
 1 

Genetic Disruption of WASHC4 Drives Endo-lysosomal Dysfunction 1 

and Cognitive-Movement Impairments in Mice and Humans 2 

Jamie L. Courtland1,7, Tyler W. A. Bradshaw1,7, Greg Waitt3, Erik J. Soderblom2,3, Tricia 3 

Ho3, Anna Rajab4, Ricardo Vancini5, Il Hwan Kim2,6*, and Scott H. Soderling1,2*. 4 

1Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, 5 

USA. 6 

2Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, 7 

USA. 8 

3Proteomics and Metabolomics Shared Resource, Duke University School of Medicine, 9 

Durham, NC 27710, USA. 10 

4Burjeel Hospital, VPS Healthcare, Muscat, Oman. 11 

5Department of Pathology, Duke University School of Medicine, Durham, NC 27710, 12 

USA. 13 

6Department of Anatomy and Neurobiology, University of Tennessee Heath Science 14 

Center, Memphis, TN 38163, USA. 15 

7These authors contributed equally.  16 

*Correspondence: Il Hwan Kim, E-mail: ikim9@uthsc.edu, Scott H. Soderling, E-mail: 17 

scott.soderling@duke.edu 18 

 19 

 20 

 21 

 22 

 23 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.06.239517doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.06.239517
http://creativecommons.org/licenses/by/4.0/


 2 

ABSTRACT 24 

Mutation of the WASH complex subunit, SWIP, is implicated in human intellectual 25 

disability, but the cellular etiology of this association is unknown. We identify the neuronal 26 

WASH complex proteome, revealing a network of endosomal proteins. To uncover how 27 

dysfunction of endosomal SWIP leads to disease, we generate a mouse model of the 28 

human WASHC4c.3056C>G mutation. Quantitative spatial proteomics analysis of 29 

SWIPP1019R mouse brain reveals that this mutation destabilizes the WASH complex and 30 

uncovers significant perturbations in both endosomal and lysosomal pathways. Cellular 31 

and histological analyses confirm that SWIPP1019R results in endo-lysosomal disruption 32 

and uncover indicators of neurodegeneration. We find that SWIPP1019R not only impacts 33 

cognition, but also causes significant progressive motor deficits in mice. Remarkably, a 34 

retrospective analysis of SWIPP1019R patients confirms motor deficits in humans. 35 

Combined, these findings support the model that WASH complex destabilization, 36 

resulting from SWIPP1019R, drives cognitive and motor impairments via endo-lysosomal 37 

dysfunction in the brain. 38 

 39 

  40 
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INTRODUCTION 41 

Neurons maintain precise control of their subcellular proteome using a 42 

sophisticated network of vesicular trafficking pathways that shuttle cargo throughout their 43 

elaborate processes. Endosomes function as a central hub in this vesicular relay system 44 

by coordinating protein sorting between multiple cellular compartments, including surface 45 

receptor endocytosis and recycling, as well as degradative shunting to the lysosome. How 46 

endosomal trafficking is modulated in neurons remains a vital area of research due to the 47 

unique degree of spatial segregation between organelles in neurons, and its strong 48 

implication in neurodevelopmental and neurodegenerative diseases.  49 

In non-neuronal cells, an evolutionarily conserved complex, the Wiskott-Aldrich 50 

Syndrome protein and SCAR Homology (WASH) complex, coordinates endosomal 51 

trafficking (Derivery and Gautreau, 2010; Linardopoulou et al., 2007). WASH is composed 52 

of five core protein components: WASHC1 (aka WASH1), WASHC2 (aka FAM21), 53 

WASHC3 (aka CCDC53), WASHC4 (aka SWIP), and WASHC5 (aka Strumpellin) 54 

(encoded by genes Washc1-Washc5, respectively), which are broadly expressed in 55 

multiple organ systems (Alekhina et al., 2017; Kustermann et al., 2018; McNally et al., 56 

2017; Simonetti and Cullen, 2019; Thul et al., 2017).  The WASH complex plays a central 57 

role in non-neuronal endosomal trafficking by activating Arp2/3-dependent actin 58 

branching at the outer surface of endosomes to influence cargo sorting and vesicular 59 

scission (Gomez and Billadeau, 2009; Lee et al., 2016; Phillips-Krawczak et al., 2015; 60 

Piotrowski et al., 2013; Simonetti and Cullen, 2019). WASH also interacts with at least 61 

three main cargo adaptor complexes — the Retromer, Retriever, and 62 

COMMD/CCDC22/CCDC93 (CCC) complexes — all of which associate with distinct 63 
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sorting nexins to select specific cargo and enable their trafficking to other cellular 64 

locations (Binda et al., 2019; Farfán et al., 2013; McNally et al., 2017; Phillips-Krawczak 65 

et al., 2015; Seaman and Freeman, 2014; Singla et al., 2019). Loss of the WASH complex 66 

in non-neuronal cells has detrimental effects on endosomal structure and function, as its 67 

loss results in aberrant endosomal tubule elongation and cargo mislocalization (Bartuzi 68 

et al., 2016; Derivery et al., 2009; Gomez et al., 2012; Gomez and Billadeau, 2009; 69 

Phillips-Krawczak et al., 2015; Piotrowski et al., 2013). However, whether the WASH 70 

complex performs an endosomal trafficking role in neurons remains an open question, as 71 

no studies have addressed neuronal WASH function to date.  72 

Consistent with the association between the endosomal trafficking system and 73 

pathology, dominant missense mutations in WASHC5 (protein: Strumpellin) are 74 

associated with hereditary spastic paraplegia (SPG8) (De Bot et al., 2013; Valdmanis et 75 

al., 2007), and autosomal recessive point mutations in WASHC4 (protein: SWIP) and 76 

WASHC5 are associated with syndromic and non-syndromic intellectual disabilities 77 

(Assoum et al., 2020; Elliott et al., 2013; Ropers et al., 2011). In particular, an autosomal 78 

recessive mutation in WASHC4 (c.3056C>G; p.Pro1019Arg) was identified in a cohort of 79 

children with non-syndromic intellectual disability (Ropers et al., 2011). Cell lines derived 80 

from these patients exhibited decreased abundance of WASH proteins, leading the 81 

authors to hypothesize that the observed cognitive deficits in SWIPP1019R patients resulted 82 

from disruption of neuronal WASH signaling (Ropers et al., 2011). However, whether this 83 

mutation leads to perturbations in neuronal endosomal integrity, or how this might result 84 

in cellular changes associated with disease, are unknown.  85 
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 Here we report the analysis of neuronal WASH and its molecular role in disease 86 

pathogenesis. We use in vivo proximity proteomics (iBioID) to uncover the neuronal 87 

WASH proteome and demonstrate that it is highly enriched for components of endosomal 88 

trafficking. We then generate a mouse model of the human WASHC4c.3056c>g mutation 89 

(SWIPP1019R) (Ropers et al., 2011) to discover how this mutation may alter neuronal 90 

trafficking pathways and test whether it leads to phenotypes congruent with human 91 

patients. Using an adapted spatial proteomics approach (Geladaki et al., 2019), coupled 92 

with a systems-level analysis of protein covariation networks, we find strong evidence for 93 

substantial disruption of neuronal endosomal and lysosomal pathways in vivo. Cellular 94 

analyses confirm a significant impact on neuronal endo-lysosomal trafficking in vitro and 95 

in vivo, with evidence of lipofuscin accumulation and progressive apoptosis activation, 96 

molecular phenotypes that are indicative of neurodegenerative pathology. Behavioral 97 

analyses of SWIPP1019R mice at adolescence and adulthood confirm a role of WASH in 98 

cognitive processes, and reveal profound, progressive motor dysfunction. Importantly, 99 

retrospective examination of SWIPP1019R patient data confirms motor dysfunction 100 

coincident with cognitive impairments in humans. Our results establish that impaired 101 

WASH complex function leads to altered neuronal endo-lysosomal function, which 102 

manifests behaviorally as cognitive and movement impairments. 103 

 104 

RESULTS 105 

Identification of the WASH complex proteome in vivo confirms a neuronal role in 106 

endosomal trafficking. While multiple mutations within the WASH complex have been 107 

identified in humans (Assoum et al., 2020; Elliott et al., 2013; Ropers et al., 2011; 108 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.06.239517doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.06.239517
http://creativecommons.org/licenses/by/4.0/


 6 

Valdmanis et al., 2007), how these mutations lead to neurological dysfunction remains 109 

unknown (Figure 1A). Given that previous work in non-neuronal cultured cells and non-110 

mammalian organisms have established that the WASH complex functions in endosomal 111 

trafficking, we first aimed to determine whether this role was conserved in the mouse 112 

nervous system (Alekhina et al., 2017; Billadeau et al., 2010; Derivery et al., 2009; Gomez 113 

et al., 2012; Gomez and Billadeau, 2009). To discover the likely molecular functions of 114 

the neuronal WASH complex, we utilized an in vivo BioID (iBioID) paradigm developed in 115 

our laboratory to identify the WASH complex proteome from brain tissue (Uezu et al., 116 

2016). BioID probes were generated by fusing a component of the WASH complex, 117 

WASH1 (gene: Washc1), with the promiscuous biotin ligase, BioID2 (WASH1-BioID2, 118 

Figure 1B), or by expressing BioID2 alone (negative control, solubleBioID2) under the 119 

neuron-specific, human Synapsin-1 promoter (Kim et al., 2016). We injected 120 

adenoviruses (AAV) expressing these constructs into the cortex of wild-type postnatal 121 

day zero (P0) mice (Figure 1B). Two weeks post-injection, we administered daily 122 

subcutaneous biotin for seven days to biotinylate in vivo substrates. The viruses displayed 123 

efficient expression and activity in brain tissue, as evidenced by colocalization of the 124 

WASH1-BioID2 viral epitope (HA) and biotinylated proteins (Streptavidin) (Figures 1C-F). 125 

For label-free quantitative high-mass accuracy LC-MS/MS analyses, whole brain samples 126 

were collected at P22, snap-frozen, and processed as previously described (Uezu et al., 127 

2016). A total of 2,311 proteins were identified across all three experimental replicates, 128 

which were further analyzed for those with significant enrichment in WASH1-BioID2 129 

samples over solubleBioID2 negative controls (Table S1).  130 
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The resulting neuronal WASH proteome included 174 proteins that were 131 

significantly enriched (Fold-change ≥ 3.0, Benjamini-Hochberg P-Adjust < 0.1, Figure 132 

1G). Of these proteins, we identified all five WASH complex components (Figure 1H), as 133 

well as 13 previously reported WASH complex interactors (Figure 1I)  (McNally et al., 134 

2017; Phillips-Krawczak et al., 2015; Simonetti and Cullen, 2019; Singla et al., 2019), 135 

which provided strong validity for our proteomic approach and analyses. Additional 136 

bioinformatic analyses of the neuronal WASH proteome identified a network of proteins 137 

implicated in vesicular trafficking, including 23 proteins enriched for endosomal functions 138 

(Figure 1J) and 24 proteins enriched for endocytic functions (Figure 1K). Among these 139 

endosomal and endocytic proteins were components of the recently identified endosomal 140 

sorting complexes, CCC (CCDC93 and COMMD9) and Retriever (VPS35L) (Phillips-141 

Krawczak et al., 2015; Singla et al., 2019), as well as multiple sorting nexins important for 142 

recruitment of trafficking regulators to the endosome and cargo selection, such as SNX1-143 

3, and SNX16 (Kvainickas et al., 2017; Maruzs et al., 2015; Simonetti et al., 2017). These 144 

data demonstrated that the WASH complex interacts with many of the same proteins in 145 

neurons as it does in yeast, amoebae, flies, and mammalian cell lines. Furthermore, there 146 

were 32 proteins enriched for cytoskeletal regulatory functions (Figure 1L), including 147 

actin-modulatory molecules such as the Arp2/3 complex subunit ARPC5, which is 148 

consistent with WASH’s role in activating this complex to stimulate actin polymerization 149 

at endosomes for vesicular scission (Billadeau et al., 2010; Derivery et al., 2009). The 150 

WASH1-BioID2 isolated complex also contained 28 proteins known to localize to the 151 

excitatory post-synapse (Figure 1M). This included many core synaptic scaffolding 152 

proteins, such as SHANK2-3 and DLGAP2-4 (Chen et al., 2011; Mao et al., 2015; 153 
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Monteiro and Feng, 2017; Wan et al., 2011), as well as modulators of synaptic receptors 154 

such as SYNGAP1 and SHISA6 (Barnett et al., 2006; Clement et al., 2012; Kim et al., 155 

2003; Klaassen et al., 2016), which was consistent with the idea that vesicular trafficking 156 

plays an important part in synaptic function and regulation. Taken together, these results 157 

support a major endosomal trafficking role of the WASH complex in mouse brain.  158 

 159 

SWIPP1019R does not incorporate into the WASH complex, reducing its stability and 160 

levels in vivo. To determine how disruption of the WASH complex may lead to disease, 161 

we generated a mouse model of a human missense mutation found in children with 162 

intellectual disability, WASHC4c.3056c>g (protein: SWIPP1019R) (Ropers et al., 2011). Due to 163 

the sequence homology of human and mouse Washc4 genes, we were able to introduce 164 

the same point mutation in exon 29 of murine Washc4 using CRISPR (Derivery and 165 

Gautreau, 2010; Ropers et al., 2011). This C>G point mutation results in a 166 

Proline>Arginine substitution at position 1019 of SWIP’s amino acid sequence (Figure 167 

2A), a region thought to be critical for its binding to the WASH component, Strumpellin 168 

(Jia et al., 2010; Ropers et al., 2011). Western blot analysis of brain lysate from adult 169 

homozygous SWIPP1019R mutant mice (referred to from here on as MUT mice) displayed 170 

significantly decreased abundance of two WASH complex members, Strumpellin and 171 

WASH1 (Figure 2B). These results phenocopied data from the human patients (Ropers 172 

et al., 2011) and suggested that the WASH complex is unstable in the presence of this 173 

SWIP point mutation in vivo. To test whether this mutation disrupted interactions between 174 

WASH complex subunits, we compared the ability of wild-type SWIP (WT) and 175 

SWIPP1019R (MUT) to co-immunoprecipitate with Strumpellin and WASH1 in HEK cells. 176 
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Compared to WT, MUT SWIP co-immunoprecipitated significantly less Strumpellin and 177 

WASH1 (IP: 54.8% and 41.4% of WT SWIP, respectively), suggesting that the SWIPP1019R 178 

mutation hinders WASH complex formation (Figure 2-figure supplement 1). Together 179 

these data support the notion that SWIPP1019R is a damaging mutation that not only 180 

impairs its function, but also results in significant reductions of the WASH complex as a 181 

whole. 182 

 183 

Spatial proteomics and unbiased network covariation analysis reveal significant 184 

disruptions in the endo-lysosomal pathway of SWIPP1019R mutant mouse brain. 185 

Next, we aimed to understand the impact of the SWIPP1019R mutation on the subcellular 186 

organization of the mouse brain proteome. We performed spatial proteomics by following 187 

the protocol established by Geladaki et al., with modifications for homogenization of brain 188 

tissue (Geladaki et al., 2019; Hallett et al., 2008). We isolated seven subcellular fractions 189 

from brain tissue and quantified proteins in these samples using 16-plex TMT proteomics. 190 

Using this spatial proteomics dataset, we developed a data-driven clustering approach to 191 

classify proteins into subcellular compartments. This approach, which differs from the 192 

support vector machine learning algorithm employed by Geladaki et al. (2019), was 193 

motivated by the lack of a large corpus of brain-specific protein subcellular localization 194 

information, and the greater complexity of brain tissue compared to cultured cells. In 195 

addition to evaluating differential protein abundance between WT and SWIPP1019R MUT 196 

brain, we utilized this spatial proteomics dataset to analyze network-level changes in 197 

groups of covarying proteins to better understand WASH’s function and explore the 198 

cellular mechanisms by which SWIPP1019R causes disease.  199 
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Brains from 10-month-old mice were gently homogenized to release intact 200 

organelles, followed by successive centrifugation steps to enrich subcellular 201 

compartments into different fractions based on their density (Figure 2C) (Geladaki et al., 202 

2019). Seven WT and seven MUT fractions (each prepared from one brain, 14 samples 203 

total) were labeled with unique isobaric tandem-mass tags and concatenated. We also 204 

included two sample pooled quality controls (SPQCs), which allowed us to assess 205 

experimental variability and perform normalization between experiments. By performing 206 

this experiment in triplicate, deep coverage of the mouse brain proteome was obtained—207 

across all 48 samples we quantified 86,551 peptides, corresponding to 7,488 proteins. 208 

After data pre-processing, normalization, and filtering we retained 5,897 reproducibly 209 

quantified proteins in the final dataset (Table S2).  210 

We used generalized linear models (GLMs) to assess differential protein 211 

abundance for intra-fraction comparisons between WT and MUT genotypes, and for 212 

overall comparisons between WT and MUT groups, adjusted for baseline differences in 213 

subcellular fraction. In the first analysis, there were 85 proteins with significantly altered 214 

abundance in at least one of the 7 subcellular fractions (Benjamini-Hochberg P-Adjust < 215 

0.1, Table S2 and Figure 2-figure supplement 2). Five proteins were differentially 216 

abundant between WT and MUT in all 7 fractions, including four WASH proteins and 217 

RAB21A—a known WASH interactor that functions in early endosomal trafficking 218 

(WASHC1, WASHC2, WASHC4, WASHC5, Figure 2E) (Del Olmo et al., 2019; Simpson 219 

et al., 2004). The abundance of the remaining WASH complex protein, WASHC3, was 220 

found to be very low and was not retained in the final dataset due to its sparse 221 

quantification. These data affirm that the SWIPP1019R mutation destabilizes the WASH 222 
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complex. Next, to evaluate global differences between WT and MUT brain, we analyzed 223 

the average effect of genotype on protein abundance across all fractions. At this level, 224 

there were 687 differentially abundant proteins between WT and MUT brain (Bonferroni 225 

