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When fluid flows through a pipe that is packed with sand particles, the fluid will bear the resistance from the sand-pack, as well as
the viscous shear from the pipe wall. If the viscous shear from the pipe wall can be neglected, the fluid flow will obey Darcy’s law,
and one can think the equivalent permeability of the packed-pipe equals the permeability of the sand-pack. However, if the viscous
shear from the pipe wall cannot be neglected, the fluid flow will obey the Brinkman equation, and the permeability of the packed-
pipe will be less than that of the sand-pack due to the additional viscous drag. In this work, on the basis of the Brinkman equation,
we derived a series of analytical solutions for characterizing the fluid flow in packed-pipes. These solutions can be used to depict
the velocity profiles, estimate the flux rate, and calculate the equivalent permeability of a packed-pipe. On the basis of these
analytical solutions, we found that Poiseuille’s law is a special form of the derived equivalent permeability solution. We further
divided the fluid flow in a packed-pipe into three regimes, including N-S flow, Brinkman flow, and Darcy flow. During the regime
of Brinkman flow, the dimensionless flow velocity at the pipe center is 1, and the dimensionless flow velocity is gradually decreased
to 0 at the pipe wall. We also investigated the effects of sorting, sand particle size, and sand-pack porosity on the packed-pipe
permeability. The calculated results show that a more uniform size of the sand particles or a smaller mean particle diameter can
lead to lower packed-pipe permeability. Compared to the sorting and mean particle diameter, the sand-pack porosity exerts a
more significant effect on the packed-pipe permeability.
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1. Introduction =g L

The Navier-Stokes (N-S) equation describes fluid flow on
the microlevel and it accounts for the effect of viscous shear
on the fluid flow [1, 2]. For an incompressible fluid,

neglecting the inertial terms, the N-S can be reduced to ) X ¢ °
P Figure 1(a) shows the velocity profile of fluid flow in an
Vp = B Vv, (1)  empty pipe. From Figure 1(a), one can find that the fluid
1Paf exhibits small flow velocity at the pipe wall due to the effect

where p is the pressure (MPa), u is the viscosity (mPa-s), B, of ‘V.iscous shear. In. addition, 1f we use equivalent.perme—
and f3, are the unit conversion factors, v is the velocity (m/d), ability to character. ize the ab1ht.y of the empty pipes for
and ¢ is the porosity. On the basis of the reduced N-§  transmitting the fluid, on the basis of Darcy’s law [4] we can
equation, Hagenbach [3] derived an analytical solution for have
characterizing the flux rate in empty pipes (in this work, an 5
empty pipe indicates a pipe that is filled only with fluid), q= PRk, %,
which can be expressed as U L

where g is the flux rate (m®/d), R is the inner radius of the
pipe (m), and L is the length of the pipe (m). Equation (2) is
also widely known as the Poiseuille-Hagenbach equation.
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F1GURE 1: Fluid flow in pipes, sand-packs, and packed-pipes: (a) velocity profile of fluid flow in an empty pipe; (b) velocity profile of fluid

flow in a cylinder sand-pack; (c) a pipe that is packed with sand.

where k, is the equivalent permeability (mD). Substituting
equation (2) into equation (3) gives
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Equation (4) describes the relationship between the
equivalent permeability of the empty pipe and the inner
radius of pipes. This equation is commonly called Pois-
euille’s law.

Darcy’s law characterizes the fluid flow on the macro-
level, and it considers the resistance from porous media on
the fluid flow. If fluid flows through a cylinder sand-pack
whose radius is R and whose length is L, the flux rate can also
be calculated with Darcy’s law (i.e., Equation (3)). The only
difference is that the equivalent permeability in Equation (3)
should equal the sand-pack permeability:

k, =k, (5)

where k; is the permeability of sand-pack (mD). Figure 1(b)
illustrates the velocity profile of Darcy flow in the cylinder
sand-pack. On the macrolevel, one can think that the ve-
locity of Darcy flow is uniform along a given cross-section.

