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Abstract
The atmosphere is inherently unpredictable by deterministic Numerical Weather Prediction models at both
small and large temporal and spatial scales with some intermediate regime where predictability has been
demonstrated; this study deals with time scales only. The chaotic nature at the smaller time scales is
predominantly caused by turbulence and at the large scales by non-linearity of the Navier-Stokes equations.
We investigate, based on observations carried out with a wind-lidar at the FINO3 research platform in the
North Sea, the ability of the Weather Research and Forecasting model (WRF) to simulate the changes in
the observations ahead of time. The simulations are performed in two ways. In one type the model uses
boundary conditions from a reanalysis data-set (WRF-ERA). Alternatively, the simulations are carried out
using boundary conditions from a forecast (WRF-GFS). In this study focus is on the predictability of changes
in the wind speed and direction. A metric is suggested that chiefly accounts for point-wise changes in the
wind speed and direction including turbulent structures. However, for completeness, a traditional metric that
compared predicted and observed wind speed and direction directly is also applied. This metric does not
reflect the turbulent structures of the flow for small lead times, as the new metric does. The traditional metric
reveals very good skills (Fig. 2) up to a lead time of 4 days for simulations in forecast mode (WRF-GFS). By
applying the new metric and a correlation coefficient of 0.6 as the lower limit for the skill in the simulations at
a height of 126 m, corresponds to a lead time of ≈4 hours (reanalysis) and ≈3 hours (forecast) for both wind
speed and direction for turbulence limited lead times. This value is larger than typically found over land –
being ≈2 hours. The difference likely relates to the marine conditions of the measurement site. For large
lead times, when the simulations are nudged towards the reanalysis the forecast skill does not deteriorate for
increasing lead times. This is in contrast to simulations nudged towards meteorological forecasts where the
predictability is limited by the non-linearity of the Navier-Stokes equations and a correlation coefficient less
than 0.6 was found for lead times larger than ≈6 days for wind speed and somewhat smaller – ≈4 days for
the wind direction when applying the new metric. Thus, the window of predictability of the WRF simulations
nudged towards a forecast is found to be in the interval ≈4 hours up to ≈6 days (wind speed) and ≈3 hours
to ≈4 days (wind direction). These numbers refer to a height of 126 m. The predictive skill is found to be a
function of height; at 626 m it is better than at 126 m for both wind speed and direction. For the traditional
metric a correlation of less than 0.6 was realized for a lead time larger than ≈4 days for both wind speed and
direction.
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1 Introduction

Because wind resources are highly variable, it is impor-
tant to be able to assess them accurately to secure a prof-
itable return on the investment in the wind turbines and
their efficient and economic integration into the electri-
cal power grid.

Numerical meteorological models are widely used
in many applications, but in connection with wind en-
ergy the majority of efforts are focused on simulating
the wind field in connection with wind resource assess-
ment – so-called analysis – or to forecast the wind con-
ditions ahead of time in connection with energy trading
and prediction of hazardous events.

∗Corresponding author: Sven-Erik Gryning, DTU Wind Energy, Technical
University of Denmark, Risø Campus, Frederiksborgvej 399, 4000 Roskilde,
Denmark, e-mail: sveg@dtu.dk

Earlier wind energy assessment studies were typi-
cally based on long data-series of meteorological mea-
surements from masts (Troen and Petersen, 1989).
This limited the validation to heights of about 100 m
(Carvalho et al., 2014; Durante and Westerhell-
weg, 2012; Floors et al., 2013; Gryning, 1985, Gryn-
ing et al., 2007; Steyn and McKendry, 1988; Suomi
et al., 2015; Peña et al., 2010, Peña et al., 2015) in
most cases although investigations have been carried
out based on data from well-instrumented 200–300 m
tall masts, e. g. near Hamburg in Germany (Brümmer
et al., 2012, Brümmer and Schultze, 2015), Cabauw
in the Netherlands (Borsche et al., 2016, van Ulden
and Wieringa, 1996) and Østerild in Denmark.

However, reanalysis datasets are being increasingly
used as a source for long-term time series of wind val-
ues for use in wind energy assessment studies. Reanaly-
sis data sets combine vast amounts of historical obser-
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vations into global estimates using modelling and data
assimilation systems (Bengtsson and Shukla, 1988;
Parker, 2016). Reanalysis data sets are an appealing al-
ternative when direct measurements from meteorologi-
cal masts are sparse or have limited temporal cover-
age. However, today reanalysis data have a spatial and
temporal resolution which may be adequate for conti-
nental scale wind energy resources assessments but are
too large for direct use for wind energy purposes e.g.
wind farms. Typical spatial and temporal resolutions are
50 km and 6 hours respectively, but large efforts are be-
ing put into the establishment of reanalysis data sets
with ever increasing spatial and temporal resolutions.
Examples of reanalysis data-set are the MERRA (Rie-
necker et al., 2011), ERA-Interim (Dee et al., 2011),
ERA5 (Hersbach and Dee, 2016), and the regional re-
analysis COSMO-REA (Bollmeyer et al., 2015).

The highly competitive energy market of today is one
of many industries that depend heavily on mesoscale
numerical forecast modelling. Numerical forecast mod-
els rely on predictions from global forecasts to simulate
how the weather most likely evolves out to several days
ahead. Global forecasts of meteorological fields are op-
erationally made and archived at a number of large in-
stitutions such as European Centre for Medium-Range
Weather Forecasts – ECMWF (IFS – Integrated Fore-
casting System), National Centers for Environmental
Prediction – NCEP (GFS – Global Forecast System) and
Deutscher Wetterdienst – DWD (ICON – ICOsahedral
Nonhydrostatic) just to mention a few. Similarly to the
reanalysis products, the global forecasts have spatial and
temporal resolutions that in relation to wind energy will
require downscaling of the wind field to smaller scales
in support of detailed planning of e.g. wind farms.

