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The purpose of this research is to inspect the mixed convection flow of Eyring-Powell nanofluid over a linearly stretching sheet
through a porous medium with Cattaneo–Christov heat and mass flux model in the presence of Hall and ion slip, permeability,
and Joule heating effects. Proper similarity transforms yield coupled nonlinear differential systems, which are solved using the
spectral relaxation method (SRM). The story audits show that the present research problem has not been studied until this
point. Efficiency of numerous parameters on velocity, temperature, and concentration curves is exposed graphically. Likewise,
the numerical values of skin friction coefficients, local Nusselt, and Sherwood numbers are computed and tabulated for some
physical parameters. It is manifested that fluid velocities, skin friction coefficients, local Nusselt, and Sherwood numbers
promote with the larger values of Eyring-Powell fluid parameter ε. It is also noticed that primary velocity promotes with larger
values of mixed convection parameter λ, Hall parameter βe, and ion slip parameter βi, while the opposite condition is observed
for secondary velocity, temperature, and concentration. Furthermore, comparative surveys between the previously distributed
writing and the current information are made for explicit cases, which are examined to be in a marvelous understanding.

1. Introduction

Mixed convection streams emerge in numerous transport
processes both in nature and in engineering applications.
They play a vital role, for instance, in air limit layer streams,
heat exchangers, atomic reactors, solar collectors, and in elec-
tronic hardware. Such procedures happen when the impacts
of buoyancy forces in constrained convection or the impacts
of the constrained stream in natural convection become
noteworthy. The interaction of natural and constrained con-
vection is particularly articulated in circumstances where the
constrained stream velocity is low as well as the temperature
contrasts are huge. This stream is likewise an important kind
of stream showing up in numerous mechanical procedures,
for example, assembling and extraction of polymer and elas-
tic sheets, paper creation, wire drawing and glass-fiber crea-
tion, dissolve turning, and consistent throwing. Moreover,
mixed convection in permeable media has numerous appli-
cations, for example, food handling and storage, metallurgy,

geophysical framework, fibrous insulation, and underground
removal of atomic waste. Then again, thermal conductivity of
the ordinary heat transport liquids, for instance, water, oil,
and ethylene glycol are exceptionally low. Thus, expanding
thermal conductivity of the traditional liquids prompts
improves the heat transport of these liquids. As of late, nano-
fluids are presented with upgraded thermal conductivity. A
nanofluid is a suspension of nanoparticles with normal sizes
beneath 100nm in the base liquids. Due to the upgraded
thermal conductivity, nanofluids are proposed for some
mechanical applications, for example, transportation, atomic
reactors, and nourishment. In this manner, numerous ongo-
ing analysts have generous enthusiasm for the mixed convec-
tion stream of nanofluid over an extending sheet in a
permeable medium due to their impressive use in the modern
and innovative applications. Accordingly, Ameen et al. [1]
investigated a 3D turning stream of carbon nanotubes
(CNTs) over a permeable stretchable sheet for warmth and
mass exchange with thought of kerosene oil as a base fluid
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and announced that both velocity fields delineate expanding
conduct for enormous value of the CNT nanoparticle.
Besides, Rasool et al. [2] examined a numerical investigation
of the MHD Williamson nanofluid flow maintained to flow
through permeable medium bounded by a nonlinearly
stretching flat surface and reported that an enhancement in
the values of magnetic parameter augments the drag force,
whereas a decrement in the drag force can be observed as
the values of Weissenberg number enhances. Also, Ibrahim
and Anbessa [3] examined the mixed convection stream of
a Maxwell nanofluid over a growing surface in a penetrable
medium utilizing the spectral relaxation method (SRM) and
found that a climb in Deborah number decreases both the
stream and transverse velocity profiles, while the backwards
design is seen with enlargement in the mixed convection
parameter. Furthermore, Waini et al. [4] examined the con-
sistent mixed convection stream along a vertical surface
implanted in a permeable medium with hybrid nanoparticles
utilizing the bvp4c solver in Matlab programming. They con-
sidered both assisting and opposing streams and found that
there exist dual solutions for the case of opposing stream.
Further, numerous other ongoing works have been done
around there as found in references [4–12].