According to the aforementioned arguments, one can
find that we can use analytical methods to describe the fluid
flow in empty pipes or sand-packs. However, how to cal-
culate the flux rate through a pipe that is packed with sand
(see Figure 1(c)) is investigated. It should be noted that, for
the scenario of Figure 1(a), the fluid flow is only affected by
the viscous shear from the pipe wall, whereas, for the sce-
narios of Figure 1(b), the fluid flow is only affected by the
effect of the sand-pack. Therefore, if fluid flows through a
packed-pipe, both the viscous shear and the sand-pack will
exert their effects on the fluid flow.

In recent years, various studies have been conducted to
investigate the fluid flow in packed-pipes. Chen et al. [5]
developed a momentum equation for characterizing the
fluid flow in a packed tube by combining the N-S equation,
Darcy’s law, and a superficial dispersion term due to phase
discontinuity. Yuki et al. [6] utilized a matched refractive-
index method to perform a visualization investigation on the
flow structure in a sphere-packed-pipe. Three flows are
observed in their experiment, including bypass flow, sec-
ondary flow, and spouting flow. Siddiqui et al. [7] developed
an analytical solution to characterize the fluid flow through
the porous media between two coaxial cylinders. In their
study, the inner cylinder is stationary, while the outer cyl-
inder travels parallel to itself. Hashim and Kamel [8] pro-
posed a new correlation method for calculating the pressure
drop through a packed-pipe. Their method is validated by
comparing the results of their work to experimental data that
are measured in a horizontal packed-pipe with homoge-
neous spherical pellets. Wu et al. [9] studied the Taylor
dispersion in a packed-pipe by accounting for the effect of
wall reaction. Their study is based on the method of Gill’s
series solution. More studies about fluid flow in packed-
pipes can be found in Nazififard and Suh [10], Wu et al. [9],
and Yang et al. [11]. Although these studies provided us with
a comprehensive insight into the fluid flow in packed-pipes,
these works are mainly conducted with numerical methods,
which are highly computationally demanding. Therefore, it
is imperative to derive analytical solutions for characterizing
such kind of flow.

In practice, one kind of utilizations of the packed-pipes is
to conduct sand-pack permeability tests. In these tests, it is
commonly assumed that the viscous shear from the pipe wall
can be neglected. As such one can think that the sand-pack
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permeability equals the measured permeability. However, if
the permeability of the sand-pack is sufficiently large or the
diameter of the pipe is sufficiently small, the viscous shear
from the pipe cannot be neglected. In such cases, it is not
reasonable to approximate the sand-pack permeability with
the packed-pipe permeability.

To account for the effect of viscous shear on the fluid flow
in porous media, Brinkman [12] proposed a new equation by
combining the reduced N-S equation with Darcy’s law. This
equation is subsequently named as Brinkman equation,
which is given as

[
B1B¢

In equation (6), the fluid is incompressible, the flow is
assumed to be laminar, and the inertial force is neglected. It
is worth noting that equation (6) is different from the
original Brinkman equation by considering the effect of
volume fraction of solid in porous media. The original
Brinkman equation ignored the effect of the volume fraction
of solid; hence, it will induce significant error if the solid
volume fraction is sufficiently high or ¢ is sufficiently small
[13-16]; and [17]. For the sake of convenience, although
equation (6) is a modified form of the original Brinkman
Equation, in this work, we still call it Brinkman equation.
With the aid of equation (6), we derived analytical solutions
for characterizing the fluid flow in packed-pipes. On the
basis of the analytical solutions, we depicted the velocity
profiles of the fluid flow in packed-pipes. In addition, we
conducted a comprehensive comparison between the
equivalent permeability of the packed-pipes and that of the
sand-pack.