Downscaling can be performed by Regional Climate
Models (RCM) and Empirical Statistical Downscaling
(ESD), which are applied over a limited area. In dynamic
downscaling, a Regional Climate Model (RCM) is set up
for a region of interest and forced at the boundaries by
a large scale reanalysis or global forecast data-set. The
RCM resolution is usually much higher than the data-set
it is nested within and it accounts for the forcing by e.g.
complex topographical features and land cover hetero-
geneities in a physically-based way. There exists a mul-
titude of meso-scale models that have been applied for
downscaling e. g. SMHI-RCA4 (Collazo et al., 2018),
REMO (Jacob, 2014; Pietikäinen et al., 2018), Arome
(Seity et al., 2011), PRECIS (Simmons and Burridge,
1981; Simon et al., 2004), and the Weather Research
and Forecasting (WRF) model developed at the National
Centre of Atmospheric Research in the United States
just to mention a few. In this study, we will apply the
WRF model (Skamarock et al., 2008) to downscale the
reanalysis or global forecast time-series.

A fundamental problem in Regional Climate Mod-
els, as in any numerical weather prediction model, lies in
the partial differential equations that need to be supple-
mented with a large number of parameterizations such
as radiation, heat exchange and the effects of terrain

which add to the uncertainty of the model predictions.
A study of the performance of parameterizations of the
model is given in Draxl et al. (2014) where 7 plane-
tary boundary-layer (PBL) schemes are applied and the
simulations are compared to one month of meteorologi-
cal observations at a coastal site in Denmark. Similar
exercises (Boadh et al., 2016; Banks et al., 2016) has
been reported in the literature for several sites and cli-
mate conditions but are often based on short periods and
thus do not provide a generally accepted sound guidance
on the choice of parameterization schemes to accurately
predict winds.

Another fundamental problem is that the atmosphere
is inherently chaotic at both the small and the larger time
and spatial scales with some intermediate regime where
a certain predictability has been demonstrated. In this
study only the dependence on the times scales is ana-
lysed. The chaotic nature at the smaller time scales is
predominantly caused by turbulence and at the larger
scales by the limit in predictability, as the accuracy
degrades in time due to the non-linear nature of the
deterministic Navier-Stokes equations (Lorenz, 1963;
Wyngaard, 2010). For very short lead times, statistical
models ranging from auto-regression time series mod-
els (Pinson, 2012), to more complex models accounting
for changes in the dynamical pattern, so-called ‘regime
switching’ models (Pinson et al., 2008) have obtained
some success compared to deterministic numerical mod-
els with lead times of less than a few hours (Vincent
and Trombe, 2017). Haupt et al. (2014) found that the
optimal time for switching from statistical to physical
modelling occurs beyond 2–3 hours. However, the time
scales and the dependence on the atmospheric condi-
tions when physical modelling become superior is not
settled and still a matter of discussions and investiga-
tions (Vincent and Trombe, 2017).

Therefore, knowledge of the predictive skills of nu-
merical models is essential and it cannot be established
without real observations. The limitations in height cov-
erage and the considerable costs of installing and main-
taining of meteorological masts, especially off-shore, as
well as the urgent need from the wind energy sector for
high-resolution accurate observations up to several hun-
dreds of meters, have spurred the development of remote
sensing techniques for use in connection with wind en-
ergy. Of the many technical efforts, especially Doppler
wind lidar has experienced a rapid development and is
now beginning to be successfully applied in the renew-
able energy sector to acquire useful meteorological ob-
servations not only of wind-speed and direction, but also
wind veer, wind shear and promising efforts to measure
turbulence (Sathe and Mann, 2013) and gusts (Suomi
et al., 2017) are being attempted.

Based on one year of wind lidar measurements
from an off-shore site in the North Sea the ability of
the Advanced Weather Research and Forecast model
(WRF-ARW) to predict the observed wind speed and
-direction is investigated. The WRF simulations are per-
formed in two ways 1) in analysis mode where WRF
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Figure 1: Map showing the position of the observation location, the
research platform FINO3. Water is marked in white and land in grey.

is forced with the reanalysis time series of the meteo-
rology (ERA-Interim), and 2) in forecast mode where
the WRF simulations are forced with forecasted time-
series (GFS). The predictions deal both with the statis-
tical distributions and the ability of the model to predict
the conditions for various lead times.

2 Site and Instrumentation

The observations for this study have been collected at
the German Research Platform FINO3 (55.19501° N;
7.15836° E) located in the North Sea 80 km west of the
Danish island Rømø, Fig. 1, at a water depth of 22 m.
A number of off-shore wind farms lie in the near vicin-
ity but the construction of these were not yet initiated
during the measuring campaign. The FINO3 platform
is equipped with a helicopter deck at 24 m above the
mean sea level (msl) as well as a meteorological mast.
From 29 August 2013 to 4 October 2014 the measure-
ments were supplemented with a pulsed heterodyne de-
tection Doppler wind lidar – Leosphere WLS70 (Car-
iou, 2013) – installed on the working platform at 24.5 m.
Starting from 100 m above the instrument up to 2 km
with a 50 m vertical resolution, horizontal wind veloc-
ities are determined. The data were sampled every 30 s
and averaged in 10 min mean values. Details on the wind
lidar and how it was operated during the campaign are
provided by Gryning et al. (2014).

