24 

𝐼𝐼𝐼 = 100 ∗ (𝑉𝑋𝑉𝑌 − 𝑉𝑋𝑌) = 100 ∗ (𝐼
𝐼𝐼

− (𝐼
𝐼

+ 𝐼𝐼 − 𝐼𝐼𝐼𝐼)), 

 734 

which is the difference between the observed and expected inhibitions. EOB can take any value 735 

in the interval [-100,100] and a positive EOB implies synergy, a negative EOB implies 736 

antagonism and a value close to zero EOB implies additivity. By propagation of errors, the error 737 

of EOB is given as: 738 

𝐸𝑟𝑟𝑜𝑟𝐸𝑂𝐵  =  √𝑆𝐸𝑀𝑋
2 (1 +  𝐼𝐼

2  –  2𝐼𝐼)  +  𝑆𝑆𝑆𝑌
2  (1 +  𝐼𝐼

2  –  2𝐼𝑋)  +  𝑆𝑆𝑆𝑋𝑌
2  , 739 

where 𝑆𝐸𝑀 represents the standard error of the mean of the inhibition by a given drug. 740 

  741 

Combination Index  742 

Although it is simple to calculate, the EOB described above have some limitations as a measure 743 

of synergy. For example, it may classify the combination of a drug with itself as synergistic. An 744 

alternative method to quantify synergy uses as a null hypothesis the Loewe additivity model and 745 

the associated quantity combination index (CI) (79). The calculation of CI index requires fitting a 746 

dose response curve to monotherapies. Therefore, one needs the inhibition values for different 747 

doses of monotherapies. As a result, we could only calculate CI for 12, 24 and 48 hours for the 748 

TM combination and 12 and 24 hours for the TW combination (Figure 1-figure supplement 1A) 749 

and only for viability measured using CellTiter Glo (Supplementary Files 1-2). 750 

 751 

Mathematically, the combination index CI is computed as  752 

 753 

CI = Dx1/D1 + Dx2/D2 , 754 

  755 

where D1 and D2 are the required dosage of Drug 1 and Drug 2 to reach certain effect 756 

(percentage cell death in this case) when both drugs administered independently. On the other 757 

hand, Dx1 and Dx2 are the dosage required to attain the same percentage of cell death when 758 

both drug are given in combination. Accordingly, a CI<1 suggests synergism, CI =1 suggests 759 

additive and CI>1 suggests antagonism between the drugs. We used the ComboSyn software 760 

(80) to compute CI. 761 

 762 

Processing of the RNA-seq Data 763 



 

 
 

 
25 

The cells were plated at a density of 8,000 cells per well in a 96 well plate (Greiner Cat. No. 764 

655083) and placed in an incubator.  After 24 hours, the plates were removed from the 765 

incubator and treated with drugs using the HP D300 Digital Dispenser.  The cells were then 766 

collected at the targeted time point by removing the media and pipetting 150uL of Qiagen Buffer 767 

RLT into each well.  The plates were then frozen and stored at -80C.  For RNA extraction, the 768 

Qiagen RNeasy 96 kit (Cat. No. 74181) was used with the Hamilton ML STAR liquid handling 769 

machine equipped with a Vacuubrand 96 well plate vacuum manifold.  A Sorvall HT 6 floor 770 

centrifuge was used to follow the vacuum/spin version of the RNeasy 96 kit protocol. The 771 

samples were treated with DNAse (Rnase-Free Dnase Set Qiagen Cat. No. 79254) during RNA 772 

isolation.  The RNA samples were then tested for yield and quality with the Bioanalyzer and the 773 

Agilent RNA 6000 Pico Kit.  The TruSeq Stranded mRNA Library Prep Kit (RS-122-2101/RS-774 

122-2102) was then used to prepare the samples for 30 million reads of single end sequencing 775 

(100bp) with the Illumina HiSeq2500. Three replicates were used for the combination 776 

experiments and two replicates for the dose experiments (Supplementary File 6).  777 

 778 

Generation of Gene Level Count Matrix 779 

We aligned raw reads to hg19 reference genome (UCSC) using the STAR aligner (version 780 

2.4.2a) (81). We used the featureCounts (82) module from subread package (version 1.4.4) to 781 

map the aligned reads to genes in the hg19 reference genome, which provided us a gene count 782 

matrix with 38 samples and 23228 genes (Supplementary File 8). To reduce the noise due to 783 

low count genes, we kept genes with at least one count in at least three control (DMSO) 784 

samples at any time point. We normalized the resulting count matrix using Trimmed Mean of M-785 

values (TMM) method (83). We produced log base 2 of count per million (cpm) after adjusting 786 

plates as covariates (Source Data Files 1-3). We used the voom package (84) to model the 787 

mean variance trend in our data (Figure 1-figure supplement 2A-B). 788 

 789 

Differential Expression Analysis 790 

We used the limma (85) pipeline for differential expression analysis to compare treatment with 791 

DMSO at respective time points. We corrected the p-values into a false discovery rate (FDR) 792 

using BH procedure (86) for multiple testing (Source Data Files 4-6). To determine an 793 

appropriate false discovery rate (FDR) cutoff for differential expression, we examined the data 794 

for each treatment at time 0. Time “0” represents a treatment of less than 30 minutes, during 795 

which drug is added and the cells are then immediately prepared for RNA collection. This time 796 
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delay between treatment and RNA collection is likely long enough to allow transcription of 797 

immediate early genes. Immediate early gene expression has been shown to be induced within 798 

minutes following an external stimulus (35). In the MCF7 combination experiments, the majority 799 

of the genes with low p-values at time 0 in our data are known immediate early genes (35, 36). 800 