Vp= Vv _/SIHk V. (6)

2. Methodology

In order to obtain analytical solutions for characterizing the
fluid flow through packed-pipes, we made the following
assumptions:

(1) The fluid flow is laminar and is in steady-state

(2) The properties of the fluid and sand-pack are
constant

(3) The sand-pack is homogeneous and the pipe has a
uniform diameter

(4) There is no slippage at the pipe wall

(5) The effect of gravity is neglected

According to the above assumptions, the parameters of
U, ¢, and k, in equation (6) are constant. In addition, in a

cylindrical coordinate system, equation (6) can be rewritten
as

u 1d ( dv) Y
Vp = -—|r—]- v, (7)
Bipyp rdr\ dr) Bk,
where 7 is along the direction from the pipe center to the pipe
wall (m). Rearranging equation (7) gives

dr2 rdr k

d>v 1dv /32¢V:MVP_ (8)
U

S

Equation (8) is a generalized Bessel equation whose
general solution is

v(r) = AI(,(\jﬁlzzr) +BK0< %r) —%Vp, 9)

where I, indicates the n'™ order modified Bessel function of
the first kind, K,, indicates the n™ order modified Bessel
function of the second kind, and A and B are constants that
require to be determined. At the pipe center, we have r=0

and
BK0< /52¢r> = BK,(0) = co. (10)

ks

Since the flow velocity should not have an infinite value
at r=0, the constant B should equal 0, and equation (9) can
be reduced to

v(r):AIO<\//%r>—ﬁfuk5Vp. (11)

As we have assumed that there is no slippage at the pipe
wall, we can have

v(r=R)=0. (12)

Inserting equation (11) into equation (12) yields
A= ; %V 3
1o(\ B/ )R ) #

Inserting equation (13) into equation (11) gives the
equation characterizing the velocity profile:

Io( \ (ﬁng/ks)r) . %Vp
AT N

Equation (14) is in the format of a vector. Rewriting
equation (14) in the format of scalar, we can have

Io( \ (/32¢/ks)r> Bik, Ap
IR )|
The flux rate q can be calculated as follows:

o= J>r=R J;’:R sz|:1 ) Io(m)jlﬁlks A—pdr

2nrv(r)dr = _— £
’ I(y(Bgik)R )| #

(13)

(14)

v(r)=11- (15)

r= r=0

3 nR*Bk, Ap . 2 [k—s Il( (ﬁ2¢/ks)R)
o L R\Jﬁz‘pp [0(1 ([5’2¢/k5)R) ‘

(16)



Comparing equation (16) to Darcy’s law (i.e., Equation
(3)), we can obtain the relationship between the equivalent
permeability of packed-pipe and the permeability of sand-

pack:
2 Jk— 1((Bg/k)R )

k,=k|1-=

TRV 1 (VBgkr )|

Equations (15) through (17) are the equations that
characterize the fluid flow in packed-pipes.

Particularly, for an empty pipe, we can think it is packed
with a sand-pack whose permeability is infinite and whose
porosity is 1. Thus, the term +/(f,¢/k,)in equation (17)
approaches 0. On the basis of Taylor series, expanding I; and
Ip at 0 and using the first two terms of the series to ap-
proximate the results, we can have

keks[l R\//; IO( (/szqs/ks)R)]
.(1/2)(\/m)+(1/16)(\/m)3

_ 1+ (1/4)(J(/32¢/k$)R )2

r 3
_ 2 |k (1 B¢ L[ B¢
| BB ()

(17)

e

2 [k,
’ R \B,¢

(18)

The truncation errors of the Taylor series of I; and I, are

at the order of (1/(B,¢/k.)R)’and (+/(B,¢/k)R)?, re-

spectively. For empty pipes, we have ¢ = 1. Inserting ¢ =1
into equation (18), equation (18) will be reduced to equation
(4). In addition, if the radius of the pipe is sufficiently large,
we will have

_ 2 [& B(VEgkR)
K=k, 1‘§J/—3T'¢ (B4R )

= k{1 -0}

(19)

=k

s

This implies that both equations (4) and (5) are special
forms of equation (17).

