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Abstract Background Scientific publications are meant to exchange knowledge among
researchers but the inability to properly reproduce computational experiments limits
the quality of scientific research. Furthermore, bibliography shows that irreproducible
preclinical research exceeds 50%, which produces a huge waste of resources on
nonprofitable research at Life Sciences field. As a consequence, scientific reproducibili-
ty is being fostered to promote Open Science through open databases and software
tools that are typically deployed on existing computational resources. However, some
computational experiments require complex virtual infrastructures, such as elastic
clusters of PCs, that can be dynamically provided frommultiple clouds. Obtaining these
infrastructures requires not only an infrastructure provider, but also advanced knowl-
edge in the cloud computing field.
Objectives The main aim of this paper is to improve reproducibility in life sciences to
produce better and more cost-effective research. For that purpose, our intention is to
simplify the infrastructure usage and deployment for researchers.
Methods This paper introduces Advanced Platform for Reproducible Infrastructures
in the Cloud via Open Tools (APRICOT), an open source extension for Jupyter to deploy
deterministic virtual infrastructures across multiclouds for reproducible scientific
computational experiments. To exemplify its utilization and how APRICOT can improve
the reproduction of experiments with complex computation requirements, two
examples in the field of life sciences are provided. All requirements to reproduce
both experiments are disclosed within APRICOT and, therefore, can be reproduced by
the users.
Results To show the capabilities of APRICOT, we have processed a real magnetic
resonance image to accurately characterize a prostate cancer using a Message Passing
Interface cluster deployed automatically with APRICOT. In addition, the second exam-
ple shows how APRICOT scales the deployed infrastructure, according to the workload,
using a batch cluster. This example consists of a multiparametric study of a positron
emission tomography image reconstruction.
Conclusion APRICOT’s benefits are the integration of specific infrastructure deploy-
ment, the management and usage for Open Science, making experiments that involve
specific computational infrastructures reproducible. All the experiment steps and
details can be documented at the same Jupyter notebook which includes infrastructure
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Introduction

Scientific publications are intended to share knowledge to be
used by other researchers on their experiments. However,
most publications donot provide thenecessary information to
verify and reproduce its results.1 Moreover, Freedman et al2

claims that “the cumulative prevalence of irreproducible
preclinical research exceeds 50%,” and Baker3 shows that
more than 90% of researchers consider that a reproducibility
crisis exists in scientificpublications.Nonreproducible science
specially affects Life Sciences research, since these results
should not be reused unless they can be trusted to avoid
consequences on people’s health. This results in a huge waste
of resources on nonprofitable research.2

As a result, scientific reproducibility has lately become a
topic of interest for researchers and institutions which defend
an open and reproducible science model. This aims at solving
two old problems in scientific research: nonreproducible
investigation and fraud. With that purpose, the European
Commission introduced Open Science to “promote a new
approach to the scientific process based on cooperative
work and new ways of diffusing knowledge by using digital
technologies and new collaborative tools.”4 In fact, European
institutionsconsider thatOpenScience is anecessary factor for
future research programs. In 2015, the EU Commission set

three main goals for future research in the EU: Open Science,
Open Innovation, and Open to the world.4,5 To promote these
goals, the EU is promoting the European Open Science Cloud
(EOSC), which “aims to create a trusted environment for
hosting and processing research data to support EU science
in itsglobal leading role.”6Open Science is not only a European
objective, but also for institutions around the world. For
example, in the United States, several institutions promote
initiatives for Open Science, like the “Berkeley Initiative for
Transparency in the Social Sciences,”7 the Public Library of
Science,8 and the “Center for Open Science.”9

We focus in this contribution on the reproducibility of
computational experiments, where the two basic compo-
nents required are data storage and computing infrastructure.
The former, data storage, provides a place to store the
experiment input, intermediate, and resulting data, analysis
code and software, documentation, etc. The latter, comput-
ing infrastructure, is where calculations are performed
according to the software and hardware requirements. This
requires access to some local or external storage to stage in
the required data for experimentation.

A general computational experiment workflow is repre-
sented in ►Fig. 1, where the input data production can be
experimentally measured or simulated data, configuration
values for simulations, input data files, etc. Then, the data

specifications, data storage, experimentation execution, results gathering, and infra-
structure termination. Thus, distributing the experimentation notebook and needed
data should be enough to reproduce the experiment.

Fig. 1 Computational experimentation components.
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storage can be provided not only by local storage but also by
public cloud providers or open source storage platforms, such
as Onedata.10 To be able to reproduce an experiment, the
required input data, software/code, and documentation must
be accessible to other researchers via some external and
persistent storage. Finally, it is at the Computational infrastruc-
ture where the input data are processed to produce the final
result. This infrastructure largely depends on the computa-
tionalexperimentand, therefore, it canbecomposedofa single
computer, a cluster of computing nodes, a set of clusters at
different cloud providers, etc. In any case, the computational
infrastructure requires adatastorage toget inputdataandsave
both intermediate data, if needed, and the final results.