Investigation of nonNewtonian liquid has incredible sig-
nificance because of its numerous industrial and engineering
applications. Specifically, these liquids are used in the mate-
rial preparing, concoction and atomic ventures, bioengineer-
ing, oil repository designing, polymeric fluids, and groceries.
A few liquids like paints, paper mash, shampoos, ketchup,
fruit purée, slurries, certain oils, and polymer arrangements
are instances of nonNewtonian liquids. NonNewtonian liq-
uids are logically perplexed when compared with Newtonian
liquids due to nonlinear association among the stress and
strain rate. Various models have been proposed in the writing
for the examination of nonNewtonian fluids; however, not a
sole model is built up that shows all properties of nonNewto-
nian liquids. In general, nonNewtonian fluids are mainly
characterized into three kinds: to be explicit differential, rate,
and integral kinds. Among the nonNewtonian liquid models,
the Eyring-Powell model has accomplished exceptional con-
sideration of the analysts because of its distinctive attributes
in current science. This could be derived from kinetic theory
of liquids rather than from its empirical relation. Likewise,
the Eyring-Powell model decreases to Newtonian liquid qual-
ities for low and high shear rate. Warmth and mass exchange
in the Eyring-Powell liquid model assumes a significant role
in the procedures which include formation and spread of
haze, plotting of concoction handling instrumentation, envi-
ronmental contamination, drying of permeable slides, raised
oil recuperation, warm protection, and underground energy
transport. Khan et al. [13] explored blended convection
stream of the Eyring-Powell liquid model with variable vis-
cosity and convective limit conditions over a slanted extend-
ing sheet utilizing the homotopy analysis method (HAM)
and revealed that velocity profile increments by expanding
liquid parameterM and Grashof numbers Gm and Gr, while
velocity profile diminishes by expanding variable viscosity
parameter A, liquid parameter k, and magnetic field parame-
ter Ha. Moreover, Khan et al. [14] examined warm disper-

sion and dissemination thermo impacts on the wobbly flow
of electrically conducting Eyring-Powell liquid over an oscil-
latory extending sheet with convective limit conditions utiliz-
ing HAM and found that the bigger values of Eyring-Powell
liquid parameter improve the amplitude of velocity and limit
the layer thickness. However, inverse impacts are seen in
temperature and concentration profiles. Furthermore, Ishaq
et al. [15] explored two dimensional nanofluid film stream
of Eyring-Powell liquid with variable warmth transmission
in the presence of MHD on a shaky permeable extending
sheet and announced that porosity parameter diminishes
the movement of the fluid movies, and enlarging the
nanoparticle concentration effectively expands the rubbing
characteristic of Eyring-Powell nanofluid. In recent times,
various researches have been made in the field of Eyring-
Powell nanofluids that can be found in references [16–23].

Heat transport in the presence of strong magnetic field is
significant in different parts of MHD power generation,
nanotechnological processing, nuclear energy systems
exploiting fluid metals, and blood stream control. Further,
Hall and ion slip impacts become noteworthy in strong mag-
netic fields and can impressively influence the current density
in hydromagnetic heat transport. Most recently, Krishna and
Chamkha [24] explored Hall and ion slip impacts on the
MHD free convective pivoting stream of nanofluids in a per-
meable medium past a moving vertical semiboundless level
plate and announced the velocity increments with Hall and
ion slip parameters. Furthermore, Rani et al. [25] explored
Hall and ion slip impacts on the MHD natural convective
pivoting stream of Ag-water-based nanofluid past a semi-
boundless penetrable moving plate with consistent warmth
source utilizing the perturbation method. They found that
in the limit layer area, liquid velocity diminishes with the
expanding values of rotation parameter, magnetic field
parameter, and suction parameter, while it increments with
the expanding values of Hall and ion slip parameters. Further
examinations identified with the MHD stream issues with
Hall and ion slip impacts can be found in references [26–31].

The temperature differences between two distinct bodies
cause heat transport device. It assumes a significant task in
the creation of energy, cooling of atomic reactors, and bio-
medical applications such as medication targeting and heat
conduction in tissues. Fourier [32] was the spearheading
individual who at the outset portrayed the marvels of heat
transport, which is the parabolic energy equation for temper-
ature field and has disadvantage that initial interruption is
felt right away all through the entire medium. Later on, so
as to control this limitation, Cattaneo [33] improved the
Fourier law of heat conduction by including the thermal
relaxation term which causes heat transportation as thermal
waves with limited speed. Furthermore, Christov [34] uti-
lized Oldroyd’s upper convected derivative instead of time
derivative so as to achieve the material-invariant detailing.
This new model is named as the Cattaneo–Christov heat flux
model. After the spearheading work of Christov [34], a num-
ber of ongoing investigations in this setting are given in the
references [35–45].

The aforesaid writing surveys affirmed that no endeavor
has been made at this point to investigate the MHD mixed
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convection flow of Eyring–Powell nanofluid past a vertical
linearly extending sheet through a porous medium in the
presence of the Cattaneo–Christov heat and mass flux
model with the consolidated effects of Hall and ion slip,
porosity, and Joule heating. With this perspective, the cur-
rent correspondence aims to fill this gap inside the current
writing. Consequently, the fundamental object of the pres-
ent work is to examine the impact of Hall and ion slip on
the mixed convection stream of Eyring–Powell nanofluid
past a vertical linearly extending sheet through a penetra-
ble medium in the presence of Joule heating with the
Cattaneo–Christov heat and mass transition model. Numer-
ical clarifications were accomplished employing the spectral
relaxation method [3, 46–48]. The effects of embedding
parameters on the velocity, temperature, and concentration
fields are analyzed graphically. Moreover, numerical estima-
tions of skin friction coefficients, local Nusselt, and Sherwood
numbers for some pertinent parameters are computed and
tabulated.