3. Validation

In order to validate the derived analytical solutions, we
compared the permeability that is calculated with equation
(17) to the permeability that is calculated from the
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FiGURE 2: The model that is used for validation purposes.

commercial software [18]. The model that is used for vali-
dation is shown in Figure 2. Figure 2 indicates a pipe that is
filled with porous media. The model built in COMSOL has
the same assumptions to the model used in this work. These
assumptions can be found in the section of methodology.
The permeability of the porous media (k,) is 1x10” mD, the
porosity of the porous media (¢) is 0.1, the radius of the pipe
(R) is varied from 0.001 m to 0.1 m, the length of the pipe (L)
is 0.1 m, the flow velocity (v) is set to be 8640 m/d, and the
viscosity of the fluid (4) is 1 mPa-s. The fluid flows into the
pipe through the inlet surface and flows out of the pipe
through the outlet surface. The equivalent permeability of
the packed-pipe can be calculated based on Darcy’s law if the
pressure difference between the inlet surface and outlet
surface is measured. With the aid of COMSOL, we measured
the average pressure at the inlet surface and the outlet
surface and subsequently calculated the equivalent perme-
ability of the packed-pipe with the measured data. The re-
sults are summarized in Table 1.

Taking the case of R=0.00lm as an example, the
equivalent permeability can be calculated as follows:

vuL ~ 8640 x 1x 0.1
¢ By(Pin— Pour) 0.0853 x (2021.3 x 1076 — 1.5582 x 10-6)

= 5014975.985m D.
(20)

In addition, the equivalent permeability can be calcu-
lated with equation (17); thus, we can validate the proposed
solution by comparing the results from this work to those
from COMSOL. Figure 3 shows the comparison. In this
figure, one can find that although the results from COMSOL
are slightly larger than those from the proposed solution,
these two plots show a similar trend. Actually, the larger
values from COMSOL can be ascribed to numerical effects.
In COMSOL, the modified Brinkman equation is solved
with the finite element method, which will induce numerical
errors during the computation. For example, for the case of
R=0.1 min Table 1, the calculated equivalent permeability k,
is 10005636.16 mD, which is even larger than the perme-
ability of the sand-pack (k;= 1x 10" mD). However, in practice,
the equivalent permeability of the packed-pipe should be
less than the permeability of the sand-pack due to the
additional viscous shear from the pipe wall. This indicates
that the permeability of the packed-pipe has been
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TABLE 1: Pressures that are measured in COMSOL and the calculated permeability.

Inner radius of the pipe (R, m)

Average pressure at the inlet surface Average pressure at the outlet surface Equivalent permeability

(pin: MPa) (pout: MPa) (ke> mD)
0.0010 2021.3%x107° 1.5582 x107° 5014975.985
0.0025 1287.7 x107° 0.6038 x107° 7869619.177
0.0063 1103.2x107° 0.2497 x107° 9183511.206
0.0158 1041.4x107° 0.1566 x107° 9727750.627
0.0398 1015.4x10°° 0.3740 x107° 9979012.383
0.1000 1012.9x107° 0.5749 x 107° 10005636.16
T
Iy (DarD)
10 VD (TD) =1- > (25)
IO (Da)
2 I, (D
kr =1-= 1 ( a) (26)
8 D, I,(D,)

Equivalent permeability (10°mD)

4 " " " PR | " " " PR
107 107 107
Inner radius of pipe (m)

e Permeability from COMSOL
—— Permeability from this work

FIGURE 3: Comparison between the results from COMSOL and that
from this work.

overestimated by COMSOL because of the effect of nu-
merical errors.

4. Results and Discussion

In this section, we recognized the flow regimes in packed-
pipes and depicted the velocity profiles of these flow regimes.
In addition, we conducted a comprehensive sensitivity
analysis to study the effects of sand-pack properties on the
packed-pipe permeability. For the sake of convenience, we
define the following dimensionless parameters:

o= (21)
vp = ﬁlvk”ﬁ, (22)
D, = %—?R, (23)

k- :— (29)

where rp, is the dimensionless radius, v, is the dimensionless
velocity, D, is the Darcy parameter, and k, is the perme-
ability ratio. Inserting equations (21) through (24) into
equations (15) and (17) gives

4.1. Flow Regimes. Figure 4 shows the value of k, with
different values of D, (D, is varied from 1 to 1000) in a log-
log plot. From this figure, one can find that the permeability
ratio is increased as the Darcy parameter D, is increased. At
large value of D, the permeability ratio k, approaches 1,
which indicates Darcy flow. At small values of D, k, can be
much smaller than 1, which implies that the equivalent
permeability of the packed-pipe is much smaller than the
permeability of the sand-pack.

