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Domain walls in vertically vibrated monolayers of cylinders confined in annuli
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Liquid-crystalline ordering in vertically vibrated granular monolayers of metallic rods confined in annuli of
different sizes is examined. The annuli consist of circular cavities with a central circular obstruction. In the
absence of the central obstruction, rods of low aspect ratio exhibit global tetratic order, except for the existence
of four small defected regions which restore the tetratic symmetry broken by the circular confinement. However,
very different configurations are observed in the annuli, with a complex structure consisting of alternating layered
regions separated by tetratic domain walls. We use concepts of equilibrium elastic theory for liquid crystals and
topology along with arguments based on dissipation mechanisms to qualitatively explain this behavior. The
results show that selective confinement of vertically vibrated monolayers of rods could be used as a tool to study
the creation and dynamics of various types of defects in ordered systems.
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I. INTRODUCTION

The observation that quasi-two-dimensional monolayers of
granular spherical particles can be excited by periodic motion,
leading to pattern formation, has been investigated in the last
decades [1–10]. A milestone in this field was the observation
that some structural properties of a vibrated monolayer of
spheres (in particular, crystallization), were similar to those of
ordinary hard spheres in thermal equilibrium, a basic model to
understand the structure of matter at the nano- and mesoscopic
scales [11]. In some cases, these phenomena can be under-
stood qualitatively by applying standard rules of equilibrium
statistical mechanics [10,12]. Also, many nonequilibrium phe-
nomena are observed in periodically agitated granular matter,
e.g., the presence of solitons.

The inherently dissipative granular arrangements of
anisotropic grains, when continually excited externally
[13,14], also exhibit typically nonequilibrium effects [15–17].
Orientational order in 3D compaction experiments [18] as
well as vortex formation in monolayers of rods that do not
necessarily lie on the plane [19] have been investigated. But
steady-state patterns in strictly 2D vibrated monolayers can
be found by suitably choosing the control parameters of the

*yuri@math.uc3m.es
†enrique.velasco@uam.es

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

external periodic drive, such as frequency and amplitude, im-
posed on the system. Vertically vibrated rods have recently
been shown to exhibit spatial patterns that resemble liquid-
crystalline phases with local and global nematic and tetratic
ordering, usually seen in two-dimensional systems of thermal
anisotropic particles [15–17,20–24].

Arguments borrowed from the elastic theory of liquid crys-
tals (e.g., competing elastic bulk and surface energies) have
been invoked to explain this phenomenology [22]. Indeed,
it is tempting to describe the behavior in these systems in
terms of entropic arguments based on volume exclusion, since
forces between particles are absent except when they collide,
and volume-filling concepts are certainly relevant. Recently,
the phase diagram of equilibrium hard rectangles has been
explored by Monte Carlo simulation and seen to exhibit many
similarities, even quantitative, with the steady-state arrange-
ments of granular rods confined in circular cavities [23]. We
must remind ourselves that the behavior of hard particles
driven by thermal fluctuations are exclusively controlled by
entropy, i.e., by particle overlap statistics. This connection
between thermal and nonthermal (granular) matter is intrigu-
ing, but only some partial ideas and basic relations can be
advanced [25,26].

More recently, it has been shown that metallic rods of small
aspect ratio may form global tetratic (i.e., fluid monolayers
with fourfold orientational order) patterns inside circular cav-
ities [20], along with the presence of what seem to be four
point-defected regions, symmetrically located at the corners
of a square inscribed in the circle [24,27]. The interpretation
of these regions in terms of point topological charges that
restore the broken fourfold symmetry of the tetratic direc-
tor when confined to a circular cavity is appealing. It might
indicate that, provided a continuum approximation is valid,
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dissipative granular monolayers might respond to geometri-
cal frustration in the same way as their thermal-equilibrium
counterparts. This analogy has been exploited in Ref. [27]
to extract an elastic constant that mediates the interaction
between defects. The value of this constant turns out to be
of the same order of magnitude as typical two-dimensional
elastic constants of liquid crystals [27].

In this paper, we examine a vibrated monolayer confined
in a topologically different geometry, namely, an annulus:
a circular cavity with a central circular obstacle. Applying
a topological argument, one should not expect the forma-
tion of point defects: regardless of the preferred orientation
at the walls—-whether planar or perpendicular—a globally
tetratic phase could accommodate inside the annulus without
compromising the fourfold symmetry. Instead, steady-state
configurations of the experimental system present a much
more complex structure, with the presence of domain walls
(i.e., extended regions) that separate regions with smec-
tic liquid-crystalline ordering. These regions are similar to
domain walls in materials where domains with different ori-
entation of a nonscalar order parameter coexist (see, e.g.,
Ref. [28] where domain walls separating uniaxial nematic
phases with different orientations were observed in circular
cavities using Monte Carlo simulation). The breakdown of
topological arguments may be perfectly reasonable in our
nonequilibrium system. But it could also arise from the break-
down of the continuum approximation when the particle size
is not negligible compared to the obstacle diameter.

The paper is organized as follows. In the following section,
we present the experimental setup. Section III discusses the
order parameters used to analyze the results. These are pre-
sented in Sec. IV. We conclude in Sec. V with a discussion of
the results and present some conclusions.