P-Adjust < 0.05) (Table S2). We then aimed to place these differentially abundant proteins 226 

into a more meaningful biological context using a systems-based approach. 227 

For network-based analyses, we clustered the protein covariation network defined 228 

by pairwise correlations between all 5,897 proteins. Our data-driven, quality-based 229 

approach used Network Enhancement (Wang et al., 2018) to remove biological noise 230 

from the covariation network and employed the Leiden algorithm (Traag et al., 2019) to 231 

identify optimal partitions of the graph. We enforced module quality by permutation testing 232 

(Ritchie et al., 2016) to ensure that identified modules exhibited a non-random topology. 233 

Clustering of the protein covariation graph identified 255 modules of proteins that strongly 234 

covaried together (see Methods for complete description of clustering approach).  235 

To test for module-level differences between WT and MUT brain, we summarized 236 

modules for each biological replicate (a single subcellular fraction prepared from either a 237 

WT or MUT mouse) as the sum of their proteins, and extended our GLM framework to 238 

identify changes in module abundance (adjusted for fraction differences) between 239 

genotypes. 37 of the 255 modules exhibited significant differences in WT versus MUT 240 

brain (Bonferroni P-Adjust  < 0.05; Table S3). Of note, the module containing the WASH 241 

complex, M19, was predicted to have endosomal function by annotation of protein 242 

function, and was enriched for proteins identified by WASH1-BioID2 (hypergeometric test 243 

P-Adjust < 0.05, bold node edges, Figure 2D). Similar to the WASH iBioID proteome 244 

(Figure 1), M19 contained components of the CCC (CCDC22, CCDC93, COMMD1-3, 245 
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COMMD6-7, and COMMD9) and Retriever sorting complexes (VPS26C and VPS35L), 246 

but not the Retromer sorting complex, suggesting that in the brain, the WASH complex 247 

may not interact as closely with Retromer as it does in other cells (Figure 2D). Across all 248 

fractions, the abundance of M19 was significantly lower in MUT brain compared to WT, 249 

providing evidence that the SWIPP1019R mutation reduces the stability of this protein 250 

subnetwork and impairs its function (Figure 2F-G).  251 

In contrast to the decreased abundance of the WASH complex/endosome module, 252 

M19, we observed three modules (M2, M159, and M213) which were enriched for 253 

lysosomal protein components (Geladaki et al., 2019), and exhibited increased 254 

abundance in MUT brain (Figure 3). M159 (Figure 3B) contained the lysosomal protease 255 

Cathepsin A (CTSA), while M213 (Figure 3D) contained Cathepsin B (CTSB), as well as 256 

two key lysosomal hydrolases GLB1 and MAN2B2, and M2 (Figure 3C) contained two 257 

Cathepsins (CTSS and CTSL) and several lysosomal hydrolases (e.g. GNS, GLA, and 258 

MAN2B1) (Eng and Desnick, 1994; Mayor et al., 1993; Mok et al., 2003; Moon et al., 259 

2016; Patel et al., 2018; Regier and Tifft, 1993; Rosenbaum et al., 2014). Notably, M2 260 

also contained the lysosomal glycoprotein progranulin (GRN), which is integral to proper 261 

lysosome function and whose loss is widely linked with neurodegenerative pathologies 262 

(Baker et al., 2006; Pottier et al., 2016; Tanaka et al., 2017; Zhou et al., 2018). In addition, 263 

M2 contained the hydrolase IDS, whose loss causes a lysosomal storage disorder that 264 

can present with neurological symptoms (Hopwood et al., 1993; Schröder et al., 1994). 265 

The overall increase in abundance of modules M2, M159, and M213, and these key 266 

lysosomal proteins (Figure 3E-G), may therefore reflect an increase in flux through 267 

degradative lysosomal pathways in SWIPP1019R brain.  268 
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Furthermore, Module 2 (Figure 3C) included multiple membrane proteins and 269 

extracellular proteins, such as ITGA5 (an integrin shown to be upregulated and 270 

redistributed upon loss of WASH1), ATP13A2 (a cation transporter whose loss causes a 271 

Parkinsonian syndrome), and MMP17 (an extracellular metalloprotease), suggesting a 272 

link between these proteins and lysosomal enzymatic function (English et al., 2000; 273 

Ramirez et al., 2006; Zech et al., 2011). Increased abundance of these M2 proteins in 274 

MUT brain may indicate that WASH complex disruption alters their cellular localization. 275 

Taken together, these changes appear to reflect a pathological condition characterized 276 

by distorted lysosomal metabolism and altered cellular trafficking. 277 

 In addition to these endo-lysosomal changes, network alterations were evident for 278 

an endoplasmic reticulum (ER) module (M83), supporting a shift in the proteostasis of 279 

mutant neurons (Figure 2-figure supplement 3B). Notably, within the ER module, M83, 280 

there was increased abundance of chaperones (e.g. HSPA5, PDIA3, PDIA4, PDIA6, and 281 

DNAJC3) that are commonly engaged in presence of misfolded proteins (Bartels et al., 282 

2019; Kim et al., 2020; Montibeller and de Belleroche, 2018; Synofzik et al., 2014; Wang 283 

et al., 2016). This elevation of ER stress modulators can be indicative of 284 

neurodegenerative states, in which the unfolded protein response (UPR) is activated to 285 

resolve misfolded species (Garcia-Huerta et al., 2016; Hetz and Saxena, 2017). These 286 

data demonstrate that loss of WASH function not only alters endo-lysosomal trafficking, 287 

but also causes increased stress on cellular homeostasis.  288 

Finally, besides these endo-lysosomal and homeostatic changes, we also 289 

observed two synaptic modules (M35 and M248) that were reduced in MUT brain (Figure 290 

2-figure supplement 3C-D). These included mostly excitatory post-synaptic proteins such 291 
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as HOMER2 and DLG4 (also identified in WASH1-BioID, Figure 1), consistent with 292 

endosomal WASH influencing synaptic regulation. Decreased abundance of these 293 

modules indicates that loss of the WASH complex may result in failure of these proteins 294 

to be properly trafficked to the synapse. 295 

 296 

Mutant neurons display structural abnormalities in endo-lysosomal compartments 297 

in vitro. Combined, the proteomics data strongly suggested that endo-lysosomal 298 

pathways are altered in adult SWIPP1019R mutant mouse brain. Next, we analyzed whether 299 

structural changes in this system were evident in primary neurons.  Cortical neurons from 300 

littermate WT and MUT P0 pups were cultured for 15 days in vitro (DIV15, Figure 4A), 301 

then fixed and stained for established markers of early endosomes (Early Endosome 302 

Antigen 1, EEA1; Figures 4B and 4C) and lysosomes (Cathepsin D, CathD; Figures 4D 303 

and 4E). Reconstructed three-dimensional volumes of EEA1 and Cathepsin D puncta 304 

revealed that MUT neurons display larger EEA1+ somatic puncta than WT neurons 305 

(Figures 4G and 4J), but no difference in the total number of EEA1+ puncta (Figure 4F). 306 

This finding is consistent with a loss-of-function mutation, as loss of WASH activity 307 

prevents cargo scission from endosomes and leads to cargo accumulation (Bartuzi et al., 308 

2016; Gomez et al., 2012). Conversely, MUT neurons exhibited significantly less 309 

Cathepsin D+ puncta than WT neurons (Figure 4H), but the remaining puncta were 310 

significantly larger than those of WT neurons (Figures 4I and 4K). These data support the 311 

finding that the SWIPP1019R mutation results in both molecular and morphological 312 

abnormalities in the endo-lysosomal pathway. 313 

 314 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.06.239517doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.06.239517
http://creativecommons.org/licenses/by/4.0/


 15 

SWIPP1019R mutant brains exhibit markers of abnormal endo-lysosomal structures 315 

and cell death in vivo. As there is strong evidence that dysfunctional endo-lysosomal 316 

trafficking and elevated ER stress are associated with neurodegenerative disorders, 317 

adolescent (P42) and adult (10 month-old, 10mo) WT and MUT brain tissue were 318 

analyzed for the presence of cleaved caspase-3, a marker of apoptotic pathway 319 

activation, in four brain regions (Boatright and Salvesen, 2003; Porter and Jänicke, 1999). 320 

Very little cleaved caspase-3 staining was present in WT and MUT mice at adolescence 321 

(Figures 5A, 5B, and Figure 5-figure supplement 1). However, at 10mo, the MUT motor 322 

cortices displayed significantly greater cleaved caspsase-3 staining compared to age-323 

matched WT littermate controls (Figures 5D, 5E, and 5H). Furthermore, this difference 324 

appeared to be selective for the motor cortex, as we did not observe significant 325 

differences in cleaved caspase-3 staining at either age for hippocampal, striatal, or 326 

cerebellar regions (Figure 5-figure supplement 1). These data suggested that neurons of 327 

the motor cortex were particularly susceptible to disruption of endo-lysosomal pathways 328 

downstream of SWIPP109R, perhaps because long-range corticospinal projections require 329 

high fidelity of trafficking pathways (Blackstone et al., 2011; Slosarek et al., 2018; Wang 330 

et al., 2014).  331 

 To further examine the morphology of primary motor cortex neurons at a 332 

subcellular resolution, samples from age-matched 7-month-old WT and MUT mice (7mo, 333 

3 animals each) were imaged by transmission electron microscopy (TEM). Strikingly, we 334 

observed large electron-dense inclusions in the cell bodies of MUT neurons (arrows, 335 

Figure 5L; pseudo-colored region, 5N). These dense structures were associated electron-336 

lucent lipid-like inclusions (asterisk, Figure 5N), and were visually consistent with 337 
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lipofuscin accumulation at lysosomal residual bodies (Poët et al., 2006; Valdez et al., 338 

2017; Yoshikawa et al., 2002). Lipofuscin is a by-product of lysosomal breakdown of 339 

lipids, proteins, and carbohydrates, which naturally accumulates over time in non-dividing 340 

cells such as neurons (Höhn and Grune, 2013; Moreno-García et al., 2018; Terman and 341 

Brunk, 1998). However, excessive lipofuscin accumulation is thought to be detrimental to 342 

cellular homeostasis by inhibiting lysosomal function and promoting oxidative stress, 343 

often leading to cell death (Brunk and Terman, 2002; Powell et al., 2005). As a result, 344 

elevated lipofuscin is considered a biomarker of neurodegenerative disorders, including 345 

Alzheimer’s disease, Parkinson’s disease, and Neuronal Ceroid Lipofuscinoses (Moreno-346 

García et al., 2018). Therefore, the marked increase in lipofuscin area and number seen 347 

in MUT electron micrographs (Figures 5O and 5P, respectively) is consistent with the 348 

increased abundance of lysosomal pathways observed by proteomics, and likely reflects 349 

an increase in lysosomal breakdown of cellular material. Together these data indicate 350 

that SWIPP1019R results in pathological lysosomal function that could lead to 351 

neurodegeneration.  352 

 353 

SWIPP1019R mutant mice display persistent deficits in cued fear memory recall. To 354 

observe the functional consequences of the SWIPP1019R mutation, we next studied WT 355 

and MUT mouse behavior. Given that children with homozygous SWIPP1019R point 356 

mutations display intellectual disability (Ropers et al., 2011) and SWIPP1019R mutant mice 357 

exhibit endo-lysosomal disruptions implicated in neurodegenerative processes, behavior 358 

was assessed at two ages: adolescence (P40-50), and mid-late adulthood (5.5-6.5 mo). 359 

Interestingly, MUT mice performed equivalently to WT mice in episodic and working 360 
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memory paradigms, including novel object recognition and Y-maze alternations (Figure 361 

6-figure supplement 1).  However, in a fear conditioning task, MUT mice displayed a 362 

significant deficit in cued fear memory (Figure 6). This task tests the ability of a mouse to 363 

associate an aversive event (a mild electric footshock) with a paired tone (Figure 6A). 364 

Freezing behavior of mice during tone presentation is attributed to hippocampal or 365 

amygdala-based fear memory processes (Goosens and Maren, 2001; Maren and Holt, 366 

2000; Vazdarjanova and McGaugh, 1998). Forty-eight hours after exposure to the paired 367 

tone and footshock, MUT mice showed a significant decrease in conditioned freezing to 368 

tone presentation compared to their WT littermates (Figures 6B and 6C). To ensure that 369 

this difference was not due to altered sensory capacities of MUT mice, we measured the 370 

startle response of mice to both electric foot shock and presented tones. In line with intact 371 

sensation, MUT mice responded comparably to WT mice in these tests (Figure 6-figure 372 

supplement 2). These data demonstrate that although MUT mice perceive footshock 373 

sensations and auditory cues, it is their memory of these paired events that is significantly 374 

impaired. Additionally, this deficit in fear response was evident at both adolescence and 375 

adulthood (top panels, and bottom panels, respectively, Figures 6B and 6C). These 376 

changes are consistent with the hypothesis that SWIPP109R is the cause of cognitive 377 

impairments in humans.  378 

 379 

SWIPP1019R mutant mice exhibit surprising motor deficits that are confirmed in 380 

human patients. Because SWIPP1019R results in endo-lysosomal pathology consistent 381 

with neurodegenerative disorders in the motor cortex, we next analyzed motor function of 382 

the mice over time. First, we tested the ability of WT and MUT mice to remain on a rotating 383 
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rod for five minutes (Rotarod, Figures 7A-7C). At both adolescence and adulthood, MUT 384 

mice performed markedly worse than WT littermate controls (Fig 7C). Mouse 385 

performance was not significantly different across trials, which suggested that this 386 

difference in retention time was not due to progressive fatigue, but more likely due to an 387 

overall difference in motor control (Mann and Chesselet, 2015). 388 

To study the animals’ movement at a finer scale, the gait of WT and MUT mice 389 

was also analyzed using a TreadScan system containing a high-speed camera coupled 390 

to a transparent treadmill (Figure 7D) (Beare et al., 2009). Interestingly, while the gait 391 

parameters of mice were largely indistinguishable across genotypes at adolescence, a 392 

striking difference was seen when the same mice were aged to adulthood (Figures 7E-393 

7G). In particular, MUT mice took slower (Figure 7E), longer strides (Figure 7F), stepping 394 

closer to the midline of their body (track width, Figure 7- figure supplement 1), and their 395 

gait symmetry was altered so that their strides were no longer perfectly out of phase (out 396 

of phase=0.5, Figure 7G). While these differences were most pronounced in the rear 397 

limbs (as depicted in Figure 7E-7G), the same trends were present in front limbs (Figure 398 

7-figure supplement 1). These findings demonstrate that SWIPP1019R results in 399 

progressive motor function decline that was detectable by the rotarod task at 400 

adolescence, but which became more prominent with age, as both gait and strength 401 

functions deteriorated.   402 

These marked motor findings prompted us to re-evaluate the original reports of 403 

human SWIPP1019R patients (Ropers et al., 2011). While developmental delay or learning 404 

difficulties were the primary impetus for medical evaluation, all patients also exhibited 405 

motor symptoms (mean age = 10.4 years old, Figure 7H). The patients’ movements were 406 
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described as “clumsy” with notable fine motor difficulties, dysmetria, dysdiadochokinesia, 407 

and mild dysarthria on clinical exam (Figure 7H). Recent communication with the parents 408 

of these patients, who are now an average of 21 years old, revealed no notable symptom 409 

exacerbation. It is therefore possible that the SWIPP1019R mouse model either exhibits 410 

differences from human patients or may predict future disease progression for these 411 

individuals, given that we observed significant worsening at 5-6 months old in mice (which 412 

is thought to be equivalent to ~30-35 years old in humans) (Dutta and Sengupta, 2016; 413 

Zhang et al., 2019). 414 

 415 

DISSCUSSION 416 

Taken together, the data presented here support a mechanistic model whereby 417 

SWIPP1019R causes a loss of WASH complex function, resulting in endo-lysosomal 418 

disruption and accumulation of neurodegenerative markers, such as upregulation of 419 

unfolded protein response modulators and lysosomal enzymes, as well as build-up of 420 

lipofuscin and cleaved caspase-3 over time. To our knowledge, this study provides the 421 

first mechanistic evidence of WASH complex impairment having direct and indirect 422 

organellar effects that lead to cognitive deficits and progressive motor impairments 423 

(Figure 8). 424 

Using in vivo proximity-based proteomics in wild-type mouse brain, we identify that 425 

the WASH complex interacts with the CCC (COMMD9 and CCDC93) and Retriever 426 

(VPS35L) cargo selective complexes (Bartuzi et al., 2016; Singla et al., 2019). 427 

Interestingly, we did not find significant enrichment of the Retromer sorting complex, a 428 

well-known WASH interactor, suggesting that it may play a minor role in neuronal WASH-429 
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mediated cargo sorting (Figure 1). These data are supported by our TMT proteomics and 430 

covariation network analyses of SWIPP1019R mutant brain, which clustered the WASH, 431 

CCC, and Retriever complexes together in M19, but not the Retromer complex, which 432 

was found in endosomal module M14 (Figure 2 and Figure 2-figure supplement 3A). 433 

Systems-level protein covariation analyses also revealed that disruption of these WASH-434 

CCC-Retriever interactions may have multiple downstream effects on the endosomal 435 

machinery, since endosomal modules displayed significant changes in SWIPP1019R brain 436 

(including both M19, Figure 2, as well as M14, Figure 2-figure supplement 3A), with 437 

corresponding decreases in the abundance of endosomal proteins including Retromer 438 

subunits (VPS29 and VPS35), associated sorting nexins (e.g. SNX17 and SNX27), 439 

known WASH interactors (e.g. RAB21 and FKBP15), and cargos (e.g. LRP1 and ITGA3) 440 

(Figure 2-figure supplements 2 and 3) (Del Olmo et al., 2019; Farfán et al., 2013; 441 

Fedoseienko et al., 2018; Halff et al., 2019; Harbour et al., 2012; McNally et al., 2017; 442 

Pan et al., 2010; Ye et al., 2020; Zimprich et al., 2011). While previous studies have 443 

indicated that Retromer and CCC influence endosomal localization of WASH (Harbour et 444 

al., 2012; Phillips-Krawczak et al., 2015; Singla et al., 2019), our findings of altered 445 

endosomal networks containing decreased Retromer, Retriever, and CCC protein levels 446 

in SWIPP1019R mutant brain point to a possible feedback mechanism wherein WASH 447 

impacts the protein abundance and/or stability of these interactors. Future studies 448 

defining the hierarchical interplay between the WASH, Retromer, Retriever, and CCC 449 

complexes in neurons could provide clarity on how these mechanisms are organized. 450 