Contrary to measurements by a cup-anemometer,
wind speed measurements performed by a wind-lidar
are assigned a quality indicator expressed as the Carrier-
to-Noise-Ratio (CNR). High values signify more accu-
rate estimates of the wind speed. Following Frehlich
(1996), a threshold value of −22 dB is traditionally

applied to the wind-speed data series. Gryning et al.
(2016) and Gryning and Floors (2019) pointed out
some consequence of the choice of a CNR threshold
value on the wind observations: increasing the CNR
threshold value above the factory threshold value (in the
actual case −35 dB) increases the estimated mean wind
speed and can affect the wind-rose. The effect was es-
pecially pronounced for off-shore observations but was
also found over land and in coastal areas. Considering
the effect that the filtering with a CNR threshold value
can have as discussed above, following the recommen-
dations by Gryning and Floors (2019), the analysis is
based on all available observations corresponding to the
factory setting of CNR >−35 dB as a threshold value.

Although observations are available for a whole year,
the analysis in this study is based on measurements from
29 August to 30 November 2013, partly because the
wind-lidar was operating very well during this period
(90 % availability at 126 m and 84 % at 626 m), and
partly because the numerical simulations in the forecast
mode were available for this period only.

3 Numerical Modelling

Wind profiles were simulated using the WRF model
(Skamarock et al., 2008) version 3.6. It is a numeri-
cal weather prediction and atmospheric simulation sys-
tem designed for both research and operational ap-
plications. The model set-up includes the Noah land-
surface scheme (Chen and Dudhia, 2001), the MM5-
similarity surface-layer scheme (Zhang and Anthes,
1982), the Thompson microphysics scheme (Thompson
et al., 2004), and the 1st-order closure YSU planetary
boundary-layer (PBL) scheme (Noh et al., 2003). The
level 4 daily sea surface temperature analysis from the
Danish Meteorological Institute for the North and Baltic
Seas, having a resolution of 0.02°, was used (Høyer and
Karagali, 2016).

The WRF model was configured to calculate the me-
teorological parameters at 70 vertical levels from the
surface to the 50 hPa pressure level, 25 of these lev-
els were within the ≈600 m height extent of interest
to this study, and the first model level was at 11 m.
Three nested domains with a horizontal grid size of 18,
6 and 2 km respectively were used. The time step of
the model in the outermost domain was 90 s and de-
creased with the same ratio as the grid spacing in the
inner domains. In order to prevent the model from drift-
ing from the large-scale features of the flow, the model
was nudged at the lateral boundaries using linearly inter-
polated 6 hourly values. Spectral nudging was applied
during each model time step for the wind, temperature,
and humidity above the 25th model level (approximately
corresponding to 600 m), on the outermost model do-
main during the whole simulation period. Nudging was
always switched off in the boundary layer. This nudg-
ing set-up was also used in Floors et al. (2018) where
more details can be found. The model simulations were
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performed in both analysis and forecast mode. Here sim-
ulations covering the period 29 August to 30 November
2013 will be analyzed.

3.1 Simulations in analysis mode

In the analysis mode, the model was nudged towards the
ERA-Interim Reanalysis (ERA) boundary conditions
data available every 6 hours on a 0.7°× 0.7° grid. The
simulations were initialized every 10 days at 1200 UTC
and after a spin-up of 24 h, a time series of 10 min fields
was selected from the simulated meteorological data
from 25 to 264 h.

3.2 Simulations in forecast mode

When the model was run in the forecast mode, it was
nudged towards the Global Forecast System (GFS), a
weather forecast model produced by the NOAA Na-
tional Centers for Environmental Prediction (NCEP).
Forecasts are available every 6 hours on a 0.5°× 0.5°
grid. Forecasts with 10 min output were performed ev-
ery 6 hours up to a forecast horizon of 8 days. It is noted
that that the FINO3 observations are not assimilated into
the reanalysis nor forecast data.

4 Data analysis

In this section a comparison between observations and
the WRF model simulations nudged towards the re-
analysis data (WRF-ERA) as well as the GFS fore-
cast data (WRF-GFS) is presented. Finally, an analy-
sis of the similarities and differences in the skills of
the WRF-ERA and WRF-GFS model simulations for
lead times up to 8 days is presented. All illustrations are
shown for a height of 126 m, corresponding to the low-
est observation height of the wind lidar and it is also the
most relevant for today’s wind turbines, however many
are also illustrated for 626 m height.

4.1 Lead time analysis

Here the skill of the WRF model to simulate the changes
in the observations ahead of time will be discussed. The
lead time, Δt, is here defined as the look-ahead time from
time t, where t is any time in the discrete series and thus
independent of the time of initialization and nudging
of the model simulations. The variability of the change
of the wind-speed and direction will be investigated for
lead times of 10 min to 8 days.

Although the focus in this paper is on the predictabil-
ity of changes in the wind speed and direction, for com-
pleteness, a traditional metric that compares predicted
and observed wind speed and direction directly is ap-
plied as well. It is based on a comparison of predicted
and observed wind speeds, uWRF(t+Δt), uobs(t+Δt), and
directions dirWRF(t+Δt), dirobs(t+Δt), respectively. This
metric is not meant to deal with the influence of atmo-
spheric turbulence. The skill of the comparison between

the predictions and observations is traditionally deduced
from their Bias, Root Meat Square Error (RMSE) and
the correlation coefficient.