We selected an FDR cutoff of 1. 0 𝑥10−18 for differential expression (Figure 2-figure supplement 801 

1A), at which the only DEGs at time 0 over all treatments are well-known immediate early genes 802 

(Table). For the dose experiments, in which there were two replicates instead of three and thus 803 

lower p values, we selected 1.0 𝑥10−5 as the lowest FDR cutoff which produced at least as 804 

many DEGs as the combination experiments at 24 hours in both T and M (Figure 2-figure 805 

supplement 1B). For the LNCaP combination experiments, we selected 1.0𝑥10−15 as the lowest 806 

FDR cutoff for which there were no DEGs at time 0 for any treatments. We did not observe any 807 

immediate early genes with low p values at this time point in any treatments in LNCaP. 808 

 809 

To calculate monotherapy correlation, for each monotherapy pair, we calculated the Pearson 810 

correlation between expression of genes that are differentially expressed in either monotherapy 811 

(FDR < 0.1). 812 

 813 

Time Course Gene Expression Clustering 814 

To identify the sets of genes that exhibit similar responses to T, M and TM, we clustered their 815 

RNA-seq expression profiles. We considered 5101 genes that are differentially expressed for at 816 

least one time point (0, 3, 6, 9, 12, or 24 hours) in at least one of the conditions (T, M and TM). 817 

First, we computed the mean expression profile of each gene from the expression values of its 818 

three replicates A, B, and C (log2(cpm)). We then normalized the mean expression profiles of 819 

the 5101 genes by their respective response to DMSO. 820 

 821 

Because we wanted to cluster genes that have similar response in T, M and TM, we joined the 822 

vector of normalized expression values in T, M and TM for every gene. Thus, we obtain a vector 823 

for each gene that contains 18 values (3 drugs * 6 time points). In order to introduce information 824 

about the derivative of the expression profiles, we also joined the delta expression value 825 

between each pair of consecutive time point (t3-t0, t6-t3, … t24-t12) for the three conditions. 826 

Therefore, the vectors to cluster contains each 33 values. 827 

 828 
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We applied a k-means clustering algorithms to group the expression vectors into k groups. In 829 

order to identify a suitable value for k, we computed the total within-cluster sum of squares for 830 

values of k running from 1 to 20. We then selected k equal to 4 clusters as we observed that the 831 

gain in information obtained with larger values of k was becoming considerably small. We ran 832 

10’000 times the Hartigan-Wong implementation of the k-means algorithm (87) provided by 833 

Matlab with a maximum number of iterations set to 1000 before selecting the partitioning of the 834 

vectors that achieved the smallest total within-cluster sum of squares (Source Data File 7). 835 

 836 

Gene Set Enrichment Analyses 837 

In each treatment and time point, we separately analyzed the sets of upregulated and 838 

downregulated genes for pathways and processes using the built-in Fisher’s exact test of the 839 

Python package Scipy (88). We assessed enrichment in all gene sets of the 840 

GO_Biological_Process database downloaded from the Enrichr (37) library repository 841 

(http://amp.pharm.mssm.edu/Enrichr/#stats) and, to assess the known effects of tamoxifen, we 842 

used the gene set of estrogen receptor related genes downloaded from the Broad Molecular 843 

Signatures Database (89-91). We only performed the test where both gene sets contained at 844 

least three genes and the overlap contained at least two genes; if either criterion was not met, 845 

no p-value was returned, and a p-value of 1 was used for display in the figures. We then 846 

calculated the false discovery rate (FDR)-adjusted p-values using the Benjamini-Hochberg 847 

method available in the Python package Statsmodels (92). To select the gene sets that may 848 

explain the synergistic gene expression seen in Figure 2 and suggest biological processes 849 

involved in the synergistic drug response (Figure 1), we applied four criteria: 850 

 851 

 1. Synergistic gene sets were defined as those with an FDR less than 0.00001 in at least 852 

one time point in TM and less than 0.01 in all time points in TM, but greater than 0.00001 in all 853 

time points in TUM or greater than 0.01 in any time point in TUM. TUM refers to the union of 854 

genes from T and M that are either upregulated or downregulated. 855 

 2. Additive gene sets were defined as those with an FDR less than 0.00001 in at least 856 

one time point in TUM and less than 0.01 in all time points in TUM. 857 

 3. GO: Keyword searches for terms associated with each of the ten 2011 hallmarks of 858 

cancer (39) were performed in the Gene Ontology online database (93). For each hallmark of 859 

cancer, the highest level ontology relevant to it was selected, followed by 1-2 levels of children 860 

of that ontology that were connected by the relation “is_a”, “regulates”, ”positively_regulates”, or 861 

http://amp.pharm.mssm.edu/Enrichr/#stats
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“negatively_regulates”. From the gene sets associated with all these ontologies, those with an 862 

FDR less than 0.01 in at least one time point in TM were selected. Five hallmarks remained 863 

after applying this filter: metabolism, immunity, cell death (only ‘apoptosis’ was significant), 864 

growth, and proliferation (only ‘cell cycle’ was significant). 865 

 4. To assess known drug targets including estrogen signaling as a target of tamoxifen 866 

(50) and autophagy as a target of mefloquine (51), we included four gene sets related to 867 

estrogen signaling from Broad Molecular Signatures Database and any gene sets from the GO 868 

