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Abstract

Background: Gene expression differences between species are driven by both cis
and trans effects. Whereas cis effects are caused by genetic variants located on the
same DNA molecule as the target gene, trans effects are due to genetic variants that
affect diffusible elements. Previous studies have mostly assessed the impact of cis
and trans effects at the gene level. However, how cis and trans effects differentially
impact regulatory elements such as enhancers and promoters remains poorly
understood. Here, we use massively parallel reporter assays to directly measure the
transcriptional outputs of thousands of individual regulatory elements in embryonic
stem cells and measure cis and trans effects between human and mouse.

Results: Our approach reveals that cis effects are widespread across transcribed
regulatory elements, and the strongest cis effects are associated with the disruption
of motifs recognized by strong transcriptional activators. Conversely, we find that
trans effects are rare but stronger in enhancers than promoters and are associated
with a subset of transcription factors that are differentially expressed between
human and mouse. While we find that cis-trans compensation is common within
promoters, we do not see evidence of widespread cis-trans compensation at
enhancers. Cis-trans compensation is inversely correlated with enhancer redundancy,
suggesting that such compensation may often occur across multiple enhancers.

Conclusions: Our results highlight differences in the mode of evolution between
promoters and enhancers in complex mammalian genomes and indicate that
studying the evolution of individual regulatory elements is pivotal to understand the
tempo and mode of gene expression evolution.

Keywords: Regulatory element evolution, Gene expression evolution, Massively
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Background
Since it was suggested over half a century ago that changes in transcriptional regulation

underlie phenotypic differences between species [1, 2], it has become clear that changes

in gene expression are heritable and often play a role in the evolution of phenotypes [3,

4]. Changes in non-coding regulatory elements—including promoters and enhancers—

are particularly important in driving the evolution of gene expression [5, 6]. Two pri-

mary mechanisms are responsible for the evolution of gene expression: cis effects and

trans effects. Cis effects are due to genetic variants that are on the same DNA molecule

as the target gene; for example, genetic variants located in gene promoters or enhancers

that affect transcription factor (TF) binding sites. Conversely, trans effects are driven by

diffusible elements (such as TFs) and can therefore occur anywhere in the genome.

Any given gene can be subject to cis effects, trans effects, or both [7]. Characterizing

the mechanisms responsible for evolutionary changes in gene expression levels remains

a central goal of evolutionary biology.

Much work has assessed the contribution of cis and trans effects on the evolution of

gene expression. One of the most common approaches has been to perform allele-specific

RNA sequencing of two parental strains and their corresponding F1 hybrid offspring,

which can separate the proportion of expression variation attributable to variants in cis

(which show allele-specific effects in the hybrid) from expression variation attributable to

variants in trans (which affect both hybrid alleles) [8]. These studies have assessed both

intra- and inter-species variation in gene expression across a variety of taxa, including

yeast [9, 10], insects [11, 12], plants [13], and mice [14]. Such hybrid methods have even

been used to assess gene expression divergence between humans and mice [15], although

such an approach in distantly related species is limited to examining a single artificially

inserted chromosome. In general, these hybrid studies have shown a predominance of cis

effects between species [8, 9, 11, 13, 15], with trans effects playing a larger role within spe-

cies [10, 11, 16, 17]. Moreover, cis and trans effects were found to often occur simultan-

eously and affect target gene expression in opposite directions [14, 16–18]. This so-called

compensation between cis and trans effects is thought to be a result of stabilizing selection

on gene expression over evolutionary time [14, 16, 17]. A major limitation of these studies,

however, is that while they can assign cis and trans effects to target genes, they cannot dis-

entangle effects at individual regulatory elements. Studies on regulatory element evolution

have found that the number of regulatory elements—especially enhancers—that target a

gene influences the tempo and mode of gene expression evolution [5, 6]. However, to

date, only small scale studies have examined how cis and trans effects drive differences in

regulatory element activities across species [19, 20].

The development of massively parallel reporter assays (MPRAs) has revolutionized our

ability to dissect the regulatory element code [21, 22]. Indeed, MPRAs have been used to

measure regulatory element activity of thousands of sequences across tissues [23], species

[20], and allelic variants [23–25]. In this work, we use MPRAs to quantitatively investigate

cis and trans effects on transcriptional output across thousands of individual regulatory el-

ements including transcribed enhancers, promoters of protein-coding genes, and pro-

moters of long non-coding RNA (lncRNA) genes. We perform MPRAs in similar cellular

environments from two mammalian species—embryonic stem cells (ESCs) from human

and mouse—to perform a systematic analysis of cis and trans effects on RNA production

at thousands of individual regulatory elements simultaneously.
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Results
Designing an MPRA to measure regulatory element evolution

To investigate regulatory element evolution between human and mouse, we first de-

fined regulatory elements in both species using a set of robust transcription start sites

(TSSs) from the FANTOM5 consortium defined by Cap Analysis of Gene Expression

(CAGE) sequencing [26]. We categorized these TSSs into three major biotypes: (1)

eRNAs (RNAs emerging from bidirectionally transcribed enhancers that do not overlap

protein-coding genes), (2) lncRNA promoters, and (3) mRNA promoters (see the

“Methods” section). We then projected these TSSs onto the genome of the other spe-

cies (i.e., human TSSs were projected onto the mouse genome and vice versa). We clas-

sified TSSs as “sequence orthologs” if we were able to reciprocally map the TSS

between the two species. We further classified the “sequence ortholog” TSSs as con-

served TSSs if the aligned region in the other species (± 50 bp from the TSS) contained

evidence of an active TSS (Fig. 1a; see the “Methods” section). As expected, the propor-

tion of TSS that were sequence orthologs and conserved were both highest in mRNAs

and lowest in eRNAs (Fig. 1b; Additional file 1: Figure S1). Despite moderate levels of

sequence orthology in eRNAs and lncRNAs, both biotypes exhibited very high activity

turnover, with only 7% and 31% of human eRNA TSSs and lncRNA TSSs being con-

served in mouse, respectively.