In addition to highlighting the neuronal roles of WASH in CCC- and Retriever-451 

mediated endosomal sorting, our proteomics approach also identified protein modules 452 
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with increased abundance in SWIPP1019R mutant brain. The proteins in these modules fell 453 

into two interesting categories: lysosomal enzymes and proteins involved in the 454 

endoplasmic reticulum (ER) stress response. Of note, some of the lysosomal enzymes 455 

with elevated levels in MUT brain (GRN, M2; IDS, M2; and GNS, M213; Figure 3) are 456 

also implicated in lysosomal storage disorders, where they generally have decreased, 457 

rather than increased, function or expression (Hopwood et al., 1993; Mok et al., 2003; 458 

Schröder et al., 1994; Ward et al., 2017). We speculate that loss of WASH function in our 459 

mutant mouse model may lead to increased accumulation of cargo and associated 460 

machinery at early endosomes (as seen in Figure 4, enlarged EEA1+ puncta), eventually 461 

overburdening early endosomal vesicles and triggering transition to late endosomes for 462 

subsequent fusion with degradative lysosomes (Figure 8). This would effectively increase 463 

delivery of endosomal substrates to the lysosome compared to baseline, resulting in 464 

enlarged, overloaded lysosomal structures, and elevated demand for degradative 465 

enzymes. For example, since mutant neurons display increased lysosomal module 466 

protein abundance (Figure 3), and larger lysosomal structures (Figures 4 and 5), they 467 

may require higher quantities of progranulin (GRN, M2; Figure 3) for sufficient lysosomal 468 

acidification (Tanaka et al., 2017). 469 

Our findings that SWIPP1019R results in reduced WASH complex stability and 470 

function, which may ultimately drive lysosomal dysfunction, are supported by studies in 471 

non-mammalian cells. For example, expression of a dominant-negative form of WASH1 472 

in amoebae impairs recycling of lysosomal V-ATPases (Carnell et al., 2011) and loss of 473 

WASH in Drosophila plasmocytes affects lysosomal acidification (Gomez et al., 2012; 474 

Nagel et al., 2017; Zech et al., 2011). Moreover, mouse embryonic fibroblasts lacking 475 
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WASH1 display abnormal lysosomal morphologies, akin to the structures we observed in 476 

cultured SWIPP1019R MUT neurons (Gomez et al., 2012).  477 

In addition to lysosomal dysfunction, endoplasmic reticulum (ER) stress is 478 

commonly observed in neurodegenerative states, where accumulation of misfolded 479 

proteins disrupts cellular proteostasis (Cai et al., 2016; Hetz and Saxena, 2017; 480 

Montibeller and de Belleroche, 2018). This cellular strain triggers the adaptive unfolded 481 

protein response (UPR), which attempts to restore cellular homeostasis by increasing the 482 

cell’s capacity to retain misfolded proteins within the ER, remedy misfolded substrates, 483 

and trigger degradation of persistently misfolded species. Involved in this process are ER 484 

chaperones that we identified as increased in SWIPP1019R mutant brain including BiP 485 

(HSPA5), calreticulin (CALR), calnexin (CANX), and the protein disulfide isomerase 486 

family members (PDIA1, PDIA4, PDIA6) (M83; Figure 2-supplement 3B) (Garcia-Huerta 487 

et al., 2016). Many of these proteins were identified in the ER protein module found to be 488 

significantly altered in MUT mouse brain (M83), supporting a network-level change in the 489 

ER stress response (Figure 2-supplement 3B). One notable exception to this trend was 490 

endoplasmin (HSP90B1, M136), which exhibited significantly decreased abundance in 491 

SWIPP1019R mutant brain (Table S2). This is surprising given that endoplasmin has been 492 

shown to coordinate with BiP in protein folding (Sun et al., 2019), however it may highlight 493 

a possible compensatory mechanism. Additionally, prolonged UPR can stimulate 494 

autophagic pathways in neurons, where misfolded substrates are delivered to the 495 

lysosome for degradation (Cai et al., 2016). These data highlight a relationship between 496 

ER and endo-lysosomal disturbances as an exciting avenue for future research.  497 
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Strikingly, we observed modules enriched for resident proteins corresponding to 498 

all 10 of the major subcellular compartments mapped by Geladaki et al. (2019; nucleus, 499 

mitochondria, golgi, ER, peroxisome, proteasome, plasma membrane, lysosome, 500 

cytoplasm, and ribosome; Supplementary File 1). The greatest dysregulations we 501 

observed were in lysosomal, endosomal, ER, and synaptic modules, supporting the 502 

hypothesis that SWIPP1019R primarily results in disrupted endo-lysosomal trafficking. While 503 

analysis of these dysregulated modules informs the pathobiology of SWIPP1019R, our 504 

spatial proteomics approach also identified numerous biologically cohesive modules, 505 

which remained unaltered (Supplementary File 1). Given that many of these modules 506 

contained proteins of unknown function, we anticipate that future analyses of these 507 

modules and their protein constituents have great potential to inform our understanding 508 

of protein networks and their influence on neuronal cell biology.  509 

 It has become clear that preservation of the endo-lysosomal system is critical to 510 

neuronal function, as mutations in mediators of this process are implicated in neurological 511 

diseases such as Parkinson’s disease, Huntington’s disease, Alzheimer’s disease, 512 

Frontotemporal Dementia, Neuronal Ceroid Lipofuscinoses (NCLs), and Hereditary 513 

Spastic Paraplegia (Baker et al., 2006; Connor-Robson et al., 2019; Edvardson et al., 514 

2012; Follett et al., 2019; Harold et al., 2009; Mukherjee et al., 2019; Pal et al., 2006; 515 

Quadri et al., 2013; Seshadri et al., 2010; Tachibana et al., 2019; Valdmanis et al., 2007). 516 

These genetic links to predominantly neurodegenerative conditions have supported the 517 

proposition that loss of endo-lysosomal integrity can have compounding effects over time 518 

and contribute to progressive disease pathologies. In particular, NCLs are lysosomal 519 

storage disorders primarily found in children, with heterogenous presentations and 520 
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multigenic causations (Mukherjee et al., 2019). The majority of genes implicated in NCLs 521 

affect lysosomal enzymatic function or transport of proteins to the lysosome (Mukherjee 522 

et al., 2019; Poët et al., 2006; Ramirez-Montealegre and Pearce, 2005; Yoshikawa et al., 523 

2002). Most patients present with marked neurological impairments, such as learning 524 

disabilities, motor abnormalities, vision loss, and seizures, and have the unifying feature 525 

of lysosomal lipofuscin accumulation upon pathological examination (Mukherjee et al., 526 

2019). While the human SWIPP1019R mutation has not been classified as an NCL (Ropers 527 

et al., 2011), findings from our mutant mouse model suggest that loss of WASH complex 528 

function leads to phenotypes bearing strong resemblance to NCLs, including lipofuscin 529 

accumulation (Figures 4-7). As a result, our mouse model could provide the opportunity 530 

to study these pathologies at a mechanistic level, while also enabling preclinical 531 

development of treatments for their human counterparts. 532 

Currently there is an urgent need for greater mechanistic investigations of 533 

neurodegenerative disorders, particularly in the domain of endo-lysosomal trafficking. 534 

Despite the continual increase in identification of human disease-associated genes, our 535 

molecular understanding of how their protein equivalents function and contribute to 536 

pathogenesis remains limited. Here we employ a systems-level analysis of proteomic 537 

datasets to uncover biological perturbations linked to SWIPP1019R. We demonstrate the 538 

power of combining in vivo proteomics and systems network analyses with in vitro and in 539 

vivo functional studies to uncover relationships between genetic mutations and molecular 540 

disease pathologies. Applying this platform to study organellar dysfunction in other 541 

neurodegenerative and neurodevelopmental disorders may facilitate the identification of 542 

convergent disease pathways driving brain disorders. 543 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.06.239517doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.06.239517
http://creativecommons.org/licenses/by/4.0/


Figure 1

J

K

L

M

A

Neuronal WASH proteome (n=174)

DAPI HA Streptavidin Merge H

I

Node size: fold enrichment BioID2 interaction Protein-protein interaction

WASH iBioID Network Attributes

SWIP
Strumpellin

WASH1ccdc53

Fam21

intellectual 
disability 

intellectual 
disability,

spastic 
paraplegia

Human mutations in 
WASH complex

P0 P15 P21 P22

in vivo BioID workflow

Inject AAV-hSyn1-WASH1-BioID2-HA 
or AAV-hSyn1-solubleBioID2-HA control

7 days of biotin
administration

Extract whole 
brain lysate

Streptavidin pulldown
of biotinylated proteins

Quantitative 
LC-MS/MS

WASH1

BioID2

B

D

E

F

Merge
Cx

Hipp

Thal

G

C

Endocytic function (n=24)

Endosomal trafficking (n=23)

Synaptic regulation (n=28)

Cytoskeletal regulation (n=32)

WASH complex (n=5)

WASH interactors (n=13)

25 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.06.239517doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.06.239517
http://creativecommons.org/licenses/by/4.0/


Figure 1. Identification of the WASH complex proteome in vivo confirms a neuronal role in 
endosomal trafficking 
(A) The WASH complex is composed of five subunits, Washc1 (WASH1), Washc2 (FAM21), Washc3
(CCDC53), Washc4 (SWIP), and Washc5 (Strumpellin). Human mutations in these components are
associated with spastic paraplegia (De Bot et al., 2013; Jahic et al., 2015; Valdmanis et al., 2007),
Ritscher-Schinzel Syndrome (Elliott et al., 2013), and intellectual disability (Assoum et al., 2020; Ropers et
al., 2011).
(B) A BioID2 probe was attached to the c-terminus of WASH1 and expressed under the human
synapsin-1 (hSyn1) promoter in an AAV construct for in vivo BioID (iBioID). iBioID probes (WASH1-
BioID2-HA, or negative control solubleBioID2-HA) were injected into wild-type mouse brain at P0 and
allowed to express for two weeks. Subcutaneous biotin injections (24 mg/kg) were administered over
seven days for biotinylation, and then brains were harvested for isolation and purification of biotinylated
proteins. LC-MS/MS identified proteins significantly enriched in all three replicates of WASH1-BioID2
samples over soluble-BioID2 controls.
(C)Representative image of WASH1-BioID2-HA expression in a mouse coronal brain section (Cx =
cortex, Hipp = hippocampus, Thal = thalmus). Scale bar, 1 mm.
(D)Representative image of WASH1-BioID2-HA expression in mouse cortex (inset from C). Individual
panels show nuclei (DAPI, blue), AAV construct HA epitope (green), and biotinylated proteins
(Streptavidin, red). Merged image shows colocalization of HA and Streptavidin (yellow). Scale bar, 50 µm.
(E) Representative image of WASH1-BioID2-HA expression in mouse hippocampus (inset from C). Scale
bar, 50 µm.
(F) Representative image of WASH1-BioID2-HA expression in mouse thalamus (inset from C). Scale bar,
50 µm.
(G) iBioID identified known and unknown proteins interactors of the WASH complex in murine neurons.
Nodes size represents protein abundance fold-enrichment over negative control (range: 3 to 181.7), solid
grey edges delineate iBioID interactions between the WASHC1 probe (seen in yellow at the center) and
identified proteins, dashed edges indicate known protein-protein interactions from HitPredict database
(López et al., 2015). (H-I) Clustergrams of:
(H)All five WASH complex proteins identified by iBioID.
(I) Previously reported WASH interactors (13/174), including the CCC and Retriever complexes.
(J) Endosomal trafficking proteins (23/174 proteins).
(K) Endocytic proteins (24/174).
(L) Proteins involved in cytoskeletal regulation (32/174), including Arp2/3 subunit ARPC5.
(M)Synaptic proteins (28/174). Clustergrams were annotated by hand and cross-referenced with
Metascape (Zhou et al., 2019) GO enrichment of WASH1 proteome constituents over all proteins
identified in the BioID experiment.
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Figure 2. Spatial proteomics and network covariation analysis reveal significant disruptions to the 
WASH complex and an endosomal module in SWIPP1019R mutant mouse brain
(A)Mouse model of the human SWIPP1019R missense mutation created using CRISPR. A C>G point 
mutation was introduced into exon29 of murine Washc4, leading to a P1019R amino acid substitution. We 
hypothesize (H1) that this mutation causes instability of the WASH complex.
(B)Representative western blot and quantification of WASH components, Strumpellin and WASH1
(predicted sizes in kDa: 134 and 72, respectively), as well as loading control β-Tubulin (55kDa) from whole 
adult whole brain lysate prepared from SWIP WT (Washc4C/C) and SWIP homozygous MUT (Washc4G/G) 