II. EXPERIMENT

In the experiment, ∼2600–2800 cylinders made of non-
magnetic steel with length 4 mm and diameter 1 mm (aspect
ratio κ = L/D = 4) are placed inside a cylindrical cavity of
radius R = 7 cm (R/L = 17.5). The two planar, horizontal
plates of the cavity are close enough so cylinders have a
free height of 1.8 mm. Therefore, cylinders cannot pass each
other and constitute an effective monolayer. The cavity is
mechanically agitated at frequency ν = 90 Hz using an elec-
tromagnetic shaker. The upper lid of the cavity is made of
transparent plastic so a zenithal DSLR camera aligned along
the cavity axis can record the time evolution of the particles.
The cavity was carefully aligned with the horizontal by using
a highly sensitive bubble level. The effective acceleration of
the system can be measured in terms of the dimensionless
acceleration � = a0ν

2/g, where a0 is the amplitude of the
vibration and g is the acceleration of gravity. In all the ex-
periments performed, the effective acceleration was in the
range � � 2–3. The behavior of a vibrated monolayer may
depend on the values of these two parameters [10]. Müller
et al. [23] performed a detailed analysis of the effect of ν and
� on a monolayer of plastic cylinders. They did not observe
qualitative differences in the ordering properties in a wide
range of values (ν = 35–80 Hz and � = 3–17). For metallic
cylinders, our experimental setup limits the possible values of

� to the interval mentioned above but no changes in the results
were observed in that interval. By contrast, the frequency was
seen to be more critical and its value was chosen to avoid
undesired nonequilibrium effects such as collective motion or
creation of holes.

Particle identification (of position and orientation) is done
using a MATLAB code implemented by the authors. The code
locates the center of each particle and the angle between the
long axis of the particle and a reference x axis. Distortion due
to the curvature effects is negligible since the camera is at a
long distance from the cavity and works at relatively long fo-
cal distance. Uniform illumination of the cavity is achieved by
placing light diffusers surrounding the experiment. The iden-
tification software is very successful as typically a fraction
<1% of the particles are not correctly identified. This fraction
includes both single particles and pairs of close particles that
cannot be discriminated. Some of the latter can be recovered
by the identification algorithm using simple assumptions. In
some exceptional cases, the fraction of misidentified particles
can increase up to 3%. These experiments suffered from in-
correct illumination or optical problems and were discarded
for analysis.

With regard to the spatial resolution of particle positions
and orientations, we estimate that the “optical” center of mass
of a particle can generally be obtained with an accuracy of
1–2 pixels (in the CCD images a particle spans about 60 pixels
in the long axis). The angular resolution in orientation is
estimated to be <4◦. The software fits the apparent particles
to ellipses, from which positions and orientations are inferred.
Visual inspection of ellipses superimposed on actual particles
leads to the above estimates. The resolution in position is
∼0.002R, much less than the resolution in radial direction of
the histograms shown in Sec. IV. Therefore, we believe the
results for radial histograms and orientational order parame-
ters are not affected by the accuracy in particle identification,
neither in position nor orientation.

In each experiment, the protocol used was the following.
First, the initial configuration is prepared by hand: the upper
lid of the cavity is removed and cylinders are placed on the
lower surface, avoiding any overlaps. Then the cavity is cov-
ered by the lid. The packing fraction η, i.e., the fraction of
effective projected area covered by the particles with respect
to the total area of the cavity, is estimated by taking a picture
of the static system and using the identification software. In
case the target density is not achieved, particles are removed
or added according to the difference between actual and target
packing fractions. Images are taken typically every 15 s, and
experiments are run for several hours. In all cases, the system
gets readily ordered after the experiment is started, but a
completely stable (in the steady-state sense) regime is attained
only after an hour or more.

III. ORDER PARAMETERS

Similar to previous work on a similar experimental setup
[17], we obtained different types of particle arrangements,
depending mainly on the packing density of the system: I
(isotropic) at low packing fraction, where particles are dis-
ordered in both orientations and positions; Nt (tetratic) at
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intermediate packing fraction, where particles show fluid be-
havior but are oriented on average along two equivalent,
perpendicular directions; and S (smectic) at high packing frac-
tion, with particles forming fluid layers.

For the definition of order parameters, the local director n̂
on each particle is required. This is obtained by first defining
a circular region C of radius ξ = 4L centered at each particle
and then calculating the 2 × 2 tensor,

Q = 〈
2êk êT

k − I
〉 = 1

M

M∑

k=1

(
2êk êT

k − I
)
, (1)

which defines the average 〈· · · 〉. Here êk is the unit column
vector along the long axis of particle k, the sum in k extends
over all M particles whose centers of mass are contained in
region C, and I is the 2 × 2 identity matrix. The eigenvector
of Q associated with the largest eigenvalue defines the local
director n̂ on the particle.

