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Abstract
With technological progress in particular telemedicine and health care, the information should meet and serve as well the 
needs of people and in particular whom with reduced mobility, the elderly as well as people with difficulties to access to 
medical resources and services. These services should be achieved in a fast and reliable manner based on case priorities. 
One of the major challenges in health care is the routing and scheduling problem to meet people’s needs. Of course, the 
objective is to considerably minimize costs while respecting priorities according to cases that will face. Through this article, 
we propose a new technique for home healthcare routing and scheduling problem purely based on an artificial intelligence 
technique to optimize the offered services within a distributed environment. The automatic learning and search method seem 
to be interesting to optimize the allocation of visits to beneficiaries. The proposed approach has several advantages in terms 
of especially cost, efforts, and gaining time. A comparative study was carried out to evaluate the effectiveness of the planned 
technique compared to previous work.

Keywords  Healthcare · Visit scheduling · Caregivers routing · Ant colony system · Synchronized visits · Clustering 
algorithm

1  Introduction

In the past 20 years, the number of beds in hospitals and 
private clinics has shortened. The aged population has led 
to a rise in the number of people with chronic degenera-
tive diseases that give an increase to functional disabilities 
and handicaps. Patients who are undergoing treatment for 
advanced chronic diseases or palliative care want care that 
removes them as little as possible from their family environ-
ment for personal comfort reasons. Also, in the presence of 
pandemics which require the moving of patients at home as 

in SAR-COV-19 (e.g., [1–3]). Besides, shuttling operations 
do not necessitate care that mobilizes a high-level technical 
platform and therefore heavy support at the hospital. It is 
for these reasons that in recent years, a comprehensive care 
structure has been developed outside walls of the hospital. 
Among these structures, the Establishments of Hospitaliza-
tion at Home (EHH) is the best example.

The health system suffers from multiple economic and 
organizational problems. These problems have contributed 
to the emergence of multiple alternatives against traditional 
hospitalization. EHH was created as alternatives to possibly 
reducing healthcare system expenses while ensuring service 
quality satisfaction. The development of these structures is 
accelerating significantly, while the organization method 
followed remains artisanal and heterogeneous. The service 
provided by EHH is not limited to the provision of the care 
service, that is, the production and administration of medi-
cal and paramedical acts. Indeed, the service provider also 
includes a part of the operations management of the struc-
ture (organizational component).

Home hospitalization (HH) structures are growing around 
the world. They are considered as fully fledged healthcare 
establishments and assume all their obligations in terms of 
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safety, quality, continuity of care, and respect for patients’ 
rights. EHH is a complex and difficult system to manage 
from a human and material point of view. As a result, the 
structures of the EHH must be perfectly organized to ensure 
the quality, permanence, and continuity of care for patients, 
and to respect the workload of the careers, while reducing 
the costs relating to the processes care. We are interested in 
the design of caregiver tours for patients [vehicle routing 
problem (VRP)] taking into account multiple constraints 
(time windows, synchronization).

The problems of synchronization in VRP constitute a 
field of investigation which is still little explored but clearly 
identified. Synchronization is grouped into characteristics 
which create interdependence between routes. In a world 
where transport is increasingly multi-modal, interconnected, 
and where information systems allow increased flexibility 
to achieve more performance, there is no doubt that new 
route problems with synchronization will continue to appear. 
In this context, the exploration of the research space and 
the verification of time constraints offer quite interesting 
research subjects, at the crossroads between route optimiza-
tion and scheduling.

In recent scientific literature, researchers discuss the 
organization of care in a hospital. Existing work deals 
with scheduling and routing problems for homecare vehi-
cles. Currently, different health institutions in the world 
are authorized to provide home healthcare (HHC) services 
mostly in the presence of the COVID-19. Despite the rise of 
these institutions, the literature review shows that, to date, no 
research has been carried out to characterize the logistical 
challenges and requirements faced by HHC service admin-
istrators. These facts demonstrate the need to characterize 
and identify logistics management in the provision of HHC 
services, to contribute in reducing the gap between the state 
of the art and the reality of service provision in that context.

Thus, the contribution in this paper is to present a diag-
nosis of the logistics management of the institutions enabled 
by the routing and scheduling of caregivers to provide HHC 
services. The characteristics of VRP used are time windows, 
single structure, and synchronized visits, which means vehi-
cles can return to the same patients, use a single warehouse, 
and consist of finding several caregivers’ routes using a 
clustering algorithm. To improve the homecare service, the 
main objective is to minimize the total time necessary for 
caregivers to visit all patients, based on the best approach 
proposed. The obtained results will then be improved using 
the metaheuristic ant colony system (ACS) method which 
will provide a minimum total completion time.

To meet the stated objective, the paper is organized as 
follows: Sect. 2 presents a review of the literature, which 
identifies the state of the art regarding logistics management 
in HHC systems, and the existing research gap is evident. 
Section 3 describes and defines HHRSP. Section 4 presents 

the details of the research methodology based on the ACS 
with clustering algorithm (ACS-CA). Section 5 presents 
the analysis and discussion of the results by identifying 
the opportunities to improve the home healthcare systems. 
Finally, in Sect. 6 we conclude.

2 � Literature Review

This section makes a detailed exposition of the state of the 
art of those key concepts in which this research is framed, 
such as home healthcare routing and scheduling problems 
with synchronized visits and time constraints, metaheuris-
tic and exact techniques. Within HHRSP, special attention 
is paid to those families of problems that present spatial/
temporal restrictions, such as the family of problems of the 
traveling salesman problem (TSP) and VRP as these prob-
lems are particularizations or generalizations of the main 
problem tackled in this investigation planning problem of 
homecare assistants. Finally, a detailed description is made 
of the distribution algorithms metaheuristic and its applica-
tion to different types of HHRSP problems.

Several types of VRP exist which has been studied in the 
literature. The VRP with time windows (VRPTW) where 
the vehicle must arrive at the customer in the definite time 
window. VRPTW’s extensions contain additional features 
such as multiple trips (e.g., [4, 5]), multi-depots, and vehicle 
synchronization. A trip in this situation comprises a series of 
services before coming back to the warehouse.