mice.  Bar plots show quantification of band intensities relative to WT (n=3 mice per genotype). Strumpellin 
(WT 100.0 ± 5.2%, MUT 3.5 ± 0.7%, t2.1=18.44, p=0.0024) and WASH1 (WT 100.0 ± 3.8%, MUT 1.1 ± 
0.4%, t2.1=25.92, p=0.0013) were significantly decreased. Equivalent amounts of protein were analyzed in 
each condition (β-Tubulin: WT 100.0 ± 8.2%, MUT 94.1 ± 4.1%, U=4, p>0.99).
(C) Spatial TMT proteomics experimental design. 7 subcellular fractions were prepared from one WT and 
one MUT mouse (10mo). These samples, as well as two pooled quality control (QC) samples, were 
labeled with unique TMT tags and concatenated for simultaneous LC-MS/MS analysis. This experiment 
was repeated three times (3 WT and 3 MUT brains total). To detect network-level changes, proteins were 
clustered into modules, and general linearized models (GLMs) were used to identify differences in module 
abundance between WT and MUT samples. The network shows an overview of the spatial proteomics 
graph in which the 37 differentially abundant modules are indicated by colored nodes.
(D) Protein module 19 (M19) contains subunits of the WASH, CCC, and Retriever complexes. Node size 
denotes its weighted degree centrality (~importance in module); purple node color indicates proteins with 
altered abundance in MUT brain relative to WT; black node border denotes proteins identified in the 
WASH1-BioID proteome (Figure 1); red, yellow, and green borders highlight protein components of the 
CCC, Retriever, and WASH complexes; black edges indicate known protein-protein interactions; and grey-
red edges denote the relative strength of protein covariation within a module (gray = weak, red = strong). 
P-adjust values represent enrichment of proteins identified in the CORUM database adjusted for multiple 
comparisons (Giurgiu et al., 2019).
(E)Difference in normalized protein abundance for four WASH proteins found in M19 (SWIP: WT 6.28 ± 
0.41, MUT 4.89 ± 0.28, p=3.98x10-28; WASH1: WT 6.41 ± 0.47, MUT 4.65 ± 0.62, p=7.92x10-18; FAM21: 
WT 6.29 ± 0.48, MUT 5.29 ± 0.49, p=3.27x10-16; Strumpellin: WT 7.85 ± 0.52, MUT 6.59 ± 0.53,
p=9.06x10-25) and one control (Tubulin 4a: WT 8.57 ± 0.52, MUT 8.52 ± 0.58, p>0.99) across all three 
experimental replicates (n=3 independent experiments), presented as log2(adjusted protein intensities).
(F)Normalized average intensities for every protein within M19 across all seven subcellular fractions 
analyzed. Teal lines delineate protein levels in WT samples, purple lines delineate protein levels in MUT 
samples (averaged across three experimental replicates). Bolded lines demarcate the fitted intensity 
values for WT and MUT proteins (n=3 independent experiments).
(G)Difference in M19 abundance, adjusted for fraction differences and presented as log2(adjusted module 
abundance) (WT 13.21 ± 0.003, MUT 12.99 ± 0.003, p=0.0007; n=3 independent experiments).
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Figure 3
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Figure 3. Disruption of lysosomal protein networks in SWIPP1019R mutant brain
(A) Simplified schematic of the endo-lysosomal pathway in neurons. Inset depicts representative 
lysosomal enzymes, such as proteases (CTSA, CTSB, CTSL), glycosidases (GLA, GLB1, MAN2B1), and 
sulfatases (GNS, IDS).
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(B) Network graph of module 159 (M159). All proteins in M159 exhibit altered abundance in MUT brain,
including lysosomal proteins, CTSA, PLA2G15, and GM2A.
(C) Module 2 (M2) contains multiple lysosomal proteins with increased abundance in MUT brain
compared to WT, including CTSS, CTSL, GRN, IDS, MAN2B1.
(D) Module 213 (M213) contains multiple proteins with increased abundance in MUT brain, including
lysosomal proteins, GLB1, GNS, CTSB, MAN2B2, and PLBD2. Network attributes (B-D): Node size
denotes its weighted degree centrality (~importance in module),  node color indicates proteins with altered
abundance in MUT brain relative to WT, purple outline highlight proteins identified as lysosomal in
(Geladaki et al., 2019), black edges indicate known protein-protein interactions, and grey-red edges
denote the relative strength of protein covariation within a module (gray = weak, red = strong). P-Adjust
values represent enrichment of proteins identified as lysosomal in Geladaki et al., 2019.
(E) The overall effect of genotype on M159 module abundance (WT 10.83 ± 0.002, MUT 10.94 ± 0.002,
p=0.031).
(F) The overall effect of genotype on M2 module abundance (WT 13.74 ± 0.001, MUT 13.85 ± 0.0009,
p=0.0006).
(G) The overall effect of genotype on M213 abundance (WT 12.17 ± 0.002, MUT 12.33 ± 0.002,
p=0.0037). Data reported as mean ± SEM, error bars are SEM. *p<0.05, ** p<0.01, ***p<0.001, empirical
Bayes quasi-likelihood F-test with Bonferroni correction (E-G).
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Figure 4
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Figure 4. SWIPP1019R mutant neurons display structural abnormalities in endo-lysosomal 
compartments in vitro 
(A) Experimental design. Cortices were dissected from P0 pups, and neurons were dissociated and
cultured on glass coverslips for 15 days. Cultures were fixed, stained, and imaged using confocal
microscopy. 3D puncta volumes were reconstructed from z-stack images using Imaris software.
(B-C) Representative 3D reconstructions of WT and MUT DIV15 neurons (respectively) stained for EEA1
(yellow) and MAP2 (magenta).
(D-E) Representative 3D reconstructions of WT and MUT DIV15 neurons (respectively) stained for
Cathepsin D (cyan) and MAP2 (magenta).
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(F) Graph of the average number of EEA1+ volumes per soma in each image (WT 95.0 ± 5.5, n=24
neurons; MUT 103.7 ± 3.7, n=24 neurons; t40.2=1.314, p=0.1961).
(G) Graph of the average EEA1+ volume size per soma shows larger EEA1+ volumes in MUT neurons
(WT 0.15 ± 0.01 µm3, n=24 neurons; MUT 0.30 ± 0.02 µm3, n=24 neurons; U=50, p<0.0001).
(H) Graph of the average number of Cathepsin D+ volumes per soma illustrates less Cathepsin D+
volumes in MUT neurons (WT 30.4 ± 1.4, n=42; MUT 17.2 ± 0.9, n=42; t71=7.943, p<0.0001).
(I) Graph of the average Cathepsin D+ volume size per soma demonstrates larger Cathepsin D+ volumes
in MUT neurons (WT 0.54 ± 0.02 µm3, n=42; MUT 0.69 ± 0.04 µm3, n=42; t63=3.701, p=0.0005).
(J) Histogram of EEA1+ volumes illustrate differences in size distributions between MUT and WT neurons.
(K) Histogram of CathD+ volumes show differences in size distributions between MUT and WT neurons.
Analyses included at least three separate culture preparations. Scale bars, 5 µm (B-E). Data reported as
mean ± SEM, error bars are SEM. ***p<0.001, ****p<0.0001, two-tailed t-tests or Mann-Whitney U test
(G).
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Figure 5. SWIPP1019R mutant brains exhibit markers of abnormal endo-lysosomal structures and 
cell death in vivo
(A-B) Representative images of adolescent (P42) WT and MUT motor cortex stained with cleaved 
caspase-3 (CC3, green).
(C) Anatomical representation of mouse brain with motor cortex highlighted in red, adapted from the Allen 
Brain Atlas (Oh et al., 2014).
(D-E) Representative image of adult (10 mo) WT and MUT motor cortex stained with CC3 (green).
(F, G, I, and J) DAPI co-stained images for (A, B, D, and E, respectively). Scale bar for (A-J), 15 µm.
(H) Graph depicting the normalized percentage of DAPI+ nuclei that are positive for CC3 per image. No 
difference is seen at P42, but the amount of CC3+ nuclei is significantly higher in aged MUT mice (P42 
WT 6.97 ± 0.80%, P42 MUT 5.26 ± 0.90%, 10mo WT 25.38 ± 2.05%, 10mo MUT 44.01 ± 1.90%,
n=24 images per genotype taken from 4 different mice, H=74.12, p<0.0001). We observed no difference 
in number of nuclei per image between genotypes.
(K) Representative transmission electron microscopy (TEM) image taken of soma from adult (7mo) WT
motor cortex. Arrowheads delineate electron-dense lipofuscin material, Nuc = nucleus.
(L) Representative transmission electron microscopy (TEM) image taken of soma from adult (7mo) MUT
motor cortex.
(M) Inset from (K) highlights lysosomal structure in WT soma. Pseudo-colored region depicts lipofuscin
area, demarcated as L.
(N) Inset from (L) highlights large lipofuscin deposit in MUT soma (L, pseudo-colored region) with electron-
dense and electron-lucent lipid-like (asterisk) components.
(O) Graph of areas of electron-dense regions of interest (ROI) shows increased ROI size in MUT neurons
(WT 2.4x105 ± 2.8x104 nm2, n=50 ROIs; MUT 8.2x105 ± 9.7 x104 nm2, n=75 ROIs; U=636, p<0.0001).
(P) Graph of the average number of presumptive lysosomes with associated electron-dense material
reveals increased number in MUT samples (WT 3.14 ± 0.72 ROIs, n=14 images; MUT 10.86 ± 1.42 ROIs,
n=14 images; U=17, p<0.0001). For (N) and (O), images were taken from multiple TEM grids, prepared
from n=3 animals per genotype. Scale bar for all TEM images, 1 µm. Data reported as mean ± SEM, error
bars are SEM. ***p<0.001, ****p<0.0001, Kruskal-Wallis test (F), Mann-Whitney U test (O-P).
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Figure 6
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Figure 6. SWIPP1019R mutant mice display persistent deficits in cued fear memory recall 
(A) Experimental fear conditioning paradigm. After acclimation to a conditioning chamber, mice received a
mild aversive 0.4mA footshock paired with a 2900Hz tone. 48 hours later, the mice were placed in a chamber
with different tactile and visual cues. The mice acclimated for two minutes and then the 2900Hz tone was
played (no footshock) and freezing behavior was assessed.
(B) Line graphs of WT and MUT freezing response during cued tone memory recall. Data represented as
average freezing per genotype in 30 s time bins. The tone is presented after t = 120 s, and remains on for
120 seconds (Tone ON). Two different cohorts of mice were used for age groups P42 (top) and 6.5mo
(bottom). Two-way ANOVA analysis of average freezing during Pre-Tone and Tone periods reveal a
Genotype x Time effect at P42 (WT n=10, MUT n=10, F1,18=4.944, p=0.0392) and 6.5mo (WT n=13, MUT
n=11, F1,22= 13.61, p=0.0013).
(C) Graphs showing the average %time freezing per animal before and during tone presentation. Top:
freezing is reduced by 20% in MUT adolescent mice compared to WT littermates (Pre-tone WT 16.5 ± 2.2%,
n=10; Pre-tone MUT 13.0 ± 1.8%, n=10; t36=0.8569, p=0.6366; Tone WT 52.8 ± 3.8%, n=10; Tone MUT 38.0
± 3.6%, n=10; t36=3.539, p=0.0023), Bottom: freezing is reduced by over 30% in MUT adult mice compared
to WT littermates (Pre-tone WT 21.1 ± 2.7%, n=13; Pre-tone MUT 23.7 ± 3.8%, n=11; t44=0.4675, p=0.8721;
Tone WT 69.7 ± 4.3%, n=13; Tone MUT 53.1 ± 5.2%, n=11; t44=2.921, p=0.0109). Data reported as mean ±
SEM, error bars are SEM. *p<0.05, **p<0.01, two-way ANOVAs (B) and Sidak’s post-hoc analyses (C).
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Figure 7
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H Clinical Findings

Patient Sex  Fine motor deficits Dysmetria  Dysdiadochokinesia Dysarthria

1 18 F + + ++ +

2 16 F + + + ++

3 14 M + + mild ++ + mild

4 9 F + + + +

5 7 M + + + +

6 5 F + + + absent speech

7 4 F + + + +

Age at 
examination 

(years)

Figure 7. SWIPP1019R mutant mice exhibit surprising motor deficits that are confirmed in human patients 
(A) Rotarod experimental setup. Mice walked atop a rod rotating at 32rpm for 5 minutes, and the duration of
time they remained on the rod before falling was recorded.
(B) Line graph of average duration animals remained on the rod per genotype across four trials, with an inter-
trial interval of 40 minutes. The same cohort of animals was tested at two different ages, P45 (top) and 5.5
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months (bottom). Genotype had a significant effect on task performance at both ages (top, P45: genotype effect, 
F1,25=7.821, p=0.0098. bottom, 5.5mo: genotype effect, F1,23= 7.573, p=0.0114). 
(C) Graphs showing the average duration each animal remained on the rod across trials. At both ages, the MUT 
mice exhibited an almost 50% reduction in their ability to remain on the rod (Top, P45: WT 169.9 ± 25.7 s, MUT 
83.8 ± 15.9 s, U=35, p=0.0054. Bottom, 5.5mo: WT 135.9 ± 20.9 s, MUT 66.7 ± 9.5 s, t18=3.011, p=0.0075).
(D) TreadScan task. Mice walked on a treadmill for 20 s while their gate was captured with a high-speed 
camera. Diagrams of gait parameters measured in (E-G) are shown below the TreadScan apparatus.
(E) Average swing time per stride for hindlimbs. At P45 (top), there is no significant difference in rear swing time 
(WT 156.2 ± 22.4 ms, MUT 132.3 ± 19.6 ms, U=83, p=0.7203). At 5.5mo (bottom), MUT mice display 
significantly longer rear swing time (WT 140 ± 6.2 ms, MUT 252.0 ± 21.6 ms, t12=4.988, p=0.0003).
(F) Average stride length for hindlimbs. At P45 (top), there is no significant difference in stride length (WT 62.3 ± 
2.0 mm, MUT 60.5 ± 2.1 mm, U=75, p=0.4583). At 5.5mo (bottom), MUT mice take significantly longer strides 
with their hindlimbs (WT 60.8 ± 0.8 mm, MUT 73.6 ± 2.7 mm, t11.7=4.547, p=0.0007).
(G) Average homologous coupling for front and rear limbs. Homologous coupling is 0.5 when the left and right 
feet are completely out of phase. At P45 (top), WT and MUT mice exhibit normal homologous coupling (WT 0.48
± 0.005, MUT 0.48 ± 0.004, U=76.5, p=0.4920). At 5.5 mo (bottom), MUT mice display decreased homologous 
coupling, suggestive of abnormal gait symmetry (WT 0.48 ± 0.003, MUT 0.46 ± 0.004, t18.8=3.715, p=0.0015). At 
P45: n=14 WT, n=13 MUT; At 5.5mo: n=14 WT, n=11 MUT.
(H) Table of motor findings in clinical exam of human patients with the homozygous SWIPP1019R mutation (n=7). 
All patients exhibit motor dysfunction (+ = symptom present). Data reported as mean ± SEM, error bars are 
SEM.*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, two-way repeated measure ANOVAs (B), Mann-Whitney U 
tests and two-tailed t-tests (C-G).
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Figure 8. Model of neuronal endo-lysosomal pathology in SWIPP1019R mutant mice
(A) Wild-type WASH function in mouse brain. Under normal conditions, the WASH complex interacts with many
endosomal proteins and cytoskeletal regulators, such as the Arp2/3 complex. These interactions enable
restructuring of the endosome surface (actin in gray) and allow for cargo segregation and scission of vesicles.
Substrates are transported to the late endosome for lysosomal degradation, to the Golgi network for
modification, or to the cell surface for recycling.
(B) Loss of WASH function leads to increased lysosomal degradation in mouse brain. Destabilization of the
WASH complex leads to enlarged endosomes and lysosomes, with increased substrate accumulation at the
lysosome. This suggests an increase in flux through the endo-lysosomal pathway, possibly as a result of mis-
localized endosomal substrates.
(C) Wild-type mice exhibit normal motor function.
(D) SWIPP1019R mutant mice display progressive motor dysfunction in association with these subcellular
alterations.
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Figure 2- figure supplement 1
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Figure 2- figure supplement 1. Overexpression of SWIPP1019R decreases WASH complex 
binding in cultured cells; related to Figure 2