Process database containing the words “autophagy” or “estrogen”. Similarly to the hallmarks of 869 

cancer, any of these sets with an FDR less than 0.01 in at least one time point in TM were 870 

selected. 871 

 872 

Together, the results of these four approaches comprise the gene sets shown in Figure 3, 873 

Figure 3-figure supplement 1, and Figure 4C. 874 

 875 

We employed a similar approach to assess enrichment in cellular components, with a particular 876 

focus on the lysosome. We assessed enrichment in all gene sets of the 877 

GO_Cellular_Component database downloaded from the Enrichr (37) library repository 878 

(http://amp.pharm.mssm.edu/Enrichr/#stats) and, to assess the previously reported 879 

lysosomotropic effects of tamoxifen and mefloquine, we used the 250 most upregulated and 250 880 

most downregulated genes in treatment with drugs associated with phospholipidosis, kindly 881 

provided by the authors of “Comparing structural and transcriptional drug networks reveals 882 

signatures of drug activity and toxicity in transcriptional responses” (40). Based on the findings 883 

of the same paper, we also created a gene set made up of the targets of the transcription 884 

factors TFEB and TFE3 from our MCF7 network and included it in analysis. The same criteria 885 

for statistical testing and false discovery rate procedure as above were used. To select gene 886 

sets associated with synergy or additivity, we applied three criteria: 887 

 888 

 1. Synergistic gene sets were defined as those with an FDR less than 0.00001 in at least 889 

one time point in TM and less than 0.01 in all time points in TM, but greater than 0.00001 in all 890 

time points in TUM or greater than 0.01 in any time point in TUM. TUM refers to the union of 891 

genes from T and M that are either upregulated or downregulated. 892 

 2. Additive gene sets were defined as those with an FDR less than 0.00001 in at least 893 

one time point in TUM and less than 0.01 in all time points in TUM. 894 

http://amp.pharm.mssm.edu/Enrichr/#stats
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 3. Phospholipidosis candidates: We selected the top 20 gene ontology gene sets 895 

associated with phospholipidosis in Sirci et al. The gene set “cytoplasmic vesicle” was too large 896 

to be included in the Enrichr library, so the gene sets for “cytoplasmic vesicle membrane” and 897 

“cytoplasmic vesicle part” were included in its place. From the gene sets associated with these 898 

cellular component ontologies as well as the gene sets representing the PLD_up and 899 

PLD_down gene signatures and the TFEB_TFE3 transcriptional targets (see above), those with 900 

an FDR less than 0.01 in at least one time point in T, M, TUM, or TM were selected. Note that 901 

unlike in the hallmarks of cancer analysis, we included any additive gene sets here.  902 

 903 

Together, the results of these three approaches comprise the gene sets shown in Figure 3-904 

figure supplement 2. 905 

    906 

Generation of Exon Level Count Matrix 907 

We mapped the aligned reads to an in-house flattened exon feature file in hg19 reference 908 

genome build using featureCounts from subread package (1.4.4). Flattened exon feature file 909 

was generated based on gtf (hg19) downloaded from UCSC with overlapping exons from the 910 

same gene removed (Supplementary File 9). 911 

 912 

Synergistic Splicing and Exon Expression 913 

We used short read splicing caller: diffSplice (94) in the limma package (version 3.24.3) (85) as 914 

framework to detect synergistic spliced genes at each drug combination. We kept exons that 915 

have at least one read in at least one sample, and normalized the expressed exon counts using 916 

the TMM method (83). For each combination treatment i at a given time point j, we tested 917 

synergistic exon expression (SEE) in the generalized linear model of 918 

 919 

SEEij = comboij +DMSOj - singlet1ij - singlet2ij 920 

 921 

We performed two statistical tests to detect synergistic exons expression and synergistic spliced 922 

genes. For the former, we performed exon level t-statistic test to detect differences between 923 

each exon and other exons from the gene, and defined exons with FDR<0.05 as synergistically 924 

expressed (the differential exon expression heatmap). For synergistic splicing, we performed 925 

Simes test (95) for each gene to test hypothesis of whether usage of exons from the same gene 926 

differed, genes with Simes-adjusted p-values<0.05 are defined as synergistically spliced genes.  927 
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 928 

Generation of the MCF-7 Gene Regulatory Network 929 

The original MCF-7 network has been generated by (43) using the network inference method 930 

ARACNE2 (96) and 448 expression profiles for MCF-7 cell line from the connectivity map 931 

database (CMAP2; RRID:SCR_015674; 97). The original network includes 20,583 probes, 932 

1,109 of which are transcription factors, and 148,125 regulatory interactions. The interactions 933 

predicted by ARACNE2 are directed, unless an interaction is found between two TFs, in which 934 

case two edges are included in the list (TF1 to TF2 and TF2 to TF1). To obtain a network at the 935 

gene level, we applied a one-to-one HG-U133A probe to gene mapping (97, 98). The mapping 936 

file used has last been updated on July 2015 (v3.1.3). We filtered out edges that don’t have both 937 

nodes present in the mapping list. Finally, in order to determine positive (activation) and 938 

negative (repression) interactions, we calculated the Spearman correlation and the 939 

corresponding p-value between each TF-target pair in the network. We then corrected the p-940 

values for multiple hypothesis testing and removed edges with low confidence level (FDR 941 