Since the beginning of the 1998s, several studies have 
contributed to improve the logistics of transport in hospitali-
zation to home, either in terms of cost efficiency or the opti-
mization of journeys made by vehicles to bring nurses and 
technicians. VRP is an integer scheduling and combinatorial 
optimization problem that seeks the best way to visit and 
supply several customers with a specific fleet of vehicles. As 
proposed by [6], the VRP has great relevance in the fields of 
transport, distribution, and logistics. This problem consists 
in designing a set of deliveries or a collection of routes such 
that each route starts and ends in a deposit of the material to 
be distributed (e.g., [7–11]).

So far, many variations of the problem have been stud-
ied; for example, the vehicle fleet can be heterogeneous, 
and vehicles can collect or deliver on the same route; some 
vehicles may be disabled to visit some points; some clients 
require multiple visits within a time window; there may 
be several deposits; and deliveries can be divided between 
different vehicles (e.g., [12, 13]). Figure 1 represents the 
relationship between HHRSP and other different elements 
related to the problem.

The home healthcare planning problems have attracted 
recently the interest of numerous researchers, an interest that 
has been reproduced in the cumulative number of current 



10639Arabian Journal for Science and Engineering (2020) 45:10637–10652	

1 3

publications as Fikar and Hirsch [14] and Cissé et al. [15]. 
This growing interest is motivated by two fundamental rea-
sons, such as the progressive aging of our population and the 
need to provide health or assistance services in the place of 
residence of our elders. This type of service aims to meet 
the needs of our elderly in their place of residence, needs 
that may include health tasks, home care, preventive actions 
(physical therapy, occupational therapy), personal care or 
domestic care, among others, being this type of assistance, 
domiciliary, which is preferred by most of our elders. From 
an economic point of view, in Europe between 1 and 5% 
of the healthcare budget is used for this type of services 
(Source: World Health organization [16]); in other countries 
such as the USA, the number of people who received this 
type of assistance is amounted to 9 million in 2014, with a 
total of more than 67,000 providers and with an estimated 
cost between 210,000 and 317,000 million dollars (e.g., 
[17]). Among the different challenges facing companies that 
provide this type of service, a need is essential to provide 
efficient solutions that are capable of satisfying the grow-
ing demand, maintaining the satisfaction of customers and 
employees themselves, being viable under the economical 
point of view.

The companies that provide this type of service must 
make decisions in different areas, each of which corresponds 
to different combinatorial optimization problems, such as 
scheduling, staffing, and route planning for such staff point 
out that said decisions are made within three decision levels, 

such as the strategic, tactical, and operational levels. In the 
strategic level, the decisions to be completed are related 
to how to partition the territory in which these types of 
establishments offer services, creating a cluster of patients 
in different areas. In the tactical level, the objective of the 
establishments that offer this type of service and the set of 
resources necessary to provide the appropriate level of ser-
vice in each area must be identified. These resources can 
be human or material. To end, at the operational level, we 
determine which assistant will visit each patient.

In most cases, a set of homecare assistants, whose pro-
fessional qualifications vary, including nurses, occupational 
therapy specialists, and personnel to carry out tasks at home 
or personal care, have to be assigned to a set of patients that 
require a heterogeneous set of services, each patient being in 
their place of residence, it being common for each assistant 
to visit different patients throughout their working day. From 
the above description, it can be deduced that there will be 
a set of restrictions that will allow deciding which assis-
tant can be assigned to each patient, taking into account the 
qualification of the assistant and the type of service required 
by the patient. However, in reality, the problems and restric-
tions that providers of this type of service face are usually 
much more complex. For example, the applicable labor leg-
islation must be taken into account, fairness when preparing 
the schedules of its workers, availability, which may include 
different types of contracts, vacations, attendance at training 
sessions, low disease, among others. Also, patients require 

Home Healthcare 
Routing and Scheduling

(HHRSP)

Patient preferences
• Always the same nurse
• Man/ Woman
• Always at the same time
• Time to discuss

Nursing Preferences
• Day off
• Start of days delayed
• Few patients "difficult" 

Legal aspects
• Work time
• Qualification / diploma
• Service life
• Structural costs

Qualification / experience
• Nurse / civil servant
• Over qualified?
• Specific experiences
• Languages

Work ergonomics
• Assignment planning
• light / heavy patients
• Cooperation between 

departments
• Reduction of stress

Other
• Vehicles
• Traffic condition
• Contracts
• "Good chemistry"

Fig. 1   HHRSP representation
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that the service is provided at certain times, this type of 
restriction is known as a time window, and its definition is 
identical to that provided in those sections. Finally, there is 
a whole set of restrictions associated with the displacement 
that each assistant must carry out between the different vis-
its to each patient. First of all, it should be noted that there 
may be different means of transport such as the attendees’ 
vehicle, public transport, bicycle, on foot, or a combination 
of the previous. Despite the challenges of decision making at 
different levels and the various constraints that must be met, 
most companies continue to plan their personnel manually.

In Kergosien et al. [18], this variant of HHRSP is formu-
lated as a version of the TSP, specifically as a variation of 
the trade m-vendor problem with time windows. For this, 
the authors propose a series of additional restrictions and 
provide an exact formulation that can be solved by solving 
a mixed integer programming (MIP) problem. There is a 
popular of academics who have formulated the problem as 
a sweeping statement of the VRP in which a set of restric-
tions specific to the problem have been added. However, the 
studies that address the HHRSP differ from the VRP in that 
they present certain characteristics that hinder their solution 
and that must be considered:

•	 Continuity in the provision of tasks: These types of 
restrictions ensure that each patient is assigned to a small 
set of homecare aides with synchronized visits.

•	 Temporal dependency and compatibility between tasks: 
For example, one task must be performed immediately 
afterward or two tasks cannot be performed at the same 
time.

•	 Characteristics of patients and assistants: Each assistant 
can have a set of characteristics or skills which must be 
taken into account when being assigned to a patient. 
Similarly, each patient can have a set of preferences that 
limit the set of attendees who can visit them.

The different solution methodologies applied to HHRSP 
resolution are classified in different ways depending on the 
selected criteria. Considering the planning horizon, one can 
distinguish methods that focus on solving problems 1 day 
(single period) or those that are focused on solving several 
days, even months (multiple periods).

One of the first works that addressed this subfamily of 
problems from the optimization point of view was pro-
posed by Begur et al. [19] in which the solution of this 
variant is combined within a decision support system for 
a firm in the USA; it must be noted that this technique did 
not take on consideration the time window constraints, 
and its objective was to minimize the total travel time, as 
well as the workload between the diverse nurses. Framed 
within a system to help the decision making is the work 

carried out by Bertels and Fahle [20], in which exact and 
non-exact techniques are combined (hybrid). The cases 
used are considered for a single day, within 20–50 nurses, 
and by 111–326 patients.