The identification of configurations with different symme-
tries (I, Nu, Nt or S) can be done by means of a number of
order parameters. In this case, we define three order parame-
ters. On the one hand, two orientational order parameters:

qn = 〈cos nθ〉 with n = 2, 4, (2)

which probe two- and fourfold symmetries, respectively, uni-
axial and tetratic symmetries. θ is the angle between the long
axis of a particle and the local alignment direction n̂ (local
director). On the other hand, we define the smectic order
parameter as

qs = 〈eiq·r〉. (3)

Here r is the position of a particle and q a wave vector
compatible with the cylinder length (in fact, a little larger to
allow for smectic layer fluctuations). Both these vectors are
referred to the frame defined by the local director. One essen-
tial characteristic of our order-parameter-based description is
that q2, q4, qs are not defined as local fields at a point r, but on
each particle. This is similar to the Eulerian versus Lagrangian
views of the flow field of a fluid. The advantage of this ap-
proach is that visualisation of order in separate configurations
is much easier. On the other hand, our Lagrangian approach
also allows us to obtain average values over the whole cavity
in the steady state.

Local configurations can be identified as follows:
(i) I: q2 ∼ q4 � 0 and qs � 0
(ii) Nu: q2 � q4 and qs � 0
(iii) Nt : q2 � q4 and qs � 0
(iv) S: q2 � q4 and qs > 0
The Nu (uniaxial nematic) phase is not observed in our

experiments, as the particle aspect ratio is too small (others
reasons may also explain this finding, see Ref. [24]). An
essential property of the steady states of this system is that,
except at low packing fractions (a regime which is not ex-
plored in detail in the present paper), the values of the order
parameters are not the same, not even of the same order, in
different regions of the cavity. Note that, in our experiments
for κ = 4, extended uniaxial nematic configurations are not
formed for any value of aspect ratio.

The local order parameters represent a powerful tool to
identify the ordering in the cavity in space and also in time.

In practice, we analyzed all images taken by the acquisition
system, identifying particles and calculating the three order
parameters on each particle. We produced three sequences
of images, color-coded according to the value of q2, q4, qs.
The processed images were piled up to produce videos, which
are very helpful to visualize the ordering dynamics, particle
motion, and evolution of defected structures in the system.

Typically, in the course of the experiments, the system is
prone to developing a global rotation, which closely corre-
sponds to a rigid rotation. This rotation follows a chaotic
temporal pattern, both in amplitude and direction. The rotation
can be eliminated from the analysis by defining an instanta-
neous reference frame where the average azimuthal position
of the defects is constant. Motion with respect to this frame
contains the inherent defect fluctuations. In the remainder of
this paper, it should be understood that all results are defined
in this average frame.

IV. RESULTS

Several experiments with different packing fractions in
each case were considered. However, we concentrate on com-
paring cases with approximately the same packing fractions
and different obstacle sizes. The reason is that the interesting
density window is relatively narrow: (i) for η � 0.70, the
tetratic phase is not well developed in the cavity, and therefore
defects are not well-defined entities along the whole time
span of the experiments; and (ii) systems with η > 0.75 are
very difficult to prepare manually due to the high density.
Therefore, we focus on systems with η � 0.75, for which a
well-structured tetratic configuration is developed.

We have investigated four different systems: no obstacle,
0, small obstacle, 1 (1 cm in diameter), intermediate obsta-
cle, 2 (2 cm in diameter), and large obstacle, 4 (4 cm in
diameter). The main experimental results for packing fraction
fixed to η � 0.74 are shown in Fig. 1 (specifically, packing-
fraction values were, respectively, 0.735, 0.756, 0.744, and
0.743). The rows represent the different order-parameter fields
q2, q4, qs while the columns represents different obstacle
sizes = {0, 1, 2, 4}. The figure show instantaneous configu-
rations of particles, color-coded according to the values of qα

(α = 2, 4, s).

A. No obstacle: Circular cavity

This system was studied previously [23,24,27], and is here
reanalyzed as a reference case (note that the experiment was
slightly redesigned with respect to that of Refs. [24,27]; in
particular, the cavity is slightly bigger). In this section, we
also define some other quantities that will be used in the other
cases.

Figure 1, column 0, shows a typical configuration in the
steady state. All three order parameters are shown. The high
value of the q4 order parameter in a large fraction of the
area, together with the low values of q2 and qs, points to the
formation of a large region of tetratic symmetry occupying
a very large area of the whole cavity. Figure 2(a) shows a
representative example of particles in a tetratic configuration.

In addition, there are four regions where all three order
parameters are depleted, corresponding to particles with ori-
entational disorder. These regions may be interpreted, using
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FIG. 1. Values of the q2 (uniaxial), q4 (tetratic), and qs (smectic) order parameters on each particle, and for the four situations investigated
in this paper. 0: no obstacle; 1: small obstacle; 2: intermediate obstacle; and 4: large obstacle. In each case, the configuration has been chosen
more or less at random during the course of the respective experiments. Different color codes for q2, q4, and for qs are shown in vertical bars.
In all experiments, particles had κ = 4 and packing fraction was set to η � 0.75. Values for the other parameters were taken as mentioned in
Sec. III. Boxes in panels q4-0, q4-2, and q4-4 are shown at larger scale in Figs. 2(a), 2(b), 2(d), and 2(e), respectively.

topological arguments, as “point” defects which restore the
global symmetry of the tetratic phase broken by the circular
cavity, which is incompatible with the fourfold symmetry of
the tetratic phase. The defects are pointlike in the sense that
their associated depleted region (the “core” of the defect) has
a finite area. An example of particle configurations in one
such region is shown in Fig. 2(b). A calculation based on
elastic theory, Fig. 2(c), confirms that the director field in these
regions corresponds to a defect with winding number +1/4
and topological charge +1. The four defects are located at
the corners of a square. Using the language of elastic theory,
this tetratic configuration with four defects still forces some
distortion of the local tetratic directors close to the walls
between contiguous defects. But the distortion is assimilated
by the system through the accumulation of elastic free energy,
without producing additional defective regions.