To systematically assess the contribution of cis and trans effects to the evolution of

thousands of regulatory elements simultaneously, we performed a massively parallel re-

porter assay (MPRA) and measured the transcriptional outputs of eRNA, lncRNA, and

mRNA TSSs (Fig. 1c). MPRAs measure the activities of designed sequences in a cell

type of interest and thus enable us to test both cis effects (how do orthologous se-

quences compare within a given cellular environment) and trans effects (how do differ-

ent cellular environments affect a given sequence). As early development is known to

play a key role in evolutionary processes [27], we chose to perform the MPRA in a de-

velopmentally relevant cell type: human and mouse ESCs. Thus, we selected 3327 pairs

of orthologous regulatory elements between human and mouse, all of which had en-

dogenous activity in either human or mouse ESCs or both (Additional file 1: Figure S2;

Table S1; see the “Methods” section). The full list of regulatory elements in our library

can be found in Additional file 2: Table S2. To ensure that we covered all regulatory ac-

tivity sequence surrounding the TSS, we designed two oligonucleotide tiles for each

TSS (Fig. 1c). All told, our library included 13,533 sequences to test (Additional file 1:

Table S3). To control for technical variation across sequencing measurements, each

element was represented a minimum of 13 times, each time with a different barcode.

We also included randomly generated sequences as negative controls (with 3 barcodes

each) as well as tiled regions of the cytomegalovirus (CMV) promoter (which is known

to have high activity in MPRAs across diverse cell lines [23]) as positive controls (with

60 barcodes each), resulting in a final library of 181,065 unique oligonucleotides (Add-

itional file 1: Table S4). We performed three biological replicates each in human ESCs

(hESC) and mouse ESCs (mESCs) and confirmed that replicates of hESCs and mESCs

clustered separately (Additional file 1: Figures S3 and S4). We then removed barcodes

with low counts, resulting in a set of 2952 regulatory sequence pairs that were well rep-

resented in our data (see the “Methods” section).
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Fig. 1 MPRA in human and mouse ESCs parallels endogenous gene expression patterns. a Schematic
depicting the definitions of a sequence ortholog and conserved/non-conserved TSSs. Sequence orthologs
are TSS regions whose sequences can be reciprocally mapped to the other species. Conserved TSSs are a
subset of sequence orthologs that also overlap a TSS in the other species (defined as having ≥ 10 CAGE
reads in ≥ 1 sample), whereas non-conserved TSSs do not. b Percentage of human-to-mouse sequence
orthologs and conserved TSSs broken up by biotype. c Schematic of MPRA design. Tile 1 overlaps the
assigned TSS (114 bp upstream to 30 bp downstream) whereas tile 2 does not (228 bp upstream to 84 bp
upstream). d MPRA activities of human (top) and mouse (bottom) TSSs in their native contexts, human ESCs
and mouse ESCs, respectively, broken up by whether they have endogenous CAGE activity and then by
biotype and compared to negative controls (random sequences) and positive controls (CMV promoter
regions). e MPRA activities of TSS-overlapping tile (tile 1) compared to upstream tile (tile 2) across all human
biotypes (top) and mouse biotypes (bottom). p values shown are from a one-sided Mann-Whitney test
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We next quantified each sequence’s ability to drive transcription in the MPRA experi-

ment—termed “MPRA activity”—using MPRAnalyze [28]. Briefly, MPRAnalyze uses a

graphical model to estimate the rate of transcription of each sequence in the library by

comparing RNA counts for each barcode to input DNA counts for each barcode. To

determine whether our MPRA was able to capture true biological signal, we compared

the MPRA activity of each regulatory element in its native context (human sequences

in hESCs and mouse sequences in mESCs) to negative and positive control sequences

(see the “Methods” section). As expected, all TSS biotypes were more active than nega-

tive controls, and eRNAs had the lowest activity across biotypes while mRNAs had the

highest activity (Fig. 1d).

We then compared the activity of the annotated TSS-overlapping tiles (tile 1) to the

upstream tiles (tile 2) (Fig. 1c). As expected, across all biotypes, annotated TSS-

overlapping tiles were significantly more active in their native context than the up-

stream tiles (Fig. 1e). In 18% of regulatory element pairs, however, the upstream tile

was more active than the TSS-overlapping tile in both species (Additional file 1: Figure

S5), likely due to slight misannotation of the exact TSS location. Thus, while

FANTOM5-defined TSSs are highly accurate, including additional upstream regions in

the MPRA can help to refine core promoter locations. We therefore assigned each of

the 2952 regulatory element pairs a single representative tile to use in both species: we

always used the annotated TSS-overlapping tile except in those cases where the up-

stream tile had more activity in both species. Among those, 1644 pairs (55%) had sig-

nificant MPRA activity (MPRA q value < 0.05) in at least 1 native context. We limited

all of our subsequent analyses to this set of 1644 active sequence pairs (3288 sequences

total). When doing biotype-specific analyses, we focused on the set of 1262 active se-

quence pairs (523 mRNA, 471 lncRNA, and 268 eRNA TSSs) that could be reliably

assigned to the three main biotypes (see the “Methods” section).

Cis effects are common and associated with evolutionary turnover

Differences in regulatory element activity between species could be due to differences

in DNA sequence (cis effects) or cellular context differences (trans effects) between the

species or both. We decided to focus first on cis effects, which can be attributed to dif-

ferences in DNA sequence alone. We defined cis effects as the MPRA activity differ-

ences between orthologous sequence pairs in the same cellular environment (Fig. 2a).

To calculate cis effects, we used MPRAnalyze to test for MPRA activity differences be-

tween pairs of orthologous regulatory elements. An advantage of using MPRAnalyze is

that it is able to use information from null differential controls to inform its compara-

tive model. The ideal null differential controls are pairs of identical sequences tagged

with different barcodes. We therefore leveraged our CMV tiles, each of which was at-

tached to 60 barcodes, to create our null differential controls by down-sampling bar-

codes (Additional file 1: Figures S6 and S7; see the “Methods” section). As expected,

orthologous regulatory element pairs had higher cis effect sizes than null differential

controls in both hESCs and mESCs (Fig. 2b). Overall, 40% of the 1644 tested regulatory

element pairs showed a significant cis effect in hESCs, mESCs, or both (empirical

FDR < 0.1) (Fig. 2c; see the “Methods” section). Cis effects were highly correlated across

cell types (Fig. 2d).
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We next sought to examine how cis effects differ across biotypes, including conserved

and non-conserved TSSs. Within each biotype, non-conserved regulatory element pairs

showed significantly higher cis effects than conserved regulatory element pairs (Fig. 2e).