Fig. 2 illustrates the skill of the simulations when
forced by the ERA reanalysis (upper level) and the GFS
forecasts (lower level) for a lead time up to 8 days. It can
be seen that for short lead times, the skills are somewhat
similar; corresponding to a bias of ≈ 0.4 m s−1 and ≈ 4°
for wind speed and direction and the corresponding
RMSE values are ≈ 2 m s−1 and ≈ 20° respectively. This
shows that the WRF for this set of observations predicts
very well the general wind conditions for short lead
times, but not the effect of turbulence in the observations

The main focus in this paper is on the predictability
of changes in the speed and direction. A metric is sug-
gested that is based on the individual differences in wind
speeds Δu(Δt) and wind direction Δdir(Δt) between t+Δt
and t where t is time and Δt is the lead time:

Δuobs(Δt) = uobs(t + Δt) − uobs(t) (4.1)

Δdirobs(Δt) = dirobs(t + Δt) − dirobs(t) (4.2)

where subscript obs denotes observations; correspond-
ingly for the WRF simulations

ΔuWRF(Δt) = uWRF(t + Δt) − uWRF(t) (4.3)

ΔdirWRF(Δt) = dirWRF(t + Δt) − dirWRF(t) (4.4)

where subscript WRF denotes the model simulations.
Time series were derived for Δt ranging from 10 min
to 8 days. The skill of the numerical model to simulate
the changes to the wind field will be assessed from
the difference in concurrent individual observed and
the predicted changes of the wind speed δu(Δt) and
direction δdir(Δt):

δu(Δt) = Δuobs(Δt) − ΔuWRF(Δt) (4.5)

δdir(Δt) = Δdirobs(Δt) − ΔdirWRF(Δt). (4.6)

4.2 Examples of wind speed and direction
change histograms for various lead times

To illustrate the lead time dependence, examples of his-
tograms of the wind-speed Δuobs(Δt), ΔuWRF(Δt) and
δu(Δt), and similarly for the wind-direction are shown
for lead times of 10 min, 24 hours and 7 days. By com-
paring the distributions, the effect of the 3 fundamental
stages (turbulence limited, skilled prediction, limited by
non-linear interactions) in the predictability of numeri-
cal models is illustrated.

Fig. 3 shows the distribution of wind speed changes
for lead times of 10 min, 24 hours and 7 days represented
by histograms. The upper rows are WRF-ERA and the
lower rows are WRF-GFS simulations. In the left panels
(lead time 10 min) it can be seen that the distribution of
the wind speed change observations by the lidar and the
distribution of the difference between the lidar observa-
tions and the WRF simulated wind speeds changes are
almost identical, but the WRF predictions have a much
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Figure 2: Bias and Root-Mean-Square-Error (RMSE) for wind speed (left panels), same for wind direction (middle panels) and correlations
coefficients for both wind speed and direction (right panels) as function of the lead time when applying the traditional metric: Biasu =
1
N

∑N
i=1(uobs(t + Δt) − uWRF(t + Δt)); RMSEu = ( 1

N

∑N
i=1(uobs(t + Δt) − uWRF(t + Δt))2)0.5. Here the metric is shown for the wind speed but it is

similar for the wind direction. Upper panels represent WRF-ERA, lower panels WRF-GFS.

narrower distribution. The latter indicates that WRF is
unable to predict the turbulent fluctuations in the wind
speed for a lead time of 10 min.

This pattern is altered in the middle panels, represent-
ing lead times of 24 hours. Here the distribution of the
lidar observations and the WRF simulated wind speed
changes are nearly equal; and the distribution of the dif-
ference between the lidar observations and the WRF
simulated wind speeds is narrow compared to those of
the lidar and WRF, indicating that WRF for a lead time
of 24 hours has gained predictive skills.

This pattern is characteristic for both the WRF simu-
lations performed in analysis mode i.e. nudged towards
ERA-Interim analysis, and for simulations in the fore-
cast mode nudged towards GFS. However for a lead time
of 7 days, illustrated in the right panels of Fig. 3, the
non-linear nature of the WRF-GFS simulations comes
into play and the pattern becomes different for the
two simulations. For the simulations in analysis mode
(WRF-ERA), the predictive ability of the WRF simula-
tions remains largely unaltered, but this is not the case
for the forecasts based on WRF-GFS. Here the 3 dis-
tributions resemble each other indicating low skills in
forecasting changes in the wind speed.

Similarly, Fig. 4 shows the ability of WRF to predict
changes in wind direction, and the same overall pattern
is found.

4.3 Predictive skill as a function of lead time

In order to investigate the predictive ability in further de-
tail and taking the wind speed as an example, it can be
noted that δu(Δt) is composed as a difference of two sta-
tistical distributions, that of Δuobs(Δt) and of ΔuWRF(Δt).
From a statistical point of view, the distribution of the
differences of two normally distributed variables with
variances σ2

x and σ2
y is another normal distribution with

variance σ2
total where

σ2
total = σ2

x + σ2
y − 2ρσxσy (4.7)

provided that the two variables are correlated with a
correlation coefficient of ρ. In our case Eq. (4.7) can be
written:

σ2(δu(Δt)) = σ2(Δuobs(Δt)) + σ2(ΔuWRF(Δt))

− 2ρσ(Δuobs(Δt))σ(ΔuWRF(Δt))

(4.8)
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Figure 3: Distributions of wind speed change for a lead time of 10 min (left panels), 24 hours (middle panels) and 7 days (right panels). The
blue lines are the observations, Δuobs(Δt), the red lines the simulations ΔuWRF(Δt) and the black lines δu(Δt). The upper panels illustrate the
WRF-ERA simulations, the lower panels the WRF-GFS. The results are illustrated for the 126-m height.

