Skip to main content
Log in

Anion-site-modulated thermoelectric properties in Ge2Sb2Te5-based compounds

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The amalgamation of multi-subjects often elicits novel materials, new concepts and unexpected applications. Recently, Ge2Sb2Te5, as the most established phase-change material, has been found to exhibit decent thermoelectric performance in its stable, hexagonal phase. The challenge for higher figure of merit (zT) values lies in reducing the hole carrier concentration and enhancing the Seebeck coefficient, which, however, can be hardly realized by conventional doping. Here in this work, we report that the electrical properties of Ge2Sb2Te5 can be readily optimized by anion-site modulation. Specifically, Se/S substitution for Te induces stronger and more ionic bonding, lowering the hole density. Furthermore, an increase in electronic density of state is introduced by Se substitution, contributing to a large increase in Seebeck coefficient. Combined with the reduced thermal conductivity, maximum zT values above 0.7 at 800 K have been achieved in Se/S-alloyed materials, which is ~ 30% higher than that in the pristine Ge2Sb2Te5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater. 2008;7(2):105.

    Article  CAS  Google Scholar 

  2. He J, Tritt TM. Advances in thermoelectric materials research: looking back and moving forward. Science. 2017;357(6358):aak9997.

    Article  Google Scholar 

  3. Goldsmid HJ. Introduction to Thermoelectricity. Berlin: Springer; 2010. 1.

    Book  Google Scholar 

  4. Nolas GS, Sharp J, Goldsmid J. Thermoelectrics: Basic Principles and New Materials Developments. New York: Springer; 2013. 1.

    Google Scholar 

  5. Shi X, Chen LD. Thermoelectric materials step up. Nat Mater. 2016;15(7):691.

    Article  CAS  Google Scholar 

  6. Zhu TJ, Liu YT, Fu CG, Heremans JP, Snyder JG, Zhao XB. Compromise and synergy in high-efficiency thermoelectric materials. Adv Mater. 2017;29(14):1605884.

    Article  Google Scholar 

  7. Zeier WG, Zevalkink A, Gibbs ZM, Hautier G, Kanatzidis MG, Snyder GJ. Thinking like a chemist: intuition in thermoelectric materials. Angew Chem Int Ed. 2016;55(24):6826.

    Article  CAS  Google Scholar 

  8. Tan GJ, Zhao LD, Kanatzidis MG. Rationally designing high-performance bulk thermoelectric materials. Chem Rev. 2016;116(19):12123.

    Article  CAS  Google Scholar 

  9. Siegrist T, Jost P, Volker H, Woda M, Merkelbach P, Schlockermann C, Wuttig M. Disorder-induced localization in crystalline phase-change materials. Nat Mater. 2011;10(3):202.

    Article  CAS  Google Scholar 

  10. Lencer D, Salinga M, Wuttig M. Design rules for phase-change materials in data storage applications. Adv Mater. 2011;23(18):2030.

    Article  CAS  Google Scholar 

  11. Yan F, Zhu TJ, Zhao XB, Dong SR. Microstructures and thermoelectric properties of GeSbTe based layered compounds. Appl Phys A. 2007;88(2):425.

    Article  CAS  Google Scholar 

  12. Wei TR, Hu P, Chen HY, Zhao KP, Qiu PF, Shi X, Chen LD. Quasi-two-dimensional GeSbTe compounds as promising thermoelectric materials with anisotropic transport properties. Appl Phys Lett. 2019;114(5):053903.

    Article  Google Scholar 

  13. Sahu S, Manivannan A, Deshpande UP. A systematic evolution of optical band gap and local ordering in Ge1Sb2Te4 and Ge2Sb2Te5 materials revealed by in situ optical spectroscopy. J Phys D Appl Phys. 2018;51(37):375104.

    Article  Google Scholar 

  14. Reifenberg JP, Panzer MA, Kim S, Gibby AM, Zhang Y, Wong S, Wong SP, Pop E, Goodson KE. Thickness and stoichiometry dependence of the thermal conductivity of GeSbTe films. Appl Phys Lett. 2007;91(11):111904.

    Article  Google Scholar 

  15. Hu P, Wei TR, Qiu PF, Cao Y, Yang J, Shi X, Chen LD. Largely enhanced Seebeck coefficient and thermoelectric performance by the distortion of electronic density of states in Ge2Sb2Te5. ACS Appl Mater Interfaces. 2019;11(37):34046.

    Article  CAS  Google Scholar 

  16. Sun ZM, Pan YC, Zhou J, Sa BS, Ahuja R. Origin of p-type conductivity in layered nGeTe·mSb2Te3 chalcogenide semiconductors. Phys Rev B. 2011;83(11):113201.

    Article  Google Scholar 

  17. Zhao KP, Blichfeld AB, Chen HY, Song QF, Zhang TS, Zhu CX, Ren DD, Hanus R, Qiu PF, Iversen BB, Xu FF, Snyder GJ, Shi X, Chen LD. Enhanced thermoelectric performance through tuning bonding energy in Cu2Se1−xSx liquid-like materials. Chem Mater. 2017;29(15):6367.

    Article  CAS  Google Scholar 

  18. Lin CC, Lydia R, Yun JH, Lee HS, Rhyee JS. Extremely low lattice thermal conductivity and point defect scattering of phonons in Ag-doped (SnSe)1−x(SnS)x compounds. Chem Mater. 2017;29(12):5344.