Defects were identified by first selecting those particles
with an order parameter q4 < 0.4. A given particle is taken

to belong to a particular cluster if its center-to-center distance
to at least one particle of the cluster is less than one particle
length. This criterion is sufficient to isolate separate clusters
in the system which are potential candidates for the pointlike
defects. On most occasions, only four such clusters are found,
as can be seen in Fig. 1. The center of mass of each cluster is
taken as the defect location.

The position of the four defects fluctuates in time but they
always stay close to the cavity wall. In Ref. [27], we argued
that this can be explained using arguments from equilibrium
elastic theory: Defects interact repulsively, via a logarithmic
interaction which is mediated by the stiffness coefficient K
of the intervening, tetratic phase. The value of K can be esti-
mated from defect fluctuations and, when conveniently scaled,
is of the same order as in two-dimensional liquid crystals.

Note that in these experiments particles remain in a “fluid”
tetratic state with high mobility, and that smectic fluctuations
only appear rarely and decay very quickly. This is important

FIG. 2. (a) Detail of panel q4-0 of Fig. 1 showing strong Nt ordering. (b) Detail of panel q4-0 of Fig. 1 showing one of the defects.
(c) Orthogonal family of curves as obtained from elastic theory representing the tetratic director field around a defect (circle) with winding
number +1/4. (d) Detail of panel q4-2 of Fig. 1 showing a region with strong smectic ordering. (e) Detail of panel q4-4 of Fig. 1, showing a
region with tetratic ordering in a bridge connecting a point defect with the inner boundary.
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FIG. 3. Schematic of the director field of a tetratic configuration
inside an annulus. The local orientation of the directors n̂ and m̂ is
indicated at four particular locations. The system is invariant under
the local symmetry operations n̂ → −n̂ and m̂ → −m̂. Continuous
lines represent director field lines.

because, as we will discuss shortly, the annular geometry do
stabilize the formation of smectic domains.

B. Annuli

Having reviewed the no-obstacle cavity, we now turn to
the annular cavities. As discussed in Sec. V, the topology of
the annulus is different from that of the disk and in fact fully
compatible with the tetratic four-fold symmetry. Therefore,
topology would not require the presence of defects in the cav-
ity but simply a distorted tetratic phase, with the two locally
perpendicular directors n̂ and m̂. In the language of continuum
liquid crystals, these directors should exhibit two distortion
modes: splay (affecting the n̂ director, the one pointing in
the radial direction) and bend (affecting m̂, the one along the
azimuthal direction). Note that the system is invariant under
the symmetry operations n̂ → −n̂ and m̂ → −m̂. See Fig. 3
for a schematic representation of distorted tetratic directors
inside an annulus; distortion avoids the excitation of defects
because the condition of parallel orientation at the boundary is
perfectly fulfilled without compromising the global symmetry
of the system.

Topological arguments were successful in explaining the
global properties of the cavity in the case where no obsta-
cle is present. However, the results for the annuli, presented
in Fig. 1, are considerably more complicated than expected.
Again, typical particle configurations with color-coded values
of the order parameters superimposed are shown. Visual com-
parison with the reference, no-obstacle case may help reveal
different phenomena induced by the obstacle. The column
labeled 1 corresponds to the small obstacle. On first sight,
from the q4 map, one may conclude that the four defects of
the obstacle-free configurations are still present. Indeed, from
the q4 maps for the other obstacle sizes, columns 2 and 4,
we can draw the same conclusion: spatially limited regions
with a depleted tetratic order parameter are clearly excited.
The arguments taken from topology are apparently not valid.

The apparent similarity between configurations in circular
and annular cavities might be explained by regarding the ob-
stacle as a perturbation to the tetratic field. The obstacle would
weaken the long-range interaction between defects, especially
second-neighbor ones (those located along the diagonal of the

square defined by the four defects). As a consequence, we
might expect to see larger fluctuations in the defect positions:
excursions of the defects away from the wall and into the
bulk of the cavity will be longer, while the integrity of the
defects as pointlike particles will remain intact. This effect
is not very clear when comparing the q4 maps as we move
from experiment 1 to experiment 4, but will be quantified and
confirmed later by examining the distribution and shape of the
defects.

However, a closer look at the other order-parameter maps
gives a much more clear interpretation and reveals a complex
structure in the annular cases. Let us first consider the q2

map. In the obstacle-free case, it is low, except for localized,
short-lived, and rapidly decaying regions, corresponding to
excitations of the local uniaxial order associated with the
smectic fluctuations alluded to above. By contrast, in the
annular experiments, the q2 maps exhibit very apparent and
persistent structures with a high value. It turns out that in
the regions where the q2 order parameter is high, the smectic
order parameter qs is also high. These regions are long-lived,
genuine smectic domains (note that layers tend to bend and
present disclinations, which are typical of smectic order. As a
result of local averaging, the order parameter qs turns out to
be generally low over smectic regions even though, as clearly
seen in the qs maps of Fig. 1, strong layered structures are
quite apparent). In these smectic regions, the q4 order param-
eter is also high, as expected. In Fig. 2(d), a detail of panel
q4-2 of Fig. 1 is shown, representing a region with high values
of both q2 and qs. Smectic ordering of particles arranged side
by side, forming a layered texture, is clearly seen.