<0.05), which gave us the final network with 9,760 genes, 1,101 TFs, and 48,059 regulatory 942 

interactions. For each TF in the network, we defined its positively/negatively regulated targets 943 

as the genes to which there exist an outgoing edge in the final network with a positive/negative 944 

Spearman correlation coefficient. 945 

 946 

Quantifying Transcription Factor Activity 947 

To calculate differential activity for each TF in our network, we examined its putative targets as 948 

determined by our network. We utilized a conservative method for this analysis that 949 

distinguishes positive effector and negative effector (repressor) functions of a TF (Figure 7-950 

figure supplement 1; Source Data File 9). These functions have been found to be distinct (99-951 

101). With this analysis in mind, we performed four comparisons in each treatment and time 952 

point:  953 

 954 

1. Positively regulated targets of TF and upregulated genes 955 

2. Positively regulated targets of TF and downregulated genes 956 

3. Negatively regulated targets of TF and upregulated genes 957 

4. Negatively regulated targets of TF and downregulated genes 958 

 959 
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For each of these comparisons, we performed Fisher’s exact test as described above for gene 960 

set enrichment analysis. This resulted in two p-values for each transcription factor: one for its 961 

positive effector function and one for is negative effector function. We then applied the 962 

Benjamini/Hochberg false discovery rate (FDR) adjustment to all the resulting p-values over all 963 

time points for the treatment.  964 

We used an FDR cutoff of 0.05 to determine differential activity, and we determined the 965 

direction of differential activity of each regulon type (Figure 7-figure supplement 1) as follows: 966 

 967 

1. Positively regulated targets of TF enriched in upregulated genes → positive effector 968 

function activated 969 

2. Positively regulated targets of TF enriched in downregulated genes → positive effector 970 

function inactivated 971 

3. Negatively regulated targets of TF enriched in upregulated genes → negative effector 972 

function inactivated 973 

4. Negatively regulated targets of TF enriched in downregulated genes → negative 974 

effector function activated 975 

 976 
We then analyzed each set of two FDR values for the same transcription factor, treatment and 977 

time point. If positive and negative effector functions were both activated or both inactivated, the 978 

transcription factor was labelled concordant. If one effector function was activated and the other 979 

inactivated, the transcription factor was labelled discordant. If only one effector function was 980 

differentially active, the transcription factor was labelled unique. For thirty-three transcription 981 

factors in 142 cases across all treatments and time points, the same effector function was found 982 

to be both activated and inactivated by the above criteria. These nonsensical results were 983 

removed from further analysis, and may be due to transcription factors with an unusually large 984 

number of targets. 985 

 986 

For each of 1,101 transcription factors (43), we identified positively regulated targets and 987 

negatively regulated targets using an MCF7-specific transcriptional regulatory network 988 

generated by the ARACNe network inference algorithm (96). These two sets represent the 989 

distinct targets of each TF’s positive effector function and negative effector function. We then 990 

assessed the enrichment of each set of targets in the lists of upregulated and downregulated 991 

genes in each treatment with respect to DMSO. These enrichment results were used to 992 
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determine whether transcription factors were activated or inactivated with respect to DMSO 993 

(Figure 7-figure supplement 1). Most transcription factors were uniquely differentially active in 994 

their positive effector or negative effector functions, but not both (Figure 7-figure supplement 995 

2A-B). 996 

 997 

To account for some transcription factors having very similar sets of targets, we performed 998 

Fisher’s exact test as above for all possible pairs of transcription factor target sets among those 999 

that were significant at each treatment and time point. We then applied the Benjamini/Hochberg 1000 

FDR adjustment to all the resulting p-values. For each case where the FDR was significant, we 1001 

then performed Fisher’s exact test to assess enrichment of the relevant dysregulated genes in 1002 

each of three sets: the intersection of the two transcription factor target sets, and each of the 1003 

target sets individually with the intersection excluded. We then applied the Benjamini/Hochberg 1004 

FDR adjustment to all the resulting p-values over all cases. Finally, where one effector target set 1005 

was significantly enriched but the other was not, with their intersection excluded, the significant 1006 

target set was retained as differentially active, using the original FDR values. All the rest were 1007 

removed from further analysis. 1008 

 1009 

Graphical Representation of the Transcriptional Cascade 1010 

Figure 9 shows the evolution of the active transcriptional network after introducing the two drugs 1011 

T and M. Figure 9-figure supplement 1 provides a more detailed representation of the 1012 

mechanisms responsible for the activation of the synergistic TFs. In Figure 9-figure supplement 1013 

1, each oval represents the set of TFs that are activated under T, M and/or TM (Source Data 1014 

File 10): (101) indicates the set of TFs active in T and TM but not in M, (011) indicates the set of 1015 

TFs active in M and TM but not in T, (111) indicates the set of TF active in T, M and TM. Finally, 1016 

(001) are TF active in TM but not in T or M. The number next to each oval indicates the number 1017 

of TFs in that set. In this way we can keep track of the activation of synergistic TFs (001) in TM 1018 

in terms of the activation of a pair of parent TFs, one in T (101) and one in MM (010), or of one 1019 

parent TF active also in T and M (111), and doing so at each time point. For example, for the 1020 

time point at 3h (Figure 9-figure supplement 1), there 2 TFs active in T, M and TM that belong to 1021 

set (111), 2 TFs active only in M and TM that belong to set (011), and no TF active in T and TM 1022 

but not in M (101). The middle layer of this representation contains 3 sets of synergistic TFs that 1023 

are only active in TM, but not in T or M (001) (grey ovals). Each of these three sets include TFs 1024 

whose regulators (i.e., their own TFs) are at least one TF in (111) (TF activated through the 1025 
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double-down mechanism: left grey oval in the middle layer), or has two or more parents one in 1026 