Also, the infrastructure requires some configured compu-
tational environment to perform the analysis, e.g., specific
software. Some examples of research experiments in the field
of Life Sciences following thispatternaredescribed in thework
by Chillarón et al,11 which takes computed tomography (CT)
measured data to construct a medical image with few projec-
tions. Other examples include the work by Reader et al,12

which presents an algorithm to reconstruct positron emission
tomography (PET) images with only one iteration over mea-
sured PET data and in the work by Giménez-Alventosa et al,13

that uses radioactive sources specifications as input and
perform brachytherapy simulations to discuss the error pro-
duced by approximations used at cancer treatment planning.

To achieve scientific reproducibility not only thedata should
adopt the FAIR principles (findable, accessible, interoperable,
and reusable)14 but also the software involved should follow
similar principles. Software should be available in a public
online repository that can be reached bymeans of aweb search
engine (Findable). It should be available under an open, nonre-
strictive, software license to allow free adoption andmodifica-
tion to fit different purposes (accessible). It should provide
application programming interfaces and command line inter-
faces using best practices widely established in the software
development communities to ease the integration among
multiple software services (interoperable). It should have a
properdocumentation thatallowsnewcomerstostart adopting
the software and find areas of applications that perhaps even
the original developer team had never thought of (reusable).
The computational requirements to reproduce the experiment
should also follow the same principles for scientists to self-
deploy them to easily carry out the executions on a similar
execution environment to guarantee a successful execution.

Even though some computational experiments may run
on a regular computer, others may require a significant
computing effort or specific customization, thus requiring
a complex infrastructure. This is usually provisioned from
private or public cloud providers. However, the deployment
and configuration can involve a significant effort by the
researcher and advanced technical knowledge. This increases
the difficulty not only for researchers to reproduce published
experiments, but also for reviewers, who cannot afford to
spend the required time to reproduce thewhole experiment.

Recently, many new platforms have been created to
promote and facilitate the adoption of Open Science for
researchers. These platforms offer different services such

as cloud infrastructure to execute code in certain program-
ming languages,15,16 article journals and data reposito-
ries,10,17,18 and shareable programming environments.19,20

However, a lackof functionality stands out in these platforms
related to the dynamic computational infrastructure deploy-
ment. Some experiments involve significant computational
effort with specific distributed infrastructures or accelerated
hardware devices, such as Message Passing Interface (MPI)
clusters or GPGPUs. Current open science platforms cannot
be used to reproduce these kind of experiments without a
significant effort by the researcher and advanced technical
knowledge such as infrastructure provisioning from multi-
clouds, understood as independent infrastructure deploy-
ments at different cloud providers, interconnection of nodes,
and configuration of applications, job submission, etc.

To address this lack of functionality, this paper introduces
APRICOT (Advanced Platform for Reproducible Infrastruc-
tures in the Cloud via Open Tools), an extension for Jupyter19

notebooks to automatize the deployment, usage, and life-
cycle management of virtualized computational infrastruc-
tures in multiclouds. We selected Jupyter because of its
flexibility, ease of usage, capacity of module integration,
and open source philosophy. APRICOT supports automatic
deployment on multiclouds via a Jupyter plugin that uses
both EC3 (elastic cloud compute cluster)21 and IM (infra-
structuremanager)22 to automatically provide and configure
resources from multiple cloud back ends.

Objectives

Themain aim of this paper is to improve reproducibility in the
life sciences field to enable the production of better and more
cost-effective research. For that purpose, our intention is to
facilitate the infrastructureusageanddeployment for research-
ers. Aimed at simplifying the researcher’s technical effort,
APRICOT offers a set of predefined cluster topologies such as
“batch-cluster” or “MPI cluster.” These are automatically con-
figured with common utilities like a local resource manage-
ment system (LRMS), shared home via network file system
(NFS), a set of compilers, etc. and specific ones such as MPI
libraries. Thus, researchers only need to specify their (tempo-
rary) credentials for theprovisionof resources fromacloud, the
infrastructure topology, the number of nodes, and their char-
acteristics (numberofcentral processingunits [CPUs],memory,
etc.). Datamanagement can be achieved via Secure SHell (SSH)
and it also integrated with Onedata10 to achieve on-demand
caching and access to distributed datasets across providers.

APRICOTcombines thecomputationalnarrativeprovidedby
Jupyter notebooks with the dynamic provision and integrated
usage of virtual infrastructure from a cloud platform. This
allows to create executable papers for reproducible science
for research that involves specific computing requirements,
which exceed those available in the researcher’s computer.