We confirmed that our non-conserved pairs are bona fide non-conserved regulatory el-

ements, as the non-conserved pairs we had defined (non-conserved TSSs and their

orthologous sequence in the other species that lacked a TSS) had higher pairwise align-

ment scores than they did to the closest TSS in the other species (Additional file 1: Fig-

ure S8). Thus, these non-conserved regulatory elements are not due to misalignments

between genomes. Cis effect sizes across biotypes were relatively uniform (Fig. 2f).

However, non-conserved mRNA TSSs showed the highest cis effect sizes (Fig. 2f), con-

sistent with the idea that the largest jump in activity is from mRNA TSSs—which have

the highest activity out of all biotypes—to sequences without a TSS at all.

Cis effects are associated with disruption of certain TF motifs

Cis effects are often caused by disruption of motifs that are recognized by sequence-

specific transcription factors (TFs). Thus, we next sought to determine the relationship

between cis effects and TF motifs. Previous work showed that only a subset of TF mo-

tifs can be reliably associated with MPRA activity variance [29]. Thus, we selected a set

of 466 motifs from TFs that are expressed in hESCs and mESCs and are associated with

Fig. 2 Forty percent of orthologous regulatory elements show significant cis effects. a Schematic depicting
the definition of a cis effect: MPRA activity differences between human sequences and mouse sequences
while keeping the cellular environment constant. b Volcano plot showing the cis effect sizes (log2 fold
changes in activity between sequences in hESCs (left) and mESCs (right)) of orthologous sequences (black)
and null differential controls (gray). Horizontal line depicts an empirical FDR cutoff of 0.1, calculated using
null differential controls (see the “Methods” section). c Count of orthologous sequence pairs with significant
cis effects in either hESCs or mESCs. d Scatter plot showing the cis effects measured in hESCs (x axis) and
mESCs (y axis) for a given sequence pair, colored by whether they are significant in hESCs (orange), mESCs
(green), both (black), or neither (gray). Spearman’s rho and number of sequences are shown. e Absolute cis
effect sizes across biotypes, broken up into non-conserved TSSs (blue) and conserved TSSs (gray). p values
shown are from a two-sided Mann-Whitney test. f Same as d, but this time comparing differences across
biotypes. p values shown are from a two-sided Mann-Whitney test
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MPRA activity (Additional file 1: Figure S9; Additional file 3: Table S5) either as activa-

tors or as repressors for further analysis. As expected, regulatory element pairs showing

no cis effects shared more TF motifs than sequence pairs with significant cis effects

(Fig. 3a), reinforcing the notion that the more TF motifs two sequences have in com-

mon, the more similar their activity levels. In addition, we found 17 individual motifs

were significantly associated with cis effects when disrupted. The majority of these mo-

tifs were predicted activators and enriched in mRNAs (Fig. 3b); indeed, several of the

strongest effect sizes could be attributed to the ETS transcription factors, including the

oncogenic TF ETV1 [31] (Fig. 3c). However, we also found a subset of motifs that were

predicted repressors and enriched in eRNA TSSs (Additional file 1: Figure S10). Thus,

while cis effects can generally be attributed to the disruption of strong activating motifs,

in rarer cases, cis effects are due to the disruption of weak repressive motifs. While this

Fig. 3 Disruption of certain motifs is associated with cis effects. a Percentage of shared motifs in tiles that
show cis effects vs. those that do not. p value shown is from a one-sided Mann-Whitney test. b Plot
showing the activating motifs whose disruption is significantly associated with cis effects (FDR < 0.05). Left:
effect size associated with motif disruption. Middle: additional variance in MPRA activity explained by the
TF. Right: enrichment of a given TF motif across biotypes, as determined by a hypergeometric test. Black
dots denote significant enrichment (FDR < 0.05). The ETV5 TF has two “best” motifs according to the
curated Lambert et al. [30]. TF list, and therefore, the average of these two motifs are plotted, with the
bootstrapped 95% confidence interval shown. c Relationship between cis effect sizes and the ETV1 motif,
where “maintained” are sequence pairs that both have the ETV1 motif, “disrupted in human” are pairs
where the ETV1 motif is present in mouse but not in human, and “disrupted in mouse” are pairs where the
ETV1 is present in human but not in mouse. A cis effect size > 0 indicates the mouse sequence has higher
activity whereas a cis effect size < 0 indicates the human sequence has higher activity. p values shown are
from a two-sided Mann-Whitney test. d Genome browser screenshot of an example locus showing a cis
effect. Only motifs that were found to explain ≥ 1% of the variance in MPRA activity are shown. e MPRA
activities for human sequence (orange) and mouse sequence (green) in hESCs and mESCs for the locus
shown in d. p values shown are the q values calculated by MPRAnalyze
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may reflect real biological effects, it may also be due to the fact that MPRAs are more

powered to detect activators over repressors [29, 32].

An example of a cis effect can be seen at the TSS for the human-specific lncRNA

BCAR3-AS1. In human, the strongest core promoter region of BCAR3-AS1 contains

many strong activating motifs, including several ETS motifs (Fig. 3d). The orthologous

region in the mouse, however, shows no CAGE activity and lacks these motifs, as there

is no orthologous lncRNA in the mouse (Fig. 3d). As expected, the pairwise alignment

score between the human BCAR3-AS1 TSS region and the region shown in Fig. 3d is

higher than the alignment score to the nearest mouse TSS (160.9 compared to 138.5),

indicating that our MPRA tiles are correctly aligned. In our MPRA, this pair shows a

significant cis effect: the human sequence is significantly more active than the ortholo-

gous mouse sequence in both hESCs and mESCs (Fig. 3e). Collectively, our results

show that cis effects are common—especially in regulatory element pairs that show ac-

tivity changes between species—and associated with disruption of specific TF motifs.