Bredström and Rönnqvist [21] emphasize the signifi-
cance and difficulty of including temporal constraints of 
synchronization and precedence in this family of prob-
lems. Specifically, the authors experiment with instances 
of problems in which the simultaneous presence of several 
assistants is required, such as lifting people with reduced 
mobility or tasks in which an assistant is required to visit 
a patient after another assistant has visited. The authors 
provide a MIP formulation, with a hybrid approach.

Rasmussen et al. [22] propose a dynamic column gener-
ation included within a Branch-and-Price scheme to solve 
an HHRSP with temporary dependencies, which affect 
the start of tasks. The authors formulate the HHRSP by 
considering five categories of precedence restrictions. In 
Liu et al. [23], an algorithm based on Branch and Price 
to solve an HHRSP of a Chinese company is presented, 
highlighting the need to include lunch breaks on each of 
the routes generated for each attendee. The authors use the 
CPLEX Software solver and two types of instances. The 
first is an adaptation of the instances proposed by [24], 
while the second comes from a set of real data provided 
by a Chinese company. Akjiratikarl et al. [25] propose a 
particle swarm optimization to plan a group of homecare 
caregivers in the UK; in total, more than 100 daily tasks 
are planned for a total of 50 patients and must be assigned 
to 12 homecare assistants, providing savings of up to 31% 
about the total distance traveled. In Trautsamwieser and 
Hirsch [26], the authors propose a Branch-and-Cut and 
Branch-and-Price algorithm to solve an HHRSP in which 
patients must be visited throughout the week, within a 
time window requiring the visit of homecare assistants 
with certain skills and characteristics. The total number 
of hours that each assistant can work is limited, both daily 
and weekly. Also, certain breaks must be made throughout 
the workday. Likewise using a full formulation, Cappan-
era and Scutellà [27] solve a weekly HHRSP, where the 
use of patterns takes on special interest when generating 
the planning of each attendee. These patterns, which are 
initially generated, have a double objective; in the first 
place, they ensure the continuity of the service, and on the 
other, they guarantee the compatibility between assistants 
and tasks. Afifi et al. [28] give decision support based on 
simulated annealing to launch daily homecare scheduling 
with synchronization. A hybrid iterated local search (ILS) 
with a variable neighborhood descent (VND) to solve the 
VRPTW with different visits is offered in En-nahli et al. 
[29]. Table 1 summarizes a classification of works done 
for the HHRSP in terms of characteristics constraints.
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3 � The VRPTW with Synchronization Visits 
In‑Home Health Care: Problem Definition

We consider a list of patients needing and a set of care ser-
vices. Each care service is categorized by a period of care, 
and many resources are required to perform the care, a skill 
required such as the earliest start date and the latest service 
start date. Human resources work complete-time categorized 
by a qualification assorting from 1 to 5. The nursing staff 
begins and ends their tour in the EHH structure and must 
not exceed a maximum workload during the day. He must 
allocate care to patients and have a meal break while respect-
ing the time windows. The waiting time for a resource is the 
time that elapses between the date of arrival of the resource 
at the patient’s home and the date of the earliest start of care.

The problem is described as a VRP problem with time 
windows with synchronization of visits. Given a set of 
patients, a set of caregivers, and a homecare system (HCS), 
the goal is to find a path for each caregiver, starting and end-
ing at the HCS and visiting a given set of patients. Several 
caregivers, depending on their availability, can take care of 
each patient. Patient visits must be synchronized, that is, care 
is provided at the same time by two caregivers.

Ultimately, the HHRSP consists of designing a set of 
routes over a planning horizon, in such a way that the home-
care service is provided for each patient while minimizing 

or maximizing a certain interest metric and respecting the 
different existing restrictions.

The problem to be solved in the HHRSP can be presented 
in this manner:

Given: A list of patients dispersed within a geographic 
zone and a list of caregivers.
Task: The set of visits that each attendee must carry out 
should be determined, trying to minimize some previ-
ously specified metrics, such as the full traveled distance 
or the waiting time of each client. Specifically, it must 
be determined for each attendee which customers should 
visit and in what order, so that all customers are served 
and the different restrictions for customers and attendees 
are respected. In our proposed solution, we seek to satisfy 
all patients by permitting them to be visited, as far as pos-
sible, by the staff of their choice. All patients should be 
treated during the day. Figure 2 displays an instance of 
the HHRSP with one home healthcare office and 14 visits.

To describe the mathematical model, we use the formu-
lation of Kandakoglu et al. [30]. The problem is gotten as 
a one period that lets us to determine a list of day-to-day 
paths for caregivers. A caregiver circuit states when a pre-
cise caregiver must leave home, visit each allocated patient, 
and coming back home. The lists of patients and caregivers 

Table 1   Classification of works in terms of characteristics constraints

References Constraints Methodology

Time windows Synchroni-
zation visits

Patient 
prefer-
ence

Precedence Disjunction

Liu et al. [35] √ √ Tabu search (TS), genetic algorithm (GA)
Duque et al. [36] √ √ A flexible two-stage solution strategy
Yuan and Fügenschuh [37] √ √ Heuristic algorithm
Misir et al. [38] √ √ Hyper-heuristics
Rest and Hirsch [39] √ √ MIP and tabu search
Afifi et al. [28] √ √ √ Set of local improvement methods
Ait Haddadene et al. [40] √ √ √ GRASP + ILS
En-nahli et al. [29] √ √ Local search
Braekers et al. [41] √ √ A large neighborhood search heuristic
Shi et al. [42] √ √ √ Fuzzy chance-constraint model
Du et al. [43] √ √ √ MIP + Genetic algorithm with local search
Frifita et al. [44] √ √ General VNS
Decerle et al. [34] √ √ √ Memetic algorithm
Issabakhsh et al. [45] √ √ √ MIP
Demirbilek et al. [46] √ Cheapest insertion heuristic
Liu et al. [47] √ √ An adaptive large neighborhood search
Euchi [1–3] √ √ General ant colony
Our study √ √ Ant colony system with clustering algo-

rithm (ACS-CA)
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are designated by P = {1, 2, …, p} and N = {1, 2, …, n}, 
respectively, where p is the patients number and n is the 
number of caregivers. The distance and travel time between 
the place l (domicile of the patient or the caregiver) and the 
place m (domicile of the patient or the caregiver), l ≠ m, are 
noted, respectively, dlm and tlm. Subsequently, tours can take 
place at diverse times, and we accept that the distances and 
travel times are fixed throughout the journey. The cost of 
the trip is KM dollars per kilometer. The visit to the patient 
i ∊ P necessitates sti minutes and can only take place in 
the interval time [ai, bi], where ai and bi are the oldest and 
most recent service start times for this patient. The interval 
[wsk, wek] explains the time window through the caregiver k 
which is accessible to visit the patients. A meal break has a 
maximum length defined by LB minutes in the interval time 
[alk, blk]. The trip time between the home caregivers and the 
main structure is designated by tk. This parameter permits us 
to consider trip times when defining caregiver roads.