Methods

This section has been divided in two major parts. First, we
will discuss the previous-related work on reproducible
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science tomotivate the need of our application. Then, wewill
discuss APRICOT’s architecture and how researchers can
adopt this tool to simplify and make their computational
experiments reproducible.

Related Work
Themain tools for reproducible science can be divided in two
big blocks: those focusing on data storage and those focusing
on data processing. The latter is not restricted to provide a
physical infrastructure where the application is run but also
include tools that provide common and shareable computing
environments.

On one hand, storage-oriented tools focus on the persis-
tence of different kinds of elements for reproducible science
where the researcher can upload the required data to repro-
duce a published experimentation. Also,we canfindplatforms
to upload scientific research papers, open source code, etc. On
the other hand, processing platforms provide physical infra-
structure for data processing, platforms with implemented
open source algorithms to be used by researchers, workflow
pattern tools, and analysis workflows for specific problems,
such as image recognition, etc. As we will see, most of them
focus on creating easy-to-use shareable computational envi-
ronments to promote reproducibility. Few of them provide
simplified methods to deploy and configure virtualized com-
puting infrastructure.

We can find in the literature code repositories for scientific
reproducibility such asRunMyCode,15anonline code, anddata
repository associatedwith scientific publications (articles and
working papers). In this regard, the open science framework23

helps sharing across institutions documents, materials, and
data. Also, SEEK24 is a web-based catalog for sharing scientific
research datasets, models or simulations, processes, and re-
search outcomes. These platforms do not provide the ability to
remotely execute the code but rather to be downloaded for
local execution. This prevents applications with specific com-
puting requirements to be executed.

Scientific journals are starting to support reproducibility
of results to some extent. This is the case of image processing
on line (IPOL),17 a research journal of image processing and
image analysis. In IPOL, each article contains a description of
the published algorithm and its source code, an online
demonstration and a set of reproducible experiments. Text
and source code are peer-reviewed, ensuring articles are
truly reproducible. However, this is restricted to the topic of
the journal: image processing.

There also exist open source tools such as the Galaxy
project,20 an open sourceworkflowengine aimed at creating
rapid and reproducible analyses that runs on an underlying
infrastructure and can be used via a web browser. These
workflows can be shared as documented experiments. This
tool provides a common environment for researchers to
work, facilitating software configuration and infrastructure
usage. Another platformwith similar features is the reusable
and reproducible research data analysis platform called
REANA.25 REANA provides an environment to structure
research input data and code using containerized environ-
ments and computational workflows allowing to instantiate

and run the whole experiment on remote compute clouds,
facilitating infrastructure usage. Experiments structured to
be used with REANA can be easily reusable with the same
input data, parameters, and code or changing them to obtain
different results. These characteristics make REANA a suit-
able environment for Open Science in computational experi-
ments. However, the infrastructure where Galaxy or REANA
is installed must be deployed and configured in advance.

Jupyter19 is an open source web application that allows
users to create and share documents that contain live code,
equations, visualizations, and narrative text. Documents,
named “notebooks,” can be easily shared and are used to
create and share a complete experimentation workflow.
JupyterHub provides multitenant access to Jupyter note-
books, introducing the ability to spawn notebooks, for ex-
ample, on a Kubernetes cluster or on public cloud platforms.
However, this automated provision of resources is limited to
the execution of the Jupyter notebook. The provision of
additional complex virtual infrastructures to support the
execution of the computational experiment described in the
notebook is responsibility of the user.

The aforementioned tools require external computing in-
frastructure to run the code. To alleviate this need, there exists
completelymanaged reproducibility platforms, suchasCodeO-
cean16 a cloud-based computational platformwhere research-
ers can define a compute capsule that includes code and data
together with the specification of a computational environ-
mentbasedonDocker.Users can execute all thepublished code
without installing software on local computers. However, the
free tier is limited and a subscription is required to unlock
additional features.ManagedplatformssuchasStencila26allow
researchers to create interactive, fully reproducible documents
using familiar visual interfaces based on spreadsheets, thus
restricting its applicability to cell-based calculations.

Existing reproducible science tools cover mainly the
storage needs to provide easy and shareable environments
for open science, as is the case of Jupyter notebooks or Galaxy
instances. However, they do not provide a simplifiedmethod
to deploy, configure, and use a personalized computing
infrastructure from these environments. Even though some
platforms like CodeOcean offer the possibility to execute
code on a per-subscription basis, this approach is unfeasible
for all kind of computational experiments and requires the
users to lock-in to the platform. As mentioned before, some
experiments involve significant computational effort and
specific infrastructure characteristics, usually provided
from private and public cloud providers, which require
researchers to deploy a specific infrastructure and software
configuration. Although there are tools to simplify the infra-
structure deployment on multicloud platforms, they are not
integrated in easy-to-use environments to encourage the use
of these kind of infrastructures for reproducible science.