Trans effects are rare and highest in eRNA TSSs

After quantifying cis effects, we next sought to quantify trans effects. We defined trans

effects as the difference in MPRA activity driven by differences in cellular environment

alone and measured them by quantifying MPRA activity differences between hESCs

and mESCs while keeping the sequence constant (Fig. 4a). As with cis effects, human

and mouse regulatory elements showed higher trans effects than null differential con-

trols (Fig. 4b). Overall, 18% of the 1644 filtered regulatory element pairs with significant

activity showed a significant trans effect in the human sequence, the mouse sequence,

or both (Fig. 4c). Compared to cis effect sizes, however, trans effect sizes were much

lower. Trans effect sizes were also only moderately correlated across orthologous hu-

man and mouse sequences, highlighting the dominance of cis effects (Fig. 4d). In

addition, unlike cis effects, we found that within each biotype, trans effects were similar

between conserved and not conserved TSSs (Fig. 4d). While trans effect sizes were low

in general, we found that conserved eRNA TSSs had the highest trans effect sizes

(Fig. 4e). We speculate that this may reflect the fact that transcribed enhancers are

sometimes redundant—i.e., multiple enhancers regulate the same target gene to help

maintain gene expression strength [33]—and this may allow for eRNA TSSs to absorb

trans effects at minimal fitness costs.

A subset of differentially expressed TFs are associated with trans effects

We next focused on identifying the TFs associated with the observed trans effects. We

used a linear model to determine whether motif presence was significantly associated

with trans effect sizes (see the “Methods”). After adjusting for multiple hypothesis test-

ing, we found that 137 TFs (corresponding to 156 unique motifs) were significantly as-

sociated with trans effects. As motifs for different TFs can often be very similar to each

other [30] (e.g., all POU TFs share the consensus motif ATGCAAAT), we reasoned

that while we found many motifs to be significantly associated with trans effects, only a

subset of these TFs were likely driving the trans effect signal. To hone in on these, we

performed RNA sequencing on our hESCs and mESCs in order to find differentially

expressed genes between the two species. We limited our analysis to one-to-one
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orthologs between human and mouse and used a robust normalization technique (see the

“Methods” section, Additional file 1: Figure S11). Of the 1032 TFs known to be one-to-

one orthologs between human and mouse, 661 of these TFs were expressed in either

hESCs or mESCs and 428 were significantly differentially expressed (absolute log2 fold

change ≥ 1 and FDR < 0.01) between hESCs and mESCs (Fig. 5a; Additional file 4: Table

S6). Of the 137 TFs we found to be significantly associated with trans effects, 120 were

one-to-one orthologs detected in our RNA-seq data. Of these, 67 were differentially

expressed between hESCs and mESCs (Additional file 1: Figure S12). We reasoned that

TFs likely driving trans effects would match in the direction of their differential expres-

sion and the direction of their trans effects. Of the 67 aforementioned TFs, 44 (66%)

agreed in the directionality of their differential expression and trans effect enrichment

(Fig. 5b). These included both constitutively active TFs (e.g., SP1, ARNT) as well as

tissue-specific TFs (e.g., immune factor BACH2, developmental regulator POU2F3/

OCT11) (Fig. 5c). We speculate that a subset of the TFs enriched in trans effects that are

not differentially expressed may be contributing to trans effects through alternative mech-

anisms, such as evolutionary differences in TF-TF interactions.

An example of a trans effect associated with a differentially expressed TF can be seen

at the promoter of the uncharacterized mouse lncRNA AK082314 (Fig. 3d). This region

harbors 4 motifs for 4 TFs: STAT5A, ZNF329, ZNF101, and POU2F3. Of these 4 TFs,

Fig. 4 Eighteen percent of orthologous regulatory elements show significant trans effects. a Schematic
depicting the definition of a trans effect: MPRA activity differences between hESCs and mESCs while
keeping the sequence constant. b Volcano plot showing the trans effect sizes (log2 fold changes in cell
type for human sequences (left) and mouse sequences (right)) of regulatory sequences (black) and null
differential controls (gray). Horizontal line depicts an empirical FDR cutoff of 0.1, calculated using null
differential controls (see the “Methods” section). c Count of orthologous sequence pairs with significant
trans effects (either human or mouse). d Scatter plot showing the trans effects measured for human
sequences (x axis) and mouse sequences (y axis) for a given sequence pair, colored by whether they are
significant in human (orange), mouse (green), both (black), or neither (gray). Spearman’s rho and number of
sequences are shown. e Absolute trans effect sizes across biotypes, broken up into non-conserved TSSs
(blue) and conserved TSSs (gray). p values shown are from a two-sided Mann-Whitney test. f Same as d, but
this time comparing differences across biotypes. p values shown are from a two-sided Mann-Whitney test
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the only one that is differentially expressed between hESCs and mESCs is POU2F3,

which is expressed ~ 5-fold more highly in mESCs than hESCs. Consistent with this, in

our MPRA, the AK082314 promoter shows significantly higher activity in mESCs than

in hESCs. Collectively, our results show that we can pinpoint a subset of TFs that may

be driving trans effects between hESCs and mESCs.