2. Mathematical Formulations

Considering a laminar, steady, viscous, and incompressible
mixed convection stream of an electrically conducting
Eyring-Powell nanofluid past a vertical linearly extending
sheet through a porous medium with velocity UwðxÞ = ax
(where a is a positive constant) towardx-axis, the Cattaneo–
Chirstov heat and mass flux model are utilized to explore
the heat and mass transfer qualities. The surface temperature
Tw and concentration Cw are assumed consistent at the
extending surface. As y extends to infinity, the encompassing
values of temperature and concentration are, respectively,
T∞ and C∞: Besides, a strong uniform magnetic field B0 is
applied in the direction along y − axis as shown in Figure 1.
Because of this strong magnetic field force, the electrically
conducting liquid has the Hall and ion slip impacts which
produces a crossflow in the z-direction, and consequently,
the stream becomes three dimensional. The x-axis is along
the course of movement of the surface, y-axis is perpen-
dicular to the surface, and z-axis is normal to the xy-
plane. The induced magnetic field can be overlooked
conversely with the applied magnetic field on the assump-
tion that the stream is steady, and the magnetic Reynolds
number is very little.

The extra stress tensor τij of the Eyring–Powell liquid
model is characterized as [15, 21]:

τij = μ
∂ui
∂xj

+
1
β
sin−1

1
b
∂ui
∂xj

 !
, ð1Þ

where μ is the dynamic viscosity, and β and b are the
material fluid parameters of the Eyring–Powell fluid model
such that
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1
b
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≅
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−
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1
b
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Generalized Ohm’s law with Hall and ion slip impacts
is given by [20, 23]

J = σ Ε + V × Βð Þð Þ − ωeτe
B0

J × Βð Þ + ωeτeβi

Β2
0

J × Βð Þ × Βð Þ,

ð3Þ

where J = ðJx, Jy, JzÞ is the current density vector, Ε is the
intensity vector of the electric field,V is the velocity vec-
tor, Β is the magnetic field, ωe is the cyclotron frequency,
and τe is the electrical collision time.

Applying the Boussinesq approximations alongside
the above suppositions, the basic governing equations are
[30, 36, 43, 44, 49]
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Figure 1: Physical representation of the flow problem.
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with the relating boundary conditions [3, 36]:

u =Uw xð Þ = ax, v =w = 0, T = Tw, C = Cw, at y = 0,

u→ 0, w→ 0, T → T∞, C→ C∞, as y→∞,
ð9Þ

where u, v, andw are the velocity components along the x
− , y − , and z—directions, respectively, and υ is the kine-
matic viscosity, ρ is the density of the fluid, g is the accel-
eration due to gravity, βe is the Hall parameter, βi is the
ion-slip parameter, αe = 1 + βe βi is a constant, BT is the
coefficient of thermal expansion, BC is the solutal coefficient
of expansion, κ is the permeability of the porous medium,
T and C are the fluid temperature and concentration,
respectively, γT and γC are the heat and mass flux relaxa-
tion times correspondingly, Cp is the specific heat capacity,
τ is the ratio of the effective heat capacity of nanoparticle to
the heat capacity of the fluid, i.e., τ = ðρCÞp/ðρCÞf ,DB is the
Brownian diffusion coefficient, and DT is the thermophor-
esis diffusion coefficient.

The overseeing equations can be changed to coupled
nonlinear ordinary differential equations utilizing the subse-
quent similarity transformations [3, 36]:

where η is the similarity variable, and ψ is the stream function
defined as

u =
∂ψ
∂y

and v = −
∂ψ
∂x

: ð11Þ

Equation (4) is identically fulfilled, and equations (5)–(9)
become

1 + εð Þf ′′′ − εδð Þf ′′2 f ′′′ − f ′2 + f f ′′ − M

α2e + β2
e

� � αe f ′ + βeg
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ð12Þ
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+
M
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e
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ð13Þ

1
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e
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ϕ′′ + Pr:Le f ϕ′ − γ2 f f ′ϕ′ + f 2ϕ′′
� 	h i

+
Nt
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θ′′ = 0:
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The transformed boundary conditions are

f 0ð Þ = 0, f ′ 0ð Þ = 1, g 0ð Þ = 0, θ 0ð Þ = 1, ϕ 0ð Þ = 1,

f ′ ⟶ 0, g⟶ 0, θ⟶ 0, ϕ⟶ 0, as η⟶∞:

ð16Þ

The dimensionless parameters showing up in equations
(12)–(15) can be characterized as

M = σB2
0/ρa, αe = 1 + βeβi,λ =Grx/Re2x , Grx = gβTðTw −

T∞Þx3/υ2, Rex = ax2/υ, Nr = βCðCw − C∞Þ/βTðTw − T∞Þ,
K = υ/aκ, ε = 1/βbμ,δ = a3x2/2b2υPr = υ/α, Nb = τDBðCw −
C∞Þ/υ, Nt = τDTðTw − T∞Þ/υT∞, τ = ðρCÞp/ðρCÞf , Ec =
ðaxÞ2/CpðTw − T∞Þ, Le = α/DB,γ1 = γTa and γ2 = γCa:

The skin friction coefficients Cf xandCgz , the local
Nusselt number Nux, and the Sherwood number Shx
are the physical quantities of interest which can be char-
acterized as follows:

Cf x =
τwx
ρU2

w

, Cf z =
τwz
ρU2

w

, Nux =
xqw

k TW − T∞ð Þ , Shx =
xjm

DB CW − C∞ð Þ ,

ð17Þ

where τwx and τwz are the wall shear stresses in the
directions of x and z, respectively, and qw is the surface

η =
ffiffiffi
a
υ

r
y, ψ =

ffiffiffiffiffi
aυ

p
xf ηð Þ, w = axg ηð Þ, θ ηð Þ = T − T∞

Tw − T∞
, ϕ ηð Þ = C − C∞

Cw − C∞
, ð10Þ
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heat flux, and jm is the surface mass flux, which are given
by

From equations (10), (11), (17), and (18), we obtain

3. Method of Solution

Equations (12)–(15) subject to the boundary conditions (16)
are explained utilizing the spectral relaxation method. The
spectral relaxation algorithm uses the thought of the Gauss-
Seidel method to decouple the arrangement of overseeing
equations (12)–(15). The strategy is created by assessing the
linear terms at the current iteration level r + 1 and nonlinear
terms at the former iteration level r. The Chebyshev pseudo-
spectral technique is used to unravel the decoupled equa-
tions. For the subtleties of the technique, interested readers
can refer [3, 46–48].

Hence, to utilize the SRM, we start by decreasing the
request for the momentum (equation (12)) from third to sec-
ond order presenting the change f ′ = h so that f ′′ = h′ and
f ′′′ = h′′:Along these lines, equations (12)–(15) become

f ′ = h ð20Þ

1 + εð Þh′′ − εδð Þh′2h′′ − h2 + f h′ − M

α2e + β2
e

� � αeh + βegð Þ

+ λ θ +Nrϕð Þ −Κh = 0,
ð21Þ
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α2e + β2
e
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ð22Þ

1
Pr
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� 	

+Nbθ′ϕ′ +Ntθ′2

+
M:Ec

α2e + β2
e
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� �

= 0,
ð23Þ

Table 1: Comparison of results for the Nusselt number −θ′ð0Þ and Sherwood number −ϕ′ð0Þ for various values of Nb and Nt when Le = 1,
Pr = 10, and M = λ = βe =βi =Nr =ε = δ =γ1 =γ2 =K =Ec = 0 are fixed.

Nb Nt
Noghrehabadi et al.

[51]
Goyal and Bhargava

[52]
Ibrahim and Gadisa

[53]
Present results

−θ′ 0ð Þ −ϕ′ 0ð Þ −θ′ 0ð Þ −ϕ′ 0ð Þ −θ′ 0ð Þ −ϕ′ 0ð Þ −θ′ 0ð Þ −ϕ′ 0ð Þ
0.1 0.1 0.9523768 2.1293938 0.95244 2.12949 0.95239 2.12938 0.9523768 2.1293938

0.2 0.6931743 2.2740215 0.69318 2.27401 0.69318 2.27401 0.6931743 2.2740216

0.3 0.5200790 2.5286382 0.52025 2.52855 0.52019 2.52855 0.5200790 2.5286387

0.4 0.4025808 2.7951701 0.40260 2.79520 0.40258 2.79519 0.4025823 2.7951628

0.5 0.3210543 3.0351425 0.32105 3.03511 0.32109 3.03511 0.3210491 3.0351686

0.2 0.1 0.5055814 2.3818706 0.50561 2.38186 0.50557 2.38190 0.5055815 2.3818706

0.3 0.2521560 2.4100188 0.25218 2.41009 0.25217 2.41002 0.2521562 2.4100188

0.4 0.1194059 2.3996502 0.11940 2.39970 0.11940 2.39966 0.1194058 2.3996502

0.5 0.0542534 2.3835712 — — — — 0.0542528 2.3835713

τwx = μ +
1
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� �
∂u
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−
1

6βb3
∂u
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 !�����
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1
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� �
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−
1
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 !�����

y=0

,
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� �����
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, jm = −DB
∂C
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� �����
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:
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ϕ′′ + Pr:Le f ϕ′ − γ2 f hϕ′ + f 2ϕ′′
� 	h i

+
Nt
Nb

θ′′ = 0:

ð24Þ
The transformed boundary conditions are

f 0ð Þ = 0, h 0ð Þ = 1, g 0ð Þ = 0, θ 0ð Þ = 1, ϕ 0ð Þ = 1,

h⟶ 0, g⟶ 0, θ⟶ 0, ϕ⟶ 0, as η⟶∞:

ð25Þ

Executing the SRM to equations (20)–(25), we get the fol-
lowing iteration scheme:

