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Abstract 

Background:  Malignant mesothelioma (MM) is a rare aggressive cancer primary located in pleura and lung. MMs 
can be divided into biphasic, epithelioid and sarcomatoid subtypes. In majority of cases MMs are induced by asbestos 
fiber exposure. As latency period after asbestos exposure ranges between ~ 10 and 60 years MMs are mainly observed 
in elder people. Human MM, being a rare tumor type, lacks detailed cytogenetic data, while molecular genetic studies 
have been undertaken more frequently. However, murine MM cell lines are also regularly applied to get more insight 
into MM biology and to test new therapy strategies.

Results:  Here the murine MM cell lines AB1, AB22 and AC29 were studied by molecular cytogenetics and molecular 
karyotyping. Interestingly, yet there were no genetic or genomic studies undertaken for these already in 1992 estab‑
lished cell lines. The obtained data on genomic imbalances in these murine cell lines was translated into the human 
genome as previously reported based on human and murine genomic browsers.

Conclusions:  It turned out that all three cell lines showed high similarities in copy number variants as observed 
typically in human MM. Also, all three cell lines were most similar to human epithelioid MMs, and should be used as 
models therefore.

Keywords:  Murine multicolor banding (mcb), Array comparative genomic hybridization (aCGH), Malignant 
mesothelioma, Murine cell line, AB1, AB22, AC29
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Background
Malignant mesothelioma (MM) is a rare aggressive 
tumor-family of pleura and lung, with an incidence 
of about 0.002% [1, 2]. In most of the cases, MMs are 
located in pleural mesothelium, and only rarely in peri-
toneal cavities, tunica vaginalis or pericardium. MM can 
be specifically promoted by exposure to asbestos fibers 
[3, 4]. Besides working with asbestos, accordingly con-
taminated buildings provide an additional, often unrec-
ognized problem, where affected person can undergo 

asbestos inhalation, ingestion, or less often, severe expo-
sures via the skin [3, 5]. The latency periods for MM after 
asbestos exposure can range from 1 to 6 decades, and the 
median age of onset is 72 years [6].

Numerous genetic changes are involved in MM. These 
include numerical and structural chromosomal aberra-
tions and molecular genetically detectable alterations in 
the cellular signal transduction pathways, among others 
caused by activation of oncogenes or loss of tumor sup-
pressor genes [5]. In human the genes cyclin-dependent 
kinase inhibitor 2A (CDKN2A), neurofibromatosis type 2 
(NF2), the breast cancer associated gene 1 (BRCA1) asso-
ciated protein 1 (BAP1) and tumorsuppressorprotein 53 
(TP53) genes seem to be major players in MM-pathogen-
esis and -progression [7–16].
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Histomorphologically and according to their growth 
parameters, MM can be divided into the following, most 
frequently observed subtypes: (1) biphasic, (2) epithelioid 
and (3) sarcomatoid. Different median survival times 
were attributed to each subtype; the best prognosis has 
the epithelioid, while the worst one has the sarcomatoid 
subtype [13, 17].

As MM is an aggressive tumor with poor prognosis, 
there is ongoing research to better understand the biol-
ogy of this cancer type [18, 19]. Therefore, also animal 
models, including murine tumor cell lines are regularly 
applied, also because human and mouse genomes show 
homologies within coding sequences of up to 97% [20]. In 
1992 Davis and coworkers inoculated asbestos fibers into 
female BALB/c and CBA mice and established success-
fully 12 MM cell lines from tumor ascites cells [21]. Here 
two of these cell lines derived from BALB/c mice, i.e. 
AB1 and AB12, and one of them from CBA mice (AC29) 
were studied. Strikingly, in none of these cell lines (cyto)
genetic research was undertaken yet to characterize their 
cytogenomic content. However, the latter data are impor-
tant to use such cell lines in the best suited way to answer 
questions about MM-biology or to apply them in tests for 
new treatment options, i.e. for drug tests meant for the 
corresponding MM subtype.