Co-occurrence of cis and trans effects in opposite directions is rare at eRNA TSSs

Cis and trans effects can co-occur, and previous gene-based studies have shown an ex-

cess of cis and trans effects occurring in opposite directions [14, 16–18]. These so-

Fig. 5 Trans effects are associated with a subset of differentially expressed TFs. a Volcano plot showing the
differential expression of orthologous human and mouse TFs in hESCs and mESCs. Blue dots indicate
significantly differentially expressed TFs (FDR < 0.01 and absolute log2 fold change ≥ 1). The top 2 most
differentially expressed TFs in either direction are highlighted. b Plot showing the activating motifs
significantly associated with trans effects (FDR < 0.05) that are also differentially expressed between hESCs
and mESCs in the expected direction. Left: effect size associated with motif enrichment. Motifs that are
associated with sequences more highly expressed in mESCs are > 0, and those associated with sequences
more highly expressed in hESCs are < 0. Middle: log2 fold change in expression via RNA-seq. Right:
enrichment of a given TF motif across biotypes, as determined by a hypergeometric test. Black dots denote
significant enrichment (FDR < 0.05). c Relationship between trans effect sizes and the BACH2 and POU2F3
motifs. Trans effect sizes for sequences with motif and without motif. Trans effect sizes > 0 indicate higher
activity in mESCs while effect sizes < 0 indicate higher activity in mESCs. p values shown are from two-sided
Mann-Whitney tests. d Genome browser screenshot of an example locus showing a trans effect. Gray motifs
correspond to TFs that are not differentially expressed between hESCs and mESCS; the purple motif,
POU2F3, is differentially expressed. e MPRA activities in hESCs (orange) and mESCs (green) for the mouse
locus shown in d. p value shown is the q value calculated by MPRAnalyze
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called compensatory cis-trans effects help to stabilize gene expression over evolutionary

time. It is unclear, however, whether the observed compensation between cis and trans

effects occurs at the individual regulatory element level, or whether the compensation

occurs primarily across different regulatory elements that regulate the same target gene

[5]. We therefore sought to examine the extent of cis-trans compensation occurring

within individual regulatory elements.

Of the 794 regulatory element pairs with either a cis or a trans effect, we found that

159 (20%) showed both cis and trans effects (odds = 2.01, p = 8.6 × 10−8, Fisher’s exact

test). We then determined how often the co-occurrence of cis and trans effects was

compensatory (i.e., the two effects were in opposite directions—for example, the first

panel of Fig. 6a depicts a regulatory element pair with a cis effect showing that the

mouse sequence is more active, but a trans effect showing that the human environment

results in higher activity) or “directional” (i.e., the two effects were in the same direc-

tion—for example, the second panel of Fig. 6a depicts a regulatory element pair where

the cis and trans effects are both higher for the human sequence and cell type, respect-

ively). Consistent with previous results, we found that the majority of conserved mRNA

TSSs with both cis and trans effects showed compensatory cis-trans effects (58%,

Fig. 6b). Conserved lncRNA TSSs also showed an excess of cis-trans compensation

(57%, Fig. 6b). However, conserved eRNA TSSs showed an excess of directional cis-

trans effects (75%, Fig. 6b), as did non-conserved TSSs (aggregated 72%, Fig. 6b). Thus,

whereas mRNA and lncRNA TSS conservation is associated with cis-trans compensa-

tion, regulatory element turnover between human and mouse is associated with direc-

tional cis-trans effects. Moreover, eRNA TSSs are associated with directional effects,

regardless of conservation status.

We next wondered whether the regulatory elements that show cis-trans compensa-

tion show evidence of stabilized activity between species. To this end, we examined the

activity of orthologous regulatory element pairs in their native environments—human

sequences in hESCs and mouse sequences in mESCs. We reasoned that if compensa-

tory cis-trans effects stabilize regulatory element activity, we should see that regulatory

elements in their native environments show virtually equal MPRA activities, so we

quantified said “native effects” between orthologous regulatory element pairs (Fig. 6c,

d). Indeed, regulatory element pairs showing compensatory cis-trans effects showed

very low differences in native activity, whereas regulatory element pairs showing direc-

tional cis-trans effects showed large differences in native activity (Fig. 6e). Thus, quanti-

tative regulatory element activity levels are stabilized and destabilized by compensatory

and directional cis-trans effects, respectively.

Recent work has shown that genes regulated by larger numbers of transcribed en-

hancers tend to have more stable transcription throughout evolution [5]. We therefore

hypothesized that perhaps regulatory elements lacking redundancy (i.e., having fewer

nearby transcribed enhancers that regulate the same target gene) may show more evi-

dence of cis-trans compensation than regulatory elements with higher redundancy,

which show more inter-element compensation. To test this, for each regulatory elem-

ent in the MPRA, we first counted the number of FANTOM5 transcribed enhancers

that lied within the surrounding topologically associated domain (TAD) in either hESCs

or mESCs (Fig. 6f) [34]. We found that conserved elements showing directional cis-

trans effects were surrounded by higher numbers of transcribed enhancers (Fig. 6g).
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Fig. 6 (See legend on next page.)
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Next, using a modified version of Otsu’s thresholding method [35], for each element in

the MPRA, we partitioned its set of nearby transcribed enhancers into two classes:

those whose CAGE activities across 1828 FANTOM5 samples are correlated with the

element of interest in our MPRA (referred to as “redundant”) and those that are not

(Fig. 6h, see the “Methods” section). We found that only conserved regulatory elements

showing directional cis-trans effects were surrounded by more redundant transcribed

enhancers (Fig. 6i). This observation was consistent across all conserved biotypes (Fig-

ure S13) and was robust to down-sampling after removing duplicate elements in the

MPRA that happened to lie within the same TAD (Additional file 1: Figure S14).

These data show that conserved regulatory elements surrounded by higher numbers

of redundant transcribed enhancers tend to show less cis-trans compensation than

regulatory elements that are less redundant. Collectively, our results support a model

whereby compensation between cis and trans effects within an individual regulatory

element is more likely to occur at less redundant regulatory elements, perhaps because

in these regions, there is less opportunity for inter-element compensation.