1 + εð Þhr+1′′ − εδð Þhr′
2
hr′′− h2r + f rhr+1′

−
M
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ð30Þ
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Figure 2: Effect of ε on the primary velocity f ′ðηÞ:

6 Advances in Mathematical Physics



The transformed boundary conditions are

f r+1 0ð Þ = 0, hr+1 0ð Þ = 1, gr+1 0ð Þ = 0, θr+1 0ð Þ = 1, ϕr+1 0ð Þ = 1,

hr+1 ⟶ 0, gr+1 ⟶ 0, θr+1 ⟶ 0, ϕr+1 ⟶ 0, as η⟶∞:

ð31Þ

Actualizing the Chebyshev spectral collocation method
to equations (26)–(30), we get the ensuing matrix equations:

A1hr+1 = B1, hr+1 ξNð Þ = 1, hr+1 ξ0ð Þ = 0, ð32Þ

A2f r+1 = B2, f r+1 ξNð Þ = 0, ð33Þ

A3gr+1 = B3, gr+1 ξNð Þ = 0, gr+1 ξ0ð Þ = 0, ð34Þ
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Figure 8: Effect of M on the temperature θðηÞ.
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Figure 9: Effect of M on the concentration ϕðηÞ.
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Figure 10: Effect of βe on the primary velocity f ′ðηÞ.
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A4θr+1 = B4, θr+1 ξNð Þ = 1, θr+1 ξ0ð Þ = 0, ð35Þ

A5ϕr+1 = B5, ϕr+1 ξNð Þ = 1, ϕr+1 ξ0ð Þ = 0, ð36Þ
where

A1 = 1 + εð ÞD2 + diag f rð ÞD −
Mαe

α2e + β2
e

+ K

 !
I,

B1 = εδð Þhr′
2
hr′′+ h2r +

Mβe

α2e + β2
e

� �gr − λ θr +Nrϕrð Þ,
ð37Þ

A2 =D, B2 = hr+1,

A3 = 1 + εð ÞD2 + diag f r+1ð ÞD − diag hr+1 +
Mαe

α2e + β2
e

+ K

 !
I

B3 = εδð Þgr′
2
gr′′−

Mβe

α2e + β2
e

hr+1,

A4 = diag
1
Pr

− γ1 f
2
r

� �
D2 + diag f r+1 − γ1 f r+1hr+1 +Nbϕr′

� 	
D,

B4 = −
M:Ec

α2e + β2
e

� � h2r + g2r
� �

−Ntθr′
2,

A5 = diag 1 − PrLeγ2 f
2
r

� �
D2 + PrLe diag f r+1 − γ2 f r+1hr+1ð ÞD,

B5 = −
Nt
Nb

θr+1′′ : ð38Þ

Here,D = 2D/η∞ where D is the Chebyshev differentia-
tion matrix (Trefethen [50]), η∞ is a limited length which is
adequately big so that we can simply incorporate the condi-
tion at perpetuity in this point, I and diag [.] are the identity
and diagonal matrices of order ðN + 1Þ × ðN + 1Þ, N is the
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Figure 12: Effect of βe on the temperature θðηÞ.
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Figure 13: Effect of βe on the concentration ϕðηÞ.
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Figure 11: Effect of βe on the secondary velocity gðηÞ.
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number of grid points, and f , h, g, θ and ϕ are, respectively,
the values of f, h, g , θ, and ϕ, when assessed at the grid points.

The decoupled equations (32)–(36) can be solved sepa-
rately by picking appropriate introductory suppositions:

f0 ηð Þ = 1 − e−η, g0 ηð Þ = ηe−η, θ0 ηð Þ = e−η = ϕ0 ηð Þ: ð39Þ

4. Results and Discussions

The nonlinear differential equations (12)–(15) with the limit
conditions (16) have been explained numerically via the
spectral relaxation method, and consequences of the numer-
ical calculations for the velocity, temperature, and concentra-
tion profiles as well as skin friction coefficients, local Nusselt
number, and Sherwood number have been obtained for dif-
ferent input parameters and presented through graphs and
tables. Also, we contrasted our outcomes and those of the
current writing as appeared in Table 1, and the outcomes give

a generally excellent understanding which gives a certainty of
our current numerical outcomes. In this study, for our
numerical computations, we fixed the numerical values of
the physical parameters as = 0:1, Le = 1:0, M = 10:0, βe =
βi = 5:0, Pr = 0:72, K = 0:5, Nr =Nb =Nt = 0:1, Ec = 0:02,
δ = 0:2, and ε = γ1 = γ2 = 0:3 unless otherwise stated.