In the following, we describe all the notations, param-
eters, and decision variables used in the mathematical for-
mulation of Kandakoglu et al. [30].

Notations Description

P List of patients
N List of caregivers
V List of P ∪ N

Notations Description

i, j A patient i, j ∊ P
k A caregiver k ∊ N
l, m A location of patient or caregiver, 

l, m ∊ V

Fig. 2   Example of solution 
description of the HHRSP

Parameters Description

dlm Distance from l to m
tlm Travel time from l to m
ai Earliest service start time for the 

patient i
bi Latest service start time for the 

patient i
sti Duration of the visit i
tk Travel time from caregiver k’s 

home to the structure
wsk The start time of caregiver k
wek The end time of caregiver k
alk The earliest start time of caregiver 

k (mealtime break)
blk The latest end time of caregiver k 

(mealtime break)
LB Mealtime break duration
KM Unit travel cost
OV Unit overtime cost
M A big constant M
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Decisions variables

Rik =

{

1 if a caregiver k can visit patient i

0 otherwise

xlmk =

{

1 if a caregiver k visitm after l

0 otherwise

yik =

{

1 if a caregiver k take a break before visiting patient i

0 otherwise

y�
ik
=

{

1 if a caregiver k take a break after visiting patient i

0 otherwise

sik = service start time for patient i if it visited by caregiver k

lk = start time ofmealtime break of caregiver k

overk = Total overtime essential from caregiver k

� = Caregiver workload

The mathematical model given by Kandakoglu et al. [30] 
is given in the following:

(1)

Min �1

∑

k∈N

∑

l∈V

∑

m∈V

dlmxlmk + �2 ∗ KM
∑

k∈N

∑

l∈V

∑

m∈V

dlmxlmk

+ OV
∑

k∈N

overk + �3

∑

k∈N

∑

l∈V

xklk + �4 ∗ �

(2)
Subject to
∑

k∈N

∑

l∈V

xilk = 1 ∀ i ∈ P

(3)
∑

l∈V

xlik =
∑

l∈V

xilk ∀ i ∈ P,K ∈ N

(4)
∑

i∈p

xkik ≤ 1 ∀ K ∈ N

(5)
∑

i∈p

xikk ≤ 1 ∀ K ∈ N

(6)
∑

i∈p

yik +
∑

i∈p

y�
ik
=
∑

i∈p

xik ∀ K ∈ N

(7)yik + y�
ik
=
∑

l∈V

xilk ∀ i ∈ P, K ∈ N

(8)sik + sti + tij ≤ sjk +M(1 − xijk) ∀ i, j ∈ P, K ∈ N

(9)lk + LB ∗ yik ≤ sik +M(1 − yik) ∀ i ∈ P, K ∈ N

(10)

sik + (sti + tij)(xijk + yjk − 1) ≤ lk

+M(2 − xijk − yjk) ∀ i, j ∈ P, K ∈ N

4 � Ant Colony System Methodology

This section describes how to tackle the VRPTW with syn-
chronization visits in-home health care presented in the 
previous section using a hierarchical clustering technique 
based on an ant colony method. Ant colony-based optimiza-
tion has been applied to a multitude of TSP combinatorial 
optimization problems [31], TSP with time windows [32], 
and VRPTW and PVRPTW (period VRPTW) [33]. ACS has 
been applied to conventional route optimization problems 
such as TSP and VRP and their variants with temporary 
windows. Till date, no relevant publication has been founded 
which attempts to solve the problem of planning home help 
with this type of metaheuristics. In this section, we have 
proposed an ant colony method with a clustering algorithm 
called ant colony system with clustering algorithm (ACS-
CA for HHRSP), in which a greater number of modifica-
tions are made to improve performance and adapted to the 
particular characteristics of the problem being addressed.

(11)

lk + (LB + tij)(xijk + y�
jk
− 1) ≤ sjk

+M(2 − xijk − y�
jk
) ∀ i, j ∈ P, K ∈ N

(12)sik + sti ∗ y�
ik
≤ lk +M(1 − y�

ik
) ∀ i ∈ P, K ∈ N

(13)ai ≤ sik ≤ bi ∀ i ∈ P, K ∈ N

(14)alk ≤ lk ≤ blk ∀K ∈ N

(15)
wsk −M(1 − xkik) ≤ max{(tki − tk), 0} ∀ i ∈ P, K ∈ N

(16)

ws
k
−M(1 − x

ikk
) + over

k
≥ s

ik
+ st

i

+max{(t
ik
− t

k
), 0} ∀ i ∈ P, K ∈ N

(17)

LB +
∑

i∈P

tkixkik +
∑

i∈P

∑

j∈P

(sti + tij)xijk +
∑

i∈P

tikxikk ≤ � ∀ K ∈ N

(18)xlik ≤ Rik ∀ l ∈ V , i ∈ P, K ∈ N

(19)yik, y
�
ik
≤ Rik ∀ i ∈ P, K ∈ N

(20)xlmk, yik, y
�
ik
∈ {0, 1} ∀ m ∈ V , i ∈ P, K ∈ N

(21)sik, lk, overk, � ≥ 0 ∀ i ∈ P, K ∈ N
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4.1 � Distributed Optimization

As described previously, the HHRSP is an NP-hard prob-
lem. A distributed optimization approach seems an ade-
quate solution for this variant. The principal idea of this 
new approach is the decomposition of NP-hard problem 
into smaller subproblems while keeping the entire search 
space. This compromise between reducing complexity and 
exploring the solutions space has always been treated by 
researchers using different methods. Some works using local 
and global research have been proposed, and other solutions 
have been proposed as a hybrid approach which are applied 
for some optimization problems. Metaheuristic methods may 
have proven to be successful in the past, but sometimes this 
type of approaches presents some limits depending on the 
complexity of the optimization problem. Decomposing the 
problem space can increase the complexity. We propose also 
to solve different subproblems in a parallel way.