Discussion
In this work, we sought to characterize the mode underlying the evolution of individual

regulatory elements that are orthologous between human and mouse by focusing on se-

quences driving expression of eRNAs, lncRNAs, and mRNAs. Overall, we find that

trans effects are less common and generally weaker than cis effects across all regulatory

elements. These results are consistent with the prevailing model where cis effects pref-

erentially accumulate between species, likely because trans effects result in more dele-

terious pleiotropic side effects that are selected against [7]. We also see differences

between biotypes. While cis effect sizes are generally uniform across conserved eRNA,

lncRNA, and mRNA TSSs (Fig. 2e), trans effects are highest in conserved eRNA TSSs

(Fig. 4e). This suggests that the evolutionary trajectory of conserved lncRNA TSSs is

more similar to that of conserved mRNA TSSs, whereas eRNA TSSs behave as a

(See figure on previous page.)
Fig. 6 Forty percent of regulatory pairs show evidence of compensation between cis and trans effects. a
Example of a compensatory cis-trans effect (left) and a directional cis-trans effect (right). Effect sizes > 0
indicate higher activity in the mouse sequence or cellular environment whereas effect sizes < 0 indicate
higher activity in the human sequence or cellular environment. b Percent of regulatory element pairs across
biotypes with directional cis/trans effects (blue) and compensatory cis/trans effects (gray), broken up by
conservation status. Only pairs with both cis and trans effects are considered, and the total number in each
group is shown. c Schematic showing overview of how native effects are defined. d Volcano plot of native
effect sizes for orthologous regulatory element pairs (black) compared to null differential controls (gray).
Horizontal line depicts an empirical FDR cutoff of 0.1, calculated using null differential controls (see the
“Methods” section). e Absolute native effect sizes for sequences showing compensatory cis-trans effects
compared to directional cis-trans effects. p value shown is from a one-sided Mann-Whitney test. f Schematic
showing the analysis outlined in g–i. Darker triangles depict TADs as defined by Dixon et al. [34]. Elements
in the MPRA include both gene and eRNA TSSs. g Number of transcribed enhancers (mean between
human and mouse tiles) within the same TAD as given elements in the MPRA, broken up by conservation
status. Only pairs with both cis and trans effects are considered, and the number in each group is shown. p
values shown are from a two-sided Mann-Whitney test. h Example of Otsu’s method applied to threshold
transcribed enhancers into those that are “redundant” (based on CAGE expression correlation) and those
that are not. In this example, 49 transcribed enhancers are higher than the threshold (dashed line) and are
therefore considered redundant with the element in the MPRA. i Number of redundant transcribed
enhancers within the same TAD (mean between human and mouse tiles) as defined by Otsu’s method,
broken up by conservation status. Only pairs with both cis and trans effects are considered, and the
number in each group is shown. p values shown are from a two-sided Mann-Whitney test
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separate group. Finally, the high resolution of our assay allowed us to identify 44 TFs

that are associated with trans effects. Future work aimed at understanding species-level

differences between human and mouse ESCs could use this set of 44 TFs as a starting

point.

Previous studies have found that when cis and trans effects co-occur at the same

gene, they are more often compensatory (i.e., act in different directions) than direc-

tional (i.e., act in the same direction) [14, 16–18] and are driven by stabilizing selection

on transcript levels. When assessing cis-trans contributions at regulatory elements ra-

ther than genes, we find that conserved gene promoters—both lncRNA and mRNA

TSSs—indeed show an excess of cis-trans compensation. Non-conserved gene pro-

moters show less cis-trans compensation. Similarly, a recent publication showed that

cis-trans compensation in TF binding was only enriched in conserved TF binding sites

[36]. Interestingly, we do not find excessive cis-trans compensation at eRNA TSSs. In

fact, both conserved and non-conserved eRNA TSSs show an enrichment of directional

cis-trans effects (Fig. 6b). Such enrichment of directional cis-trans effects at eRNA TSSs

may occur due to their higher redundancy compared to gene TSSs. Indeed, previous

work by the FANTOM5 consortium has shown that on average, genes only have ~ 2

TSSs but are regulated by ~ 5 transcribed enhancers [33]. Moreover, recent work has

shown that ensembles of redundant transcribed enhancers are often poorly conserved,

despite stable expression of their target gene throughout evolution [5]. Such data is

supportive of a model wherein regulatory elements can undergo evolutionary flux and

compensate for one another over time. Along these lines, here, we find that regulatory

elements with more redundant transcribed enhancers nearby are less likely to show

compensatory cis-trans effects (Fig. 6i). This is consistent with the idea of inter-

enhancer compensation. We propose that when regulatory elements are redundant—or

have many partner regulatory elements whose activities are correlated with it—inter-

enhancer compensation dominates. However, when regulatory elements are less redun-

dant, compensation between cis and trans effects can occur at the individual regulatory

element level (Fig. 7).

In this study, we sought to perform an unbiased assessment of cis and trans effects

between human and mouse across a variety of biotypes. To this end, we leveraged

MPRAs to systematically test the contribution of cis and trans effects to the evolution

of thousands of regulatory elements. An important advantage of using MPRAs rather

Fig. 7 Model of inter- vs. intra-enhancer compensation. Top: at a gene regulated by many redundant
enhancers, enhancers are free to show directional cis-trans effects because there is ample opportunity for
crosstalk between enhancers, leading to inter-enhancer compensation. Bottom: at a gene regulated by very
few enhancers, individual enhancers show compensatory cis-trans effects (intra-enhancer) because there is
less opportunity for crosstalk between enhancers
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than F1 hybrid models is that we can study the evolution of individual regulatory ele-

ments. Moreover, in MPRAs, cis and trans effects are assayed in separate experiments

rather than inferred from a single hybrid (Figs. 2a and 4a). Previous work has shown

that measuring cis and trans effects in the same experiment can bias the cis and trans

estimates, producing spurious negative correlations between cis and trans effects and a

spurious excess of cis-trans compensation [37]. In our study, we find no correlation be-

tween cis and trans effects (Additional file 1: Figure S15), and overall, we observe a

lower rate of compensatory cis-trans effects compared to other studies, which is mostly

driven by the lack of compensation at eRNA TSSs.

While the use of MPRAs is extremely powerful, it also has some limitations. For ex-

ample, we could only study a subset of all existing regulatory elements in the human

and mouse genomes. However, the sequences that we tested were carefully selected in

an unbiased manner so that they would be representative of regulatory elements

genome-wide. Another limitation of our approach is that we only assessed two species

in one cellular background (ESCs). Although gene expression between hESCs and

mESCs is similar in general, distinct differences between the two cell lines exist [38].