Further examination of the maps in Fig. 1 reveal the ex-
istence of regions where the q2 order parameter is depleted.
These regions can be identified by their cross-shaped structure
in panels q2-1, q2-2, and q2-4. An interesting observation is
that these regions, with low q2, are spatially complementary to
the smectic regions with high q2, both alternating periodically
in the azimuthal direction. These fan-shaped “bridges” are
oriented at relative angles of 90◦ and connect the wall of the
container with the wall of the central obstacle. Figure 2(e)
shows a detail of one of such bridges in panel q4-4 of Fig. 1. In
these regions, q4 is high whereas q2 is low: this corresponds to
strong tetratic ordering, meaning that the bridges are tetratic
domain walls that separate neighboring smectic domains.

But the structure of the tetratic domain walls is complex.
Close to the outer cavity wall, both q2 and q4 are depleted, in-
dicating that particles are orientationally disordered (isotropic
region); this is reminiscent of the no-obstacle situation and, in
fact, q4 maps reveal the presence of pointlike defects. Their
structure is identical to that in the no-obstacle case, Fig. 2(b).
As we move away from the outer wall, toward the central
obstacle and along the radial direction, the q2 order parameter
remains depleted. Therefore, tetratic domain walls actually
contain an embedded point defect close to the outer wall. The
arc at the inner wall is short enough that particles can easily
accommodate in a tetratic configuration close to the obstacle,
despite the large curvature (only a small length of the obstacle
wall is covered by particles with tetratic ordering).

In the remainder of this section we present further results
that quantify the overall structure of defects in the cavities,
their spatial distribution, and shape. In Ref. [27], it proved
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FIG. 4. Radial distribution of defect positions for (a) no obstacle,
(b) obstacles of diameter d = 1, (c) d = 2, and (d) d = 4. Shaded
areas indicate regions that cannot be explored by the defects (central
obstacle at left and region outside cavity at right).

useful to characterize the motion of the defects in terms of
distribution functions. We also adopt this approach here and
define f1(r), the radial function, which gives the spatial dis-
tribution of the defects with respect to their distance r from
the center of the cavity. This function is averaged over time
and over the four defects. r is conveniently scaled by the
cavity radius R. Since defects are mostly located close to the
cavity wall, one expects that f1(r) presents a maximum at a
radial distance r/R � 1. Analysis of this function provides
information on the excursions of defects inside the cavity and
the spatial fluctuations.

The histogram of f1(r) is shown in Fig. 4. A total of
ca. 1000 images were used to compute the histogram. In
this (and, in fact, in all the other histograms shown in the
following), error bars were not included since statistics are
rather poor. The reason is that radial histograms demand at
least 20 bins to actually see significant trends, and the number
of data points inside each bin is not actually high, especially
close to the cavity center. As a consequence, local standard-
deviation values may be of the same order as the local mean.
We believe this is not a serious problem since the overall be-
havior seems to be consistent. Figure 4(a) shows the reference
case, with no obstacle. We can see that the distribution is
quite broad, spanning approximately half the available radial
distance. As indicated in Ref. [27] (which corresponds to a
different experiment on a slightly smaller cavity), the radial
distribution seems to be bimodal, with two typical distances:
one at r/R = 0.85 and another at 0.65. The bimodality might
be caused by the layered structure formed by the rods close
to the wall, which pushes the defects away from the wall at
a distance that depends on the orientation of the rods and
the number of layers [27]. The opposing effect, coming from
defect repulsion, competes with the wall repulsion and may

FIG. 5. Histogram of the number of defects, nc inside the cavity
(for clusters larger than five rods) for all the cases explored. Note that
the horizontal axis has been displaced in each case. Labels on the top
indicate the diameter of the obstacle in cm.

give rise to a bistable position. Although the surface structure
at the wall has not been investigated carefully, it is observed
that it is quite dynamic. In Fig. 4(b), we plot the results for the
situation with the small obstacle. In this case, the bimodality
disappears and the distribution is broader, exhibiting a long
tail toward the cavity center which indicates the tendency of
the point defects to explore larger radial distances within the
tetratic domain walls. The effect is more pronounced as the
obstacle becomes bigger.

Another interesting quantity is the histogram of the number
of defects in the cavity, Fig. 5. Only defects formed by clusters
of more than five particles have been included in the calcula-
tion to avoid clusters that simply represent local fluctuations
and are not related to fully developed defects that participate
in the global interactions inside the cavity. Clearly, in the no-
obstacle case, in most configurations one finds four defects,
and only a few times are more or less than four defects excited
inside the cavity. However, when the obstacle is present, it is
more likely to find more than four defects, which means that
defect interactions have been weakened and the restrictions
imposed by topology are relaxed.

We have also calculated the distribution of the size of
the defects (number of rods belonging to the defect cluster).
Figure 6 shows the distribution of clusters with a size larger
than five rods. The peaks of the distribution in the circular and
annular cavities occur at sizes that increase slightly, but the
distribution gets broader as the obstacle becomes larger. From
this feature, it can be inferred that defects are slightly larger
on average when the obstacle perturbs the tetratic field.