(101) and the other in (011) (TF activated through the AND mechanism: right grey oval in the 1027 

middle layer), or has three of more parents from sets (101), (111) and (011) (TFs activated 1028 

through both double down and AND mechanisms: middle grey oval in the middle layer). At 3 h 1029 

only the double-down mechanism can explain 9 synergistic TFS, which in turn are parents and 1030 

can explain the activation of 16 additional synergistic TFs, as indicated in the third layer of 1031 

(Figure 9-figure supplement 1). To the right of the construct we just discussed, there are two 1032 

more pairs of ovals. The first pair of contains an oval with dashed border, indicating the 1033 

synergistic TFs that were active at the previous time point (t=0 for 3 h) and the arrow points to 1034 

the grey oval that indicates how many synergistic TF ative at 3 h can be ascribed to the 1035 

activation of its regulators in the earlier time point. At 3 hours, both sets are empty. The 1036 

rightmost pair of ovals, the bottom one represents the set of TFs whose activation can not be 1037 

explained using any of the above mechanisms. Finally, the diagrams for 12 and 24 hours show 1038 

additional sets of ovals representing TFs that belong to set (101), (011) and (111) at the 1039 

previous time point, and that are needed to explain some of the synergistic TFs at the current 1040 

time point, and whose numbers are indicated in italics in the middle layer of the diagram. 1041 

 1042 

Drug Synergy Prediction in the DREAM Dataset 1043 

The DREAM expression matrix was downloaded from Synapse 1044 

(https://www.synapse.org/#!Synapse:syn2785787). To assess PLD in the DREAM data, we 1045 

used the aforementioned limma (85) pipeline to calculate differential expression in each 1046 

treatment compared to DMSO. Then we calculated enrichment of the 500 PLD genes (40; see 1047 

above) in the genes with fdr < 0.05 in either monotherapy for each drug pair, using Fisher’s 1048 

exact test as described above. For the correlation-based classifier, for each monotherapy pair, 1049 

we calculated the Pearson correlation between expression of genes that are differentially 1050 

expressed in either monotherapy (FDR < 0.1) in the NCI-DREAM data. We ranked the resulting 1051 

correlations in descending order to calculate a ranking of drug synergy. To test performance by 1052 

the same measures as the NCI-DREAM challenge, we used the PC-index as well as the 1053 

AUROC and AUPR for synergistic drug combination. We used the code provided by the 1054 

Challenge organizers to calculate the PC-index. For the AUC analysis, we used the same 1055 

criteria as in the dream challenge for the definition of phenotypic synergy resulting in 16 1056 

synergistic drug pairs out of the total 91 pairs. To compare our method to DIGRE, we computed 1057 

the Bayes factor (48), a bootstrapped performance distribution between two classifiers. A Bayes 1058 

https://www.synapse.org/#!Synapse:syn2785787
https://ascopubs.org/doi/full/10.1200/CCI.17.00018
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factor of 2, for example, means that the first classifier outperformed the second at a 2-to-1 ratio. 1059 

Two methods that have a Bayes factor < 3 may be considered statistically indistinguishable 1060 

(49). 1061 

 1062 
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 1327 

Figure Legends 1328 

Figure 1: The Transcriptomics of Drug Combinations Mirror their Phenotypic 1329 

Characteristics  1330 

A) Monotherapies and drug combinations used in the study. B) Workflow of molecular analysis 1331 

of synergy. Starburst highlights the novel component of RNAseq analysis. Question mark 1332 

denotes the focus of the study. C-H) Fold change over control of cell count for MCF7 cells (C-E) 1333 

and LNCaP cells (F-H) treated with Tamoxifen and Mefloquine (C,F), Mefloquine and Withaferin 1334 

(D,G), and Tamoxifen and Withaferin (E,H). Dashed line indicates predicted viability of the 1335 

combination based on the Bliss model. Excess Over Bliss (EOB) ± ErrorEOB is given for the 12, 1336 

24, and 48 hr time points (see Methods). I) Average gene expression for each treatment and 1337 

time point in the MCF7 combination experiments (covering 108 treatment and 18 DMSO 1338 

samples). G) Principal component analysis of gene expression for the average over replicates 1339 

at each treatment and time point in the MCF7 combination and dose experiments. (See also 1340 

Supplementary Files 3-9, and Source Data File 1.) 1341 

 1342 

Figure 1-figure supplement 1: The response of MCF7 to TM is more synergistic than to 1343 

TW 1344 

A) Combination Index for the combinations at the selected doses. Combination Index < 1 1345 

indicates synergy. B) Viability of MCF7 cells treated with increasing doses of T and M performed 1346 

alongside RNA collection at 24 hours, compared to TM (Figure 1). (See also Supplementary 1347 

Files 1-2.) 1348 

 1349 

Figure 1-figure supplement 2: Transcriptomic profiles of MFC7 and LNCaP cells with 1350 

combinations 1351 

A) Similarity between the gene expression data of two replicates treated with TM at 12 hours. B) 1352 

The gene expression of one replicate treated with TM at 12 hours and another replicate treated 1353 
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with TM at 3 hours shows differential expression beyond the replicates of (A). C) Average gene 1354 

expression for each treatment and time point in the LNCaP combination experiments (covering 1355 