Results
Molecular cytogenetics
Ab1
This cell line showed the following hypotetraploid composite  
karyotype (Fig.  1a) 73~80<4n>,-X,-X,der(1)t(1;2)(H5;F1), 
der(1)t(1;2)(H5;F1),+der(1)t(1;2)(C1;F1),-2,der(2)(2A1→
2H4::6F3~G1→6E1::6F3~G1→6qter),der(2)(2A1→
2H4::6F3~G1→6E1::6F3~G1→6qter),der(2)t(2;19)
(E3;D1),+3,der(6)t(2;6)(H1;E1),der(6)t(2;6)(H1;E1),der(7)
t(7;19)(E3;D1),dic(9;19)(A1;D3),dic(9;19)(A1;D3),del(13)
(A5),dic(13;17)(A1;A1),dic(13;17)(A1;A1),der(15)t(15;?)
(E1?;?),+der(15)(15pter→15E1::17B→17E3::17E3→17B:),
+der(15)(15pter→15B2::17B→17E3::17E3→17B:),-16,-17,-
17[11],-18[10],del(19)(D1),del(19)(D1).

In Fig. 1b examples of mcb experiments are shown for 
chromosomes 1, 2 and 6, which enabled the characteriza-
tion of the der(1)t(1;2)(C1;F1), the der(1)t(1;2)(H5;F1)x2 
and the der(2)(2A1→2H4::6F3~G1→6E1::6F3~G1→6qt
er)x2.

Ab22
The tumor cell line AB22 was near tetraploid (Fig. 2a)—
here the composite karyotype: 73~79<4n>,-X,-X,der(X)
t(X;6)(C~D;C1),der(X)(XA1→XC~D::6C1→6G2::XF1
→Xqter),dic(3;3)(A1;A1),del(3)(A3F1),der(4)(4A1→4C3
::4C3::4C5→4C7::4C7→4C5::2F3→2qter),der(4)(4A1→
4C3::4C3::4C5→4C7::4C7→4C5::2F3→2qter),-5,der(5)

t(5;11)(G2;D~E),der(6)t(X;6)(D;C1),der(6)t(X;6)
(D;C1),der(7)t(7;9)(F4;F1),der(7)t(7;9)(F4;F1),-10,-12,-
13,-14,der(15)t(5;15)(G2;E),der(15)t(5;15)(G2;E),der(15)

Fig. 1  a Results of mFISH using all 21 murine whole chromosome 
paints as probes applied on murine MM cell line AB1 are shown 
here. b Typical pseudocolorbanding-results for murine multicolor 
banding (mcb) as applied on cell line AB1 for chromosomes 1 (mcb1), 
2 (mcb2) and 6 (mcb6). Derivative chromosomes are shown as 
1/2a = der(1)t(1;2)(H5;F1), 1/2b, = der(1)t(1;2)(C1;F1), 2/6 = der(2)(2A1
→2H4::6F3~G1→6E1::6F3~G1→6qter) and 6/2 = der(6)t(2;6)(H1;E1); 
normal chromosomes are labeled by # and chromosome number

Fig. 2  mFISH (a) and selected mcb results (b) for murine MM cell 
line AB22. For mcb3 two normal chromosomes (#3), a dic(3;3)(A1;A1) 
(dic(3;3)) and a del(3)(A3F1) (del(3)) are depicted. Also application of 
mcb17 revealed the presence of two normal chromosomes 17 (#17) 
and two chromosomes 17 with inversion inv(17)(CE5) (inv(17))
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(15pter→15E::6D→6E::15E→15qter),+der(15)(15A1→
15E::6D→6E::15E→15qter),+der(15)(15pter→15E::6D
→6E::15E→15qter),del(16)(B2),der(16)(pter→B2::B1-
>qter),inv(17)(CE5),inv(17)(CE5),-18,+19.

Here examples for the mcb characterization of dic(3;3)
(A1;A1) and del(3)(A3F1) by mcb3 and of inv(17)(CE5)x2 
are shown in Fig. 3b.