To address this issue we introduce APRICOT, an open
source platform that extends Jupyter notebooks with the
ability of self-provision of customized virtual computing
infrastructure from multiclouds to execute the applications
resulting from the simulation to be reproduced. We selected
Jupyter notebooks as the base tool because of its flexibility,
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usage facility, capacity of module integration, and open
source philosophy. This allows to combine in a single Jupyter
notebook the description of the experiment with the ability
of the user for the self-provision of customized complex
computing infrastructure required to reproduce the results
of the computational experiment.

APRICOT Architecture
APRICOTa is an open source extension to support customized
virtual infrastructure deployment and usage from Jupyter
notebooks. It allows multicloud infrastructure provisioning
using a wizard-like graphical user interface (GUI) that guides
the user step by step through the deployment process. For that
purpose, APRICOT integrates several already existing open
source components, which are summarized in ►Fig. 2. Each
one performs a specific task to facilitate the infrastructure
deployment on cloud providers. However, their standalone
usage still requires advanced computational knowledge.
Therefore, APRICOT has been designed to handle the commu-
nication between all these components and the user, automa-
tizing the infrastructure deployment and fostering its usage
among nonspecialized users. Next, we will briefly explain
these components and their specific role:

• IM22 is an open source tool that deploys complex and
customized virtual infrastructures on Infrastructure as a
Service (IaaS) cloud deployments, either public (such as
Amazon Web Services [AWS], Google Cloud, or Microsoft
Azure) or on-premises (such as OpenNebula and Open-
Stack). It automates the deployment, configuration, soft-
ware installation, monitoring, and update of virtual
infrastructures.

• CLUES (CLUster elasticity system)27 is an elasticity system
for high performance computing clusters and cloud infra-
structures. Its main function is to deploy cluster nodes on

the cloudwhen they are needed via dynamic provisioning
and automated integration in the LRMS and, conversely, to
terminate them when they have been idle longer than a
certain time.

• EC321 is a tool to create elastic virtual clusters on top of
IaaS cloud providers through the IM. To configure infra-
structures, EC3 uses an infrastructure description lan-
guage named RADL (Resource & Application Description
Language) and, therefore, RADL files will be used by
APRICOT. Multiple independent configuration files can
be used in a single infrastructure deployment to create a
complex configuration recipe.

• Onedata10 is a global data access solution for science that
provides access to distributed storage of scientific data-
sets, with automated caching and the ability to use
multiple storage back ends. It can be used to store and
share the data required to reproduce the experiments.

APRICOT’s architecture aligns with the vision of the EOSC
on the adoption of open source tools that can interoperate
with the federated cloud infrastructures such as the one
managed by EGI (European Grid Infrastructure). To this aim,
both the IM and EC3 components were adopted, which are
already integrated in the EOSCMarketplace28 and are able to
provide resources from the EGI Federated Cloud.28

As shown in ►Fig. 2, user interaction is managed via
Jupyter notebooks. Then, the infrastructure deployment uses
EC321 and IM22 to support automated provision of computa-
tional resources frommulticlouds. APRICOT provides its own
Jupyter “magics” to manage the deployed infrastructure via
the EC3 client, to perform data upload and download, to
execute tasks, etc. These can be used in any kernel with
“magic” commands support, thus being compatible with
many programming languages in the Jupyter environment.

Concerning cluster elasticity, CLUES is automatically
installed at the deployed virtual clusters to provide additional
nodes when needed. Finally, Onedata are used as the default
storage provider relying on an existing Onedata provider, such
as those available to support the EGI Data Hubb. However, the
user can adopt any external storage platform by installing the
required client in the cluster front-end to upload and download
data.

To develop a reproducible computational experiment
using APRICOT, a researcher documents in a Jupyter note-
book how the experimentation will be executed and how to
obtain or generate the required data. Then, the researcher
specifies the computing infrastructure requirements and
topology, from a set of predefined topologies, which can be
extended via additional RADL documents. Finally, all the
commands to execute the experimentation should be docu-
mented and executed in the Jupyter notebook. To allow this
requirement, APRICOT implements a set of IPython magic
functions so that the executed instructions are actually
performed in the deployed infrastructures, not in the execu-
tion environment provided by the Jupyter notebook.

Fig. 2 Open source components used by APRICOT. APRICOT, Ad-
vanced Platform for Reproducible Infrastructures in the Cloud via
Open Tools.

a APRICOT - https://github.com/grycap/apricot]. b EGI Data Hub - https://datahub.egi.eu.
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Therefore, APRICOT is composed of an open source Jupyter
notebookextension,used todeploy infrastructures, andasetof
IPython magic functions for infrastructure use and manage-
ment. The complete architecture schema is shown in ►Fig. 3.