As illustrated in Fig. 3, our solution is composed by three 
parts. We begin by a clustering algorithm to decompose 
the space into some smaller zones. After that, each cluster 
will be treated by a Java thread that executes a basic ACS 
algorithm, and in a parallel way, our distributed algorithm 
executes a global research. All the local and global research 
threads use the same pheromone traces. It consists of the 

intelligent communication between the different parts of 
algorithm. Figure 3 shows the scheme of hybrid ACS-CA 
algorithm.

Both parts of algorithm (clustering and parallel ACS) will 
be hybridized to propose a new optimization approach.

4.2 � Clustering Algorithm

For the clustering part, we apply the K-means algorithm. It 
is one of the popular unsupervised machine learning algo-
rithms. The principle of this approach consists in a learning 
process that begins by random selection of centroids. These 
centroids will be used as the beginning points for every clus-
ter, and then, iterative calculations are performed to optimize 
their positions. When there is no change in their values, the 
centroids can be considered as stabilized and the clustering 
is successful. Each patient is attributed to the closest cluster 
as described in the algorithm in the next box. The centroid 
is the center of the cluster, and his coordinates are calculated 
as follows: 

�

xj, yj
�

=

�∑m

i=1
xi

m
,
∑m

i=1
yi

m

�

 when xi and yi are the 
coordinates of each patient in the same cluster. In the follow-
ing, we describe our k-means algorithm used in the cluster-
ing step:

Fig. 3   Scheme of hybrid ACS-
CA algorithm
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K-means Algorithm

1. Initialize cluster centroids randomly
2. Repeat until stabilization {

       2.1       For every patient calculate distance from every cen-
troid

       2.2       Attribute every patient to the closest cluster
                            C(i) = argminjdij

       2.3       Update cluster (set of patients)
       2.4       Calculate the new centroid for every cluster

              The centroid 
Cj =

�

xj, yj
�

=

�∑m

i=1
xi

m
,
∑m

i=1
yi

m

�

}

Each spatial grouping of patients will be considered as 
a class. It is obvious that optimization in a single class is 
easier, but it remains a local optimal that it will serve for a 
global optimization to be refined in parallel.

4.3 � ACS Algorithm

The ACS algorithm is based on the use of pheromone for 
communication. It is very important in our distributed 
approach. It will serve as a link between local and global 
research. In each zone, the global research ants come 
across the pheromone traces left by local research ants 
and consequently the local optimal (the optimal path of 
the zone or cluster) will be favored.

When designing an ACS-based algorithm and applying 
it to the homecare planning problem, several issues will be 
considered. First, there are the details of how solutions are 
created and how agents, called ants, come up with these 
solutions. Each ant represents a complete and valid solu-
tion to the problem; in our case, it will be a set of clusters 
C = {c1, …, ck}, and each of them will consist of a set 
of services ck = {s1, …, sm}. The solutions are obtained 
constructively as each ant moves through the vertices of 
the graph; the order of visit determines all the clusters 
obtained. Initially, each ant selects an initial vertex and 
incorporates it into a cluster c0 which is initially empty. 
Thereafter, according to a probabilistic transition rule, it 
is selected which will be the next summit to visit, which 
will be part of the cluster under construction. Said process 
of incorporating vertices into the current cluster will end 
when a certain stop condition is met. Once this condition 
is met, the first cluster c0 will have been formed, the clus-
ter formation process will restart and repeat the formation 
of as many clusters as necessary, until all the patients of 
the graph will be visited.

In each thread, our classic ACS algorithm uses a set of 
ants. Each one chooses round journeys alongside with the 
patients. Two weights are associated for each edge between 
two patients. The first weight noted τ(i, j) is the pheromone 

quantity which updated by ants at each crossing. The second 
weight noted η(i, j) is the cost or the length of the edge. We 
begin by placing f ants in the depot. Each ant moves from 
patient to another until it creates a complete round. By using 
a probabilistic equation, an ant selects the next patient. This 
probability of choice is based on the edge length and phero-
mone quantity. Ants promote transition with great quan-
tity of pheromone and short edge. The pheromone trail is 
updated when all ants have finalized their trips. Then, all the 
steps of transition and pheromone update will be repeated. 
Our AC0 algorithm (Algorithm 2) for HHRS problem, using 
an initial solution given by the greedy constructive algo-
rithm (GCA) (e.g., [5]), is described as follows:

Algorithm 2. ACS algorithm for HHRSP

01: Step 1: We initialize a set of ants for each cluster and a set of 
ants for global research in each depot

02: Step 2: We initialize a pheromone trail table
03: Step 3: Repeat until Convergence:
04: For each ant:
05:      Repeat until the end of run:
06:           We move from depot or patient to another according to the 

probabilistic equation
07:           We move from depot or patient to another according to the 

probabilistic equation
08:           We verify the run of each vehicle (capacity)
09:      We update pheromone trail

4.3.1 � Solution Representation

The solution is represented by vehicle. For each vehicle, the 
list of visited patients is given as a vector which contains 
their index number. If we suggest, for example, a HHRSP 
problem with five patients and three vehicles, a solution can 
be presented as follows (Fig. 4).

4.3.2 � Selection

Whenever an ant starts looking for a new solution, the first 
step is to select an initial patient, and this patient will be 
included in the current cluster and will determine which 
other vertices can be visited. This strategy will be used 

Patients
Vehicle1 3 4
Vehicle2 1 2
Vehicle3 5

Fig. 4   Solution representation
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whenever it is necessary to form a new cluster. This selection 
is made taking into account the cardinality of each patient 
and a probability selection rule.

We chose to associate the patients with the groups to 
be assisted (the set G) before the respective structure. The 
graph is defined as Γ′ = (G ∪ {0}, A′), which is an undirected 
graph with no loop. The set A′ basically represents the full 
allowed paths between the different patients with the struc-
ture denoted by {0}. Here,

•	 Γ′ = (G ∪ {0}, A′) is a completed graph
•	 G ∪ {0} represent the set of patients
•	 A′ is the set of arcs
•	 For {g, h} ⊂ G ∪ {0} patients, the distance traveled 

between the patients of groups g and h is: 

where egi is the group membership indicator g instead 
of structure i.