Figure 5 illustrates the equivalent permeability of the
packed-pipe with a constant value of sand-pack permeability
(ky=1x10"mD), a constant value of sand-pack porosity
(¢=0.1), and different values of pipe radius. In Figure 5, it
can be observed that, at small value of pipe radius, the
equivalent permeability approaches the results of

k = ﬁ 2¢R2’

8

: (27)
whereas at large value of pipe radius, the equivalent per-
meability approaches the results of equation (5) (i.e., k., = k).
According to Figure 5, one can divide the fluid flow into
three regimes, including N-S flow, Brinkman flow, and
Darcy flow.

N-S flow: at small pipe radius, the fluid flow in a packed-
pipe is mainly influenced by the effect of the viscous shear
from pipe wall, and the sand-pack exerts its effect through its
volume fraction. The equivalent permeability of pack-pipes
approaches the results of equation (27) during this regime;
Darcy flow: at large value of pipe radius, the viscous shear
from pipe wall can be neglected, and the fluid flow is mainly
influenced by the resistance from the sand-pack. During this
regime, the equivalent permeability of the pack-pipe ap-
proaches the permeability of sand-pack; Brinkman flow: this
flow regime is in a transition between N-S flow and Darcy
flow. During this flow regime, both the viscous shear from
pipe wall and the resistance from the sand-pack can sig-
nificantly influence the fluid flow.

Figure 6 presents the equivalent permeability of packed
pipe as a function of sand-pack permeability with a constant
pipe radius of 5x107> m and a constant sand-pack porosity of
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FI1GURE 5: Equivalent permeability of packed-pipe as a function of
pipe radius.

0.1. In Figure 6, one can find that the fluid flow can also be
divided into three flow regimes. These flow regimes can be
recognized as Darcy flow, Brinkman flow, and N-S flow as
the sand-pack permeability is increased.

It should be noted that, due to the fact that the N-S flow
and Darcy flow can be regarded as two extreme scenarios of
Brinkman flow, the division of the flow regimes in Figures 5
and 6 is somehow qualitative rather than rigorously defined.
The N-S flow is Brinkman flow neglecting the resistance
from the sand-pack, whereas the Darcy flow is Brinkman
flow neglecting the viscous shear from the pipe wall. In this
work, to make a clear division between these three flow
regimes, a threshold value ¢ of permeability relative dif-
ference is assigned:

Ke_ke
k

E =

x 100%, (28)

e
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10%° : B : HE SR

107 oot s e
Wk

WP e ki flow

106 F

Equivalent permeability (mD)

AT Dareyflow. 0
105 | | | 1 |
10° 10° 107 108 10° 100 10!

Sand-pack permeability (mD)

FiGuRre 6: Equivalent permeability of packed-pipe as a function of
sand-pack permeability.

where K, is the equivalent permeability from equation (27)
or (5) and k, is the equivalent permeability of the packed-
pipe that is calculated with equation (17). Inserting equa-
tions (5), (17), (21), (22), (23), and (27) into equation (28), if
K, is obtained with equation (27), we can have
D2
8[1-(2/D,) (1, (D)1, (D,))] -
and if K, is obtained with equation (5), we can have
= 2Il (Da) |
|Du10 (Da) - 211 (Da)l

£ :| 1| x100%, (29)

x 100%. (30)

Taking 5% as the threshold value, in this work, if € < 5%,
we can think the flow regime is N-S flow or Darcy flow.
Inserting £ <5% into equation (29) and (30) yields

D, <0.5481, (31)

for equation (29) and
D, >41.3899, (32)

for equation (30). This implies that the flow regime can be
regarded as N-S flow if D,<0.5481, and as Darcy flow if
D, > 41.3899.