Figures 2–5 reveal the impact of the Eyring-Powell fluid
parameter ðεÞ on the primary velocity, secondary velocity,
temperature, and concentration distributions, respectively.
By expanding the liquid parameter ε, the primary velocity
profile rises and on the contrary, the temperature and con-
centration profiles diminish. Because the fluid parameter ε
ð= 1/μβbÞ has an inverse relation with viscosity of fluid ðμÞ ;
thus, fluid turns out to be less viscous for bigger values of ε
which upsurges fluid velocity. Moreover, the secondary
velocity profile reduces near the surface and enhances far
off from the surface. This is possibly due to the fact that the
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Figure 16: Effect of βi on the temperature θðηÞ.
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Figure 17: Effect of βi on the concentration ϕðηÞ.
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Figure 18: Effect of λ on the primary velocity f ′ðηÞ.
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Figure 15: Effect of βi on the secondary velocity gðηÞ.
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viscosity can be varied as the Eyring-Powell fluid parameter
varies resulting in an increasing viscous force as a result
decreasing its velocity up to some maximum value, and then
the velocity starts to increase due to decrease in viscosity. The
optimum value is obtained around the point ≈1.

Figures 6–9 divulge the impact of magnetic field parame-
ter M on primary velocity, secondary velocity, temperature,
and concentration profiles, respectively. The transverse mag-
netite field which is applied vertical to the direction of flow
provides a resistive force known as the Lorentz force. Physi-
cally, the Lorentz force opposes the flow of nanofluid; hence,
the velocity diminishes. Moreover, this force tends to hinder
the movement of the liquid in the boundary layer. This assists
with declining the primary velocity profile and upgrades the
secondary velocity, thermal, and concentration profiles as
M increments as appeared in Figures 6–9. It is additionally
seen that an augmentation in M prompts a lower in primary
velocity boundary layer thickness and superior in thermal

and concentration boundary layer thicknesses, though the
secondary velocity boundary layer thickness diminishes near
the surface and upsurges far off from the surface.

Figures 10–13 illustrate the impact of the Hall parameter
βe on primary velocity, secondary velocity, temperature, and
concentration profiles, respectively. It is seen that the pri-
mary velocity profile increments with an expansion in βe,
though the contrary condition is watched for secondary
velocity, thermal, and concentration profiles. Besides, as the
Hall parameter βe enlarges, the primary velocity boundary
layer thickness upgrades, and thermal and concentration
boundary layer thicknesses lessen, while the secondary veloc-
ity boundary layer thickness improves near the surface and
diminishes distant from the surface. Physically, the consider-
ation of Hall parameter decreases the efficient conductivity
and subsequently drops the magnetic resistive force. Thus,
the Joule heating impact is condensed, and quantity of heat
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Figure 20: Effect of λ on the temperature θðηÞ.
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Figure 22: Effect of K on the primary velocity f ′ðηÞ.
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Figure 21: Effect of λ on the concentration ϕðηÞ.
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Figure 19: Effect of λ on the secondary velocity gðηÞ.
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owing to ohmic dissipation can be abridged by utilizing par-
tially ionized fluid presented to magnetic field. The compara-
ble conduct is seen with expanding ion slip parameter βi as
revealed in Figures 14–17. Physically, the expansion in βi
improves the efficient conductivity and therefore diminishes
the damping force on the dimensionless velocity, and hence
the dimensionless velocity expands.

Figures 18–21 portray the impact of blended convection
parameter λ on primary velocity, secondary velocity, temper-
ature, and concentration profiles, respectively. It is deduced
that as λ upgrades, the primary velocity and secondary veloc-
ity profiles ascend. In contrast, the temperature and concen-
tration profiles reduce. These outcomes physically hold since
upgrade in blended convection parameter causes upsurge in
buoyancy forces which speed up fluid motion.

Figures 22–25 outline the impact of penetrability param-
eter K on the primary velocity, secondary velocity, thermal,

and concentration distributions, respectively. It is obvious
from the figures that as K augments, both primary and sec-
ondary velocity profiles decline while the opposite condition
is watched for thermal and concentration profiles. Physically,
the porousness builds obstruction of the permeable medium
which will in general, diminish the fluid velocity. It is normal
that an expansion in the porousness of the permeable
medium prompts the ascent in the flow of fluid through it.
When the outlets of the permeable medium become big, the
obstruction of the medium might be ignored.

Figure 26 proves the impact of the thermal relaxation
parameter γ1 on temperature distribution. It uncovers that
the fluid temperature and energy boundary layer decrease
with expanding value of γ1. Physically, thermal relaxation
time is the time required by the fluid particles to move heat
energy to its neighboring particles. Subsequently, as γ1
ascends, the material particles need additional time to trans-
fer heat to its adjoining particles, and this prompts less
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Figure 23: Effect of K on the secondary velocity gðηÞ.
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Figure 24: Effect of K on the temperature θðηÞ.

0 2 4 6 8 10 12 14 16 18
0

0.1
0.2

0.3
0.4

0.5

0.6
0.7

0.8
0.9

1

K = 1.0
K = 2.0
K = 3.0

𝜂

 (𝜂
)

ϕ

Figure 25: Effect of K on the concentration ϕðηÞ.
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Figure 26: Effect of γ1 on the temperature θðηÞ.
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transport of heat from the surface to the fluid. Similarly, the
concentration relaxation parameter γ2emerges from the
relaxation time of mass flux. Less relaxation time of mass flux
prompts superior concentration. and the fluid with increas-
ingly mass flux relaxation time brings about smaller concen-
tration. Therefore, increasingly mass flux relaxation time
happens owing to the bigger value of γ2 which diminishes
the concentration profile as revealed in Figure 27.