Ac29
AC29 turned out to be hyper-triploid with one main clone 
(90%) and one smaller subclone (10%). The main clone kar-
yotype (Fig.  3a) had the following karyotype: 63<3n>,X,-X, 
der(X)(pter→A1::A2→qter),der(1)(pter→D::E4→ 
G::H2→qter),der(1)(pter→C5::C2→qter),del(2)(E2E5), 
der(2)(2pter→2H3::19C3→19D2::11D→11qter),+del(3)
(A3E3),+del(3)(A3E3),+del(4)(C4),der(5)t(5;6)(B;B3),-
6,der(6)t(6;12)(G1;C2),+der(8)(8pter→8A3::8B3→8E2:
:18D→18E4::1E4→1G::18D→18E4::1E4→1G::18E4→
18D::1E4→1G),dic(9;15)(A1;A1),del(11)(B4E1),der(11)
(pter→B4::A2→qter),der(11)t(2;11)(H3;D),der(12)t(6;12)
(G1;C2),del(13)(A5B),der(17)t(11;17)(D;E5),der(17)(17pter→
17B~C::6B1→6G3::6B1→6G3::17B~C→17E5::2H3→2qter), 
der(17)(17pter→17E5::17E4→17E5::11E1→11qter),der(18)
t(5;18)(B1;D3),del(18)(B1C),+mar1,+mar2.

The subclone was just characterized by a translocation 
between chromosome 12 and 13 {der(13)t(13)t(12;13)} 
instead of del(13)(A5B) compared to the main clone 
(Fig. 3a).

As examples for mcb the characterization of the 
dic(9;15)(A1;A1) is shown in Fig. 3b.

Two marker chromosomes could be resolved here, 
neither by multicolor fluorescence in  situ hybridization 
using all 21 murine whole chromosome paints as probes 
(mFISH—Fig. 3a) nor by mcb. Thus, most likely they are 
derivatives of the centromere-near region of any of the 
murine chromosomes—subband A1, which do not spe-
cifically stain by any euchromatic DNA-probe. Accord-
ingly, the marker chromosomes could be left overs of the 
dic(9;15)(A1;A1) and a del(?)(A1).

aCGH
Array comparative genomic hybridization (aCGH) data 
(Additional file  1: Table  1) together with which FISH 
results could be summarized in Figs. 4a, 5a and 6a. These 
results were translated to the corresponding homologous 
regions in the human genome as depicted in Figs. 4b, 5b 
and 6b. All in the evaluation included imbalances were 
larger than 3.5 mega base pairs.

Data‑analyses
The common aberrations and cytogenetic changes that 
frequently occur in MM [22] revealed for all three cell 
lines to be less similar to human biphasic MM subtype 
(Table  1). According to Table  1, AB1 has 14/16 (88%) 
aberrations in common with human epithelioid and 
17/21 (81%) aberrations with human sarcomatoid MMs. 
For AB22 it was 18/20 (94%) and 17/21 (81%) concord-
ance to human epithelioid and sarcomatoid MMs, 
respectively. And for AC29 similarities of human epithe-
lioid or sarcomatoid MMs was 15/20 (75%) versus 15/22 
(68%). Thus, all three cell lines seemed to be best suited 
as models for human epithelioid MMs.

Also in Table  2 region, where four tumor suppressor 
genes meant to play important role in human MM are 
localized, were checked for copy number variant pres-
ence in the three studied murine MM cell lines. No cor-
relations were found here.

Conclusions
The murine MM cell lines AB1, AB22 and AC29 were 
studied in this paper for the first time by molecular cytoge-
netics combined with aCGH. This enabled to determine 
their genetic alterations and imbalances and align these 
with human MMs. mFISH using whole chromosome 
painting probes revealed the general characteristics of the 
cell lines, like the ploidy, clonal and nonclonal changes 
as well as numerical and intrachromosomal structural 
aberrations. By mcb interchromosomal alterations as 
duplications, deletions or inversions, and chromosomal 
breakpoints involved could be uncovered, as previously 
reported [23–28]. The aCGH data was aligned with the 

Fig. 3  a mFISH result of the main clone being present in 90% of 
the cell line AC29 is shown here. The only difference in the subclone 
comprising 10% of the cells is that the del(13)(A5B) is replaced by a 
der(13)t(13)t(12;13) as shown in white square. b Result for mcb9 and 
15 highlight the dic(9;15)(A1;A1) here labeled as 9/15
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FISH results and also used to determine breakpoints of 
unbalanced rearrangements (Additional file 1: Table 1).