4.2. Velocity Profile. In this section, we studied the velocity
profiles in a packed-pipe by varying the Darcy parameter D,
from 0.1 to 100. The velocity profiles of N-S flow regime,
Brinkman flow regime, and Darcy flow regime are presented
in Figures 7-9, respectively. Figure 7 shows the velocity
profiles of N-S flow with D,=0.1, 0.2, 0.3, 0.4, and 0.5. As
defined in equation (25), v, =1 indicates Darcy flow. In this
figure, one can find that, for N-S flow regime, the dimen-
sionless velocity has been significantly jeopardized due to the
effect of viscous shear from pipe wall. The highest
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FIGURre 7: Dimensionless flow velocity of N-S flow regime with
different values of D,,.

dimensionless velocity can be observed at the pipe center. As
D, is increased, the dimensionless velocity is also increased.

Figure 8 illustrates the dimensionless velocity profiles
during the Brinkman flow regime in a packed-pipe with
D, =8, 16, 24, 32, and 40. In this figure, it can be observed
that the dimensionless velocity approaches the value of 1 at
the pipe center, which indicates the fluid flow approaches
Darcy flow. A smooth transition can be found between rp =0
and rp = 1. During this transition, the dimensionless velocity
is decreased from v, =1 to vy =0 because of the effect of
viscous shear from pipe wall. In Figure 8, one can find that
the Brinkman flow is a combination of Darcy flow near the
pipe center and the N-S flow near the pipe wall. Figure 9
shows the dimensionless velocity profiles of Darcy flow
regime with D, =60, 70, 80, 90, and 100. In this figure, the
transition is very short, and the dimensionless velocity is
rapidly decreased to 0 at the pipe wall. In these plots, v, =1
accounts for a large proportion, and the fluid flow can be
regarded to be Darcy flow.

4.3. Sensitivity Analysis. In this section, we conducted a
thorough sensitivity analysis on the packed-pipe perme-
ability with different sand-pack properties. Berg [19] built
the relationship between the sand-pack permeability and the
sand-pack properties, which is given as

k, = 80.8 x 10'%e™ %7 D21, (33)

} 2
k, = 80.8 x 10%e” ¥ D?¢>! x| 1 - = 1/0.08¢~ 1385y D2y 1
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Figure 8: Dimensionless flow velocity of Brinkman flow regime

with different values of D,,.
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FiGure 9: Dimensionless flow velocity of Darcy flow regime with
different values of D,,.

where y is the sorting term in phi unit and D is the geometric
mean diameter of the sand particle. Inserting equation (33)
into equation (17) yields

1, ( \/12.5¢1 3857 D241 R)

IO< \12.5¢1385r D274 R)

(34)
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FIGUure 10: Packed-pipe permeability, sand-pack permeability, and permeability ratio as a function of sorting term y: (a) packed-pipe
permeability and sand-pack permeability as a function of sorting term y; (b) permeability ratio as a function of sorting term y.
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FIGURE 11: Packed-pipe permeability, sand-pack permeability, and permeability ratio as a function of mean particle diameter: (a) packed-
pipe permeability and sand-pack permeability as a function of mean particle diameter; (b) permeability ratio as a function of mean particle

diameter.

Equation (34) characterizes the relationship between the
packed-pipe permeability and the sand-pack properties. The
benchmark values of the parameters that are used for
conducting sensitivity analysis are as follows: y=0.8,
D=0.05m, R=0.01m, and ¢=0.2.

Figure 10(a) shows the packed-pack permeability and
sand-pack permeability with different values of y. The value
of y normally ranges from 0.7 to 1, and a larger value of y
indicates that the particle size is more uniform. In

Figure 10(a), one can find that both the packed-pack per-
meability and sand-pack permeability are decreased as the
value of y is increased. This manifests that a more uniform
size of the sand particle can lead to a less packed-pipe and
sand-pack permeability. Figure 10(b) shows the permeability
ratio k, (see equation (24)) that is calculated with the results
in Figure 10(a). A larger value of k, indicates a smaller
relative difference between the packed-pipe permeability
and the sand-pack permeability. As shown in Figure 10(b),
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FIGURE 12: Packed-pipe permeability, sand-pack permeability, and permeability ratio as a function of sand-pack porosity: (a) packed-pipe
permeability and sand-pack permeability as a function of sand-pack porosity; (b) permeability ratio as a function of sand-pack porosity.

the permeability ratio is increased as the value of y is in-
creased. However, it is worth noting that as y is varied from
0.7 to 1, k, is only slightly increased from 0.9936 to 0.9948.
This implies that the sorting of the sand particles will not
induce a large difference between the pack-pipe permeability
and the sand-pack permeability.