Figure 28 depicts the impact of Eckert number Ec on the
temperature profile. It is seen that the temperature profile
upsurges with an expansion in Ec. Physically, by expanding
the Eckert number, the heat energy is hoarded in the fluid
as a result of the frictional or drag forces. Accordingly, the
fluid temperature field enhances.

Figure 29 demonstrates the effect of Lewis number Le on
the concentration profile ϕðηÞ. By expanding Le, the concen-
tration and the boundary layer thicknesses decline. This is
because of the way that the mass transfer rate enhances by

expanding Le which improves the volume fraction of
nanoparticles.

Table 2 specifies the impact of physical parameters on the
skin fraction coefficients, local Nusselt, and Sherwood num-
bers. The primary skin friction coefficient −

ffiffiffiffiffi
Re

p
Cf x aug-

ments as magnetic parameter M , Eyring-Powell fluid
parameter ε, thermal relaxation parameter γ1, concentration
relaxation parameter γ2, and permeability parameter K rise
and decreases for increasing values of mixed convection
parameter λ, Hall parameter βe, ion slip parameter βi, and
Eckert number Ec. Also, it is observed that the secondary skin
friction coefficient

ffiffiffiffiffi
Re

p
Cgz amplifies as magnetic parameter

M, mixed convection parameter λ, and Eyring-Powell fluid
parameter ε increase and declines as Hall parameter βe, ion
slip parameter βi, thermal relaxation parameter γ1, concen-
tration relaxation parameter γ2, and permeability parameter
K increase, while it remains constant as the Eckert number
Ec enhances. Similarly, both the local Nusselt number –θ′ð0Þ
and Sherwood number –ϕ′ð0Þ enhance for larger values of
mixed convection parameter λ, Hall parameter βe, ion slip
parameter βi, and Eyring-Powell fluid parameter ε and
decrease for larger values of magnetic parameter M and per-
meability parameter K. Further, opposite behaviors of the
local Nusselt number –θ′ð0Þ and the local Sherwood number
–ϕ′ð0Þ are observed for increasing values of thermal relaxa-
tion parameter γ1, concentration relaxation parameter γ2,
and Eckert number Ec:

5. Conclusions

This paper looks at the mixed convection stream of Eyring-
Powell nanofluid with the Cattaneo-Christov heat and mass
flux model over linearly stretching sheet through a permeable
medium. The impacts of Hall and ion slip, permeability, and
Joule heating are also considered. The governing nonlinear
partial differential equations are changed into joined nonlinear
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Figure 27: Effect of γ2 on the concentration ϕðηÞ.
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Figure 28: Effect of Ec on the temperature θðηÞ.
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ordinary differential equations utilizing similitude transforma-
tions. These nonlinear ordinary differential equations subject
to boundary conditions are handled numerically by means of
SRM. Numerical results are presented for different parameters
of interest, and results are discussed with the assistance of
graphs and tables. The study has a momentous application
in the material processing technology. From the introduced
investigation, the accompanying ends were drawn:

(i) Primary velocity profile upsurges by increasing the
values of Eyring-Powell fluid parameter ε, Hall
parameter βe, ion slip parameter βi, and mixed con-
vection parameter λ, while opposite condition is
noticed for mounting the values of magnetic field
parameter M and porosity parameter K

(ii) Secondary velocity profile increases by increasing
the values of Eyring-Powell fluid parameter ε and
magnetic field parameter M, while reverse behavior
is observed for increasing values of Hall parameter

βe, ion slip parameter βi, mixed convection parame-
ter λ, and porosity parameter K

(iii) Both temperature and concentration profiles enhance
with increasing values of magnetic field parameterM
and porosity parameter K, whereas reverse trend is
noticed for increasing values of Eyring-Powell fluid
parameter ε, Hall parameter βe, ion slip parameter
βi, mixed convection parameter λ, thermal relaxation
parameter γ1, and concentration relaxation parame-
ter γ2. Moreover, temperature profile increases as
Eckert numberEc increases, while concentration pro-
file decreases as Lewis numberLe increases

(iv) Both skin friction coefficients increase with increas-
ing values of magnetic field parameter M and
Eyring-Powell fluid parameter ε and decrease with
increasing values of Hall parameter βe and ion slip
parameter βi: On the contrary, opposite behavior is
observed for the primary and secondary skin friction

Table 2: Numerical values of the skin friction coefficients
ffiffiffiffiffi
Re

p
Cf x = ð1 + εÞf ′′ð0Þ − ðεδ/3Þð f ′′ð0ÞÞ3 and

ffiffiffiffiffi
Re

p
Cgz = ð1 + εÞg′ð0Þ − ðεδ/3Þ

ðg′ð0ÞÞ3, local Nusselt number –θ′ð0Þ, and local Sherwood number –ϕ′ð0Þ for various values of M, λ, βe, βi, ε, γ1, γ2, K , and Ec when N
r = 1:0, Pr = 0:72, Nb = 0:2, Nt = 0:1, Le = 1, and δ = 10 are fixed.