Moreover, whether the known differences between hESCs and mESCs are reflective of

differences in isolation and culture conditions [39] or underlying species-specific biol-

ogy remains controversial [40]. Future work is needed to assess whether similar pat-

terns exist in other tissues and the extent to which these patterns may affect

fundamental biological processes in a species-specific manner. Additionally, as MPRAs

measure the activities of regulatory elements via transiently transfected plasmids, future

work is needed to probe these elements in their native genomic context in which they

evolved. Nevertheless, our work has characterized the baseline to which information

from other tissues and other species can be added in order to gain a more complete

picture of the evolution of regulatory elements.

Conclusions
In summary, we find that the mode of evolution can differ at different classes of regula-

tory elements. Notably, we find that while compensation between cis and trans effects

is common at conserved mRNA and lncRNA TSSs, it is rare at eRNA TSSs. Our results

support the idea that compensation across enhancers—rather than within individual

enhancers—is a widespread feature of mammalian genomes [5]. Moreover, here, we

highlighted how cis and trans effects contribute differently to the transcription of

eRNAs compared to the transcription of protein-coding genes and lncRNAs. While re-

cent work shows evidence that eRNA transcription and enhancer target gene activation

are linked for a subset of enhancers [41, 42], future work should focus on studying

whether and how transcriptional changes at eRNAs will impact target gene expression

across species. Collectively, our results underscore the importance of examining the

role of individual regulatory elements in the evolution of gene expression.

Methods
TSS selection and biotype assignment

To assign accurate TSSs to genes, we intersected human and mouse GENCODE genes

[43] (v19 in human and vM13 in mouse) with FANTOM5 TSSs [26] in both species.
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Specifically, we found the closest FANTOM5 TSS (on the same strand) within ± 1000

bp of the GENCODE-annotated TSS. We classified any gene having a GENCODE

gene_type of “protein_coding” as an mRNA. We classified any gene included in the

GENCODE long_noncoding_RNAs gtf file as a lncRNA, provided it showed no evi-

dence of a conserved open reading frame (PhyloCSF [44] ORF score < 0 and branch

length < 0.1). We classified any FANTOM5-annotated “robust” enhancers [33] as

eRNAs and used both the sense and antisense TSS provided by FANTOM5. More de-

tails are available in Additional file 1: Supplemental Methods (TSS selection and bio-

type assignment section).

Sequence orthology assignment

To determine sequence orthologs, we first mapped human TSSs (hg19) to mouse

(mm9) and vice versa using the liftOver program with the parameter minMatch = 1.

We then reciprocally mapped the lifted-over TSSs back to their original species and re-

quired that they map to the exact same original TSS nucleotide. As FANTOM5 en-

hancers have two TSSs, we required that both TSSs reciprocally map in order to

consider an enhancer a sequence ortholog.

Conserved TSS assignment

To determine conserved vs. non-conserved TSSs, we intersected the lifted-over TSSs

with the maximum CAGE read coverage in that species (ctssTotalCounts bigwig files

downloaded from the FANTOM5 data hub [45]). We determined a TSS to be con-

served if the region immediately surrounding the TSS (± 50 bp) contained ≥ 10 max-

imum CAGE reads. As enhancers have two TSSs, if either of the TSSs intersected ≥ 10

maximum CAGE reads, we considered it conserved.

MPRA sequence pair selection

We required all sequence pairs in the MPRA library to have a either an annotated

CAGE peak in human or mouse that is expressed above background in either hESCs or

mESCs (≥ 0.024 normalized counts in hESCs and ≥ 0.022 normalized counts in mESCs,

Additional file 1: Figure S2). We included all lncRNAs (and their orthologous se-

quences) that met this threshold in the pool. We randomly selected the remaining bio-

types in roughly equal numbers, given that they met this expression threshold. As

eRNAs have two TSSs, we included both of its TSSs and both of its TSSs’ orthologous

sequences in the pool. Exact numbers of each biotype in the MPRA can be found in

Additional file 1: Table S1, and the list of regulatory elements included in the MPRA

can be found in Additional file 2: Table S2 and. More details can be found in Add-

itional file 1: Supplemental Methods (MPRA sequence pair selection section).

MPRA oligonucleotide design

Each oligonucleotide we designed was 200 bp long, containing 144 bp of regulatory se-

quence, an 11-bp barcode, and 45 bp of sequence necessary for cloning. For each TSS

selected above, we included two 144-bp tiles: one directly surrounding the TSS (− 114/

+ 30 bp) and one slightly upstream of the TSS (− 228/− 84 bp) (Additional file 1: Table

S3). We then generated 1622 random 144-bp sequences to serve as negative controls.
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We also tiled across the CMV promoter in 144-bp segments to create 4 positive control

tiles. We assigned TSS regions 13 barcodes, random sequences 3 barcodes, and CMV

sequences 60 barcodes (Additional file 1: Table S4). More details can be found in Add-

itional file 1: Supplemental Methods (MPRA oligonucleotide design section).

MPRA cloning, transfection, and sequencing

Twist Bioscience synthesized the oligo pool, which we then cloned as previously de-

scribed [23] into plasmids to generate a library of constructs where the regulatory se-

quence is upstream of a reporter gene (here, GFP) that is upstream of a unique

barcode. We assayed the initial representation of barcodes using high-throughput DNA

sequencing. We transfected these constructs into live cells and performed three bio-

logical replicates each in hESCs (HUES64 cells) and mESCs (derived from mouse blas-

tocysts [46]) corresponding to three consecutive passages (Additional file 1: Figure S3).

We isolated RNA and assayed barcode expression by high-throughput RNA sequen-

cing. More details can be found in Additional file 1: Supplemental Methods (MPRA

cloning, transfection, and sequencing section).

MPRA analysis

All code to reproduce analyses is available at https://github.com/kmattioli/2019__cis_

trans_MPRA as well as on Zenodo at https://doi.org/10.5281/zenodo.3862824.

Quantifying MPRA activity

After trimming and quality filtering DNA and RNA reads, we mapped exact matches to

known barcodes and 10 upstream constant nucleotides of GFP. We only measured se-

quences that had at least 50% of their barcodes represented at ≥ 10 counts in the input

DNA library. We used the R package MPRAnalyze [28] to quantify MPRA activities for

each sequence in each condition using the program’s “quantification” mode. We used

our randomly generated sequences as the background null distribution, as the majority

of these sequences should not induce transcription. More details can be found in Add-

itional file 1: Supplemental Methods (quantifying MPRA activities section).