(A) Schematic showing overexpression of WT or MUT SWIPP1019R in HEK293T cells followed by 
immunoprecipitation.
(B) Western blots of input (5%, left) and immunoprecipitated (IP, right) protein. Two samples per condition 
were run on two separate gels, n=4 biological replicates from separate experiments.
(C) Quantification of B normalized to WT. Strumpellin (WT 100.0 ± 6.8%, MUT 54.8 ± 8.0%, t5.9=4.290, 
p=0.0054), WASH1 (WT 100.0 ± 7.3%, MUT 41.4 ± 4.4%, t4.9=6.902, p=0.0011), HA (WT 100.0 ± 4.1%, 
MUT 107.8 ± 4.1%, t6.0=1.344, p=0.2275). Data reported as mean ± SEM, error bars are SEM. **p<0.01, 
two-tailed t-tests.
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Figure 2- figure supplement 2
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Figure 2- figure supplement 2. SWIPP1019R MUT brain displays significant alterations in protein 
abundance compared to WT; related to Figures 2 and 3
(A) Interactome of altered proteins. Nodes reflect protein name, light gray lines delineate proteins
identified as different in MUT compared to WT (ΔWASHC4 in center), dark dashed lines indicate known
protein-protein interactions from HitPredict database (López et al., 2015). Color reflects cellular function
seen in B. Nodes with red borders delineate WASH complex proteins.
(B) Cellular function of proteins in A, as reflected in published literature. % reflects the percentage of
proteins in a category out of the total 85 altered proteins.
(C-G) Clustergrams of:
(C) Proteins with increased (red) or decreased (blue) abundance in MUT brains compared to WT.
(D) Known protein components of the WASH complex and their previously reported interactors.
(E) Proteins with lysosomal function.
(F) Proteins identified in the WASH1-BioID2 proteome (Figure 1).
(G) Proteins with links to intellectual disability (I.D.) or neurodegeneration (Degen.).
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Figure 2- figure supplement 3
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Figure 2- figure supplement 3. Multiple protein networks display significant alterations in 
MUT brain compared to WT; related to Figures 2 and 3
(A)Module 14 (M14) containing endosomal proteins. Two of the three retromer sorting complex subunits
are highlighted with red borders, with enrichment calculated relative to the CORUM database (Giurgiu et
al., 2019).
(B)Module 83 (M83) containing endoplasmic reticulum (ER) stress response proteins. Seven of the 185
proteins identified to have ER function by LOPIT-DC spatial proteomics are highlighted with orange
borders (Geladaki et al., 2019).
(C-D) Modules 248 and 35 (M248, M35, respectively) containing synaptic proteins. Network attributes for
graphs in B-E: Node size denotes its weighted degree centrality (~importance in module), colored node
indicates altered abundance in MUT brain relative to WT, black node border denotes proteins identified
in the WASH1-BioID proteome (Figure 1), colored node border denotes proteins identified in other
datasets, black edges indicate known protein-protein interactions, and grey-red edges denote the relative
strength of protein covariation within a module (gray = weak, red = strong). P-adjust enrichment values
are calculated relative to the CORUM database (B), Lopit-DC dataset (C), or excitatory postsynapse
proteome (DLG4-BioID, D-E) (Geladaki et al., 2019; Giurgiu et al., 2019; Uezu et al., 2016).
(E) Summary box plots of module abundance for all seven brain fractions analyzed presented as
log2(adjusted module intensities). All modules display significant differences between WT and MUT
groups (M14: WT 13.94 ± 0.002 MUT 13.82 ± 0.002, p=0.0207; M83: WT 14.46 ± 0.004, MUT 14.70 ±
0.003, p=0.0088; M248: WT 13.83 ± 0.001, MUT 13.77 ± 0.001, p=0.00134; M35: WT 14.19 ± 0.001,
MUT 14.10 ± 0.001, p=0.0030).
(F) Normalized protein abundance for all proteins in each module across the seven subcellular fractions
analyzed. Plots correspond to modules seen in F, and data colors reflect genotypes in F. Thick lines
represent the mean protein intensity per genotype. Number of proteins in each module are indicated at
the top of each graph. Data reported as mean ± SEM, error bars are SEM. *p<0.05, **p<0.01,
***p<0.001, GLM (model: 0 ~ Fraction + Module) and empirical Bayes quasi-likelihood F-test with
Bonferroni correction (F).
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Figure 5- figure supplement 1. There is no significant difference in striatal, cerebellar, or 
hippocampal cell death between WT and MUT mice; related to Figure 5
(A) Representative image of adolescent (P42) WT striatum stained with cleaved caspase-3 (CC3, green).
(B) Representative image of adolescent (P42) MUT striatum stained with cleaved caspase-3 (CC3, green).
(C and D) DAPI co-stained images of A and B, respectively.
(E) Anatomical representation of mouse brain with striatum highlighted in red, adapted from the Allen Brain
Atlas (Oh et al., 2014).
(F) Representative image of adult (10 mo) WT striatum stained with CC3 (green).
(G) Representative image of adult (10 mo) MUT striatum stained with CC3 (green).
(H and I) DAPI co-stained images of F and G, respectively. Scale bars for A-I are 15 µm.
(J) Graph depicting the normalized % of DAPI+ nuclei that are positive for CC3 per image. No difference is
seen between genotypes at either age (P42 WT 3.70 ± 0.99%, P42 MUT 1.95 ± 0.49%, 10mo WT 16.77 ±
2.09%, 10mo MUT 24.86 ± 2.17%, H=61.87, p<0.0001).
(K) Representative image of adolescent (P42) WT cerebellum stained with cleaved caspase-3 (CC3,
green).
(L) Representative image of adolescent (P42) MUT cerebellum stained with cleaved caspase-3 (CC3,
green).
(M and N) DAPI and Calbindin co-stained images of K and L, respectively.
(O) Anatomical representation of mouse cerebellum, adapted from the Allen Brain Atlas (Oh et al., 2014).
Red region highlights area used for imaging.
(P) Representative image of adult (10 mo) WT cerebellum stained with CC3 (green).
(Q) Representative image of adult (10 mo) MUT cerebellum stained with CC3 (green). No significant CC3
staining is observed at either age.
(R and S) DAPI and Calbindin co-stained images of P and Q, respectively. Scale bars for K-S are 50 µm.
(T) Graph depicting the number of Calbindin+ somas per image, a marker for Purkinje cells. No difference
is seen between genotypes at either age (P42 WT 20.50 ± 0.53, P42 MUT 20.67 ± 0.59, 10mo WT 21.42 ±
0.85, 10mo MUT 22.63 ± 0.74, H=4.891, p=0.1799).
(U) Representative image of adolescent (P42) WT cerebellum stained with cleaved caspase-3 (CC3,
green).
(V) Representative image of adolescent (P42) MUT cerebellum stained with cleaved caspase-3 (CC3,
green).
(W and X) DAPI and Calbindin co-stained images of U and V, respectively.
(Y) Anatomical representation of mouse hippocampus CA1, adapted from the Allen Brain Atlas (Oh et al.,
2014). Red region highlights area used for imaging.
(Z) Representative image of adolescent (P42) WT cerebellum stained with cleaved caspase-3 (CC3,
green).
(AA) Representative image of adolescent (P42) MUT cerebellum stained with cleaved caspase-3 (CC3,
green).
(BB and CC) DAPI and Calbindin co-stained images of U and V, respectively.
(DD) Graph of the normalized % of DAPI+ nuclei that are positive for CC3 per image. Very little CC3
staining is seen at either age, regardless of genotype (P42 WT 0.21 ± 0.11%, P42 MUT 0.15 ± 0.11%,
10mo WT 0.81 ± 0.28%, 10mo MUT 4.13 ± 0.96%, H=20.27, p=0.0001). Data obtained from four animals
per condition, and reported as mean ± standard error of the mean (SEM), with error bars as SEM. Kruskal-
Wallis test (J,T, and DD).
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Figure 6- figure supplement 1. SWIPP1019R mutant mice do not display deficits in spatial 
working memory or novel object recognition; related to Figure 6 
(A) Y-maze paradigm. Mice were placed in the center of the maze and allowed to explore all three arms
freely for five minutes. Each arm had distinct visual cues.
(B) Graph depicting the percent alternations achieved for each mouse at adolescence (WT 51.48 ±
2.47%, MUT 50.81 ± 2.19%, t24=0.2036, p=0.8404).
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(C) Graph depicting the percent alternations achieved for each mouse at adulthood (WT 56.12 ±1.53%,
MUT 57.93 ± 2.56%, t18=0.6074, p=0.5511).
(D) Graphs of the number of direct revisits mice made to the arm they just explored reveal no difference
between genotypes at adolescence (WT 2.64 ± 0.50, MUT 2.42 ± 0.42, t24=0.3482, p=0.7308).
(E) Graphs of the number of direct revisits mice made at adulthood (WT 1.36 ± 0.33, MUT 1.42 ± 0.36,
t24=0.1231, p=0.9031).
(F) Similar to D-E, there were no differences in the number of indirect revisits (ex: arm Aà arm Bàarm
A) between genotypes at adolescence (WT 10.21 ± 1.03, MUT 12.00 ± 1.48, U=69, p=0.4515)
(G) Indirect revisits at adulthood (WT 12.86 ± 1.26, MUT 15.17 ± 1.43, t23=1.211, p=0.2380).
(H) There were no significant differences in total distance travelled at adolescence, suggesting that
motor function did not affect Y-maze performance (WT 2401 ± 98.9 cm, MUT 2406 ± 121.0 cm,
t22=0.03281, p=0.9741).
(I) No difference in distanced travelled at adulthood (WT 2761 ± 111.6 cm, MUT 3124 ± 191.1 cm,
t18=1.638, p=0.1189).
(J) Novel object task. Mice first performed a 5-minute trial in which they were placed in an arena with two
identical objects and allowed to explore freely, while their behavior was tracked with video software.
Mice were returned to their home cage, and then re-introduced to the arena a half an hour later, where
one of the objects had been replaced with a novel object, and their behavior was again tracked. Twenty-
four hours later the same test was performed, but the novel object was replaced with another new
object.
(K) Graph depicting adolescent animals’ preference for the novel object during the three phases of the
task, training (Train), short-term memory (STM), and long-term memory (LTM). No significant difference
in object preference is seen between genotypes for any phase (Train WT -0.092 ± 0.065, Train MUT
-0.123 ± 0.072, STM WT 0.488 ± 0.076, STM MUT 0.315 ± 0.094, LTM WT 0.479 ± 0.046, LTM MUT
0.373 ± 0.076, F1,22=1.840, p=0.1887).
(L) Graph depicting adult animals’ preference for the novel object. (Train WT -0.066 ± 0.053, Train MUT
-0.130 ± 0.089, STM WT 0.416 ± 0.060, STM MUT 0.274 ± 0.096, LTM WT 0.316 ± 0.059, LTM MUT
0.306 ± 0.050, F1,22=0.9735, p=0.3345).
(M) Graph depicting the total amount of time (in seconds) adolescent animals spent exploring both
objects in each phase of the task. No significant difference in exploration time was observed across
genotypes, suggesting that genotype does not hinder object exploration (Train P44 WT 38.10 ± 2.45 s,
Train P44 MUT 50.04 ± 5.44 s, STM P44 WT 55.02 ± 4.31 s, STM P44 MUT 63.60 ± 4.50 s, LTM P45
WT 46.75 ± 3.34 s, LTM P45 MUT 68.08 ± 7.54 s, F1,22=7.373, p=0.0126).
(N) Graph depicting the total time adult animals spent exploring both objects in each the task (Train WT
39.10 ± 3.62 s, Train MUT 51.15 ± 4.91 s, STM WT 44.75 ± 4.87 s, STM MUT 49.56 ± 6.16 s, LTM WT
39.02 ± 5.29 s, LTM MUT 55.15 ± 7.34 s, F1,22=2.936, p=0.1007). For all Y-maze measures, WT n=14,
MUT n=12. For all novel object measures, WT n=13, MUT n=11. Data reported as mean ± SEM, error
bars are SEM. Two-tailed t-tests or Mann-Whitney U tests (B-I), two-way ANOVAs (K-N).
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Figure 6- figure supplement 2. SWIPP1019R mutant mice do not have significant deficits in 
contextual fear memory recall, auditory perception, or tactile sensation; related to Figure 6 
(A) Experimental fear conditioning scheme. After acclimation, mice received a mild aversive 0.4mA
footshock paired with a 2900Hz tone in a conditioning chamber. 24 hours later, the mice were placed
back in the same chamber to assess freezing behavior (without footshock or tone).
(B) Experimental startle response setup used to assess hearing and somatosensation. Mice were
placed in a plexiglass tube atop a load cell that measured startle movements in response to stimuli.
(C) Line graphs of WT and MUT freezing response during the contextual memory recall task. Data
represented as average freezing per genotype in 30 second time bins. The task was performed with two
different cohorts for the different ages, P42 (top) and 6.5mo (bottom). Top: no significant difference in
freezing at P42 (Two-way repeated measure ANOVA, Genotype effect, F1,18=0.088, p=0.7698. Sidak’s
post-hoc analysis, 30 s p=0.8388, 60 s p=0.9990, 90 s p=0.9964, 120 s p=0.3281), Bottom: no
significant difference in freezing at 6.5mo (Two-way repeated measure ANOVA, Genotype effect, F1,22=
3.723, p=0.0667. Sidak’s post-hoc analysis, 30 s p=0.8977, 60 s p=0.1636, 90 s p=0.9979, 120 s
p=0.0037).
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(D) Graphs showing the average total freezing time per animal during context exposure. Top: no
significant difference is seen between WT and MUT mice at P42 (WT 34.01 ± 6.32%, MUT 36.99 ±
7.81%, t17=2.985, p=0.7699). Bottom: no significant different is seen between genotypes at 6.5mo (WT
43.94 ± 6.00%, MUT 28.73 ± 4.80%, t21.6=1.980, p=0.0606).
(E) Graphs of individual animals’ startle response to a 2900Hz tone played at 80dB. MUT mice were not
significantly more reactive to the tone than WT at P50 (WT 25.96 ± 4.95, MUT 40.68 ± 5.05, U=35,
p=0.2799), or at 6.5mo (WT 14.07 ± 3.27, MUT 14.85 ± 1.49, U=47, p=0.2768).
(F) Graphs of individual animals’ startle response to a 0.4mA footshock. No significant difference
observed between genotypes at either age (P55 WT 1527 ± 215.7, P55 MUT 1996 ± 51.0, U=28.50,
p=0.0542; 6.5mo WT 1545 ± 179.5, 6.5mo MUT 1817 ± 119.1, U=47, p=0.2360). Startle response
reported in arbitrary units (A.U.). For all adolescent measures: WT n=10, MUT n=10. For adult freezing
measures: WT n=13, MUT n=11. For adult startle responses: WT n=13, MUT n=10. Data reported as
mean ± SEM, error bars are SEM.*p<0.05, **p<0.01, two-way repeated measure ANOVAs (C), two-
tailed t-tests (D), and Mann-Whitney U tests (E-F).
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Figure 7- figure supplement 1. Progressive gait changes in SWIPP1019R mutant mice are not 
restricted to rear limbs; related to Figure 7
(A) Graph of average swing time per stride for front limbs. At P45 (top), there is no significant difference
in front swing time (WT 177.5 ± 10.9 ms, MUT 175.3 ± 8.7 ms, t24=0.1569, p=0.8766). At 5.5 mo
(bottom), MUT mice take significantly longer to swing their forelimbs (WT 178.6 ± 6.2 ms, MUT 206.3 ±
7.2 ms, t21.4=2.927, p=0.0079).
(B) Graph of average stride length for front limbs. At P45 (top), there is no difference in WT and MUT
stride length (WT 57.0 ± 0.9 mm, MUT 59.2 ± 1.4 mm, U=68, p=0.2800). At 5.5mo (bottom), MUT mice
take significantly longer strides with their forelimbs (WT 60.0 ± 0.6 mm, MUT 63.7 ± 0.9 mm, t17=3.545,
p=0.0024).
(C) Graph of average homolateral coupling, the fraction of a reference foot’s stride when its ipsilateral
foot starts its stride. At P45, there is no significant difference in homolateral coupling (WT 0.48 ± 0.005,
MUT 0.48 ± 0.004, U=90, p=0.9713), but at 5.5mo, MUT mice display decreased homolateral coupling
(WT 0.48 ± 0.002, MUT 0.45 ± 0.005, t13.5=3.469, p=0.0039).
(D) Graph of average track width between front limbs. At P45 (top), there is a significantly narrower front
track width in MUT compared to WT (WT 16.99 ± 0.15 mm, MUT 15.12 ± 0.33 mm, t17=5.192,
p<0.0001). This difference persists into adulthood at 5.5mo (WT 19.36 ± 0.23 mm, MUT 16.74 ± 0.46
mm, t15=5.055, p=0.0001).
(E) Graph of average track width between rear limbs. At P45 (top), there is no difference in WT and
MUT rear track widths (WT 29.58 ± 0.51 mm, MUT 28.77 ± 0.36 mm, t23=1.292, p=0.2091). At 5.5mo
(bottom), mutants display significantly narrower rear track widths (WT 32.59 ± 0.34 mm, MUT 30.01 ±
0.46 mm, t19.4=4.502, p=0.0002). For P45 measures: WT n=14, MUT n=13; for 5.5mo measures: WT
n=14, MUT n=11. Data reported as mean ± SEM, error bars are SEM. **p<0.01, ***p<0.001,
****p<0.0001, two-tailed t-tests or Mann-Whitney U tests.
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Further information and requests for resources and reagents should be directed to and 570 
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Materials Availability 572 

Plasmids generated by this study are available upon request from corresponding author 573 

Scott H. Soderling (scott.soderling@duke.edu). 574 

Data and Code Availability 575 

The data and source code used in this study are available online at 576 

https://github.com/twesleyb/SwipProteomics. 577 

578 

MATERIALS AND METHODS 579 

Animals 580 

We generated Washc4 mutant (SWIPP1019R) mice in collaboration with the Duke 581 

Transgenic Core Facility to mimic the de novo human variant at amino acid 1019 of 582 

human WASHc4. A CRISPR-induced CCT>CGT point mutation was introduced into exon 583 

29 of Washc4. 50ng/µl of the sgRNA (5’-ttgagaatactcacaagaggagg-3’), 100ng/µl Cas9 584 

mRNA, and 100ng/µl of a repair oligonucleotide containing the C>G mutation were 585 

injected into the cytoplasm of B6SJLF1/J mouse embryos (Jax #100012) (See Table S4 586 

for the sequence of the repair oligonucleotide). Mice with germline transmission were then 587 

backcrossed into a C57BL/ 6J background (Jax #000664). At least 5 backcrosses were 588 

obtained before animals were used for behavior. We bred heterozygous SWIPP1019R mice 589 
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together to obtain age-matched mutant and wild-type genotypes for cell culture and 590 

behavioral experiments. Genetic sequencing was used to screen for germline 591 

transmission of the C>G point mutation (FOR: 5’-tgcttgtagatgtttttcct-3’, REV: 5’-592 

gttaacatgatcctatggcg-3’). All mice were housed in the Duke University′s Division of 593 

Laboratory Animal Resources or Behavioral Core facilities at 2-5 animals/cage on a 594 

14:10h light:dark cycle. All experiments were conducted with a protocol approved by the 595 

Duke University Institutional Animal Care and Use Committee in accordance with NIH 596 

guidelines. 597 

Human Subjects 598 

We retrospectively analyzed clinical findings from seven children with homozygous 599 

WASHC4c.3056C>G mutations (obtained by Dr. Rajab in 2010 at the Royal Hospital, Muscat, 600 

Oman). The original report of these human subjects and parental consent for data use 601 

can be found in (Ropers et al., 2011). 602 

Cell Lines 603 

HEK293T cells (ATCC #CRL-11268) were purchased from the Duke Cell Culture 604 

facility. and were tested for mycoplasma contamination. HEK239T cells were used for co-605 

immunoprecipitation experiments and preparation of AAV viruses. 606 

Primary Neuronal Culture 607 

Primary neuronal cultures were prepared from P0 mouse cortex. P0 mouse pups 608 

were rapidly decapitated and cortices were dissected and kept individually in 5ml 609 

Hibernate A (Thermo #A1247501) supplemented with 2% B27(Thermo #17504044) at 610 

4ºC overnight to allow for individual animal genotyping before plating. Neurons were then 611 

treated with Papain (Worthington #LS003120) and DNAse (VWR #V0335)-supplemented 612 
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Hibernate A for 18min at 37ºC and washed twice with plating medium (plating medium: 613 

Neurobasal A (Thermo #10888022) supplemented with 10% horse serum, 2% B-27, and 614 

1% GlutaMAX (Thermo #35050061)), and triturated before plating at 250,000 cells/well 615 

on poly-L-lysine-treated coverslips (Sigma #P2636) in 24-well plates. Plating medium was 616 

replaced with growth medium (Neurobasal A, 2% B-27, 1% GlutaMAX) 2 hours later. Cell 617 

media was supplemented and treated with AraC at DIV5 (5uM final concentration/well). 618 

Half-media changes were then performed every 4 days. 619 

Plasmid DNA Constructs 620 

For immunoprecipitation experiments, a pmCAG-SWIP-WT-HA construct was 621 

generated by PCR amplification of the human WASHC4 sequence, which was then 622 

inserted between NheI and SalI restriction sites of a pmCAG-HA backbone generated in 623 

our lab. Site-directed mutagenesis (Agilent #200517) was used to introduce a C>G point 624 

mutation into this pmCAG-SWIP-WT-HA construct for generation of a pmCAG-SWIP-625 

MUT-HA construct (FOR: 5'-ctacaaagttgagggtcagacggggaacaattatatagaaa-3', REV: 5'-626 

tttctatataattgttccccgtctgaccctcaactttgtag-3’). For iBioID experiments, an AAV construct 627 

expressing hSyn1-WASH1-BioID2-HA was generated by cloning a Washc1 insert 628 

between SalI and HindIII sites of a pAAV-hSyn1-Actin Chromobody-Linker-BioID2-pA 629 

construct (replacing Actin Chromobody) generated in our lab. This backbone included a 630 

25nm GS linker-BioID2-HA fragment from Addgene #80899, generated by Kim et al. (Kim 631 

et al., 2016). An hSyn1-solubleBioID2-HA construct was created similarly, by removing 632 

Actin Chromobody from the above construct. Oligonucleotide sequences are reported in 633 

Table S4. Sequences of the plasmid DNA constructs are available online (see Key 634 

Resources Table). 635 
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AAV Viral Preparation 636 

AAV preparations were performed as described previously(Uezu et al., 2016). The 637 

day before transfection, HEK293T cells were plated at a density of 1.5x107 cells per 638 

15cm2 plate in DMEM media with 10% fetal bovine serum and 1% Pen/Strep (Thermo 639 

#11965-092, Sigma #F4135, Thermo #15140-122). Six HEK293T 15cm2 plates were 640 

used per viral preparation. The next day, 30µg of pAd-DeltaF6 helper plasmid, 15µg of 641 

AAV2/9 plasmid, and 15µg of an AAV plasmid carrying the transgene of interest were 642 

mixed in OptiMEM with PEI-MAX (final concentration 80µg/ml, Polysciences #24765). 643 

2ml of this solution were then added dropwise to each of the 6 HEK293T 15cm2 plates. 644 

Eight hours later, the media was replaced with 20ml DMEM+10%FBS. 72 hours post-645 

transfection, cells were scraped and collected in the media, pooled, and centrifuged at 646 

1,500rpm for 5min at RT. The final pellet from the 6 cell plates was resuspended in 5ml 647 

of cell lysis buffer (15 mM NaCl, 5 mM Tris-HCl, pH 8.5), and freeze-thawed three times 648 

using an ethanol/dry ice bath. The lysate was then treated with 50U/ml of Benzonase 649 

(Novagen #70664), for 30min in a 37ºC water bath, vortexed, and then centrifuged at 650 

4,500rpm for 30min at 4ºC. The resulting supernatant containing AAV particles was added 651 

to the top of an iodixanol gradient (15%, 25%, 40%, 60% top to bottom) in an Optiseal 652 

tube (Beckman Coulter #361625). The gradient was then centrifuged using a Beckman 653 

Ti-70 rotor in a Beckman XL-90 ultracentrifuge at 67,000rpm for 70min, 18ºC. The purified 654 

viral solution was extracted from the 40%/60% iodixanol interface using a syringe, and 655 

placed into an Amicon 100kDa filter unit (#UFC910024). The viral solution was washed 656 

in this filter 3 times with 1X ice-cold PBS by adding 5ml of PBS and centrifuging at 657 
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4,900rpm for 45min at 4ºC to obtain a final volume of approximately 200µl of concentrated 658 

virus that was aliquoted into 5-10µl aliquots and stored at -80ºC until use. 659 

Immunocytochemistry 660 

Primary antibodies: Rabbit anti-EEA1 (Cell Signaling Technology #C45B10, 661 

1:500), Rat anti-CathepsinD (Novus #204712, 1:250), Guinea Pig anti-MAP2 (Synaptic 662 