To move from one patient i to another patient h, we 
deploy transition logic with the basics:

•	 Jf(g): set of summits that are still to be visited by the ant 
f, situated at the patient i.

•	 VISgh: the preference to add the arc (g, h) to create the 
solution.

•	 pgh
f(t): the probability that the ant f, placed at the patient g, 

at the immediate time t, travels toward the patient h.

The probability that patient is selected as the initial 
patient for a cluster is given by:

The pheromone quantity PQgh indicate if we travel from 
patient i to patient j in relation to the coefficient α and the 
visibility VIS signify the advantage of traveling from patient 
i  to  pa t ien t  j  l inked  wi th  β .  We set  the 
VISgh =

1

dgh
=

�

∑n×n

i,j=0
egiehjdij

�−1

.

The footprint of the pheromone is reset when the solu-
tion obtained is not able to improve for a maximum num-
ber of iterations. We apply the track update rule as follows: 
PQgh = (1 − ρ)PQgh + ρPQgh(0) where ρ is the evaporation 
rate (with 0 ≤ ρ ≤ 1) and PQgh(0) denote the initial value 
of the trails.

dgh =

n×n
∑

i,j=0

egiehjdij,

p
f

gh
(t) =

⎧

⎪

⎨

⎪

⎩

�

PQgh)
��
×
�

VISgh
��

∑

f∈Jf (g)

�

PQgh)
��
×
�

VISgh
�� if h ∈ Jf (g)

0 Otherwise

4.3.3 � Local Search

As a local search in our algorithm, we have used two 
neighborhood operators noted N1 and N2. The two neigh-
borhood structures let us to concentrate on a new solution 
by applying permutation and insertion operators on the 
same route.

4.3.3.1  Neighborhood N1: Inter‑route Permutation  To 
improve the solution given by the ACS-CA algorithm, we 
use an inter-route permutation. Our local search (N1) is illus-
trated in the following algorithm:

Algorithm 1. The inter-route permutation

01: BEGIN
02: For each vehicle k
03: For each route T
04: g ← 1
05: Repeat
06: p ← 1
07: Repeat
08: T′ ← T;
09:                Insert g in the position p in the route T′
10:        If (F(T′) < F(T))
11: T ← T′
12:                g ← 0
13: p ← Number of a group in T
14: EndIf
15: p ← p + 1
16: Until (p > Number of group in T)
17: g ← g + 1
18:        Until (g > Number of group in T)
19: EndFor
20: EndFor
21: END

4.3.3.2  Neighborhood N2: Two‑opt‑move  The first local 
search used is defined by the 2 − Opt(k, k′, r, s) operator who 
allows exchanging subsequence between two different routes 
R(k), R(k′); k, k′ ∊ {1, …, K}, k ≠ k′. The idea is to substitute 
two arcs, (i, j) and (i + 1, j + 1) with two others arcs, (i, i + 1) 
and (j, j + 1), and the setback of the path p(i + 1, j). Patients 
i on path R(k) and patients j on the path R(k′) are swapped to 
obtain a savings cost. The better solution found to replace the 
current and the exploration continues (Fig. 5). 
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5 � Computational Experiments

This section provides a detailed presentation of the results 
obtained by the ACS-CA proposed to solve the HHRSP. 
First, the different instances that will be subject to experi-
mentation are presented, exposing their main characteristics, 
as well as a descriptive analysis of them. Subsequently, the 
sensitivity of the parameters of the ACS-CA technique that 
will be subject to experimentation and their configuration 
technique is presented. Finally, a comparative study is car-
ried out between the ACS-CA techniques presented in the 
literature, and their performance is analyzed concerning 
other existing solutions such as the solution proposed by 
Afifi et al. [28] and Decerle et al. [34].

5.1 � Instances

One of the most important characteristics of the dataset used 
to validate the proposed techniques is undoubtedly the great 
dimensionality of the instances. The examples present in the 

state of the art and used to solve the planning problems of 
homecare assistants rarely exceed the hundreds of custom-
ers, and to date, no relevant publication has been found in 
which cases with more than 1000 clients have been resolved.

The proposed algorithm has now been tested on 30 
datasets from Bredström and Rönnqvist [21]. The first 
grouping of data is based on the number of patients with 
different sizes of time windows. The visits are divided 
into three types which are called a group of type small (S), 
medium (M), and large (L), and are subdivided for each 
type into groups of instances according to the number of 
patients and the number of staff who will be independently 
resolved. Instances are grouped with clients equal to 20, 
50, and 80 for each type of instance (S, M, and L). Table 1 
describes the distribution with the characteristics of the 
sets of instances.

Fig. 5   Two-opt neighborhood. Source: Euchi et al. [11]



10648	 Arabian Journal for Science and Engineering (2020) 45:10637–10652

1 3

Type Instance Num-
ber of 
patients 
(N)

Number 
of staff 
members 
(K)

Synchro-
nized 
visits 
(NSYNC)

Time win-
dows (TW)

S M L

Small (S) 1 20 4 2 1.5 2.1 2.9
2 20 4 2 1.8 2.9 3.9
3 20 4 2 1.6 2.5 3.4
4 20 4 2 1.5 2.4 3.0
5 20 4 2 1.6 2.5 3.4
6 50 10 5 1.4 2.3 3.1
7 50 10 5 1.5 2.2 3.0
8 50 10 5 1.6 2.5 3.4
9 80 16 8 1.5 2.3 2.9

10 80 16 8 1.5 2.3 2.9
Medium 

(M)
1 20 4 2 1.7 2.2 3.0
2 20 4 2 1.3 2.1 3.2
3 20 4 2 1.5 2.4 3.2
4 20 4 2 1.8 2.9 3.9
5 20 4 2 1.5 2.4 3.2
6 50 10 5 1.6 2.5 3.4
7 50 10 5 1.7 2.1 2.9
8 50 10 5 1.5 2.4 3.2
9 80 16 8 1.6 2.6 3.6

10 80 16 8 1.8 2.6 3.4
Large (L) 1 20 4 2 1.5 2.4 3.0

2 20 4 2 1.4 2.3 3.1
3 20 4 2 1.7 2.2 3.0
4 20 4 2 1.3 2.1 3.2
5 20 4 2 1.7 2.2 3.0
6 50 10 5 1.5 2.4 3.2
7 50 10 5 1.4 2.3 3.1
8 50 10 5 1.4 2.3 3.1
9 80 16 8 1.7 2.4 3.5

10 80 16 8 1.6 2.5 3.8

5.2 � Parameters Sensitivity

Before analyzing the results obtained with the ACS-CA 
method, it is necessary to describe the parameterization used 
in the experiments, it is recommended to consult this for a 
better understanding of them. Table 2 describes the sensitiv-
ity of the parameters of our ACS-CA procedure.