Also of importance is the shape of the defects. When there
is no obstacle, defects are not completely circular because
they are close to the wall and therefore in an anisotropic
environment. The presence of a central obstacle amplifies this
effect, as we presently show. In Fig. 7, the distribution in a and
b (with a > b), the two principal lengths of all clusters larger
than five rods, are shown. Both lengths are normalized with
the radius of the cavity R. These lengths have been obtained
by diagonalizing the moment of inertia tensor calculated from
all rods that belong to a given cluster (assigning a unit mass
to the rods), and then taking the square root. We can see that,
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FIG. 6. Distribution of number of rods nr in clusters containing
more than five rods. From top to bottom: no obstacle, and obstacles
of small, intermediate, and large size. Labels indicate the diameter of
the obstacle in cm.

as the size of the central obstacle increases, the two lengths
get more different, meaning that the defects become more
elongated. From the corresponding eigenvectors, it is inferred
that the direction along which the long size of the cluster
points changes from azimuthal (no obstacle) to radial (toward
the cavity center, in the case of the 2 and 4 obstacles; these
results are not shown). One obvious explanation is that point
defects are now confined into thin domain walls, becoming
elongated along the radial direction.

In the case of the large obstacle, the distribution associated
to the long axis gets broader and in fact the probability that
the defect spans the whole radial distance (from the obstacle
to the wall, meaning that the whole domain wall becomes
disordered) increases dramatically. By contrast, the short axis
remains more localized. This means that sometimes the de-
fects connect the inner and the outer boundaries of the cavity
by a bridge. An example of this behavior, which becomes
more evident as the size of the central obstacle becomes larger,
is shown later.

Figure 8 shows the distribution of the oblateness of defects,
ε = 1 − b/a. As the obstacle gets larger, the distribution in ε

becomes broader, with the mean value of ε increasing from

FIG. 7. Distribution of principal lengths of the defects a and b.
From top to bottom: no obstacle, and obstacles of small, intermediate
and large size. Light grey: long axis; dark grey: short axis. Labels
indicate the diameter of the obstacle in cm.

FIG. 8. Distribution of the oblateness ε = 1 − b/a of defects.
Labels indicate the diameter of the obstacle in cm.
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FIG. 9. Schematic diagram showing the structure of domain
walls (shaded) in the circular annulus. Smectic (S) regions are sepa-
rated by domain walls consisting of tetratic (Nt ) regions and isotropic
(I), defective regions. Dashed lines separate regions close to the inner
wall where the type of order, either smectic or tetratic, depends on the
obstacle size.

∼0.32 to ∼0.40. Figure 9 is a schematic diagram showing
the structure of the domain walls in the annulus. S regions are
separated by domain walls consisting of Nt and I, defective re-
gions. This structure can be deduced from the order-parameter
maps of Fig. 1. The pointlike defects are reminiscent of the
structure in an obstacle-free cavity. It seems that pointlike
defects are easily formed due to the high tendency of the sys-
tem to develop orientational order, either uniaxial (smectic)
or tetratic. In turn, tetratic regions are developed in the radial
segment of the pointlike defects to avoid distortion of the
smectic layers. Note that the regions close to the obstacle wall
in each smectic domain usually tend to be tetratic, especially
in the case of the smaller obstacles since curvature is too large
to support bent smectic layers (see Fig. 1).

Despite the presence of the obstacle, which forces the
particles to dramatically rearrange into a complex structure,
the dynamics can still be interpreted in terms of point defects
(isotropic regions) that interact at distance. Clearly the obsta-
cle will tend to weaken the long-range interaction, but the now
smectic (instead of tetratic) regions between nearest-neighbor
defects will certainly reinforce the repulsive interaction. The
reason is that in this case the interaction is mostly medi-
ated by smectic layers, in the direction perpendicular to the
layers. Since smectic phases have a small compressibility
and, consequently, a large stiffness coefficient associated to

FIG. 10. q4 order parameter field of a particular configuration
of one of the experiments involving the larger obstacle. Two of the
defects are localized, while the other two are extended and connect
the inner and outer walls of the cavity.

the layer periodicity, the amplitude of the logarithmic inter-
action will probably be very large. Defects still stay close
to the cavity wall because of the overall strong interdefect
repulsion.

Results from Figs. 4–8 are summarized in Table I, where
mean and standard deviations for the quantities represented in
the figures are given. The collected data confirm the scenario
discussed in the previous paragraphs, and can be rationalized
as follows. The mean number of clusters (defects), nc, slightly
increases with obstacle diameter, while the mean number of
rods that belong to clusters, nr , remains approximately the
same, except for the largest obstacle which exhibits much
larger clusters. Al,so the centers of mass of clusters r/R have
a weak tendency to drift toward the cavity center. Finally, the
mean oblateness of defects, ε, increases monotonically with
obstacle size, confirming the tendency of defects to become
more elongated along the the radial direction. An example
of this trend is given in Fig. 10, which shows the q4 order
parameter of a configuration where two of the defects exhibit
a large shape fluctuation consisting of elongated structures in
the radial direction. In this case, the fluctuation is so strong
that the defects connect the inner and outer cavity boundaries.
This type of configuration, however, represents a small frac-
tion of the total. In general, the strongest fluctuations in all
measured magnitudes are found in the system with the larger
obstacle, which is also reflected in the values of standard
deviation collected in the table.