108 treatment and 18 DMSO samples). D) Average gene expression for each treatment and 1356 

time point in the MCF7 dose experiments. E) Principal component analysis of gene expression 1357 

for the average over replicates at each treatment and time point in the MCF7 combination and 1358 

dose experiments. (See also Source Data Files 2-3.) 1359 

 1360 

Figure 2: Synergistically expressed genes and correlated monotherapies are associated 1361 

with synergy A-C) Number of DEGs over time in MCF7. The Venn diagrams correspond to 1362 

DEGs at 3 hours in A) T, M, and TM, B) T, W, and TW, and C) M, W, and MW. The area 1363 

represented in each color is in proportion to the number of genes in the corresponding color of 1364 

the Venn diagram; blue areas represent SEGs. D-E) Relationship of Excess Over Bliss score 1365 

with D) the number of SEGs, and E) correlation in gene expression values between each pair of 1366 

monotherapies. Note that some of the “pairs” from the dose experiments represent the same 1367 

dataset correlation with itself (i.e. T 10 μM with T 10 μM for the T 20 μM “combination”) and so 1368 

have correlation = 1.0 as expected, and are shown for clarity. (See also Source Data Files 4-6.) 1369 

 1370 

Figure 2-figure supplement 1: Gene expression characteristics of differential expression 1371 

and synergy in MCF7 A) Comparison between gene expression in treatment (y-axis) and 1372 

control (x-axis), for all genes over all treatments from the combination experiments in MCF7. 1373 

Upregulated and downregulated genes as determined by Limma with Voom are in red and blue 1374 

respectively corresponding to a FDR < 1E-18, and green lines represent fold change over 1375 

control of 2. B) Choice of FDR cutoff for the dose experiments. The FDR cutoff is represented 1376 

as 1E-n, with n denoted next to each point. C-D). Percentage of differentially expressed genes 1377 

that are synergistic in each combination according to FDR corrected p-value at C) 3 hours and 1378 

D) 12 hours in MCF7 cells. (See also Source Data Files 4-5.) 1379 

 1380 

Figure 2-figure supplement 2: Differential expression in LNCaP Number of DEGs over time 1381 

in LNCaP. The Venn diagrams correspond to DEGs at 3 hours in A) T, M, and TM, B) T, W, and 1382 

TW, and C) M, W, and MW. The area represented in each color is in proportion to the number of 1383 

genes in the corresponding color of the Venn diagram; blue areas represent SEGs. (See also 1384 

Source Data File 6.) 1385 

 1386 

Figure 3: Key biological processes are associated with synergy Enrichment of DEGs in T, 1387 

M, and TM with cancer-relevant gene sets. Only gene sets enriched in at least one condition 1388 

(time point or treatment) are shown. “TUM” indicates the union of DEGs after in T or M. Color 1389 

intensity reflects degree of enrichment by Fisher’s Exact test. Color markers indicate treatment 1390 

and color marker intensity indicates dose. * = hallmark of cancer, † = drug target (see Methods). 1391 

 1392 

Figure 3-figure supplement 1: Biological processes in MCF7 and LNCaP A) Enrichment 1393 

scores of differentially up and down regulated genes at different time points in W, M, T, TW, and 1394 

MW, in MCF7 cells with the same cancer-relevant gene sets shown in figure 3. B) Hierarchical 1395 

clustering of enrichment scores of differentially up and down regulated genes at different time 1396 
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points in the combination experiments in LNCaP cells with significant biological process gene 1397 

sets (see Methods). “U” indicates the union of two genes sets, and represents the expected 1398 

differentially expressed genes if the interaction between drugs was additive. Color intensity 1399 

reflects the degree of enrichment by Fisher’s Exact test and is shown as –log10(FDR corrected 1400 

p-value). Red: M, Blue: T, Yellow: W, Orange: MW, Green: TW, Magenta: TM. 1401 

 1402 

Figure 3-figure supplement 2: Cellular components are synergistic in TM but not in 1403 

withaferin combinations in LNCaP Enrichment of DEGs with cellular component gene sets 1404 

(see Methods) in A) MCF7 cells for T, M, and TM, B) MCF7 cells for W, M, T, TW, and MW, and 1405 

C) all treatments in LNCaP cells, shown with hierarchical clustering (see Methods). Only gene 1406 

sets enriched in at least one condition (time point or treatment) are shown. For gene sets that 1407 

also appeared in the top 40 gene sets associated with phospholipidosis (Supplementary Table 6 1408 

of Sirci et al.), the rank of the gene set in that list is shown in parentheses. “U” indicates the 1409 

union of two genes sets, and represents the expected differentially expressed genes if the 1410 

interaction between drugs was additive. Color intensity reflects the degree of enrichment by 1411 

Fisher’s Exact test and is shown as –log10(FDR corrected p-value). In A and C, the two PLD 1412 

genes sets are also shown on a larger color scale (see inset colorbar) to illustrate subtle 1413 

differences in enrichment. Red: M, Blue: T, Yellow: W, Orange: MW, Green: TW, Magenta: TM.  1414 

 1415 

Figure 4: Differentially expressed genes have different time courses A) Mean and standard 1416 

deviation of gene expression in four clusters identified according to their similarity in expression 1417 

in T, M, and TM. B) Examples of genes in each cluster with significantly different trajectories in 1418 