σ2(δdir(Δt)) = σ2(Δdirobs(Δt)) + σ2(ΔdirWRF(Δt))

− 2ρσ(Δdirobs(Δt))σ(ΔdirWRF(Δt))
(4.9)

The behavior of Eqs. (4.8) and (4.9) can be written
as

√

σ2(δu(Δt))

σ2(Δuobs(Δt)) + σ2(ΔuWRF(Δt))
≤ 1 (4.10)

√

σ2(δdir(Δt))

σ2(Δdirobs(Δt)) + σ2(ΔdirWRF(Δt))
≤ 1 (4.11)

when the observations are positively correlated with the
simulations. The left-hand-side of Eqs. (4.10) and (4.11)
will decrease with an increasing ability of the simu-
lations to predict the observations. The ultimate goal
for the numerical prediction is, of course, a perfect
agreement between observations and simulations which
corresponds to a variance of zero for the distribution
of δu(Δt) and δdir(Δt). From the right-hand-side of
Eqs. (4.8) and (4.9) it can be seen that it is not a suffi-
cient condition for perfect agreement that the correlation
coefficient is one for both wind speed and direction but
also that the variances of the observations and the model

predictions are equal, i.e. σ(Δuobs(Δt)) = σ(ΔuWRF(Δt))
and σ(Δdirobs(Δt)) = σ(ΔdirWRF(Δt)).

It can be noted that agreement between the distribu-
tions of Δuobs(Δt) and of ΔuWRF(Δt) does not indicate
that the predictive skill of the numerical simulation is
good, nor does a correlation coefficient close to one. The
two must be interpreted in combination.

How long a lead time is required before the simu-
lations of the changes in wind speed and direction ac-
quire some skill? For the WRF-ERA simulations, this is
illustrated in Fig. 5. It can be seen that for small lead
times the left-hand-side (l.h.s.) of Eqs. (4.10) and (4.11)
are close to one, indicating that the observations are
poorly correlated with the numerical simulations. That
the model skill being small at shorter lead times is a
reflection of the fact that a mesoscale model does not
reproduce turbulent motions, which the observations in-
clude. This applies for both the wind speed and direc-
tion. This behavior is also reflected in the correlation co-
efficient (Fig. 5 right panel) being close to zero for small
lead times, then increasing as the lead time increases.
Because the simulations are nudged towards reanalysis
data and thus take advantage of measurements ahead of
time, the skill does not deteriorate as the lead time in-
creases. The normalized variance remains at a value of
about ≈ 0.4 for the wind speed and ≈ 0.3 for the direction
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Figure 4: As for Fig. 3 but for wind direction.

at the 126 m height; the corresponding correlation coef-
ficients being ≈ 0.8. Taking, as suggested by Holling-
worth et al. (1980), a correlation coefficient of 0.6 as a
the lower limit for skills in the simulations, corresponds
to a lead time of ≈ 5 hours for wind speed and ≈ 4 hours
for the direction at 126 m. The skills in the simulations
can be seen to be represented by a smaller lead time for
the wind speed at 626 m as compared to 126 m, being
≈ 3.5 hours and similarily for both wind speed and di-
rection, with a higher correlation coefficient of ≈ 0.9.

For the simulations in forecast mode, WRF-GFS, that
are nudged towards the GFS forecasts and therefore do
not take advantage of the measured meteorological con-
ditions ahead of time, as is the case for the reanalysis
data, but solely relying on forecasted data, the behav-
ior is shown in Fig. 6. For small lead times, the nor-
malized variances are close to one and the correlation
coefficients are near zero for both wind speed and di-
rection, indicating very little skills. This behavior re-
sembles the conditions from the reanalysis simulations
in Fig. 5. Following this stage, skills in the simulations
are obtained corresponding to a normalized variance of
≈ 0.4 for wind speed and ≈ 0.3 for direction at 126 m,
and the corresponding correlation coefficient are slightly
less than ≈ 0.9, being lower for the wind speed. These
conditions remain near constant up to a lead time of
3 days, followed by a gradual increase of the normal-
ized variances and a corresponding decrease of the cor-

relation coefficient. This general behavior continues up
to a lead time of 8 days, corresponding to the maximum
length of the simulations. Even for a lead time of 8 days
the simulations exhibit skill corresponding to a normal-
ized variance of 0.7 and 0.6 for wind speed and direc-
tion, respectively, with the corresponding correlation co-
efficients being ≈ 0.4. Taking the correlation coefficient
of 0.6 as a lower limit for predictions with some skill,
the WRF-GFS simulations have skills for lead times in
the interval ≈ 3.5 hours to 6 days for the wind speed,
and the corresponding values for the wind direction are
3 hours to 4 days respectively at 126 m. The predictive
skills for both wind speed and direction are in general
better at 626 m height than at 126 m. Therefore skillful
predictions, corresponding to a correlation coefficient
larger than 0.6, are obtained for a lead time in the in-
terval ≈ 3.5 hours to ≈ 6 days, and ≈ 3 hours to ≈ 4 days
for the wind speed and direction, respectively. It can be
noted that even for a lead time of 8 days, predictive skills
corresponding to a correlation coefficient of ≈ 0.4 can be
observed.

5 Persistence

In the persistence model, the expected value of the pa-
rameter ahead of time is assumed to be equal to the most
recent value, or that the conditions at the time of the
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Figure 5: Results from the comparison of observations with WRF-ERA simulations. The normalized variances
√
σ2(δu(Δt))/(σ2(Δuobs(Δt)) + σ2(ΔuWRF(Δt))) (see Eq. (4.10)) and

√
σ2(δdir(Δt))/(σ2(Δdirobs(Δt)) + σ2(ΔdirWRF(Δt))) (see Eq. (4.11)) are

illustrated in the left panel, and the correlation coefficients ρ(δuobs(Δt), δuWRF(Δt)) and ρ(δdirobs(Δt), δdirWRF(Δt)) in the right panel, both as
a functions of lead time. Full lines represent 126 m and dashed lines 626 m height; black lines show wind speed and red lines wind direction.