    Article  CAS  Google Scholar 

  19. Wojciechowski KT, Schmidt M. Structural and thermoelectric properties of AgSbTe2-AgSbSe2 pseudobinary system. Phys Rev B. 2009;79(18):184202.

    Article  Google Scholar 

  20. Wei TR, Guan MJ, Yu JJ, Zhu TJ, Chen LD, Shi X. How to measure thermoelectric properties reliably. Joule. 2018;2(11):2183.

    Article  Google Scholar 

  21. Blochl PE. Projector augmented-wave method. Phys Rev B Condens Matter. 1994;50(24):17953.

    Article  CAS  Google Scholar 

  22. Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965;140(4A):A1133.

    Article  Google Scholar 

  23. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865.

    Article  CAS  Google Scholar 

  24. Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem. 2006;27(15):1787.

    Article  CAS  Google Scholar 

  25. Kooi BJ, De Hosson JTM. Electron diffraction and high-resolution transmission electron microscopy of the high temperature crystal structures of GexSb2Te3+x (x = 1,2,3) phase change material. J Appl Phys. 2002;92(7):3584.

    Article  CAS  Google Scholar 

  26. Matsunaga T, Yamada N, Kubota Y. Structures of stable and metastable Ge2Sb2Te5, an intermetallic compound in GeTe-Sb2Te3 pseudobinary systems. Acta Crystallogr Sect B Struct Sci. 2004;60(6):685.

    Article  Google Scholar 

  27. Wang SY, Yang J, Toll T, Yang JH, Zhang WQ, Tang XF. Conductivity-limiting bipolar thermal conductivity in semiconductors. Sci Rep. 2015;5(1):10136.

    Article  CAS  Google Scholar 

  28. Zhao KP, Blichfeld AB, Eikeland E, Qiu PF, Ren DD, Iversen BB, Shi X, Chen LD. Extremely low thermal conductivity and high thermoelectric performance in liquid-like Cu2Se1-xSx polymorphic materials. J Mater Chem A. 2017;5(34):18148.

    Article  CAS  Google Scholar 

  29. Chen R, Qiu PF, Jiang BB, Hu P, Zhang YM, Yang J, Ren DD, Shi X, Chen LD. Significantly optimized thermoelectric properties in high-symmetry cubic Cu7PSe6 compounds via entropy engineering. J Mater Chem A. 2018;6(15):6493.

    Article  CAS  Google Scholar 

  30. May AF, Snyder GJ. Introduction to modeling thermoelectric transport at high temperatures. Materials, preparation, and characterization in thermoelectrics. Boca Raton: CRC Press; 2017.

    Google Scholar 

  31. Pei YZ, Shi XY, LaLonde A, Wang H, Chen LD, Snyder GJ. Convergence of electronic bands for high performance bulk thermoelectrics. Nature. 2011;473(7345):66.

    Article  CAS  Google Scholar 

  32. Liu W, Tan XJ, Yin K, Liu HJ, Tang XF, Shi J, Zhang QJ, Uher C. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1-xSnx solid solutions. Phys Rev Lett. 2012;108(16):166601.

    Article  Google Scholar 

  33. Hu C, Ni P, Zhan L, Zhao HJ, He J, Tritt TM, Huang JS, Sumpter BG. Theoretical investigations of electrical transport properties in CoSb3 skutterudites under hydrostatic loadings. Rare Met. 2018;37(4):316.

    Article  CAS  Google Scholar 

  34. Liu R, Tan X, Liu YC, Ren GK, Lan JL, Zhou ZF, Nan CW, Lin YH. BiCuSeO as state-of-the-art thermoelectric materials for energy conversion: from thin films to bulks. Rare Met. 2018;37(4):259.

    Article  CAS  Google Scholar 

  35. Mao J, Shuai J, Song SW, Wu YX, Dally R, Zhou JW, Liu ZH, Sun JF, Zhang QY, Cruz CD, Wilson S, Pei YZ, Singh DJ, Chen G, Chu CW, Ren ZF. Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg3Sb2-based materials. Proc Natl Acad Sci USA. 2017;114(40):10548.

    Article  CAS  Google Scholar 

  36. Wang SY, Yang J, Wu LH, Wei P, Zhang WQ, Yang JH. On intensifying carrier impurity scattering to enhance thermoelectric performance in Cr-doped CeyCo4Sb12. Adv Funct Mater. 2015;25(42):6660.

    Article  CAS  Google Scholar 

  37. Du WB, Gu YY, Wang K, Yang XX, Xing JJ, Guo K, Luo J, Zhao JT. Effective mass enhancement and thermal conductivity reduction for improving the thermoelectric properties of pseudo-binary Ge2Sb2Te5. Ann Phys. 2019. https://doi.org/10.1002/andp.201900390.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Nos. 2017YFA0700705 and 2018YFB0703600), the National Natural Science Foundation of China (Nos. 51625205, 91963208 and 51802333) and Shanghai Sailing Program (No. 18YF1426700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, P., Wei, TR., Huang, SJ. et al. Anion-site-modulated thermoelectric properties in Ge2Sb2Te5-based compounds. Rare Met. 39, 1127–1133 (2020). https://doi.org/10.1007/s12598-020-01476-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01476-4

Keywords

Navigation