First, APRICOT includes a GUI to guide the user on the
infrastructure deployment process (►Fig. 4 shows the deploy-
ment steps and ►Fig. 5 shows screenshots of the GUI). The
configuration includes the cluster topology, cloud provider,
number of workers, etc. At the end of this step, the APRICOT
pluginwill instruct the EC3 client, using BashMagic functionsc

to deploy the specified infrastructure. Then, EC3 will delegate
on the IM provisioning of the virtualmachines to the specified
cloud provider to provide the infrastructure. Access creden-
tials are automatically generated and stored by EC3 and, thus,
APRICOTwill contact EC3 to gather theappropriate credentials

to perform remote command execution via SSH on the front-
end node of the provisioned cluster.

To configure infrastructures, APRICOT uses a set of pre-
defined RADL configurationfiles that describe the computing
requirements, in terms of CPUs, random access memory
(RAM), disk space, etc. and include Ansible29 roles to perform
the unattended installation of software. The used RADL files
depend on the selected topology by the user. However, it is
possible to use the EC3 client to reconfigure an existing
cluster using additional RADL files. Alternatively, users can
choose the “Advanced” topology option to manually select
the infrastructure configuration using a set of RADL files.

APRICOT Magics implement IPython magic functions to
manageandusedeployed infrastructures.Mostof these instruc-
tions will be executed in the infrastructure front-end through
remoteSSH.SinceMagicscanbeexecuted inall kernelswith this
support, APRICOT instructions can be executed in any language
interpreted foroneof thesekernels.However, as ithappenswith

Fig. 3 APRICOT architecture. APRICOT, Advanced Platform for Reproducible Infrastructures in the Cloud via Open Tools.

c Bash Magics - https://ipython.readthedocs.io/en/stable/interactive/
magics.html.
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all Jupyter nonbuilt-in Magics, APRICOTMagics must be loaded
in each notebook before being used.

Notice that APRICOT just provides the infrastructure
deployment, but the underlying computing infrastructure is
not handled by APRICOT. So, if sensible datawill be processed,
the user must ensure that the infrastructure provider offers
the required securitymeasures. This is automatically enforced
by major public cloud providers. Additionally, the user may
decide to adopt additional risk mitigation strategies such as
data encryption both at rest and in transit.

Finally, a Docker image is being maintained to create a
ready to use containerized Jupyter server with APRICOT
installed and configured, available in Docker Hubd.

Results

To assess the effectiveness of the developed platform, this
section introduces two reproducible experiments which are
distributed alongside this document, publicly available as
Jupyter notebooks in GitHube. The examples are installed in
the provided Docker image for the convenience of the reader.
These demonstrates the complete execution of a realmagnetic
resonance imaging (MRI) processing and a multiparametric
analysis for medical image reconstruction using APRICOT to
deploy, use, and manage the required infrastructure. There-

fore, this section represents a summary of the experimenta-
tionwhereas furtherdetails canbeobtainedon the companion
Jupyter notebook.

The aim of the first experimentation (MRI image process-
ing) is to provide a real use case for our platform using a MPI
cluster. On the other hand, the PET image reconstruction
example uses simulated data and is intended to be used to
evaluate APRICOT characteristics.

Infrastructure
To perform both experiments, we used an on-premises cloud
managed by the OpenNebula30 and the KVM hypervisor. The
storage area network is a Dell Equallogic PS4210 with 16 TB
available. The physical infrastructure constituted of two type
of nodes. The first one had 240 GB of solid state disk, 64 GB of
memory RAM, two Intel(R) Xeon(R) CPU E5–2683 v3 2.00GHz
processors with 14 cores each one, two Ethernet network
adapter of 1 Gbps, and another one of 10 Gbps. The second
node type had 250 GB of solid state disk, 128 GB of memory
RAM, two Intel(R) Xeon(R) CPU E5–2660 v4 2.00 GHz process-
ors with 14 cores each one and three Ethernet network
adapters, two of 1 Gbps, and a third of 10 Gbps.

On that on-premises cloud we deployed two different
topologies. For the MRI example, we used an MPI cluster
formed by one front-end and three working nodes. All the
nodes have been configured with the same characteristics:
one CPU and 4 GB of RAMwith 20 GB disk space. On the other
hand, for the image reconstruction experimentation, we
used a virtual elastic batch cluster with one front-end and
two initial working nodes. Both the front-end and the
working nodes have the same characteristics: two CPUs, 2
GB of RAM, and 20 GB of disk storage.