Figure 6: As in Fig. 5 but for WRF-GFS.

forecast will not change. The persistence model is the
simplest way of producing a forecast, and it is often used
as a reference for many other meteorological models. At
very short time scales it is difficult to beat a persistence
forecast, however as the lead time increases, changes in
wind occur and models with predictability become su-
perior. Here we investigate the lead time where the per-
sistence model is outperformed by predictive models –
in this case by the WRF-ERA and WRF-GFS numerical
models. The forecast in the persistence model is simply

uforecast(t + Δt) = uobs(t) (5.1)

dirforecast(t + Δt) = dirobs(t) (5.2)

This corresponds to that the expected value of the pa-
rameter Δt ahead of time is equal to the most recent
value. This is obviously a very naive but often very
powerful model for short time predictions because the
atmosphere statistically changes slowly, i. e. is quasi-
stationary. The comparison between the persistence
model and any other forecast model is usually done by
comparing the RMSE (Root-Mean-Square-Error) of the
model predictions. For the persistence model it is

RMSEu,persistence =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
N

N∑

i=1

(uobs(t + Δt) − uobs(t))
2

⎞
⎟⎟⎟⎟⎟⎟⎠

0.5

(5.3)
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Figure 7: Root-Mean-Square-Error of the wind speed as function of the lead time for the Persistence model RMSEu,persistence and forecast
RMSEu,WRF for the WRF-ERA (left panel) and the WRF-GFS model simulations (right panel). Full lines illustrate 126 m and dashed lines
626 m height.

RMSErdir,persistence =
⎛
⎜⎜⎜⎜⎜⎜⎝

1
N

N∑

i=1

(dirobs(t + Δt) − dirobs(t))
2

⎞
⎟⎟⎟⎟⎟⎟⎠

0.5
(5.4)

and for this study, wherein the simulations are per-
formed by the WRF model, this will be compared to

RMSEu,WRF =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
N

N∑

i=1

(uobs(t + Δt) − uWRF(t + Δt))2

⎞
⎟⎟⎟⎟⎟⎟⎠

0.5

(5.5)

RMSErdir,WRF

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1
N

N∑

i=1

(dirobs(t + Δt) − dirWRF(t + Δt))2

⎞
⎟⎟⎟⎟⎟⎟⎠

0.5
(5.6)

where N is the number of samples. Owing to the at-
mospheric turbulence and the quasi-stationarity of the
atmosphere, RMSEu,persistence and RMSEdir,persistence will
be small for small Δt and will grow as Δt increases. This
is in contrast to the WRF predictions RMSEu,WRF and
RMSEdir,WRF, where the lack of ability to simulate the
turbulence results in an enhancement of RMSEu,WRF and
RMSEdir,WRF when Δt is small.

This behavior can be observed in Fig. 7. The left
panel illustrates the behavior of RMSEu,persistence and
RMSEu,WRF for the wind speed predictions at 126 m and
626 m. It can be seen that lead time, for which the per-
sistence model is superior, is ≈ 2 hours for WRF-ERA
and a little smaller, ≈ 1.5 h for WRF-GFS. There is little
sensitivity to height. For the wind direction, Fig. 8, the
lead time for the superiority of persistence is ≈ 1.5 hours
for both WRF-ERA and WRF-GFS.

6 Effect of time-shift in the simulations

It is often argued that the agreement between observa-
tions and model simulations is affected by a time off-
set in the simulations. The simulations might be in very
good agreement with the observations if they are shifted
for some of the simulations. This, of course, hampers
the metrics that are used to evaluate the comparison be-
tween model simulation and real observations. In or-
der to analyze the issue of a time offset, comparisons
were performed for model simulations that have been
shifted in time relative to the observations. Sensitivity
to offsets in the simulated wind speed and direction de-
pends on the length of the time series that are compared.
Here the analysis is based on 24 hour time series that
are taken from the total 3 months of available data. A
new 24 hour time slice was derived by shifting the ob-
servations by 10 min resulting in ≈ 13000 data series
of a length of 24 hours. The quality of the agreement
between observations and simulations with and with-
out time shifts was evaluated using the following met-
rics: MAE (Mean Absolute Error), RMSE (Root Mean
Square Error) and the correlation coefficient. Figs. 9
and 10 show results that are based on the correlation co-
efficient but almost similar results were obtained when
either MAE or RMSE were used as metrics. Figs. 9
and 10 (left panels) illustrate that with respect to the
WRF-ERA simulations a 10 min shift in the simulations
provides a better agreement in ≈ 50 % of the cases but a
shift of −2 hours only in 20 % of the cases, and a shift of
2 hours in about 30 % of the cases. A zero shift of course
corresponds to 100 %. It can be noted that the curves are
not symmetric around zero but remain higher for posi-
tive time shifts as compared to negative shifts, implying
that the comparison is more sensitive to negative than
positive shifts of time in the simulated wind field. The
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Figure 8: Root-Mean-Square-Error of the wind direction prediction as function of the lead time for the Persistence model RMSEdir,persistence

and forecast RMSEdir,WRF for the WRF-ERA (left panel) and the WRF-GFS model simulations (right panel). Full lines illustrate 126 m and
dashed lines 626 m height.

sensitivity to the time shifts in the simulations for wind
speed and wind direction are largely similar.