TABLE I. Summary of mean and standard deviation values obtained from the histograms shown in Figs. 4–8 for the four experiments
analyzed. In each case, mean and standard deviations are given. The meaning of the quantities is as follows. nc: mean number of clusters in
the cavity. nr : mean number of cylinders in clusters. r/R: mean radial position of defects from the cavity center in units of the cavity radius. a:
mean value of major axis of defects. b: mean value of minor axis of defects. ε: mean value of oblateness parameters of defects.

0 1 2 4

nc 3.738 ± 0.593 3.890 ± 0.873 3.996 ± 0.510 4.246 ± 0.727
nr 42.642 ± 16.973 42.745 ± 22.674 41.550 ± 19.840 58.927 ± 35.026
r/R 0.821 ± 0.107 0.780 ± 0.115 0.783 ± 0.147 0.755 ± 0.164
a 0.407 ± 0.141 0.382 ± 0.145 0.385 ± 0.154 0.458 ± 0.197
b 0.283 ± 0.086 0.254 ± 0.081 0.254 ± 0.092 0.305 ± 0.133
ε 0.319 ± 0.163 0.338 ± 0.169 0.347 ± 0.173 0.399 ± 0.181
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V. DISCUSSION AND CONCLUSIONS

The theoretical interpretion of the results presented in the
previous section is not easy, since at present there is no
theoretical framework available for dense vibrated monolay-
ers of anisotropic granular particles. Therefore, we can only
speculate based on equilibrium concepts and other arguments
rooted on dissipation mechanisms.

We start with the topological arguments. Galanis et al. [22]
have assumed continuum elastic theory and concepts such as
surface anchoring in their analysis of vibration experiments on
long granular needles confined in circular cavities, where only
uniaxial nematic ordering is possible. Our results for a similar
system with tetratic symmetry (no-obstacle case) seem to
also follow these concepts. In fact, the vibration experiments
on annular cavities, presented in the previous sections, were
motivated by the radical changes predicted by topology with
respect to circular cavities: four pointlike defects in the latter
and no defects in the annuli. The notion is based on the so-
called geometrical frustration: In the circular cavity, due to the
boundary conditions imposed and assuming strong anchoring
conditions (either planar or homeotropic), bulk fourfold local
orientational order (C4 symmetry) cannot propagate globally
because of the circular geometry of the cavity. Continuity
of the tetratic field must necessarily be restored by creating
defects.

This concept can be quantified using the Euler theorem of
topology applied to the experimentally obtained tetratic field
[29]. In the present context, the theorem states that the total
topological charge of the system must satisfy the equation∑

i Qi = pχ , where p is the symmetry order of the phase (in
the case of the tetratic, p = 4), while χ is the Euler character-
istic of the volume. In the case of a circular cavity consisting
of a disk, χ = 1. Qi is the topological charge of each indi-
vidual defect present in the volume, a number that reflects the
symmetry of the order parameter around the defect. The Euler
theorem gives the total charge of the system, not the number
or topological charge of the defects present. These properties
depend on other considerations based on the competition be-
tween free-energy contributions of different origin: bulk, wall,
elastic, and defect core energies. In any case, the system will
minimize the free energy by choosing the minimum number
of defects that can restore the broken symmetry induced by the
confining boundary. In a circular cavity, the presence of four
defects restores the symmetry broken by the circular geometry
of the cavity since the total charge +4 (four defects of charge
+1) satisfies the constraint imposed by the Euler theorem for
a medium with C4 symmetry.

For the annular geometry, the Euler characteristic is χ = 0,
meaning that the total topological charge inside the volume
should be zero. In fact, the integrity of the director field can
be maintained, without the presence of any singularities, by
distorting the field around the central obstacle without ever
creating any conflict with the wall contour. The symmetry of
the tetratic field is not compromised in this case because no
geometrical frustration should exist.

Our results for the annular cavities do not conform to
the topological requirements. As soon as the tetratic field is
disrupted by the presence of a central obstacle, regardless of
its size, the system is divided up into regions periodically

arranged in the azimuthal direction: (i) regions with smectic
order and (ii) tetratic domain walls containing pointlike de-
fects. The latter are identical to the defects observed in the
systems with no central obstacle. These structures tend to
migrate slightly toward the central obstacle and their shape
becomes more elongated, due to their more anisotropic envi-
ronment, with respect to the obstacle-free case.

That the steady-state structures in the annuli are not in
accordance with the predictions from continuum elastic the-
ory and topology may not be surprising, as we are dealing
with nonequilibrium systems governed by dissipation. As
discussed in Ref. [24], vibrated monolayers show a strong
tendency to form large clusters of particles arranged side by
side, and consequently local smectic fluctuations are frequent.
This clustering effect can be explained by local energy diss-
pation due to particle collisions. But large layered structures
are short lived because layers are easily disrupted by the
excitation of local vorticity. This is indeed observed in our
obstacle-free experiments. However, the presence of a central
obstacle in the cavity suppresses vorticity and stabilizes large
smectic regions. If dissipation-induced clustering is behind
the formation of stable smectic structures, monolayers of rods
in thermal equilibrium (as, e.g., in equilibrium particle simu-
lations) should behave in a radically different manner.