The combinations of the above parameters give a total of 
six experiments. One of the aspects to be considered is the 
existence of a certain random component in the developed 
method. This component is due to how the links are resolved 
in the regrouping process; in this situation, it was chosen to 
choose one of them at random to study the impact on the 
quality of the solutions obtained. For this reason, the experi-
ment of each of the above configurations was repeated ten 
times in total, which gives a total of 60 experiments.

5.3 � Results

Once the parameters that have been used in the experimen-
tal phase for the ACS-CA method are presented, the results 
obtained are presented in Tables 3, 4, and 5 which contain 
all the results of the different runs and configurations with 
the different sizes of scenarios.

The proposed ACS-CA metaheuristic technique is imple-
mented in Java and executed on Intel® Core™2 Duo Proces-
sor T5870 (2M Cache, 2.00 GHz, 800 MHz FSB) with 4-GB 
RAM. To solve the small tests, we have used the AMPL 
environment for all implementations, using CPLEX version 
10.

As a result, we present a new ACS-CA optimization 
approach that we use in the experiments. Our proposed 
methodology can be compared with the SA–ILS metaheuris-
tic, presented in Afifi et al. [28] and the results of Decerle 
et al. [34] (MA). We will use the notation OPT when we 
bring up to solving the datasets using CPLEX. The results 
are shown in summary in Tables 3, 4, and 5, showing the 
mean values (μ) and the standard deviation (σ) for each of 
the configurations.

To assess the performance of our heuristics (ACS-CA) 
with the approaches proposed in the literature [simulated 
annealing–iterative local search (SA–ILS), memetic algo-
rithm (MA)], we summarize in Table 3 the results of small-
type instances (Type S) by comparing the solutions obtained 
by our method with optimality results given by CPLEX and 
with the SA–ILS and MA approaches. Table 3 illustrates 
the mean and standard deviation of all instances. Table 3 
shows that ACS-CA makes it possible to achieve very good 
results compared to the results obtained by the approaches 
(SA–ILS and MA on the same instances). Indeed, the aver-
age ACS-CA results for small-type tests are very important, 
and the rounds obtained by our method are of very compa-
rable quality and are identical to those obtained by exact 
approaches (OPT). Among ten tests, the ACS-CA makes it 
possible to obtain eight new solutions better than the results 
proposed by the SA–ILS and MA approaches. Besides, 
unlike the exact approaches, we note that the variation in 

Table 2   Parameters sensitivity of our ACS-CA procedure

Parameter Description Value

m Ants number 8
Alpha Pheromone quantity coefficient 0.75
Beta Visibility coefficient 0.25
Iter_max Maximum number of iterations 1500
Pheo_0 Pheromone initialization 0.45
r Rate of evaporation 0.60
nr Number of runs 10
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the complexity of the time dependencies has no impact on 
the calculation time of the ACS-CA. The CPU time execu-
tion of all instances obtained by our metaheuristics is better 
than the MA heuristics.

In the experiments given in Table 4, we tested our heu-
ristic (ACS-CA) using instances of medium type (M), made 
up of 20–80 patients, and 4–16 caregivers with synchroniza-
tion up to 8. Since the number of iterations in this type of 
instance is very large, we collect a sample of a thousand iter-
ations. From which, we will assess the quality of the results 
obtained by the ACS-CA. We summarize in Table 4 the 

results obtained by our metaheuristics. This table highlights 
that the ACS-CA approach gives in all tests, a better solution 
than that proposed by the SA–ILS and MA approach. Our 
ACS-CA approach with 6.054 on average is better than the 
other SA–ILS and MA approaches with 6.123 and 6.192, 
respectively. Table 4 shows that the proposed metaheuristics 
are very robust as regards the resolution of medium-sized 
problems.

Subsequently, we tested our heuristics on large-type 
instances (Table 5). The purpose of these experiments is, 
firstly, to test the robustness of our heuristics in the face 

Table 3   Comparison results 
of the scenarios for the small 
instances

Type Instance (N) (K) NSYNC OPT Simulated 
annealing–itera-
tive local search 
(SA–ILS)

Memetic algo-
rithm (MA)

Ant colony 
system-cluster-
ing algorithm 
(ACS-CA)

Z CPU (s) Z CPU (s) Z CPU (s)

Small 1 20 4 2 3.45 3.55 0.02 3.55 – 3.45 0.015
2 20 4 2 3.85 4.27 0.02 3.94 – 3.85 0.018
3 20 4 2 3.52 3.63 0.02 3.56 – 3.52 0.019
4 20 4 2 5.77 6.14 0.02 5.77 – 5.77 0.017
5 20 4 2 3.64 3.93 0.03 3.70 – 3.64 0.028
6 50 10 5 – 8.1 13.97 8.03 – 8.1 11.38
7 50 10 5 – 8.39 15.08 7.91 – 7.99 12.26
8 50 10 5 – 9.54 25.13 9.02 – 9.02 19.83
9 80 16 8 – 11.93 150.52 11.63 – 11.57 51.02

10 80 16 8 – 8.6 16.1 8.80 – 8.6 9.55
Mean (µ) 6808 22,091 6591 6551 104,137
SD (σ) 2924 46,054 2876 2882 15,926

Table 4   Comparison results of 
the scenarios for the medium 
instances

Type Instance (N) (K) NSYNC OPT Simulated 
annealing–itera-
tive local search 
(SA–ILS)

Memetic algo-
rithm (MA)

Ant colony 
system-cluster-
ing algorithm 
(ACS-CA)

Z CPU (s) Z CPU (s) Z CPU (s)

Medium 1 20 4 2 3.44 3.55 0.02 3.48 – 3.44 0.021
2 20 4 2 3.44 3.58 0.03 3.45 – 3.44 0.027
3 20 4 2 3.31 3.33 0.03 3.33 – 3.31 0.026
4 20 4 2 5.30 5.67 0.05 5.36 – 5.32 0.043
5 20 4 2 3.44 3.53 0.03 3.49 – 3.44 0.025
6 50 10 5 – 7.7 26.68 7.59 – 7.58 16.27
7 50 10 5 – 7.48 18.34 7.25 – 7.21 15.13
8 50 10 5 – 8.54 15.01 8.41 – 8.36 13.11
9 80 16 8 – 10.92 292.17 10.90 – 10.90 92.65

10 80 16 8 – 7.62 52.75 7.97 – 7.54 43.52
Mean (µ) 6192 40,511 6123 6054 18,0822
SD (σ) 2649 90,066 2673 2650 29,578
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of large instances (i.e., instances representing reality) and, 
secondly, to confirm the results obtained at the level of 
instances of the small and medium types.