A similar analysis was performed for the WRF-GFS
simulations but in this case an additional parameter
emerges. The results will depend on the forecast length
in such a way that for a short forecast horizon, e. g.
0.5 day, the result will resemble the WRF-ERA (which
is updated every 6 hours) but will differ for large fore-
cast horizons. This effect is shown in Figs. 9 and 10
(right panels) for forecast horizons of 0.5, 2 and 4 days.
For the forecast horizon of 0.5 days slightly less than
50 % of the simulations agree better with the observa-
tions when a ±10 min shift in time is applied to the sim-
ulations. For a time shift of −2 hours this number is re-
duced to 20 % for both wind speed and direction, and
for a time shift of 2 hours the numbers are ≈ 25 % for
the wind speed and somewhat lower, ≈ 20 % for wind
direction. The overall pattern with high values for small
lead times and small values for larger lead times can be
observed for a forecast horizon of 2 and 4 days as well,
but the likelihood for agreement for a shifted time-series
for large lead times is shifted towards higher values. It
can be noted that for a forecast horizon of 4 days the
dependence on the lead time is small in such a way that
in about 50 % of the cases the statistics for a shift in the
lead time of the simulations is near the same for both
small and large lead times; the curve is almost flat for
both wind speed and direction.

7 Discussion

For wind-energy assessment studies, it is important that
the overall statistics of the performance of the model re-
semble the statistics of the observations, and it is less im-
portant if the model actually predicts the individual ob-
servations. This can be evaluated in terms of their proba-

bility distribution functions or the accumulated distribu-
tion functions. An example of this type of validation is
the continuous ranked probability score (CRPS), which
is a commonly used verification index that compares
modelled data with the observations, where both are
represented as cumulative distribution functions (Hers-
bach, 2002). Comparing two cumulative distributions,
however does not provide information on the skill of the
model to predict the individual observations – only on
the common statistics.

In order to investigate this further, a point compar-
ison between observations and WRF simulations was
performed based on three months of measurements of
the wind profile in a windy climate at a marine site
in the North Sea. The measurements were carried out
with a ∼600 m range wind Doppler lidar in combina-
tion with a 100 m tall meteorological mast. Gryning
et al. (2016) and Gryning and Floors (2019) show that
filtering the observations with a Carrier-to-Noise-Ratio
(CNR) threshold value acts as a rather smooth filter that
basically shifts the probability distribution of the obser-
vations of the wind speed towards higher values which
results in a selection of higher wind speeds and a shift
in the wind rose compared to the value when all data
are used. This means that applying a high CNR thresh-
old value biases the climatology of wind profiles. There-
fore in this study, a CNR filtering threshold has not been
applied to the measurements. All available observations
from the lidar were applied with due respect to miss-
ing observations owing to instrument malfunctioning or
CNR threshold values falling below the −35 dB factory
setting.

The results of the model simulations depend on the
choice of the parameterizations of the model as well as
the frequency of initialization and nudging of the re-
analysis data. The comparison in this part of the study
illustrates how well the analysis adapts to the observa-
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Figure 9: Illustration of the fraction of time that a time-shift in the model simulations of the wind speed improves the correlation with
observations. In the left panel, which shows the results for simulations with WRF-ERA, the black line represents a height of 126 m and the
red line 626 m. The right panel shows the result of simulations by WRF-GFS at 126 m. Because WRF-GFS represents a true forecast, the
results are dependent on the forecast horizon – a forecast horizon of 12 hours (solid black line), 2 days (red line) and blue line (4 days),
respectively. A positive phase shift means that the simulations are shifted forward in time (i.e. an observation at 12:00 is compared to
simulations at 10:00).

Figure 10: As for Fig. 9 but for wind direction.

tions and does not deal with the ability to forecast the
wind field. This is in contrast to the WRF simulations
in the forecast mode when the model is driven by a me-
teorological forecast. In this study, the Global Forecast
System (GFS) is used. In both cases, the output depends
on the chosen parametrizations of WRF as well as the
nudging frequency of the reanalysis or forecasts data re-
spectively. Studies exists, based on short-term time se-
ries of observations, on the choice of parameterizations
for WRF, but a generally accepted recommendation has
not been reached. A comprehensive study, although it
would be very useful, on the sensitivity of the large
number of reanalysis and forecast data-sets to the WRF
model output is still missing due to the huge require-

ments for computer resources that go far beyond what
is available at our institution. The effect on the predic-
tions on the choice of reanalysis or forecast data-set is
presently largely not investigated.

When the skill of the simulations was investigated
with a traditional metric, that reflects the ability to pre-
dict wind speed and direction, the agreement for small
lead times (minutes and hours) is very good (see Fig. 2).
The limit of predictability for simulations in the fore-
cast mode (forced with GFS) was found to be ≈ 4 days,
corresponding to a correlation coefficient of 0.6.

When applying a metric that chiefly emphasizes the
changes in the wind speed and direction, the skill of the
WRF model was investigated by calculating the normal-
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ized RMSE of the observed minus WRF model wind
speeds and directions, σ(δu(Δt)) and σ(δdir(Δt)) respec-
tively for various lead times Δt, see also Eqs. (4.10)
and (4.11). It can be noted that the skill of the sim-
ulations increase as the ratio decreases. The simula-
tion skill was also quantified in terms of the Pearson
correlation coefficients, (ρ(Δuobs(Δt),ΔuWRF(Δt)) and
ρ(Δdirobs(Δt),ΔdirWRF(Δt)) respectively. It can be noted
that ρ > 0 for all lead times both for wind speed and di-
rection. In agreement with Hollingworth et al. (1989)
a correlation coefficient of ρ = 0.6 was taken as a lower
limit for useful or skilled predictions. It should be em-
phasized however that the use of RMSE and correlation
coefficient in terms of model verification are fundamen-
tally different. While the correlation coefficient is insen-
sitive to any bias and scale differences in the observed
and simulated distributions, this is not the case for the
RMSE.

For the WRF simulations nudged with the reanalysis
data, the corresponding lead time (ρ = 0.6) was found
to be ≈ 5 hours for the wind speed at 126 m. This value
is twice higher than suggested by Haupt et al. (2014).
It can be seen from Fig. 5 that the simulation skill
improves with increasing lead times, levelling off and
reaching a correlation coefficient of ≈ 0.8 for a lead
time of ≈ 15 hours and ≈ 11 hours at 126 m for wind
speed and direction respectively and somewhat lower,
≈ 7 hours at 626 m. The reason that the correlation coef-
ficient levels off is connected to the 6-hourly nudging of
the WRF model simulations with reanalysis data.