The OS image used on each experiment is a plain Ubuntu
with version 16.04 and 18.04 LTS, configured using the “MPI
cluster” and “Batch Cluster” option from the APRICOT deploy
plugin respectively. Also, we recommend to configure the
cluster so that all the working nodes are pre-provisioned at
deployment time toavoid thedelay introducedwhennodesare
dynamically provided when jobs are submitted to the LRMS.

To further illustrate the multicloud features of the plat-
form, we also reproduced the second experiment using the
AWS public cloud provider with a cluster formed by one

Fig. 4 Steps of the APRICOT deployment plugin. APRICOT, Advanced Platform for Reproducible Infrastructures in the Cloud via Open Tools.

Fig. 5 Screenshots of the APRICOT deployment plugin. APRICOT,
Advanced Platform for Reproducible Infrastructures in the Cloud via
Open Tools.

d https://cloud.docker.com/u/grycap/repository/docker/grycap/
apricot.

e https://github.com/grycap/apricot/tree/master/examples.
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front-end and twoworking nodes. We used the “t2.small” (2
GiB and 1 vCPU) instance type to deploy the front-end node
and two “t2.micro” (1 GiB and 1 vCPU) instances for working
nodes. The cluster was deployed at the “us-east-1” region
using an Ubuntu 16.04 AMI. Note that the selection of these
instance types strictly responds to a cost saving strategy
aiming to illustrate the ability of the platform to deploy on a
public cloud. More powerful instance types would result in a
significantly higher performance of the application.

All the required source codes to execute the experiment
have been stored at the aforementioned GitHub repository
alongside with the notebook to facilitate the reproducibility
of this experiment. We stored input data in a public Amazon
S3 bucket and not in OneData to facilitate access for the
readers, since no access token is required to retrieve the data.

The following section introduces both experiments and
discusses the obtained results.

MRI Image Processing
Prostate cancer (PCa) is the second most frequent malignan-
cy (after lung cancer) in menworldwide, counting 1,276,106
new cases and causing 358,989 deaths (3.8% of all deaths
caused by cancer in men) in 2018.31 Early detection of PCa
allows for appropriate management of the disease, and
prognostic biomarkers can help clinicians make an appro-
priate therapeutic decision for each patient and avoid
unnecessary treatment.32

Due to recent progress in imaging, and particularly inMRI,
the so-calledmultiparametricMRI that combines T2-weight-
ed imaging (T2W) with functional pulse sequences such as
diffusion-weighted imaging or dynamic contrast-enhanced
(DCE) imaging has shown excellent results in PCa detection
and has become the standard of care to achieve accurate and
reproducible diagnosis of PCa.33,34

Pharmacokinetic modeling of the DCE-MRI signal is used
to derive estimates of factors related to blood volume and
permeability that are hallmarks of the angiogenic phenotype
associated with most cancers. The accuracy of DCE relies on
the ability to model the pharmacokinetics of an injected
tracer, or contrast agent, using the signal intensity changes
on sequential magnetic resonance images.

The first pharmacokinetic model was proposed by Kety,35

who described flow-limited tracer uptake in tissue. This was
followed by several pharmacokinetic models proposed by
Tofts et al,36 Brix et al,37 and Larsson et al.38

Themajority of thesemodels are based on the characteriza-
tion of the contrast exchange rate between the plasma and the
extracellular space through parameters such as Ktrans, that
represents the rate at which the contrast agent transfers
from the blood to the interstitial space (indicating the tumor
microcirculation), the refluxconstant,Kep, that reflects the rate
at which the contrast agent transfers from the extravascular
extracellular space back to the blood and the extravascular
extracellular leakage volume fraction ve, which predominantly
reflects the percentage of contrast agent in the extravascular
extracellular space.

The study of these parameters helps characterize PCa, so
estimating them accurately and robustly is a fundamental

step. These parameters are calculated using the Tofts mod-
el,39 which is equivalent to the generalized kinetic model,40

where interesting parameters are Ktrans, which is the transfer
coefficient between blood plasma and the compartment, and
the extracellular extravascular fractional volume (ve). Also,
kep is defined as kep¼ Ktrans/ve, and Ct is the concentration of
lesson tissue defined as Ct¼ C1 ve, where C1 is the leakage
space concentration.

To solve Eq. (1), we use the same approach as given in
Flouri et al.41 Here, the model is restructured and expressed
as a convolution as follows,

where T¼ 1/kep and a(t) function is an experimental mea-
sure, so is only available at discrete times. The previous
model is evaluated for values of T 6¼ 0 by interpolating
linearly between the measured values of a(t). Instead, for
T¼ 0 the result is f(t)¼ a(t).