The cell lines A1 and AC29 were tetraploid; as in 
both cell lines derivative chromosomes were present 
twice, it is possible that polyploidization was a result 
of cell culture, and tetraploidy was absent in original 

tumor. Such so-called telomere-driven tetraploidiza-
tion in the context of cell culture-related factors as 
trypsin treatment, increasing number of cell-culture 
passages, and oxygen exposure [29, 30] was discussed 
before. However, as no karyotype of tumor or early 

Fig. 4  aCGH results for cell line AB1. In a copy number variations detected are summarized with respect to a tetraploid karyotype. Gains are 
depicted as green bars (one more copy = light green; two more copies = dark green), loss of one copy is depicted as a red bar and loss of two 
copies is depicted as a dark-red bar. Breaks are registered here as arrows. In b results of in silico translation for AB1 to human genome are shown the 
same way as in a 
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cell passages of A1 and AC29 are available, this is just 
speculation and cannot be tested by any means.

Interestingly, a deletion of CDKN2A gene is consid-
ered as one of the most typical alterations in human 
MMs [7–9]. In the AB1 and AC29 there was indeed a 
deletion in the murine homologous region; however in 
cell line AB22 this region was duplicated (Additional 
file  1). For other tumor suppressor genes BAP1, NF2 
and TP53 thought to play important roles in human 

MMs [10–16], there is even less or no concordance in 
the copy number variant regions of the three cell lines 
(Additional file 1).

Nonetheless, the overall similarities of copy number 
variants found in the three murine MM cell lines com-
pared to human MM are striking. A shown in Table 1 
all three cell lines can serve as models for human 
epithelioid MM. As similarities are also high for sar-
comatoid MM, also here they may be used as models 

Fig. 5  aCGH results for cell line AB22 depicted with respect to a tetraploid karyotype; legend like in Fig. 4
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for. However, AB1, AB22 and AC29 are definitely not 
models for human biphasic MM.

Methods
Murine MM cell lines
The murine cell lines AB1 and AC29 were obtained 
from Cell Bank Australia (Westmead, Australia, order 
#s CBA-0144 and CBA-0152) and AB22 European Col-
lection of Authenticated Cell Cultures (Salisbury, UK—
order# ECACC 10092307). For this study, the cells were 

cultivated and divided into two portions, worked up 
cytogenetically (portion 1), and used to extract whole-
genomic DNA (portion 2) as previously described [24].

Molecular cytogenetics
Fluorescence in situ hybridization (FISH) was performed 
as previously described [24]. “SkyPaintTM DNA Kit 
M-10 for Mouse Chromosomes” (Applied Spectral Imag-
ing, Edingen-Neckarhausen, Germany) was used for 
multicolor-FISH (mFISH) applying whole chromosome 

Fig. 6  aCGH results for cell line AC29 depicted with respect to a triploid karyotype; legend like in Fig. 4
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Table 1  Comparison of  ‘translated’ imbalances of  murine MM-cellines AB1, AB22 and  AC29 with  human epitheloid, 
biphasic and sarcomatoid MM, according to Krismann et al. [22]

CNV detected in cell lines AB1 Epithelial MM Biphasic MM Sarcomatoid MM

del(1)(pter32) ? + (+)

amp(1)(p31q32) + − (+)

del(2)(p23p16) + − −
amp(2)(q12q21.2) (+) − +
del(2)(q22q32) − − ?

del(3)(p22p10) ? − +
del(3)(q10q24) ? − −
amp(3)(q25q26) ? ? +
del(3)(q27qter) ? ? −
amp(5)(p15p12) + − +
del(5)(p12q15) ? ? +
amp(6)(p22.1q12) (+) (+) (+)

del(6)(q22.3qter) + + +
amp(8)(q11.2q21.2) + (+) +
del(9)(pterqter) + + +
del(10)(p15p12) + + +
del(10)(q23q25) (+) (+) (+)

del(11)(pterp10) ? − +
del(11)(p10qter) ? + +
amp(15)(q21.2q24) + + ?