Systems #188004, 1:500) 663 

Secondary antibodies: Goat anti-Rabbit Alexa Fluor 568 (Invitrogen #A11036, 664 

1:1000), Goat anti-Guinea Pig Alexa Fluor 488 (Invitrogen #A11073, 1:1000), Goat anti-665 

Rat Alexa Fluor 488 (Invitrogen #A11006, 1:1000), Goat anti-Guinea Pig Alexa Fluor 555 666 

(Invitrogen #A21435, 1:1000) 667 

At DIV15, neurons were fixed for 15 minutes using ice-cold 4%PFA/4% sucrose in 668 

1X PBS, pH 7.4 (for EEA1 staining), or 30 minutes with 50% Bouin’s solution/4% sucrose 669 

(for CathepsinD staining, Sigma #HT10132), pH 7.4(Cheng et al., 2018). Fixed neurons 670 

were washed with 1X PBS, then permeabilized with 0.25% TritonX-100 in PBS for 8 671 

minutes at room temperature (RT), and blocked with 5%normal goat serum/0.2%Triton-672 

X100 in PBS (blocking buffer) for 1 hour at RT with gentle rocking. For EEA1/MAP2 673 

staining, samples were incubated with primary antibodies diluted in blocking buffer at RT 674 

for 1 hour. For CathepsinD/MAP2 staining, samples were incubated with primary 675 

antibodies diluted in blocking buffer overnight at 4ºC. For both conditions, samples were 676 

washed three times with 1X PBS, and incubated for 30min at RT with secondary 677 

antibodies, protected from light. After secondary antibody staining, coverslips were 678 

washed three times with 1X PBS, and mounted with FluoroSave mounting solution 679 
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(Sigma #345789). See antibody section for primary and secondary antibody 680 

concentrations. 681 

Immunohistochemistry 682 

Primary antibodies: Rabbit anti-Cleaved Caspase-3 (Cell Signaling Technology 683 

#9661, 1:2000), Mouse anti-Calbindin (Sigma #C9848, 1:2000), Rat anti-HA 3F10 (Sigma 684 

#12158167001, 1:500) 685 

Secondary antibodies: Donkey anti-Rabbit Alexa Fluor 488 (Invitrogen #A21206, 686 

1:2000), Goat anti-Mouse Alexa Fluor 594 (Invitrogen #A11032, 1:2000), Goat anti-Rat 687 

Alexa Fluor 488 (Invitrogen #A11006, 1:5000), Streptavidin Alexa Fluor 594 conjugate 688 

(Invitrogen #S32356, 1:5000), 4′,6-diamidino-2-phenylindole (DAPI, Sigma #D9542, 689 

1:1000 for 10min at RT) 690 

Mice were deeply anesthetized with isoflurane and then transcardially perfused 691 

with ice-cold heparinized PBS (25U/ml) by gravity flow. After clearing of liver and lungs 692 

(~2min), perfusate was switched to ice-cold 4% PFA in 1X PBS (pH 7.4) for 15 minutes. 693 

Brains were dissected, post-fixed in 4%PFA overnight at 4ºC, and then cryoprotected in 694 

30% sucrose/1X PBS for 48hr at 4ºC. Fixed brains were then mounted in OTC (Sakura 695 

TissueTek #4583) and stored at -20ºC until cryosectioning. Every third sagittal section 696 

(30 µm thickness) was collected from the motor cortex and striatal regions. Free-floating 697 

sections were then permeabilized with 1%TritonX-100 in 1X PBS at RT for 2 hr, and 698 

blocked in 1X blocking solution (Abcam #126587) diluted in 0.2%TritonX-100 in 1X PBS 699 

for 1hr at RT. Sections were then incubated in primary antibodies diluted in the 1X 700 

blocking solution for two overnights at 4ºC. After three washes with 0.2%TritonX-100 in 701 

1X PBS, the sections were then incubated in secondary antibodies diluted in 1X blocking 702 
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buffer for one overnight at 4ºC. Sections were then washed four times with 0.2%TritonX-703 

100 in 1X PBS at RT, and mounted onto coverslips with FluoroSave mounting solution 704 

(Sigma #345789). 705 

Western Blotting 706 

Primary antibodies: Rabbit anti-Strumpellin (Santa Cruz #sc-87442, 1:500), Rabbit 707 

anti-WASH1 c-terminal (Sigma #SAB4200373, 1:500), Mouse anti-Beta Tubulin III 708 

(Sigma #T8660, 1:10,000), Mouse anti-HA (BioLegend #MMS-101P, 1:5000) 709 

Secondary antibodies: Donkey anti-Rabbit-HRP (GE Life Sciences #NA934, 710 

1:5,000), Goat anti-mouse-HRP (GE Life Sciences #NA931, 1:5000) 711 

Ten micrograms of each sample were electrophoresed through a 12-well, 4-20% 712 

SDS-PAGE gel (Bio-Rad #4561096) at 100V for 1hr at RT, transferred onto a 713 

nitrocellulose membrane (GE Life Sciences #GE10600002) at 100V for 70min at RT on 714 

ice, and blocked with 5% nonfat dry milk in TRIS-buffered saline containing 0.05% Tween-715 

20 (TBST, pH 7.4). Gels were saved for Coomassie staining at RT for 30 min. Membranes 716 

were probed with one primary antibody at a time for 24hr at 4ºC, then washed four times 717 

with TBST at RT before incubating with the corresponding species-specific secondary 718 

antibody at RT for 1hr. Membranes were washed with TBST, and then enhanced 719 

chemiluminescence (ECL) substrate was added (Thermo Fischer #32109). Membranes 720 

were exposed to autoradiography films and scanned with an Epson 1670 at 600dpi. We 721 

probed each membrane with one antibody at a time, then stripped the membrane with 722 

stripping buffer (Thermo Fischer #21059) for 10min at RT, and then blocked for 1hr at RT 723 

before probing with the next antibody. Order of probes: Strumpellin, then β-Tubulin, then 724 

WASH1. We determined the optical density of the bands using Image J software (NIH). 725 
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Data obtained from three independent experiments were plotted and statistically analyzed 726 

using GraphPad Prism (version 8) software. 727 

Immunoprecipitation 728 

HEK293T cells were transfected with pmCAG-SWIP-WT-HA or pmCAG-SWIP-729 

MUT-HA constructs for three days, as previously described(Mason et al., 2011). Cells 730 

were lysed with lysis buffer (25mM HEPES, 150mM NaCl, 1mM EDTA, 1% NonidetP-40, 731 

pH 7.4) containing protease inhibitors (5mM NaF, 1mM orthovanadate, 1mM AEBSF, and 732 

2 μg/mL leupeptin/pepstatin) and centrifuged at 1,700g for 5 min. Collected supernatant 733 

was incubated with 30µl of pre-washed anti-HA agarose beads (Sigma #A2095) on a 734 

sample rotator (15 rpm) for 2 hrs at 4ºC. Beads were then washed 3 times with lysis 735 

buffer, and sample buffer was added before subjecting to immunoblotting as described 736 

above. The protein-transferred membrane was probed individually for WASH1, 737 

Strumpellin, and HA. Data were collected from four separate preparations of WT and MUT 738 

conditions. 739 

Electron Microscopy 740 

Adult (7mo) WT and MUT SWIPP1019R mice were deeply anesthetized with 741 

isoflurane and then transcardially perfused with warmed heparinized saline (25U/ml 742 

heparin) for 4 minutes, followed by ice-cold 0.15M cacodylate buffer pH 7.4 containing 743 

2.5% glutaraldehyde (Electron Microscopy Sciences #16320), 3% paraformaldehyde, 744 

and 2mM CaCl2 for 15 minutes. Brain samples were dissected and stored on ice in the 745 

same fixative for 2 hours before washing in 0.1M sodium cacodylate buffer (3 changes 746 

for 15 minutes each). Samples were then post-fixed in 1.0% OsO4 in 0.1 M Sodium 747 

cacodylate buffer for 1 hour on a rotator. Samples were then washed in 3, 15-minute 748 
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changes of 0.1M sodium cacodylate. Samples were then placed into en bloc stain (1% 749 

uranyl acetate) overnight at 4°C. Subsequently, samples were dehydrated in a series of 750 

ascending acetone concentrations including 50%, 70%, 95%, and 100% for three cycles 751 

with 15 minutes incubation at each concentration change. Samples were then placed in 752 

a 50:50 mixture of epoxy resin (Epon) and acetone overnight on a rotator. This solution 753 

was then replaced twice with 100% fresh Epon for at least 2 hours at room temperature 754 

on a rotator. Samples were embedded with 100% Epon resin in BEEM capsules (Ted 755 

Pella) for 48 hours at 60°C. Samples were ultrathin sectioned to 60-70nm on a Reichert 756 

Ultracut E ultramicrotome. Harvested grids were then stained with 2% uranyl acetate in 757 

50% ethanol for 30 minutes and Sato’s lead stain for 1 min. Micrographs were acquired 758 

using a Phillips CM12 electron microscope operating at 80Kv, at 1700x magnification. 759 

Micrographs were analyzed in Adobe Photoshop 2019, using the “magic wand” tool to 760 

demarcate and measure the area of electron-dense and electron-lucent regions of 761 

interest (ROIs). Statistical analyses of ROI measurements were performed in GraphPad 762 

Prism (version 8) software. The experimenter was blinded to genotype for image 763 

acquisition and analysis. 764 

iBioID Sample Preparation 765 

AAV2/9 viral probes, hSyn1-WASH1-BioID2-HA or hSyn1-solubleBioID2-HA, were 766 

injected into wild-type CD1 mouse brains using a Hamilton syringe (#7635-01) at age P0-767 

P1 to ensure viral spread throughout the forebrain(Glascock et al., 2011). 15 days post-768 

viral injection, biotin was subcutaneously administered at 24mg/kg for seven consecutive 769 

days for biotinylation of proteins in proximity to BioID2 probes. Whole brains were 770 

extracted on the final day of biotin injections, snap frozen, and stored in liquid nitrogen 771 
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until protein purification. Seven brains were used for protein purification of each probe, 772 

and each purification was performed three times independently (21 brains total for 773 

WASH1-BioID2, 21 for solubleBioID2). 774 

We performed all homogenization and protein purification on ice. A 2ml Dounce 775 

homogenizer was used to individually homogenize each brain in a 1:1 solution of Lysis-776 

R:2X-RIPA buffer solution with protease inhibitors (Roche cOmplete tablets 777 

#11836153001). Each sample was sonicated three times for 7 seconds and then 778 

centrifuged at 5000g for 5min at 4ºC. Samples were transferred to Beckman Coulter 1.5ml 779 

tubes (#344059), and then spun at 45,000rpm in a Beckman Coulter tabletop 780 

ultracentrifuge (TLA-55 rotor) for 1hr at 4ºC. SDS was added to supernatants (final 1%) 781 

and samples were then boiled for 5min at 95ºC. We next combined supernatants from 782 

the same condition together (WASH1-BioID2 vs. solubleBioID2) in 15ml conical tubes to 783 

rotate with 30µl high-capacity NeutrAvidin beads overnight at 4ºC (Thermo #29204). 784 

The following day, all steps were performed under a hood with keratin-free 785 

reagents. Samples were spun down at 6000rpm, 4ºC for 5min to pellet the beads and 786 

remove supernatant. The pelleted beads then went through a series of washes, each for 787 

10 min at RT with 500ul of solvent, and then spun down on a tabletop centrifuge to pellet 788 

the beads for the next wash. The washes were as follows: 2% SDS twice, 1% TritonX100-789 

1%deoxycholate-25mM LiCl2 once, 1M NaCL twice, 50mM Ammonium Bicarbonate 790 

(Ambic) five times. Beads were then mixed 1:1 with a 2X Laemmli sample buffer that 791 

contained 3mM biotin/50mM Ambic, boiled for 5 mins at 95ºC, vortexed three times, and 792 

then biotinylated protein supernatants were stored at -80ºC until LC-MS/MS. 793 

LC-MS/MS for iBioID 794 
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We gave the Duke Proteomics and Metabolomics Shared Resource (DPMSR) six 795 

eluents from streptavidin resins (3 x WASH1-BioID2, 3 x solubleBioID2), stored on dry 796 

ice. Samples were reduced with 10 mM dithiolthreitol for 30 min at 80ºC and alkylated 797 

with 20 mM iodoacetamide for 30 min at room temperature. Next, samples were 798 

supplemented with a final concentration of 1.2% phosphoric acid and 256 μL of S-Trap 799 

(Protifi) binding buffer (90% MeOH/100mM TEAB). Proteins were trapped on the S-Trap, 800 

digested using 20 ng/μl sequencing grade trypsin (Promega) for 1 hr at 47ºC, and eluted 801 

using 50 mM TEAB, followed by 0.2% FA, and lastly using 50% ACN/0.2% FA. All 802 

samples were then lyophilized to dryness and resuspended in 20 μL 1%TFA/2% 803 

acetonitrile containing 25 fmol/μL yeast alcohol dehydrogenase (UniProtKB P00330; 804 

ADH_YEAST). From each sample, 3 μL was removed to create a pooled QC sample 805 

(SPQC) which was run analyzed in technical triplicate throughout the acquisition period. 806 

Quantitative LC/MS/MS was performed on 2 μL of each sample, using a 807 

nanoAcquity UPLC system (Waters) coupled to a Thermo QExactive HF-X high resolution 808 

accurate mass tandem mass spectrometer (Thermo) via a nanoelectrospray ionization 809 

source. Briefly, the sample was first trapped on a Symmetry C18 20 mm × 180 μm 810 

trapping column (5 μl/min at 99.9/0.1 v/v water/acetonitrile), after which the analytical 811 

separation was performed using a 1.8 μm Acquity HSS T3 C18 75 μm × 250 mm column 812 

(Waters) with a 90-min linear gradient of 5 to 30% acetonitrile with 0.1% formic acid at a 813 

flow rate of 400 nanoliters/minute (nL/min) with a column temperature of 55ºC. Data 814 

collection on the QExactive HF-X mass spectrometer was performed in a data-dependent 815 

acquisition (DDA) mode of acquisition with a r=120,000 (@ m/z 200) full MS scan from 816 

m/z 375 – 1600 with a target AGC value of 3e6 ions followed by 30 MS/MS scans at 817 
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r=15,000 (@ m/z 200) at a target AGC value of 5e4 ions and 45 ms. A 20s dynamic 818 

exclusion was employed to increase depth of coverage. The total analysis cycle time for 819 

each sample injection was approximately 2 hours. 820 

LOPIT-DC Subcellular Fractionation 821 

We performed three independent fractionation experiments with one adult SWIP 822 

mutant brain and one WT mouse brain fractionated in each experiment. Each mouse was 823 

sacrificed by isoflurane inhalation and its brain was immediately extracted and placed into 824 

a 2ml Dounce homogenizer on ice with 1ml isotonic TEVP homogenization buffer (320mM 825 

sucrose, 10mM Tris base, 1mM EDTA, 1mM EGTA, 5mM NaF, pH7.4 (Hallett et al., 826 

2008)). A cOmplete mini protease inhibitor cocktail tablet (Sigma #11836170001) was 827 

added to a 50ml TEVP buffer aliquot immediately before use. Brains were homogenized 828 

for 15 passes with a Dounce homogenizer to break the tissue, and then this lysate was 829 

brought up to a 5ml volume with additional TEVP buffer. Lysates were then passed 830 

through a 0.5ml ball-bearing homogenizer for two passes (14 µm ball, Isobiotec) to 831 

release organelles. Final brain lysate volumes were approximately 7.5ml each. Lysates 832 

were then divided into replicate microfuge tubes (Beckman Coulter #357448) to perform 833 

differential centrifugation, following Geladaki et. al’s LOPIT-DC protocol(Geladaki et al., 834 

2019). Centrifugation was carried out at 4ºC in a tabletop Eppendorf 5424 centrifuge for 835 

spins at 200g, 1,000g, 3,000g, 5,000g, 9,000g, 12,000g, and 15,000g. To isolate the final 836 

three fractions, a tabletop Beckman TLA-100 ultracentrifuge with a TLA-55 rotor was used 837 

at 4ºC with speeds of: 30,000g, 79,000g, and 120,000g, respectively. Samples were kept 838 

on ice at all times and pellets were stored at -80ºC. Pellets from seven fractions (5,000g-839 

120,000g) were used for proteomic analyses. 840 
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16-plex TMT LC-MS/MS841 

The Duke Proteomics and Metabolomics Shared Resource (DPMSR) processed 842 

and prepared fraction pellets from all 42 frozen samples simultaneously (7 fractions per 843 

brain from 3 WT and 3 MUT brains). Due to volume constraints, each sample was split 844 

into 3 tubes, for a total of 126 samples, which were processed in the following manner: 845 

100µL of 8M Urea was added to the first aliquot then probe sonicated for 5 seconds with 846 

an energy setting of 30%. This volume was then transferred to the second and then third 847 

aliquot after sonication in the same manner. All tubes were centrifuged at 10,000g and 848 

any residual volume from tubes 1 and 2 were added to tube 3. Protein concentrations 849 

were determined by BCA on the supernatant in duplicate (5 μL each assay). Total protein 850 

concentrations for each replicate ranged from 1.1 mg/mL to 7.8 mg/mL with total protein 851 

quantities ranging from 108.3 to 740.81 µg. 60 µg of each sample was removed and 852 

normalized to 52.6µL with 8M Urea and 14.6µL 20% SDS. Samples were reduced with 853 

10 mM dithiolthreitol for 30 min at 80ºC and alkylated with 20 mM iodoacetamide for 30 854 

min at room temperature. Next, they were supplemented with 7.4 μL of 12% phosphoric 855 

acid, and 574 μL of S-Trap (Protifi) binding buffer (90% MeOH/100mM TEAB). Proteins 856 

were trapped on the S-Trap, digested using 20 ng/μl sequencing grade trypsin (Promega) 857 

for 1 hr at 47ºC, and eluted using 50 mM TEAB, followed by 0.2% FA, and lastly using 858 