In the forecast mode (WRF nudged with GFS), the
behaviour of the wind speed and direction is nearly
the same. A correlation coefficient of 0.6 is reached at
≈ 3 hours and a correlation coefficient of ≈ 0.8 after
≈ 8 hours at 126 m and ≈ 5 hours at 626 m. In forecast
mode, the forecast skill decreases in response to the
lack of predictability of the atmosphere due to its non-
linear nature (Lorenz, 1963), reaching a correlation
coefficient of 0.6 after ≈ 4 days for the wind speed and
somewhat longer, ≈ 6 days for the wind direction.

The persistence approach, which is a commonly used
benchmark, (Nielsen et al., 1998), is shown here for
completeness. It was found that the persistence model
provides better performance compared to the numeri-
cal simulations for lead times less than about 2 hours
for both wind speed and direction and is twice as large
as the value reported (Fig. 1) in Haupt et al. (2014). It
can be noted that a persistence time of ≈ 2 hours corre-
sponds to a correlation coefficient of about 0.4 (Figs. 5
and 6) between the changes in the observed and simu-
lated wind speed and direction (ρ(Δuobs(Δt),ΔuWRF(Δt))
and ρ(Δdirobs(Δt),ΔdirWRF(Δt)) respectively for both
heights.

The results in this study will be specific for the syn-
optic conditions in the North Sea which are dominated
by the westerlies with frequently passing low pressure
systems alternating with fewer more extended periods
of high pressure. The outcome of the study reflects the
conditions in a marine atmosphere that is adjusted to the

Table 1: WRF cannot capture short-term changes in wind speed and
direction caused by turbulent structures. Below is given character-
istic lead times to achieve skills corresponding to a correlation co-
efficient of 0.6. The numbers are based on a comparison between
point-wise changes as function of lead time in wind speed and direc-
tion.

WRF-ERA WRF-GFS

Height 126 m 626 m 126 m 626 m
Wind speed lead time (hour) 5 3.5 3.5 2.5
Wind direction lead time (hour) 4 3.5 3 2.5

sea surface with minor diurnal variation of the tempera-
ture. The diurnal variation of the meteorological condi-
tions which are characteristic for over-land conditions
is much reduced over the sea (Gryning and Batch-
varova, 2002). Variability of the meteorological condi-
tions in the marine atmosphere is more controlled by the
prevailing synoptic conditions at the site. It can be spec-
ulated that the critical lead times depend on the actual
meteorological conditions and over land will be shorter
due to the pronounced diurnal variation.

8 Main conclusions
In this study, the focus is on a comparison of the con-
temporary observed and simulated data, as well as the
ability of the numerical model to simulate the changes
in the wind conditions ahead of time. The simula-
tions were performed with the WRF model in the long-
term analysis mode (WRF-ERA) and the forecast mode
(WRF-GFS). In the former case, the model was initial-
ized every 10 days and nudged towards the ERA-Interim
boundary conditions every 6 hours.

Based on 3 months of wind-lidar observations over
the North Sea the skill of the WRF model to simulate
changes in the wind speed and direction was investi-
gated.

When using a metric that emphasizes wind speed and
direction the WRF model was found to predict the wind
speed and direction with a correlation coefficient ≈ 0.9
(see Fig. 2 ) for small lead times (minutes to hours), and
lack of skills in the forecast mode is found for lead times
larger than ≈ 4 days.

Applying a metric that emphasizes the change in
wind speed and direction between contemporary obser-
vations and simulations reveals the inability of WRF to
simulate turbulent structures. For simulations nudged to-
wards reanalysis data (WRF-ERA) or forecasts (WRF-
GFS) the characteristic lead times for WRF to ac-
quire skills are given in Table 1. For simulations where
WRF is nudged towards forecast data (WRF-GFS) skill
will deteriorate for large lead times owing to the non-
linearity of the Navier-Stokes equations.

Both for wind speed and direction the skills start to
decrease after ≈ 3 days.

Lack of skill in a forecast of wind speed correspond-
ing to a correlation coefficient of 0.6 is found for a lead
time larger than ≈ 6 days.
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Similarly, lack of skill in a forecast of wind direction
is found for a lead time larger than ≈ 4 days.

Even for a lead time of 8 days, there is some skill
in the forecasted wind speed and direction (correlation
coefficient ≈ 0.4).

Persistence, i.e. the simulated wind speed or direc-
tion ahead of time is equal to or better predicted than the
conditions at the time of the forecast. For wind speed it is
≈ 2 hours for WRF-ERA and a little smaller, ≈ 1.5 hours
for WRF-GFS, corresponding correlation coefficient be-
tween observations and simulations of ≈ 0.4. For the
wind direction it is ≈ 1.5 hours for both WRF-ERA and
WRF-GFS.

Often there is a time shift between model simulations
and the observations (Haupt et al., 2014). The fraction
of time that a phase shift in the model simulations im-
proved the comparison with observations is illustrated.
For a time shift of 2 hours, it is about ≈ 20 % of the
time for the WRF-ERA simulations. For WRF-GFS sim-
ulations with a forecast horizon of 0.5 days it is also
about ≈ 20 %; for an increasing forecast horizon the sen-
sitivity of a time shift in the model simulations, when
compared with observations, decreases.

It can be noted that in order to have perfect agreement
between simulations and observations, the correlation
coefficient must be one and the variance of the two
distributions equal.
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