Our case study consisted of a prostate image with
256� 256� 56 voxels and 30 time points for each one. We
fitted this image using the Eq. (2) implemented at the
provided code in the APRICOT repository, which uses the
ROOT libraries from CERN.42 This analysis was performed
using a MPI cluster with three working nodes, reducing the
total computation time almost a factor 3 compared with the
same experimentation performed on a single node. As a
sample of the result, ►Fig. 6 shows four images that repre-
sent the resulting ve map of four planes.

PET Image Reconstruction
Medical scanners, like most physical detectors, measure raw
data that must be post-processed to obtain an interpretable
result. In particular, for medical scanners based in PET or CT,
the final result is usually a patient image to be interpreted by
the physician to develop a diagnostic.

Focusing on PET and CT cases, there exists a great variety
of iterative and analytic image reconstruction algo-
rithms,11,12,43,44 most of them based on maximum likeli-
hood method.45 These reconstruction algorithms have a set
of variable parameters such as number and size of voxels in
thefield of view, number of iterations, number of partitioned
data chunks, weight parameters, filter iterations, andweight,
etc. Obviously, thefinal reconstruction quality and speedwill
depend on how accurate are the selected parameters. Fur-
thermore, the accuracy of selected parameters depends on
the scanner system (geometry, energy resolution, scanned
object, etc.). Indeed, the importance of reconstruction
parameters on medical image has been studied for different
kind of scanners in many publications.46–49

Achieving the best parameters for our specific system and
algorithm is desirable not only for medical diagnostics but to
performaccurate comparison of reconstructionmethods and
scanner capabilities. This comparison is crucial to select and
create new scanner systems using simulated data to study
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their theoretical performance. However, the number of
possible parameters combinations grows as indicated in
Eq. (3).

where Ni is the number of possible values of parameter
number i and nparam the number of variable parameters.
So, even performing a multiparametric study with few
parameters requires a significant computational effort. APRI-
COT has been used in this experimentation to deploy and
manage the required infrastructure to perform a multipara-
metric study on a modified implementation of “OPL-EM”

reconstruction algorithm for PET systems described in the
work by Reader et al.12

This algorithm uses a single iteration over all measured
data to reconstruct the image, thus being faster than other
iterative algorithms. As the example is aimed to focus on
APRICOT usage, a simplified experimentation will be repro-
duced in the companion material, for the sake of better
understanding. The provided infrastructure will consist of
a cluster of PCs configured with CPU-based working nodes.
The use of accelerated devices such GPGPUs can be achieved
by providing the corresponding instance types in a public
cloud, provided that the application supports using such
specialized hardware. Therefore, this is agnostic to the
functionality provided by APRICOT.

Fig. 6 MRI ve maps for a real case of prostate image with 256� 256� 56 planes with 30 time points on each one. Images correspond to plane
numbers 2 and 12 for top left and right images, respectively, and 22 and 32 for bottom left and right images, respectively. MRI, magnetic
resonance imaging.
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The workflow of these experimentation is shown
in ►Fig. 7.

The input data used for this experimentation has been
obtained simulating a PETsystem formed by three rings of 20
detector modules each one. The simulations have been done
using self-developed routines to perform PET system simu-
lations with the Monte-Carlo code PENELOPE,50 which accu-
rately models photon, electron, and positron interactions in
an arbitrary material for the energy range of interest in this
work. The simulation results include a file with all photon
detection grouped by coincidences, which means that both
photons have been produced by the annihilation of the same
positron. This file, which is provided to perform the experi-
mentation, will be our reconstruction input.

Once the reconstructions have been done, we extracted
their execution times and image quality measures using
different parameter combinations. To measure the image
quality, we used the following metrics, root-mean-square
error (RMSE), peak signal to noise ratio (PSNR), normalized
root mean square distance (NRMSD), and normalized mean
absolute distance (NMAD), represented by Eqs. (4), (5), (6),
and (7), respectively. Regarding the notation, v(m) denotes
the voxel number m of the considered image and the subin-
dex true indicates that is the real image.

The RMSE tends to zero when the reconstructed image and
the ideal one coincide, because voxels at both images are
equal. So, small values should be interpreted as better image

quality. Next, PSNR tends to infinity when reconstructed and
ideal image become equal, because RMSE tends to zero. The
NRMSD metric tends to 1.0 when the differences between
images are smooth and the average intensity equal. Large
differences on few voxels produce a large value of NRMSD.
Finally, NMAD tends to 1.0 if the reconstructed image has
negligible intensity on its voxels respect to ideal image, and
tends to zero if both images are equal.

Some results of the run on our local infrastructure are
shown in ►Figs. 8 and 9 which represent, respectively, the
time spent to reconstruct the images and the RMSE value of
reconstructed images for different number of voxels in each
axis using a data partitioning of five chunks.

In a real case study, these results should provide the best
parameters to achieve the required agreement between
reconstruction speed and image quality.