Calculating differential MPRA activity

After quantifying MPRA activity and assigning 1 tile to each sequence pair (Add-

itional file 1: Figure S5), we used MPRAnalyze [28] to perform differential activity ana-

lyses using the program’s “comparison” mode. In comparison mode, as the null

hypothesis is not the lack of transcription but the lack of differential transcription, we

used down-sampled barcodes corresponding to identical CMV sequences as the back-

ground null distribution. In each of the 5 models (cis effects in hESCs, cis effects in

mESCs, trans effects of mouse sequences, trans effects of human sequences, and native

effects), we tested whether the full model was a better fit than an intercept-only model

using a likelihood ratio test. More details can be found in Additional file 1: Supplemen-

tal Methods (calculating differential MPRA activity section).

Mattioli et al. Genome Biology          (2020) 21:210 Page 17 of 22

https://github.com/kmattioli/2019__cis_trans_MPRA
https://github.com/kmattioli/2019__cis_trans_MPRA
https://doi.org/10.5281/zenodo.3862824


Calling significant differential effects

We considered sequences to have significant cis, trans, or native effects if the q value

calculated by MPRAnalyze was less than the q value that resulted in < 10% of negative

controls being called significant, which is effectively an empirical FDR of 0.1 (Add-

itional file 1: Figure S6). We also required effect sizes to be higher than the minimum

significant null differential control effect size (Additional file 1: Figure S7). We assigned

each sequence pair one cis and trans effect size: we used the maximum cis or trans ef-

fect size between the two models (hESCs/mESCs for cis and human/mouse for trans)

unless the effect was only significant in one model, in which case used the correspond-

ing significant effect size. More details can be found in Additional file 1: Supplemental

Methods (Calling significant differential effects section).

Motif mapping

We used a curated list of human TFs defined by Lambert et al. [30]. We then used the

CisBP [47] position-weight matrices designated by Lambert et al. to be the “best” motifs

for each of these TFs. In total, this list contained 1360 motifs corresponding to 1104

unique TFs. We mapped these motifs in both human sequences and mouse sequences

using the FIMO program from the MEME suite with default parameters [48].

Finding motifs predictive of MPRA activity

For each motif, we fit a linear model to mean MPRA activity across all sequences as

follows:

mean MPRA activityð Þ � GC content þ CpG content þmotif present

and determined whether the binary motif present indicator explained significantly more

of the variance than a reduced model without the indicator using a likelihood ratio test

(Additional file 3: Table S5). We used the Python statsmodels [49] package to run all

linear models. More details can be found in Additional file 1: Supplemental Methods

(Finding motifs predictive of MPRA activity section).

Finding motifs associated with cis and trans effects

For each motif, we fit a linear model to absolute cis effect sizes across all sequence pairs

as follows:

cis effect sizej j � mean GCð Þ þmean CpGð Þ þ Δ GCð Þj j þ Δ CpGð Þj j þmotif disrupted

and determined whether the motif disrupted parameter (indicating whether a motif was

present in only one of the two paired sequences) was significant (FDR < 0.05).

For each motif, we fit a linear model to trans effect sizes across all sequences as follows:

trans effect size � GC þ CpG þmotif present

and determined whether the motif present parameter was significant (FDR < 0.05). More

details available in Additional file 1: Supplemental Methods (Finding motifs associated

with cis and trans effects sections).
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RNA-seq of hESCs and mESCs

We sequenced both untransfected and transfected hESCs and mESCs. We extracted

RNA from TRIzol using standard protocols and used the Illumina TruSeq kit (non-

stranded) to create polyA+ libraries from total RNA. We measured library concentra-

tion using the Qubit dsDNA HS Assay kit (Thermo Fisher Scientific), and ran all of the

libraries on a Bioanalyzer (Agilent) to assess purity and fragment size, and sequenced

on a HiSeq 2500 at Harvard University’s Bauer Sequencing Core (75 bp paired end).

RNA-seq analysis

We aligned reads to either hg19 or mm10 using Hisat2 [50]. We used FeatureCounts

to count reads aligning to genes in either GENCODE v25 (human) or GENCODE

vM13 (mouse) [51]. We downloaded orthologous genes between human and mouse

from Ensembl (version 96) [52] and removed any orthologs classified as “many-to-

many.” We normalized gene expression values using the trimmed mean of M values

(TMM) normalization method in edgeR [53], similar to previous cross-species compari-

sons [54, 55]. Briefly, TMM normalization re-scales samples relative to each other

under the assumption that most genes are not differentially expressed [53]. This as-

sumption is valid when comparing human and mouse ESC expression, because even

between more distant mammals—such as humans and opossums—gene expression is

tightly correlated [56]. To find differentially expressed genes, we used the edgeR-limma

pipeline [53] (filtering out any genes with normalized cpm < 1) to model paired samples

(transfected and untransfected) and control for transfection status. For plotting pur-

poses, we quantified gene expression in tpm units in each transfected sample using

DESeq2 [57].

Defining redundant enhancers

To find redundant enhancers, we first downloaded the CAGE-seq expression values for

all enhancer and promoter TSSs from the FANTOM5 portal [45]. For every element in

the MPRA, we then found all enhancers within the same TAD defined in either hESCs

or mESCs by Dixon et al. [34]. We then calculated the Pearson correlation coefficient

of CAGE-seq expression (log-transformed) between each element in the MPRA and its

TAD-surrounding enhancers. We then used a modified version of Otsu’s method [35]

to threshold enhancers at the appropriate correlation cutoff. Otsu’s method is typically

used to automatically threshold bimodal grayscale images into “black” pixels and

“white” pixels by creating a histogram of pixel values which range from 1 to 255. We

created an analogous histogram of correlation coefficients using 100 bins between 0

and 1 (the range of correlation coefficients). We considered the number of “redundant”

enhancers to be the number of TAD-surrounding enhancers above the Otsu cutoff.
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