However, dissipation may not be the only factor. The
reduced size of the cavity, and in particular of the central
obstacle, compared with the length of the cylinders, may also
be important as the continuum approximation based on a
continuous, smoothly distorted tetratic field may not be valid.
If the size of the obstacle is of the order of a few particle
lengths, arguments based on topology make no sense and
other considerations are needed to explain the phenomenol-
ogy. To emphasise this point more clearly, let us recall the
typical lengths of our system: L, the particle length; R, the
radius of the cavity; and Robs, the radius of the central obstacle.
The continuous field assumption rests on the conditions R 	
L and Robs 	 L. While the first condition is probably fulfilled
in our experiments, which have R/L = 17.5 (and the success
of topological arguments in the no-obstacle case strongly sup-
ports this), in the case of the small obstacle we have Robs =
0.5 cm and consequently Robs/L = 1.25. The perimeter of the
central obstacle is covered by only ∼2πRobs/L ∼ 8 particles
forming an octagon. Certainly, the continuum approximation
breaks down, and topological arguments may not be valid
in this case. For the other obstacles, we have Robs/L = 2.5
and 5, still too small for the continuum approximation to
be valid.

If the structures observed are the result of a nonequilibrium
effect, there is no a priori reason why stable pointlike defects
should exist. As discussed above, dissipation and restricted
geometry may induce the formation of large alternating smec-
tic regions. Tetratic domain walls in between these regions
might form because of the density-depleted regions left be-
hind by smectic domains. Another (indirect) reason may be
the disparate curvatures of the outer and inner walls, which
may limit the number of layers in a smectic region due to bend
distortion (which would cause a nonuniform layer spacing
along the radial direction), and ultimately control the number
of regions in the sample. Their number is invariably equal
to four in our experiments. This number may result from a
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balance between available space, difference in wall curva-
tures, and layer stiffness. Higher densities, more similar wall
curvatures and possibly larger systems (not possible with our
present experimental setup) might induce the formation of
more smectic regions and/or different structures.

The presence of pointlike defects are more difficult to ex-
plain. Local tetratic fluctuations together with wall curvature
could induce the formation of stable defects. In any case,
despite the presence of the obstacle, which suppresses the
long-range defect interaction along the cavity diameter, re-
pulsive interactions between neighboring defects are probably
quite strong since they are mediated by the rather stiff smectic
layers.

As discussed in the Introduction, computer simulations
based on equilibrium Monte Carlo methods have been use-
ful to discuss the phenomenology of vibrated monolayers
[23]. For the present annular systems, direct simulations of
an equivalent system do not exist. Therefore, it would be
interesting to analyze this system using equilibrium simula-
tion techniques, which would help elucidate the role played
by nonequilibrium effects or otherwise on the structures ob-
served in granular monolayers. In this respect, simulations
with dissipative or active-matter models that also incorporate
interactions promoting orientational liquid-crystalline order
might be useful.

Interestingly, Gârlea et al. [30] have observed similar
structures in systems of virus particles confined into circu-
lar cavities and in annular cavities. Their system is different
in that (i) virus particles have a high length to width ratio,
meaning that their stable liquid-crystalline phase is a uniaxial
nematic phase, and (ii) the ratio of inner and outer wall radii
is larger. In this case, domains of nematic order with different
orientation separated by domain walls are observed. Accom-
panying simulations that try to mimic the experimental system
were also presented. In this case, structures with increasing
numbers of domains are observed as the size of the central
obstacle is increased and the two wall curvatures become
more similar.

Even though the system explored by Gârlea et al. [30]
is in a different range of length parameters, and the nature
of the orientational ordering is simpler, the main result is
qualitatively similar: the presence of ordered domains induced
by reduced space and geometrical frustration of the order

parameter. In our case, however, the structure of the domain
walls seem to be far more complex, probably in part because
of the larger variety of possible particle orderings (tetratic and
smectic).

To summarize, we have presented results for the liquid-
crystalline ordering exhibited by vibrated monolayers of
granular rods when confined in circular and annular cavities.
The circular cavity is analyzed as a reference case where
topology should couple to ordering symmetry in a way totally
different from that in annuli. Whereas topological arguments
seem to apply for the circular cavity, in annuli we observe the
formation of alternating smectic regions arranged azimuthally,
separated by tetratic domain walls. Arguments based on dissi-
pation and the stiffness of layered regions may help explain
the formation of these structures in a qualitative way. But
many questions remain open and deserve further research. In
particular, the existence of pointlike defects with an orienta-
tionally disordered structure inside the domain walls cannot
be explained, as there should be no symmetry conflicts in the
annular geometry. The extent to which arguments based on
elastic theory, which have been invoked in the past [22], can be
applied in the present case is probably quite limited. The fine
structure of steady-state configurations may stem from gen-
uinely nonequilibrium effects in vibrated monolayers, with
pointlike defects less prone to get unstable by the imposed
annular symmetry than in equilibrium systems, or it may be
simply the result of the different symmetry of the order pa-
rameter and the richer bulk phase diagram with more phases,
one of them spatially nonuniform and favored by dissipation,
competing in the same region.

The results presented in this paper present a theoretical
challenge and future studies involving larger monolayers, in-
cluding simulations of equivalent systems with and without
dissipation, may give hints in this respect.
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