Fig. 8 Reconstruction time(s) using different number of voxels in
each axis.

Fig. 7 Experimentation workflow.
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Discussion

This section discusses about the platform deployment and
elasticity. For that purpose, the second experiment (image
reconstruction) has been executed on two different platforms,
according to the specifications in the subsection “Infrastruc-
ture” (under the “Results”), reproducing the very same results.
The only difference lies on the location of the underlying
resources and the time spent performing the reconstruction.
The first one, deployed on our OpenNebula Cloud site, takes
approximately 8minutes to start and configure the front-end
node and the same time for initialworking nodes. OnAWS, the
deployment and configuration of the front-end node require
approximately 10minutes and the same for the working
nodes. So, both clusters require, approximately, 16 to
20minutes to be fully deployed and configured. Notice that
working nodes are deployed concurrently. Therefore, deploy-
ing more working nodes will not cause a significant overhead
on the configuration and deployment time. The main factor
that affects the configuration time is the node CPU and
network capabilities. Thus, using better instances should
reduce the configuration time.

To show the elasticity capabilities provided by CLUES, we
repeated the experiment using an infrastructure with the
same specifications but configured with a minimum and

maximum number of working nodes of 2 and 4, respectively.
So, when the number of queued jobs exceed the number of
available execution slots, CLUES deploys additional working
nodes. To get statistics of the available and used slots we used
CLUES reports,whichmonitorsandextracts informationabout
the use and state of our deployed infrastructure. ►Fig. 10

shows a slots usage graph, where each node has a color
identifier and the gray color represents idle slots. At the
beginning of the graph (first gray zone) we can see when the
first two nodes were configured and became ready to process
jobs. Then, at thefirst coloredzone, bothnodeswerefilledwith
the received jobs and CLUES detected more queued jobs than
available slots. This caused CLUES to power on the two extra
nodes (secondgray zone). Once all nodeshadbeenpoweredon
and configured, at the second colored zone, the number of
available slots grew to four and the jobs execution was
resumed. Finally, at the final gray zone, all the jobs had been
processed and the working nodes became idle. Therefore,
using CLUES, our deployed infrastructures can be automati-
cally scaled within the specified configuration parameters.

As we have seen, APRICOT allows to easily deploy a
scalable infrastructure to execute computationally intensive
experiments. Furthermore, the same preconfigured infra-
structure can be easily deployed to reproduce the whole
experiment by other researchers or reviewers without

Fig. 10 Elasticity managed by CLUES. Cluster configured with two initial working nodes that can scale up to four nodes. The colored zones
indicate the number of execution slots being used while the gray zone indicates an idle slot. CLUES, CLUster Elasticity System.

Fig. 9 Reconstruction error estimation using different number of voxels in each axis. The represented error has been obtained using the root
mean square error (RMSE) method over all image voxels.
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knowledge on infrastructure deployment and configuration.
Without APRICOT, a researcher would need to deploy and
configure the required infrastructure or have access to an
existing one with compatible specifications.

At the moment, APRICOT offers a limited amount of
preconfigured infrastructure types that may not fit all
experiments need, but more configurations will be added
in future versions. In addition, the user needs access creden-
tials to a cloud provider supported by APRICOT.

Notice that the whole experiments have been docu-
mented in the corresponding Jupyter notebooks including
the commands to execute, the required infrastructure, the
data processing, the visualization, etc. The notebooks have
been distributed in the aforementioned GitHub repository.

Conclusion

This paper has introduced APRICOT, an open source exten-
sion for Jupyter that provides users with the ability to deploy
complex customized virtual infrastructures across multiple
cloud providers to support the requirements of computa-
tional experiments. A set of functions have been created to
simplify interaction with the virtual infrastructure for data
staging as well as application execution. This facilitates the
reproducibility of computational experiments on clouds.

The benefits of this extension are the integration of
specific infrastructure deployment, the management, and
usage for Open Science andmaking experiments that involve
specific computational infrastructures reproducible. All the
experiment steps and details can be documented at the same
Jupyter notebook which includes infrastructure specifica-
tions, data storage, experimentation execution, results gath-
ering, and infrastructure termination. Thus, distributing the
experimentation notebook and the needed data should be
enough to reproduce the experiment.

Future works include extending APRICOT to use addition-
al cloud providers already compatible with the IM. Also, in
addition to MPI and batch clusters we plan to add more
preconfigured infrastructure topologies such as Kubernetes
clusters. Regarding the infrastructure usage, we will provide
more magic commands to simplify the execution of other
kind of analysis. These are special Jupyter functions that can
be executed regardless of the programming language used at
the notebook. Integration of additional queue systems and
external storage providers will also expand the adoption of
the platform by covering different use cases.
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