TM than the monotherapies. C) Enrichment of the same biological processes as in Figure 2F in 1419 

the clusters. (See also Source Data File 7.) 1420 

 1421 

Figure 5: New differential splicing emerges in drug combination TM Top 100 synergistically 1422 

spliced exons in combination TM at 12 hours.  1423 

 1424 

Figure 6: Synergistic splicing is distinct from differential expression and associated with 1425 

synergy A) Number of synergistically expressed and synergistically spliced genes in TM over 1426 

time; shaded areas correspond to the Venn diagram for 3 hours. B) Relationship of Excess Over 1427 

Bliss score with the number of synergistically spliced genes. (See also Supplementary File 9.) 1428 

 1429 

Figure 6-figure supplement 1: Differential and synergistic splicing A-C) Number of 1430 

differentially spliced genes over time with Venn diagrams of differentially spliced genes at 3 1431 

hours in a) T, M, and TM, b) T, W, and TW, and c) M, W, and MW. The area represented in 1432 

each color is in proportion to the number of genes in the corresponding color of the Venn 1433 

diagram; blue areas represent synergistic genes. d-f) Number of synergistically expressed and 1434 

synergistically spliced genes in d) TM, e) TW, and f) MW over time; shaded areas correspond to 1435 

the Venn diagrams for 3 hours. (See also Source Data File 8.) 1436 

 1437 

Figure 7: New differentially active transcription factors emerge in combination TM 1438 

Number of DATFs over time with Venn diagrams at 3 hours in A) T, M, and TM, B) T, W, and 1439 
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TW, and C) M, W, and MW. Area represented in each color matches the number of genes in the 1440 

corresponding color of the Venn diagram; blue areas represent synergistic TFs. (See also 1441 

Source Data File 9.) 1442 

 1443 

Figure 7-figure supplement 1: Possible changes to transcription factor activity Four cases 1444 

of transcription factor activity that were assessed to determine whether a transcription factor 1445 

was activated or inactivated. 1446 

 1447 

Figure 7-figure supplement 2: Classes of differentially active transcription factors A) 1448 

Differentially active transcription factors for each combination according to the status of the 1449 

positive and negative effector of each transcription factor. Unique: either positive or negative 1450 

effector, but not both, is differentially active; concordant: both effectors are activated or both are 1451 

inactivated; discordant: one effector is activated and the other is inactivated. B) Differentially 1452 

active transcription factors for each combination according to each of the four cases supplement 1453 

1. 1454 

 1455 

Figure 8: Characteristics of differentially active transcription factors A) All instances of 1456 

DATFs according to the differential expression or splicing status of each TF in the 1457 

corresponding treatment and time point. The top 20 most significant DATFs not differentially 1458 

expressed nor spliced are listed. All 20 are positive effectors. Arrows: up = activated, down = 1459 

inactivated. B) Heatmap of DATFs over time in T, M, and TM at 3-24 hours. Color intensity 1460 

reflects the degree and direction of enrichment by Fisher’s Exact test with red for activation and 1461 

blue for inactivation. Only significant instances are shown. C) Enrichment of gene clusters from 1462 

Figure 2F with sets of TF targets. Color intensity reflects the degree of enrichment by Fisher’s 1463 

Exact test. (See also Source Data File 9.) 1464 

 1465 

Figure 8-figure supplement 1: Differentially active transcription factors in W 1466 

combinations Heatmap of differentially active transcription factors over time in Withaferin, MW, 1467 

and TW at 3-24 hours.  Color intensity reflects the degree and direction of enrichment by 1468 

Fisher’s Exact test and is shown as –log10(FDR corrected p-value), with positive values for 1469 

activation and negative values for inactivation. 1470 

 1471 

Figure 9: Transcription factors become differentially active in a time-dependent cascade 1472 

in TM The number of DATFs or SEGs at 3-24 hours are shown as bubbles. Blue, red, and white 1473 

bubbles represent DATFs in T, M, and TM, respectively. TFs (gray bubbles) and SEGs (green 1474 

bubbles) shown are “explained” by the following mechanisms: double-down mechanism at the 1475 

same (magenta arrow and number) or previous (angled magenta arrow) time point, the AND 1476 

mechanism at the same (converging blue and red arrows and purple number) or previous 1477 

(angled converging blue and red arrows) time point, or by connection to another TF “explained” 1478 

by one of these mechanisms at the same (see supplement 1), or previous (vertical arrows) time 1479 

point. The total number and percentage of TFs or SEGs in TM meeting any of these criteria is 1480 

shown. (See also Source Data File 10.) 1481 

 1482 
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Figure 9-figure supplement 1: Cascade of differential transcription factor activity 1483 

Connections between differentially active transcription factors in TM based on the MCF7 1484 

network. Each bubble represents a set of transcription factors that are differentially active in TM 1485 

at a given timepoint. The codes on each bubble represent their differential activity status in 1486 

Tamoxifen (first digit), Mefloquine, (second digit), and TM (third digit), where 1 is differentially 1487 

active and 0 is not. Synergistic transcription factors in TM (001), are categorized into “explained” 1488 

bubbles (gray) or not explained (white). At each timepoint, synergistic transcription factors can 1489 

be “explained” by a network connection to a transcription factor that is differentially active in 1490 

Tamoxifen and Mefloquine (111, magenta), or to at least one transcription factor in each of 1491 