50% ACN/0.2% FA. All samples were then lyophilized to dryness. 859 

Each sample was resuspended in 120 μL 200 mM triethylammonium bicarbonate, 860 

pH 8.0 (TEAB). From each sample, 20µL was removed and combined to form a pooled 861 

quality control sample (SPQC). Fresh TMTPro reagent (0.5 mg for each 16-plex reagent) 862 

was resuspended in 20 μL 100% acetonitrile (ACN) and was added to each sample. 863 
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Samples were incubated for 1 hour at RT. After the 1-hour reaction, 5 μL of 5% 864 

hydroxylamine was added and incubated for 15 minutes at room temperature to quench 865 

the reaction. Each 16-plex TMT experiment consisted of the WT and MUT fractions from 866 

one mouse, as well as the 2 SPQC samples. Samples corresponding to each experiment 867 

were concatenated and lyophilized to dryness. 868 

Samples were resuspended in 800µL 0.1% formic acid. 400µg was fractionated 869 

into 48 unique high pH reversed-phase fractions using pH 9.0 20 mM Ammonium formate 870 

as mobile phase A and neat acetonitrile as mobile phase B. The column used was a 2.1 871 

mm x 50 mm XBridge C18 (Waters) and fractionation was performed on an Agilent 1100 872 

HPLC with G1364C fraction collector. Throughout the method, the flow rate was 0.4 873 

mL/min and the column temperature was 55ºC. The gradient method was set as follows: 874 

0 min, 3%B; 1 min, 7% B; 50 min, 50%B; 51 min, 90% B; 55 min, 90% B; 56 min, 3% B; 875 

70 min, 3% B. 48 fractions were collected in equal time segments from 0 to 52 minutes, 876 

then concatenated into 12 unique samples using every 12th fraction. For instance, 877 

fraction 1, 13, 25, and 37 were combined, fraction 2, 14, 26, and 38 were combined, etc. 878 

Fractions were frozen and lyophilized overnight. Samples were resuspended in 66 μL 879 

1%TFA/2% acetonitrile prior to LC-MS analysis. 880 

Quantitative LC/MS/MS was performed on 2 μL (1 μg) of each sample, using a 881 

nanoAcquity UPLC system (Waters) coupled to a Thermo Orbitrap Fusion Lumos high 882 

resolution accurate mass tandem mass spectrometer (Thermo) equipped with a FAIMS 883 

Pro ion-mobility device via a nanoelectrospray ionization source. Briefly, the sample was 884 

first trapped on a Symmetry C18 20 mm × 180 μm trapping column (5 μl/min at 99.9/0.1 885 

v/v water/acetonitrile), after which the analytical separation was performed using a 1.8 886 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2020. ; https://doi.org/10.1101/2020.08.06.239517doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.06.239517
http://creativecommons.org/licenses/by/4.0/


67 

μm Acquity HSS T3 C18 75 μm × 250 mm column (Waters) with a 90-min linear gradient 887 

of 5 to 30% acetonitrile with 0.1% formic acid at a flow rate of 400 nanoliters/minute 888 

(nL/min) with a column temperature of 55ºC. Data collection on the Fusion Lumos mass 889 

spectrometer was performed for three different compensation voltages (CV: -40v, -60v, -890 

80v). Within each CV, a data-dependent acquisition (DDA) mode of acquisition with a 891 

r=120,000 (@ m/z 200) full MS scan from m/z 375 – 1600 with a target AGC value of 4e5 892 

ions was performed. MS/MS scans were acquired in the Orbitrap at r=50,000 (@ m/z 200) 893 

from m/z 100 with a target AGC value of 1e5 and max fill time of 105 ms. The total cycle 894 

time for each CV was 1s, with total cycle times of 3 sec between like full MS scans. A 45s 895 

dynamic exclusion was employed to increase depth of coverage. The total analysis cycle 896 

time for each sample injection was approximately 2 hours. 897 

Following UPLC-MS/MS analyses, data were imported into Proteome Discoverer 898 

2.4 (Thermo Scientific). The MS/MS data were searched against a SwissProt Mouse 899 

database (downloaded November 2019) plus additional common contaminant proteins, 900 

including yeast alcohol dehydrogenase (ADH), bovine casein, bovine serum albumin, as 901 

well as an equal number of reversed-sequence “decoys” for FDR determination. Mascot 902 

Distiller and Mascot Server (v 2.5, Matrix Sciences) were utilized to produce fragment ion 903 

spectra and to perform the database searches. Database search parameters included 904 

fixed modification on Cys (carbamidomethyl) and variable modification on Met (oxidation), 905 

Asn/Gln (deamindation), Lys (TMTPro) and peptide N-termini (TMTPro). Data were 906 

searched at 5 ppm precursor and 0.02 product mass accuracy with full trypsin enzyme 907 

rules. Reporter ion intensities were calculated using the Reporter Ions Quantifier 908 
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algorithm in Proteome Discoverer. Percolator node in Proteome Discoverer was used to 909 

annotate the data at a maximum 1% protein FDR. 910 

Mouse Behavioral Assays 911 

Behavioral tests were performed on age-matched WT and homozygous 912 

SWIPP1019R mutant littermates. Male and female mice were used in all experiments. 913 

Testing was performed at two time points: P42-55 days old as a young adult age, and 5.5 914 

months old as mid-adulthood, so that we could compare disease progression in this 915 

mouse model to human patients(Ropers et al., 2011). The sequence of behavioral testing 916 

was: Y-maze (to measure working memory), object novelty recognition (to measure short-917 

term and long-term object recognition memory), TreadScan (to assess gait), and steady-918 

speed rotarod (to assess motor control and strength) for 40-55 day old mice. Testing was 919 

performed over 1.5 weeks, interspersed with rest days for acclimation. This sequence 920 

was repeated with the same cohort at 5.5-6 months old, with three additional measures 921 

added to the end of testing: fear conditioning (to assess associative fear memory), a 922 

hearing test (to measure tone response), and a shock threshold test (to assess 923 

somatosensation). Of note, a separate, second cohort of mice was evaluated for fear 924 

conditioning, hearing, and shock threshold testing at adolescence. After each trial, 925 

equipment was cleaned with Labsan to remove residual odors. The experimenter was 926 

blinded to genotype for all behavioral analyses. 927 

Y-maze928 

Working memory was evaluated by measuring spontaneous alternations in a 3-929 

arm Y-maze under indirect illumination (80-90 lux). A mouse was placed in the center of 930 

the maze and allowed to freely explore all arms, each of which had different visual cues 931 
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for spatial recognition. Trials were 5 min in length, with video data and analyses captured 932 

by EthoVision XT 11.0 software (Noldus Information Technology). Entry to an arm was 933 

define as the mouse being >1 body length into a given arm. An alternation was defined 934 

as three successive entries into each of the different arms. Total % alternation was 935 

calculated as the total number of alternations/the total number of arm entries minus 2 936 

x100. 937 

Novel Object Recognition 938 

One hour before testing, mice were individually exposed to the testing arena (a 48 939 

x 22 x 18cm white opaque arena) for 10min under 80-100lux illumination without any 940 

objects. The test consisted of three phases: training (day 1), short-term memory test 941 

(STM, day 1), and long-term memory test (LTM, day 2). For the training phase, two 942 

identical objects were placed 10 cm apart, against opposing walls of the arena. A mouse 943 

was placed in the center of the arena and given full access to explore both objects for 5 944 

min and then returned to its home cage. For STM testing, one of the training objects 945 

remained (the now familiar object), and a novel object replaced one of the training objects 946 

(similar in size, different shape). The mouse was returned to the arena 30 minutes after 947 

the training task and allowed to explore freely for 5 mins. For LTM testing, the novel object 948 

was replaced with another object, and the familiar object remained unchanged. The LTM 949 

test was also 5 min in duration, conducted 24hr after the training task. Behavior was 950 

scored using Ethovision 11.0 XT software (Noldus) and analyzed by a blind observer. 951 

Object contact was defined as the mouse’s nose within 1 cm of the object. We analyzed 952 

both number of nose contacts with each object and duration of contacts. Preference 953 

scores were calculated as (duration contactnovel - duration contactfamiliar) / total duration 954 
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contactnovel+familiar. Positive scores signified a preference for the novel object; whereas, 955 

negative scores denoted a preference for the familiar object, and scores approaching 956 

zero indicated no preference. 957 

TreadScan 958 

A TreadScan forced locomotion treadmill system (CleversSys Inc, Reston, 959 

Virginia) was used for gait recording and analysis. Each mouse was recorded walking on 960 

a transparent treadmill at 45 days old, and again at 5.5 months old. Mice were acclimated 961 

to the treadmill chamber for 1 minute before the start of recording to eliminate exploratory 962 

behavior confounding normal gait. Trials were 20 seconds in length, with mice walking at 963 

speeds between 13.83 and 16.53 cm/sec (P45 WT average 15.74 cm/s; P45 MUT 964 

average 15.80 cm/s; 5.5mo WT average 15.77 cm/s; 5.5mo MUT average 15.85 cm/s). 965 

A high-speed digital camera attached to the treadmill captured limb movement at a frame 966 

rate of 100 frames/second. We used TreadScan software (CleversSys) and 967 

representative WT and MUT videos to generate footprint templates, which were then used 968 

to identify individual paw profiles for each limb. Parameters such as stance time, swing 969 

time, step length, track width, and limb coupling were recorded for the entire 20 sec 970 

duration for each animal. Output gait tracking was verified manually by a blinded 971 

experimenter to ensure consistent limb tracking throughout the duration of each video. 972 

Steady Speed Rotarod 973 

A 5-lane rotarod (Med Associates, St. Albans, VT) was used for steady-speed 974 

motor analysis. The rod was run at a steady speed of 32rpm for four, 5-minute trials, with 975 

a 40-minute inter-trial interval. We recorded mouse latency to fall by infrared beam break, 976 
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or manually for any mouse that completed two or more rotations on the rod without 977 

walking. Mice were randomized across lanes for each trial. 978 

Fear Conditioning 979 

Animals were examined in contextual and cued fear conditioning as described by 980 

Rodriguiz and Wetsel(Rodriguiz and Wetsel, 2006). Two separate cohorts of mice were 981 

used testing the two age groups. A three-day testing paradigm was used to assess 982 

memory: conditioning on day 1, context testing 24-hr post-conditioning on day 2, and cued 983 

tone testing 48hr post-conditioning on day 3. All testing was conducted in fear 984 

conditioning chambers (Med Associates). In the conditioning phase, mice were first 985 

acclimated to the test chamber for two minutes under ~100 lux illumination. Then a 986 

2900Hz, 80dB tone (conditioned stimulus, CS) played for 30 sec, which terminated with 987 

a paired 0.4mA, 2 sec scrambled foot shock (unconditioned stimulus, US). Mice were 988 

removed from the chamber and returned to their home cage 30 sec later. In the context 989 

testing phase, mice were placed in the same conditioning chamber and monitored for 990 

freezing behavior for a 5 min trial period, in the absence of the CS and US. For cued tone 991 

testing, the chambers were modified to different dimensions and shapes, contained 992 

different floor and wall textures, and lighting was adjusted to 50 lux. Mice acclimated to 993 

the chamber for 2 min, and then the CS was presented continuously for 3 min. Contextual 994 

and cued fear memory was assessed by freezing behavior, captured by automated video 995 

software (CleversSys). 996 

Hearing Test 997 

We tested mouse hearing using a startle platform (Med Associates) connected to 998 

Startle Pro Software in a sound-proof chamber. Mice were placed in a ventilated restraint 999 
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cylinder connected to the startle response detection system to measure startle to each 1000 

acoustic stimulus. After two minutes of acclimation, mice were assessed for an acoustic 1001 

startle response to seven different tone frequencies, 2kHz, 3kHz, 4kHz, 8kHz, 12kHz, 1002 

16kHz, and 20kHz that were randomly presented three times each at four different 1003 

decibels, 80, 100, 105, and 110dB, for a total of 84 trials. A random inter-trial interval of 1004 

15-60 seconds (average 30sec) was used to prevent anticipation of a stimulus. An1005 

animal’s reaction to the tone was recorded as startle reactivity in the first 100msec of the 1006 

stimulus presentation, which was transduced through the platform’s load cell and 1007 

expressed in arbitrary units (AU).  1008 

Startle Response (Somatosensation) 1009 

Mouse somatosensation was tested by placing mice in a startle chamber (Med 1010 

Associates) connected to Startle Pro Software. Mice were placed atop a multi-bar cradle 1011 

within a ventilated plexiglass restraint cylinder, which allows for horizontal movement 1012 

within the chamber, but not upright rearing. After two minutes of acclimation, each mouse 1013 

was exposed to 10 different scrambled shock intensities, ranging from 0 to 0.6mA with 1014 

randomized inter-trial intervals of 20-90 seconds. Each animal’s startle reactivity during 1015 

the first 100 msec of the shock was transduced through the platform’s load cell and 1016 

recorded as area under the curve (AUC) in arbitrary units (AU). 1017 

1018 

QUANTIFICATION AND STATISTICAL ANALYSIS 1019 

Experimental conditions, number of replicates, and statistical tests used are stated 1020 

in each figure legend. Each experiment was replicated at least three times (or on at least 1021 

3 separate animals) to assure rigor and reproducibility. Both male and female age-1022 
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matched mice were used for all experiments, with data pooled from both sexes. Data 1023 

compilation and statistical analyses for all non-proteomic data were performed using 1024 

GraphPad Prism (version 8, GraphPad Software, CA), using a significance level of 1025 

alpha=0.05. Prism provides exact p values unless p<0.0001. All data are reported as 1026 

mean ± SEM. Each data set was tested for normal distribution using a D’Agostino-Person 1027 

normality test to determine whether parametric (unpaired Student’s t-test, one-way 1028 

ANOVA, two-way ANOVA) or non-parametric (Mann-Whitney, Kruskal-Wallis) tests 1029 

should be used. Parametric assumptions were confirmed with the Shapiro-Wilk test 1030 

(normality) and Levine’s test (error variance homogeneity) for ANOVA with repeated 1031 

measures testing. The analysis of iBioID and TMT proteomics data are described below. 1032 

All proteomic data and analysis scripts are available online (see Resource Availability). 1033 

Imaris 3D reconstruction 1034 

For EEA1+ and CathepsinD+ puncta analyses, coverslips were imaged on a Zeiss 1035 

LSM 710 confocal microscope. Images were sampled at a resolution of 1024 x 1024 1036 

pixels with a dwell time of 0.45µsec using a 63x/1.4 oil immersion objective, a 2.0 times 1037 

digital zoom, and a z-step size of 0.37 µm. Images were saved as “.lsm” formatted files, 1038 

and quantification was performed on a POGO Velocity workstation in the Duke Light 1039 

Microscopy Core Facility using Imaris 9.2.0 software (Bitplane, South Windsor, CT). For 1040 

analyses, we first used the “surface” tool to make a solid fill surface of the MAP2-stained 1041 

neuronal soma and dendrites, with the background subtraction option enabled. We 1042 

selected a threshold that demarcated the neuron structure accurately while excluding 1043 

background. For EEA1 puncta analyses, a 600 x 800 µm selection box was placed around 1044 

the soma in each image and surfaces were created for EEA1 puncta within the selection 1045 
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box. Similarly, for CathepsinD puncta analyses, a 600 x 600 µm selection box was placed 1046 

around the soma(s) in each image for surface creation. The same threshold settings were 1047 

used across all images, and individual surface data from each soma were exported for 1048 

aggregate analyses. The experimenter was blinded to sample conditions for both image 1049 

acquisition and analysis. 1050 

Cleaved Caspase-3 Image Analysis 1051 

Z-stack images were acquired on a Zeiss 710 LSM confocal microscope. Images1052 

were sampled at a resolution of 1024 x 1024 pixels with a dwell time of 1.58µsec, using 1053 

a 63x/1.4 oil immersion objective (for cortex, striatum, and hippocampus) or 20x/0.8 dry 1054 

objective (cerebellum), a 1.0 times digital zoom, and a z-step size of 0.67 µm. Images 1055 

were saved as “.lsm” formatted files, and then converted into maximum intensity 1056 

projections (MIP) using Zen 2.3 SP1 software. Quantification of CC3 colocalization with 1057 

DAPI was performed on the MIPs using the Particle Analyzer function in FIJI ImageJ 1058 

software. The experimenter was blind to sample conditions for both image acquisition and 1059 

analysis. 1060 

iBioID Quantitative Analysis 1061 

Following UPLC-MS/MS analyses, data was imported into Proteome Discoverer 1062 

2.2 (Thermo Scientific Inc.), and aligned based on the accurate mass and retention time 1063 

of detected ions (“features”) using Minora Feature Detector algorithm in Proteome 1064 

Discoverer. Relative peptide abundance was calculated based on area-under-the-curve 1065 

(AUC) of the selected ion chromatograms of the aligned features across all runs. The 1066 

MS/MS data was searched against the SwissProt Mus musculus database (downloaded 1067 

in April 2018) with additional proteins, including yeast ADH1, bovine serum albumin, as 1068 
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well as an equal number of reversed-sequence “decoys” for false discovery rate (FDR) 1069 

determination. Mascot Distiller and Mascot Server (v 2.5, Matrix Sciences) were utilized 1070 

to produce fragment ion spectra and to perform the database searches. Database search 1071 

parameters included fixed modification on Cys (carbamidomethyl), variable modifications 1072 

on Meth (oxidation) and Asn and Gln (deamidation), and were searched at 5 ppm 1073 

precursor and 0.02 Da product mass accuracy with full trypsin enzymatic rules. Peptide 1074 

Validator and Protein FDR Validator nodes in Proteome Discoverer were used to annotate 1075 

the data at a maximum 1% protein FDR. 1076 

Protein intensities were exported from Proteome Discoverer and processed using 1077 

custom R scripts. Carboxylases and keratins, as well as 315 mitochondrial proteins(Calvo 1078 

et al., 2016), were removed from the identified proteins as known contaminants. Next, we 1079 

performed sample loading normalization to account for technical variation between the 9 1080 

individual MS runs. This is done by multiplying intensities from each MS run by a scaling 1081 

factor, such that the average of all total run intensities are equal. As QC samples were 1082 

created by pooling equivalent aliquots of peptides from each biological replicate, the 1083 

average of all biological replicates should be equal to the average of all technical SPQC 1084 

replicates. We performed sample pool normalization to SPQC samples to standardize 1085 

protein measurements across all samples and correct for batch effects between MS 1086 

analyses. Sample pool normalization adjusts the protein-wise mean of all biological 1087 

replicates to be equal to the mean of all SPQC replicates. Finally, proteins that were 1088 

identified by a single peptide, and/or identified in less than 50% of samples were removed. 1089 