del(18)(p11.2qter) + ? +
amp(20)(pterqter) + − (+)

del(21)(q11.1qter) − ? ?

del(X)(pterqter) + − −
Sum for + 11/16 6/19 12/21

Sum for (+) 3/16 3/19 5/21

Sum for + and (+) 14/16 9/19 17/21

CNV detected in cell lines AB22 Epithelial MM Biphasic MM Sarcomatoid MM

del(1)(pter32) + + (+)

amp(1)(p32p10) + − +
del(3)(p24p24) + − (+)

del(3)(p21.2p14.2) ? ? (+)

amp(3)(p14.2q21) + + +
del(3)(q26qter) ? ? −
del(4)(pterq21.1) + + +
amp(5)(p15.3p12) + − +
del(5)(q11qter) ? ? (+)

del(6)(q16q25) + + +
amp(7)(pterp22) + + ?

del(7)(p22qter) − − +
del(8)(p22p12) + + +
amp(8)(q22qter) + (+) +
del(9)(q21.2q22.3) (+) (+) ?

del(10)(pterq23.2) + + +
amp(11)(q11q13.3) ? − ?

del(12)(p12.1qter) ? − +
del(13)(q13q32) + + +
del(14)(q11qter) + + +
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paints, and murine chromosome-specific multicolor 
banding (mcb) probe mixes for FISH-banding [31]. At 
least 30 metaphases were acquired and analyzed for each 
probe set on a Zeiss Axioplan microscope, equipped with 
ISIS software (MetaSystems, Altlussheim, Germany). 
Array-based comparative genomic hybridization (aCGH) 
was completed according to standard procedures with 
“SurePrint G3 Mouse CGH Microarray, 4x180K” (Agilent 
Technologies, Santa Clara, CA, USA).

Data analysis and translation
The regions of imbalances and breakpoints in AB1, AB22 
and AC29 were characterized after analyses of aCGH and 
mcb data, and aligned with their human homologous 
regions using Ensembl Genome Browser, as previously 
described [24]. The data we obtained was compared with 
the literature [22] (Tables 1 and 2).

Only imbalances present in any of the three human MMs are listed

CNV = copy number variation; + = aberration present in the cell line, − absent in the cell line; ? = no clear correlation possible, as it can be + or − in human cases

Table 1  (continued)

CNV detected in cell lines AB1 Epithelial MM Biphasic MM Sarcomatoid MM

del(18)(pterqter) + (+) +
del(19)(pterp13.3) ? (+) (+)

amp(20)(pterqter) + − (+)

del(22)(q11.2q11.2) + + +
del(22)(q13.2qter) + + +
Sum for + 17/20 11/22 15/23

Sum for (+) 1/20 4/22 6/23

Sum for + and (+) 18/20 15/22 21/23

CNV detected in cell lines AC29 Epithelial MM Biphasic MM Sarcomatoid MM

amp(1)(p31 q25) − − (+)

amp(2)(p23p11.2) − − +
amp(2)(q33qter) + − +
amp(3)(pterq24.3) + − −
amp(3)(p14.1p13) + + ?

amp(3)(q25q26.2) (+) (+) +
amp(5)(p15.2p13.1) + − +
del(5)(q21q32) ? ? (+)

amp(5)(q33qter) ? + −
del(6)(q15q16.1) + + +
del(7)(p21p15.1) + + ?

amp(7)(p13p11.1) − − −
del(7)(q21.3q36) + + +
amp(8)(p12p11.1) + − −
amp(8)(q22.2qter) + (+) +
del(9)(pterq33) + + +
del(13)(q13q14.1) + + +
del(15)(q13q21.1) − − (+)

del(17)(pterp12) + + (+)

del(17)(q11q23) ? − −
amp(17)(q24qter) + − (+)

amp(19)(p13.2p13.1) ? − −
amp(20)(q13.2qter) + − +
del(X)(p22p11.2) (+) − −
Sum for + 14/20 8/23 10/22

Sum for (+) 1/20 2/23 5/22

Sum for + and (+) 15/20 10/23 15/22
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