In Table 5, The ACS-CA provides the best solutions for 
all large-type instances compared to the algorithms pre-
sented in the literature (SA–ILS and MA). We note that on 
average the solution given by our method (ACS-CA) is the 
best (with 5.809) compared to the results of the SA–ILS 
approaches [28] (with 5.883) and MA by Decerle et al. [34] 
(with 5.859). We note in Table 5 that our approach gives 
better solutions for all large-type instances with a minimum 
execution time while comparing with SA–ILS and MA.

From Tables 3, 4, and 5, we notice that our algorithm out-
performs the algorithms (SA–ILS, MA) of Afifi et al. [28] 
and Decerle et al. [34] in terms of the objective function 
and calculation time. For the smallest and medium-sized 
instances (S, M) with 20 patients and two synchronized 
visits and four caregivers, an optimal solution was found, 
while near-optimal solutions with a fast turnaround time are 
obtained for the rest of the instances more than 20 patients. 
Also, we remark that the ACS-CA provides better solutions 
for all instances compared to the algorithms presented in the 
literature. We conclude that our ACS-CA method seems to 
be the best procedure that is effective and efficient to solve 
the HHRSP. The ACS-CA maintains a minimum devia-
tion from the best known and optimal results for all sets of 
instances of different sizes.

The proposed technique (ACS-CA) is proved to be very 
efficient, both in terms of the quality of the caregivers’ 
rounds and the calculation time to generate all the tours. 
Indeed, the tests carried out have shown that the heuristic 
makes it possible to generate solutions of fairly comparable 
quality compared to the approaches given in the literature, 

i.e., the approaches based on MIP, and has a very reasonable 
computation times compared to the timing of the decision 
of the coordinating doctor responsible for making the daily 
schedules.

6 � Concluding Remarks and Future 
Perspectives

Health is one of the powerful factors of social integration 
and cohesion, but also of generating wealth and well-being. 
However, home health care takes the form of home visits, 
whose scheduled visits vary according to the patient’s care 
needs and must be established, consensually within and in a 
team, where the patient, caregiver, and/or family. Visits are 
generally planned manually, and the solution obtained may 
not be the best. In this logic, and in an attempt to reduce the 
elaborated costs, it is needed to use procedures that mini-
mize the total time spent on the paths of home visits.

In this way, optimization becomes essential for health 
units that perform homecare services, about the planning 
and scheduling of nurses who provide health care during 
home visits.

A considerably important topic in healthcare was dis-
cussed in this paper. It consists of the planning of medical 
and/or non-medical visits under several constraints in-home 
health care with characteristics treated separately each to 
another. Ant colony system with cluster algorithm (ACS-
CA) has been proposed. The objective is to solve home 
healthcare routing and scheduling problems (HHRSP). 
One of the major contributions in search algorithms we 
propose is the acquisition of polynomial memory through 
the ant colony principle. An ant colony heuristic-based 

Table 5   Comparison results 
of the scenarios for the large 
instances

Type Instance (N) (K) NSYNC OPT Simulated 
annealing–itera-
tive local search 
(SA–ILS)

Memetic algo-
rithm (MA)

Ant colony 
System-cluster-
ing algorithm 
(ACS-CA)

Z CPU (s) Z CPU (s) Z CPU (s)

Large 1 20 4 2 3.32 3.39 0.03 3.32 – 3.38 0.022
2 20 4 2 3.29 3.42 0.03 3.33 – 3.31 0.029
3 20 4 2 3.27 3.29 0.02 3.28 – 3.29 0.016
4 20 4 2 4.97 5.13 0.09 5.11 – 5.11 0.075
5 20 4 2 3.27 3.34 0.03 3.31 – 3.31 0.023
6 50 10 5 – 7.14 15.86 7.32 – 7.08 13.44
7 50 10 5 – 6.88 15.92 6.83 – 6.83 13.67
8 50 10 5 – 8 2.51 7.95 – 7.79 1.63
9 80 16 8 – 10.49 207.17 10.34 – 10.32 87.43

10 80 16 8 – 7.75 51.89 7.80 – 7.67 31.06
Mean (µ) 5883 29,355 5859 5809 147,395
SD (σ) 2534 64,554 2535 2485 27,500
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clustering algorithm has been addressed for a class of VRP 
with home healthcare problems. An encouraging result has 
been achieved through a variety of benchmarks comparing 
to some existing metaheuristic techniques. The local search 
technique approach is significantly effective in escaping poor 
local optima. Likewise, it is more robust in the principle of 
having remarkable results independent than having a good 
initial solution. Based on the results obtained, the proposed 
approach can be suggested in the planning of care and con-
sequently the quality of nursing care. A conclusion seems 
to be suitable to judge that a hybrid metaheuristic approach 
can increase the performance of single metaheuristics. An 
interesting direction seems to be interesting in future work 
which consists of adding new procedures and low-level heu-
ristic arrangements to properly discover the search space. 
Likewise, we hope to apply this approach to other variants 
of HHRSP.

As the objectives have been reached and the results are 
satisfactory, there are still aspects that can be improved so 
that the optimal home visit procedures in the health units can 
be even better in the future. A future perspective would be to 
reformulate the problem and take into account the number 
of vehicles available per caregivers because not all nurses or 
caregivers assigned to a day of home visits have a vehicle. 
Another perspective, a crucial need for health structures, 
would be to adapt the methodology and algorithm devel-
oped in a web application, where all the planning and the 
solutions obtained would be a point of manipulation and 
easy online logistics management, access, and display on 
any equipment with the internet.
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