Any remaining missing values were inferred to be missing not at random due to the left 1090 

shifted distribution of proteins with missing values and imputed using the k-nearest 1091 
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neighbors algorithm using the impute.knn function in the R package impute 1092 

(impute::impute.knn). Normalized protein data was analyzed using edgeR, an R package 1093 

for the analysis of differential expression/abundance that models count data using a 1094 

binomial distribution methodology. Differential enrichment of proteins in the WASH1-1095 

BioID2 pull-down relative to the solubleBioID2 control pull-down were evaluated with an 1096 

exact test as implemented by the edgeR::exactTest function. To consider a protein 1097 

enriched in the WASH interactome, we required that a protein exhibit a fold change 1098 

greater than 3 over the negative control with an exact test Benjamini Hochberg adjusted 1099 

p-value (FDR) less than 0.1. With these criteria, 174 proteins were identified as WASH11100 

interactome proteins. Raw peptide and final normalized protein data as well as the 1101 

statistical results can be found in Table S1. 1102 

Proteins that function together often interact directly. We compiled experimentally-1103 

determined protein-protein interactions (PPIs) among the WASH1 interactome from the 1104 

HitPredict database(López et al., 2015) using a custom R package, getPPIs, (available 1105 

online at twesleyb/getPPIs). We report PPIs among the WASH1 interactome in Table S1. 1106 

Bioinformatic GO analysis was conducted by manual annotation of identified 1107 

proteins and confirmed with Metascape analysis(Zhou et al., 2019) of WASH1-BioID2 1108 

enriched proteins using the 2,311 proteins identified in the mass spec analysis as 1109 

background.  1110 

Raw peptide intensities were exported from Proteome Discover for downstream 1111 

analysis and processing in R. Following database searching, protein scoring using the 1112 

Protein FDR Validator algorithm, and removal of contaminant species, the dataset 1113 
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retained 86,551 peptides corresponding to the identification of 7,488 unique proteins. 1114 

These data, as well as statistical results can be found in Table S2. 1115 

TMT Proteomics Quantitative Analysis 1116 

Peptide level data from the spatial proteomics analysis of SWIPP1019R MUT and 1117 

MUT brain were exported from Proteome Discoverer (version 2.4) and analyzed using 1118 

custom R and Python scripts. Peptides from contaminant and non-mouse proteins were 1119 

removed. First, we performed sample loading normalization, normalizing the total ion 1120 

intensity for each TMT channel within an experiment to be equal. Sample loading 1121 

normalization corrects for small differences in the amount of sample analyzed and 1122 

labeling reaction efficiency differences between individual TMT channels within an 1123 

experiment. 1124 

We found that in each TMT experiment there were a small number of missing 1125 

values (mean percent missing = 1.6 +/- 0.17%). Missing values were inferred to be 1126 

missing at random based on the overlapping distributions of peptides with missing values 1127 

and peptides without missing values. We imputed these missing values using the k-1128 

nearest neighbor algorithm (impute::impute.knn). Missing values for SPQC samples were 1129 

not imputed. Peptides with any missing SPQC data were removed. 1130 

Following sample loading normalization, SPQC replicates within each experiment 1131 

should yield identical measurements. As peptides with irreproducible QC measurements 1132 

are unlikely to be quantitatively robust, and their inclusion may bias downstream 1133 

processing (see IRS normalization below), we sought to remove them. To assess intra-1134 

batch variability, we utilized the method described by Ping et al., 2019(Ping et al., 2018). 1135 

Briefly, peptides were binned into 5 groups based on the average intensity of the two 1136 
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SPQC replicates. For each pair of SPQC measurements, the log ratio of SPQC intensities 1137 

was calculated. To identify outlier QC peptides, we plotted the distribution of these log 1138 

ratios for each bin. Peptides with ratios that were more than four standard deviations away 1139 

from the mean of its intensity bin were considered outliers and removed (Total number of 1140 

SPQC outlier peptides removed = 474). 1141 

Proteins were summarized as the sum of all unique peptide intensities 1142 

corresponding to a unique UniProtKB Accession identifier, and sample loading 1143 

normalization was performed across all three experiments to account for inter-1144 

experimental technical variability. In a TMT experiment, the peptides selected for MS2 1145 

fragmentation for any given protein is partially random, especially at lower signal-to-noise 1146 

peptides. This stochasticity means that proteins are typically quantified by different 1147 

peptides in each experiment. Thus, although SPQC samples should yield identical protein 1148 

measurements in each of the three experiments (as it is the same sample analyzed in 1149 

each experiment), the observed protein measurements exhibit variability due to their 1150 

quantification by different peptides. To account for this protein-level bias, we utilized the 1151 

internal reference scaling (IRS) approach described by Plubell et al., 2017(Plubell et al., 1152 

2017). IRS normalization scales the protein-wise geometric average of all SPQC 1153 

measurements across all experiments to be equal, and simultaneously adjusts biological 1154 

replicates. In brief, each protein is multiplied by a scaling factor which adjusts its intra-1155 

experimental SPQC values to be equal to the geometric mean of all SPQC values for the 1156 

three experiments. This normalization step effectively standardizes protein 1157 

measurements between different mass spectrometry experiments. 1158 
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The final normalization step was to perform sample pool normalization using 1159 

SPQC samples as a reference. This normalization step, sometimes referred to as global 1160 

internal standard normalization, accounts for batch effects between experiments, and 1161 

reflects the fact that after technical normalization, the mean of biological replicates should 1162 

be equal to the mean of SPQC replicates. 1163 

Before assessing protein differential abundance, we removed irreproducible 1164 

proteins. This included proteins that were quantified in less than 50% of all samples, 1165 

proteins that were identified by a single peptide, and proteins that had missing SPQC 1166 

values. Across all 42 biological replicates, we observed that a small number of proteins 1167 

had potential outlier measurements that were either several orders of magnitude greater 1168 

or less than the mean of its replicates. In order to identify and remove these proteins, we 1169 

assessed the reproducibility of protein measurements within a fraction in the same 1170 

manner used to identify and filter SPQC outlier peptides. A small number of proteins were 1171 

identified as outliers if the average log ratio of their 3 technical replicates was more than 1172 

4 standard deviations away from the mean of its intensity bin (n=349). In total, we retained 1173 

5,897 of the original 7,488 proteins in the final dataset. 1174 

Differential protein abundance was assessed using the final normalized protein 1175 

data for intrafraction comparisons between WT and MUT groups using a general linear 1176 

model as implemented by the edgeR::glmQLFit and edgeR::glmQLFTest functions(MD 1177 

et al., 2009). Although this approach was originally devised for analysis of single-cell 1178 

RNA-sequencing data, this approach is also appropriate for proteomics count data which 1179 

is over-dispersed, negative binomially distributed, and often only includes a small number 1180 

of replicates (for an example of edgeR’s application to proteomics see Plubell et al., 1181 
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2017(Plubell et al., 2017))(McCarthy et al., 2012; MD et al., 2009). For intrafraction 1182 

comparisons, P-values were corrected using the Benjamini Hochberg procedure within 1183 

edgeR. An FDR threshold of 0.1 was set for significance for intrafraction comparisons.  1184 

We utilized edgeR’s flexible GLM framework to test the hypothesis that the 1185 

abundance of proteins in the WT group was significantly different from that in the MUT 1186 

group irrespective of fraction differences (Table S2). For WT vs. MUT contrasts, we 1187 

considered proteins with an FDR < 0.05 significant (n=687). For plotting, we adjusted 1188 

normalized protein abundances for fraction differences by fitting the data with an additive 1189 

linear model with fraction as a blocking factor, as implemented by the removeBatchEffect 1190 

algorithm from the R limma package(Ritchie et al., 2015). 1191 

To construct a protein covariation graph, we assessed the pairwise covariation 1192 

(correlation) between all 5,897 proteins using the biweight midcorrelation 1193 

(WGCNA::bicor) statistic(Seyfried et al., 2017), a robust alternative to Pearson’s 1194 

correlation. The resulting complete, signed, weighted, and symmetric adjacency matrix 1195 

was then re-weighted using the ‘Network Enhancement’ approach. Network 1196 

enhancement removes noise from the graph, and facilitates downstream community 1197 

detection(Wang et al., 2018). 1198 

The enhanced adjacency matrix was clustered using the Leiden algorithm(Traag 1199 

et al., 2019), a recent extension and improvement of the well-known Louvain 1200 

algorithm(Mucha et al., 2010). The Leiden algorithm functions to optimize the partition of 1201 

a graph into modules by maximizing a quality statistic. We utilized the ‘Surprise’ quality 1202 

statistic(Traag et al., 2015) to identify optimal partitions of the protein covariation graph. 1203 

To facilitate biological inferences drawn from the network’s organization, we recursively 1204 
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split 27 modules that contained more than 100 nodes and removed modules that were 1205 

smaller than 5 proteins. Initial clustering of the network resulted in the identification of 324 1206 

modules. 1207 

To reduce the likelihood of identifying false positive modules, we enforced module 1208 

quality using a permutation procedure (NetRep::modulePreservation)(Ritchie et al., 2016) 1209 

and removed modules with any insignificant permutation statistics (Bonferroni P-Adjust > 1210 

0.05). The following statistics were used to enforce module quality: ‘avg.weight’ (average 1211 

edge weight), ‘avg.cor’ (average bicor correlation R2), and ‘avg.contrib’ (quantifies how 1212 

similar an individual protein’s abundance profile is to the summary of its module). Proteins 1213 

which were assigned to modules with insignificant module quality statistics were not 1214 

considered clustered as the observed quality of their module does not differ from random. 1215 

After filtering, approximately 85% of all proteins were assigned a cluster. The median 1216 

percent variance explained by the first principle component of a module (a measure of 1217 

module cohesiveness) was high (59.8%). After removal of low-quality modules, the 1218 

analysis retained 255 distinct modules of proteins that strongly covaried together (Table 1219 

S3). 1220 

To evaluate modules that were changing between WT and MUT genotypes, we 1221 

extended the GLM framework to test for protein differential abundance. Modules were 1222 

summarized as the sum of their proteins and fit with a GLM, with fraction as a blocking 1223 

factor. In this statistical design, we were interested in the average effect of genotype on 1224 

all proteins in a module. For plotting, module abundance was adjusted for fraction 1225 

differences using the removeBatchEffect function (package: limma).  We utilized the 1226 
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Bonferroni method to adjust P-values for 255 module level comparisons and considered 1227 

modules with an adjusted P-value less than 0.05 were considered significant (n=37). 1228 

Module Gene Set Enrichment Analysis 1229 

Modules were analyzed for enrichment of the WASH interactome (this paper), 1230 

Retriever complex (McNally et al., 2017), CORUM protein complexes (Giurgiu et al., 1231 

2019), and subcellular predictions generated by Geladaki et al.(Geladaki et al., 2019) 1232 

using the hypergeometric test with Bonferroni P-value correction for multiple 1233 

comparisons. The union of all clustered and pathway proteins was used as background 1234 

for the hypergeometric test. In addition to analysis of these general cellular pathways, we 1235 

analyzed modules for enrichment of neuron-specific subcellular compartments—this 1236 

included the presynapse (Takamori et al., 2006), excitatory postsynapse (Uezu et al., 1237 

2016), and inhibitory postsynapse (Uezu et al., 2016). These gene lists are available 1238 

online at https://github.com/twesleyb/geneLists. 1239 

Network Visualization 1240 

Network graphs were visualized in Cytoscape (Version 3.7.2). We used the 1241 

Perfuse Force Directed Layout (weight = edge weight). In this layout, strongly connected 1242 

nodes tend to be positioned closer together. In some instances, node location was 1243 

manually adjusted to visualize the module more compactly. Node size was set to be 1244 

proportional to the weighted degree centrality of a node in its module subgraph. Node 1245 

size thus reflects node importance in the module. Visualizing co-expression or co-1246 

variation networks is challenging because every node is connected to every other node 1247 

(the graph is complete). To aid visualization of module topology, we removed weak edges 1248 

from the graphs. A threshold for each module was set to remove the maximal number of 1249 
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edges before the module subgraph split into multiple components. This strategy enables 1250 

visualization of the strongest paths in a network. 1251 

1252 

SUPPLEMENTARY FILES 1253 

• Supplementary File 1: Representative modules from major subcellular 1254 

compartments. 1255 

• Supplementary File 2: Source data for Western blots. 1256 

• Table S1: WASH iBioID raw and normalized data and the corresponding 1257 

statistical results.  1258 

• Table S2: SWIPP1019R TMT raw and normalized proteomics data and the 1259 

corresponding statistical results. 1260 

• Table S3: Module-level data and statistical results from network analysis of 1261 

SWIPP109R proteomics. 1262 

• Table S4: DNA oligonucleotides used in this study. 1263 

• Table S5: Key resources. 1264 
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Supplementary File 1. Representative modules from major subcellular compartments. 

Figure 1. Schematic overview of major subcellular compartments in neurons. 
SWIPP1019R MUT mouse brain exhibited significant differences in endosomal, 
lysosomal, ER, and postsynaptic modules compared to WT.  
Each of the following figures contains (A) normalized protein abundance for all 
proteins in a module, (B) schematic of the predicted subcellular compartment, and
(C) network subgraph vizualization of a module. These modules, which do not 
exhibit a significant difference between WT and SWIPP1019R brain, support the
hypothesis that the primary cellular deficit resulting from SWIPP1019R is 
dysregulation of endo-lysosomal pathways.

Subcellular compartment with modules exhibiting significant changes in 
abundance between WT and SWIP MUT brain.

Subcellular compartments with no significant difference between WT and MUT brain.
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Figure 2. No significant difference in a predicted golgi apparatus module. 
(A) normalized protein abundance for all proteins in M8, which is predicted to 
represent the golgi apparatus based on its significant enrichment of golgi proteins
from Geladaki et al., (2019). (B) schematic representation of the golgi apparatus. 
(C) M8 subnetwork showing organization of M8 proteins including 10 out of the 13 
golgi proteins quantified in this study. Note the presence of MAN1A2 a 
mannosidase which resides in the golgi and functions in protein glycoslyation.   
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Figure 3. No significant difference in a predicted presynapse module. 
(A) normalized protein abundance for all proteins in M11, a module which is enriched
for proteins known to reside in the presynaptic compartment or in presynaptic vesicles,
of neurons (Takamori et al., 2006). (B) schematic of the vesicle-enriched presynaptic 
compartment and inset showing the protein composition of a presynaptic vesicle. (C) 
M11 network graph.
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Figure 4. No significant difference in a predicted mitochondrial module. 
(A) normalized protein abundance for all proteins in M27, predicted to have
mitochondrial function by its enrichment of mitochondrial proteins (Geladaki et al., 2019).
(B) schematic of the neuronal mitochondria found in the presynapse. (C) M27 network
 which contains 38 of the of the 261 mitochondrial proteins quantified in this study. 
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Figure 5. No significant difference in a predicted cytoplasmic module. 
(A) normalized protein abundance for all proteins in M45, predicted to have
cytoplasmic localization. (B) schematic of the predicted cytoplasmic 
compartment, and (C) M45 network. M45 contained 9 of the 239 cytoplasmic 
proteins (Geladaki et al., 2019) quantified in this study.  
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Figure 6. No significant difference in a predicted ER module. 
(A) normalized protein abundance for all proteins in M81, predicted to represent the
endoplasmic reticulum (ER) based on its enrichment of ER proteins (Geladaki et al.,
2006). Note that unlike M83 (Fig. S3), there is no significant difference between MUT 
WT brain. (B) Schematic of the predicted ER compartment, and (C) M81 network. 
M81 contains 34 ER proteins incuding Erlin1/2 which function in a complex as a part
of the ERAD pathway.  
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Figure 7. No significant difference in a predicted nuclear module. 
(A) normalized protein abundance for all proteins in M103, a predicted nuclear 
module. (B) schematic of the predicted nuclear compartment, and 
(C) M103 network. M103 contains 26 resident nuclear proteins, including LSM4 and
LSM4, which function in spliceosome assembly. 
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Figure 8. No significant difference in a predicted inhibitory postsynaptic 
density (iPSD) module. (A) normalized protein abundance for all proteins in M155, 
a predicted iPSD module. (B) schematic of the predicted iPSD compartment, and 
(C) M155 network. M155 contains 5 iPSD proteins including two GABAAR subunits
and one GABABR subunit identified by Uezu et al., 2016.
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Figure 9. No significant difference in a predicted ribosome module. 
(A) normalized protein abundance for all proteins in M164, predicted to have
ribosomal function by enrichment of ribosome proteins (Geladaki  et al., 2019).
(B) schematic of the predicted ribosomal compartment, and (C) M164 network.   
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Figure 10. No significant difference in a predicted proteosome module. 
(A) normalized protein abundance for all proteins in M184, predicted to represent the
proteasome. (B) schematic of the predicted proteosomal compartment, and 
(C) M184 network. M184 contained 11 out of the 26 proteosomal proteins from 
Geladaki et al., (2019) that were quantified in this study.  
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Figure 11. No significant difference in a predicted excitatory postsynapse (ePSD)
module. (A) normalized protein abundance for all proteins in M206, predicted to have
postsynaptic function by enrichment of proteins known to reside in the excitatory 
postsynapse. (B) schematic of the predicted ePSD compartment, and 
(C) M206 network. M206 contained 7 out of the 138 ePSD proteins reported by Uezu 
et al., (2016) and is also enriched for proteins identified by WASH-BioID (this study).
 In contrast to modules M35 and M143, which exhibited decreased abundance in SWIP
MUT brain, M206 does not exhibit a global difference between WT and MUT brain. 
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Figure 12. No significant difference in a predicted peroxisome module. 
(A) normalized protein abundance for all proteins in M209, predicted to represent the
peroxisome based on its enrichment of peroxisomal proteins (Geladaki et al., 2019).
(B) Schematic of the peroxisome and (C) network of the M209 module which contains
11 of the 22 peroxisomal proteins quantified in this study. 
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