M λ βe βi ε γ1 γ2 K Ec −
ffiffiffiffiffi
Re

p
Cf x

ffiffiffiffiffi
Re

p
Cgz −θ′ 0ð Þ −ϕ′ 0ð Þ

5.0 0.5 5.0 5.0 0.3 0.5 0.5 2.0 0.02 1.47604 0.01432 0.43751 0.33050

10.0 1.53447 0.02757 0.43011 0.32389

15.0 1.59039 0.03987 0.42296 0.31755

10.0 0.2 1.77436 0.02470 0.37874 0.27471

0.4 1.61585 0.02671 0.41540 0.30992

0.6 1.45292 0.02836 0.44328 0.33631

0.5 5.0 1.53447 0.02757 0.43011 0.32389

10.0 1.47713 0.01485 0.43740 0.33037

15.0 1.45699 0.01016 0.43993 0.33265

5.0 5.0 1.53447 0.02757 0.43011 0.32389

10.0 1.47883 0.00763 0.43719 0.33018

15.0 1.45839 0.00350 0.43976 0.33249

5.0 0.0 1.38279 0.02496 0.42130 0.31614

0.5 1.63596 0.02914 0.43581 0.32901

1.0 1.88555 0.03270 0.44940 0.34156

0.3 0.0 1.53132 0.02769 0.40768 0.33589

0.5 1.53447 0.02757 0.43011 0.32389

1.0 1.53813 0.02743 0.45628 0.31008

0.5 0.0 1.53050 0.02771 0.43601 0.30351

0.5 1.53447 0.02757 0.43011 0.32389

1.0 1.53912 0.02740 0.42355 0.34772

0.5 1.0 1.18778 0.03474 0.47314 0.36359

2.0 1.53447 0.02757 0.43011 0.32389

3.0 1.79830 0.02303 0.39431 0.29262

2.0 0.0 1.53447 0.02757 0.43019 0.32385

0.1 1.53446 0.02757 0.42980 0.32404

0.2 1.53444 0.02757 0.42941 0.32422
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coefficients as mixed convection parameter λ, poros-
ity parameter K , thermal relaxation parameter γ1,
and concentration relaxation parameter γ2 upsurges.
An increase in Eckert number Ec shows insignificant
change in the primary skin friction coefficient, while
the secondary skin friction coefficient remains
constant

(v) Both local Nusselt and Sherwood numbers increase
by enhancing the values of mixed convection param-
eter λ, Hall parameter βe, ion slip parameter βi, and
Eyring-Powell fluid parameter ε, while opposite
behavior is noticed for increasing values of magnetic
field parameter M and permeability parameter K .
On the contrary, opposite behavior is observed for
local Nusselt and Sherwood numbers as Eckert
numberEc, thermal relaxation parameter γ1, and
concentration relaxation parameter γ2 increase

Nomenclature

x, y, z: Cartesian coordinates [m]
u, v,w: Velocity components [m/s]
Uw: Velocity of the stretching sheet [m/s]
B0: Constant magnetic field [Wb/m2]
g: Acceleration due to gravity [m/s2]
T : Fluid temperature [K]
Tw: Surface temperature [K]
T∞: Ambient temperature [K]
C: Concentration of fluid [kg/m3]
Cw: Surface concentration [kg/m3]
C∞: Ambient concentration [kg/m3]
M: Magnetic field parameter
Grx: Local Grashof number
Rex: Local Reynolds number
Nr: Buoyancy ratio
K : Permeability parameter
Pr: Prandtl number
Nb: Brownian motion parameter
Nt: Thermophoresis parameter
Ec: Eckert number
Le: Lewis number
Cf x: Skin friction coefficient in x-direction
Cgz : Skin friction coefficient in z-direction
Nux: Local Nusselt number
Shx: Local Sherwood number
f , g: Dimensionless stream functions

Greek letters

ρ: Density of fluid [kg/m3]
υ: Kinematic viscosity of the fluid [m2/s]
ε, δ: Eyring-Powell fluid parameters
λ: Mixed convection parameter
α: Thermal diffusivity [m2/s]
κ: Thermal conductivity [W/(mK)]
σ: Electrical conductivity [m2/s]
βe: Hall parameter
βi: Ion slip parameter

βT : Coefficient of thermal expansion[1/K]
βC : Coefficient of concentration expansion [1/K]
ψ: Stream function
η: Dimensionless similarity variable
θ: Dimensionless temperature
ϕ: Dimensionless concentration
γ1: Thermal relaxation parameter
γ2: Concentration relaxation parameter

Subscripts

f : Fluid
p: Nanoparticle
w: Condition at the surface
∞: Ambient condition

Superscripts

′: Differentiation w. r. t. η.
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