Figure 11 presents the packed-pipe permeability, sand-
pack permeability, and permeability ratio as a function of
mean particle diameter. In Figure 11(a), it can be observed
that the packed-pipe permeability and sand-pack perme-
ability are increased as the mean particle diameter is in-
creased, whereas, in Figure 11(b), the permeability ratio is
decreased as the mean particle diameter is increased. In
Figure 11(a), the packed-pipe permeability exhibits very
similar values to those of the sand-pack permeability. In
Figure 11(b), the permeability ratio is slightly less than 1
although it is decreased from 0.9970 to 0.9940.

Figure 12(a) describes the packed-pipe permeability and
sand-pack permeability as a function of sand-pack porosity.
As shown in this figure, the packed-pipe permeability and
the sand-pack permeability are increased rapidly as the sand-
pack porosity is increased. Figure 12(b) shows the change of
the permeability ratio with different sand-pack porosity. It
can be observed that the permeability ratio k, is around 0.9
with ¢=0.8, indicating that the difference between and
packed-pipe permeability and sand-pack permeability can
be significant with large sand-pack porosity.

Comparing the results shown in Figures 10 through 12,
one can find that the sand-pack porosity exerts a more
significant effect on the packed-pipe permeability and
permeability ratio. This is because the sand-pack porosity is
highly related to the effective space in the porous media for
transmitting the fluid. A higher porosity indicates a larger

effective space; hence, the packed pipe permeability ex-
presses a larger permeability with high sand-pack porosity.

5. Conclusions

In this work, the authors derived a series of analytical so-
lutions for characterizing the fluid flow through pipes that
are packed with sand. These solutions can be used to depict
the velocity profiles in a packed-pipe (equation (15)), esti-
mate the flux rate through a packed-pipe (equation (16)),
and calculate the equivalent permeability of a packed-pipe
(equation (17)). In real applications, one can use these so-
lutions to correct the results of packed-pipe permeability test
and characterize the fluid flow in the pore volume of un-
derground reservoirs. For example, in gas hydrate reservoirs,
as the gas hydrate is partially decomposed into gas and water
in the pore volume, the fluid flow in the space between the
undecomposed gas hydrate within the pore volume can be
characterized with the proposed solutions. With the aid of
these equations, the authors recognized the flow regimes,
investigated the velocity profiles, and conducted sensitivity
analysis. On the basis of the calculated results, we can form
the following conclusions: Poiseuille’s law (i.e., equation (4))
is a special form of the derived equivalent permeability
solution (i.e., equation (17)); three flow regimes can be
observed in a packed-pipe with different values of Darcy
parameter, including N-S flow regime, Brinkman flow re-
gime, and Darcy flow regime; a more uniform size of the
sand particles can lead to a lower packed-pipe permeability,
while a higher permeability ratio and a larger mean particle
diameter can lead to a higher packed-pipe permeability and a
lower permeability ratio; as the sand-pack porosity is in-
creased, the packed-pipe permeability is increased, while the
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permeability ratio is decreased. In comparison to the sorting
and mean particle diameter, the sand-pack porosity can
exert a more significant effect on the packed-pipe perme-
ability and permeability ratio.

Nomenclature
D,: Darcy parameter
k,:  Equivalent permeability, mD

Permeability ratio
Permeability of the sand-pack, mD
Length of the pipe, m
Pressure, MPa
Average pressure at the inlet surface, MPa
: Average pressure at the outlet surface, MPa
Flux rate, m’/d
Cylindrical coordinate, which is along the direction
from pipe center to pipe wall
R:  Inner radius of the pipe, m
rp:  Dimensionless radius
vp:  Dimensionless velocity
B1: Unit conversion factors, 0.0853
B,: Unit conversion factors, 1.01 x 10'°
u:  Viscosity, mPa-s
v Velocity, m/d
¢:  Porosity

3.

M4

%

=)
=
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