Tamoxifen alone (101, blue) and Mefloquine alone (011, red), or both, resulting in the left-hand, 1492 

right-hand, and middle gray bubbles, respectively, in the middle layer. The fourth gray bubble in 1493 

the lowest layer represents transcription factors which have connections to transcription factors 1494 

in the middle “explained” layer, but not to transcription factors in the top layer. Numbers in italics 1495 

represent synergistic transcription factors that can be explained by connections to transcription 1496 

factors that were active in monotherapies at the previous time point (blue, magenta, and red 1497 

bubbled with dashed outlines at top of each timepoint). At the right in each time point, the 1498 

dashed-outline bubble represents “explained” transcription factors in the gray bubbles at the 1499 

previous time point. Synergistic transcription factors not explained by other means which have a 1500 

connection to any “explained” transcription factors at the previous time point are shown in the 1501 

gray bubble below the dashed-outline bubble. Finally, synergistic transcription factors that 1502 

cannot be explained by any network connections are shown in the white bubble resulting from 1503 

the “null” set at each timepoint. The colors in this figure correspond to figure 9, and the sum of 1504 

all gray bubbles at each timepoint in this figure correspond to the single gray bubble shown at 1505 

each timepoint in figure 9. (See also Source Data File 10.) 1506 

 1507 

Figure 10: Correlation of Monotherapies is Associated with Synergy in an Independent 1508 

Dataset A) Relationship between Excess Over Bliss (EOB) for 91 drug pairs and the correlation 1509 

between the gene expression of LY3 DLBCL cells treated with corresponding monotherapies in 1510 

the DREAM dataset. The inset indicates the distribution of correlations for pairs with EOB < -2.5 1511 

and EOB > 2.5. B) Hypothetical model for the relationships between monotherapy correlation, 1512 

SEGs, and synergy. Boxed nodes represent phenomena we directly measured in this study. C-1513 

D) ROC (C) and PR (D) for classification of synergistic drug pairs using expression correlation 1514 

and DIGRE.  1515 

 1516 

Table 1517 

 1518 

T_0 TM_0 M_0 TW_0 MW_0 W_0 

FOS -6 BCAN -17 ATXN2 -3 EGR1 -54 EGR1 -53 EGR1 -53 

MYC -3 FOS -17 JUN -2 JUN -26 JUN -28 IER2 -20 

TOB1 -3 VIM -17 ZNF592 -1 IER2 -23 IER2 -17 JUN -19 
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KLF4 -2 ETS1 -15 ZHX2 -1 JUNB -17 PDCD7 -17 C17O -16 

SGK1 -2 MSN -13 SCAF4 -1 PDCD7 -16 ZFP36 -15 ZFP36 -16 

PRDM1 -2 NCAN -10 NAT8L -1 C17ORF91 -16 JUNB -14 PDCD7 -15 

 1519 

Table: Selection of adjusted p-value cutoff for differentially expressed genes. The six 1520 

most differentially expressed genes with respect to DMSO in each treatment at 0+ hours are 1521 

shown in ascending order of their Voom score (log10(FDR)). Immediate Early Genes are marked 1522 

in red. Differentially expressed genes according to the 1. 0 𝑥10−18 cutoff for FDR corrected p-1523 

value are marked in bold. 1524 

 1525 

Supplementary Files 1526 

Supplementary File 1: Viability data and calculated EOB for TM dose matrices at 12, 24, and 1527 
48 hours in MCF7. Actual values of negative inhibition in monotherapies are included in the 1528 
heatmap at left. Monotherapy inhibition values used to calculate EOB are shown in the table at 1529 
right (i.e. Drug1_NPI). 1530 
 1531 
Supplementary File 2: Viability data and calculated EOB for TW dose matrices at 12, 24, and 1532 
48 hours in MCF7. Actual values of negative inhibition in monotherapies are included in the 1533 
heatmap at left. Monotherapy inhibition values used to calculate EOB are shown in the table at 1534 
right (i.e. Drug1_NPI). 1535 
 1536 
Supplementary File 3: Time courses viability data of TM, TW, and MW in MCF7. 1537 
 1538 
Supplementary File 4: Time courses viability data of TM, TW, and MW in LNCaP. 1539 
 1540 
Supplementary File 5: Viability data and calculated EOB for TM, TW, and MW at 48 hours in 1541 
LNCaP. 1542 
 1543 
Supplementary File 6: Viability data for T and M dose and and calculated EOB for sham 1544 
combinations in MCF7. 1545 
 1546 
Supplementary File 7: Archive of Raw Fastq IDs 1547 
 1548 
Supplementary File 8: Archive of Raw Expression Files 1549 
 1550 
Supplementary File 9: Exon Counts 1551 
 1552 

 1553 

Source Data Files 1554 

Source Data File 1: Log counts per million of MCF7 cell combination treatment experiments 1555 
 1556 
Source Data File 2: Log counts per million of MCF7 cell monotherapy dose experiments 1557 
 1558 
Source Data File 3: Log counts per million of LNCaP cell combination treatment experiments 1559 
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 1560 
Source Data File 4: Archive of MCF7 combination experiments differential expression data 1561 
 1562 
Source Data File 5: Archive of MCF7 dose experiments differential expression data 1563 
 1564 
Source Data File 6: Archive of LNCaP differential expression data 1565 
 1566 
Source Data File 7: k-means clusters assigned to genes 1567 
 1568 
Source Data File 8: Archive of differential splicing data 1569 
 1570 
Source Data File 9: Archive of differential transcription factor activity data 1571 
 1572 
Source Data File 10: Archive of transcription factors involved in the transcriptional cascade 1573 
 1574 
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