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Abstract. We consider the effects of a pressure gradient on the spontaneous flow of an active nematic liquid
crystal in a channel, subject to planar anchoring and no-slip conditions on the boundaries of the channel.
We employ a model based on the Ericksen-Leslie theory of nematics, with an additional active stress
accounting for the activity of the fluid. By directly solving the flow equation, we consider an asymptotic
solution for the director angle equation for large activity parameter values and predict the possible values of
the director angle in the bulk of the channel. Through a numerical solution of the full nonlinear equations,
we examine the effects of pressure on the branches of stable and unstable equilibria, some of which are
disconnected from the no-flow state. In the absence of a pressure gradient, solutions are either symmetric
or antisymmetric about the channel midpoint; these symmetries are changed by the pressure gradient.
Considering the activity-pressure state space allows us to predict qualitatively the extent of each solution
type and to show, for large enough pressure gradients, that a branch of non-trivial director angle solutions

exists for all activity values.

1 Introduction

Active fluids exhibit a continuous generation of inter-
nal energy, as in swimming bacteria and microtubule-
forming suspensions [1], allowing for spontaneous flow gen-
eration [2-5]. This continuous energy production leads to
the active agents (the bacteria or microtuble-forming mo-
tors) exerting a stress on the background fluid and cre-
ates a system that is always away from thermodynamic
equilibrium. In active nematic liquid crystal fluids, the
flow-generating agent is anisotropic (defined by, for in-
stance, the long axis of a bacterium or microtubule), with
a magcroscopic symmetry of a liquid-crystalline phase. The
internal active stress can then lead to a vast array of inter-
esting effects such as hydrodynamic and distortional insta-
bilities and non-equilibrium defect formation [6-9]. Recent
experiments and theoretical investigations have also been
undertaken into the control and designing of active ne-
matics through a magnetic field [10-12], a technique also
used in the manufacturing and design of liquid crystal dis-
plays. Reviews of the literature in this area can be found
in [12-15]. In recent years, researchers have explored the
possibility of activity-driven microfluidic systems [16-21],
including the use of swimming bacteria to assist in tar-
geted drug delivery [22], bacterial ratchet motors [23],
active turbulence-powered rotators [20] and even active
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fluid-based logic circuits [16]. The effects of confinement in
such systems is of crucial importance, with the frustration
due to the fluid-boundary interaction leading to organisa-
tion [17-19,21,24]. In classical microfluidics or larger scale
fluid processing applications, rather than internal activity
driving flow, the fluid is often forced by the application
of an external pressure gradient. While there are many
studies of how low numbers of swimmers interact within
a pressure gradient, there are relatively few investigations
of how the activity-driven and pressure-driven flows will
interact in a dense continuum of swimmers. A number
of authors have considered models of dilute suspension of
active swimmers in a pressure gradient [25-27] and dense
continuum models of channel flow, albeit in a tumbling
nematic regime [28]. Others have reported experimental
studies of similar systems [29], while there are also gen-
eral reviews of the rheology of active fluids in [13,30,31]. In
this paper we add to these previous investigations, consid-
ering a dense continuum model of an active fluid subjected
to an external pressure gradient along a channel.

The similarities between the macroscopic symmetries,
flow and defect patterns generated in active fluids and
those of elongated rod-like molecules in liquid crystals
mean that continuum hydrodynamic models of nematic
liquid crystals have commonly been adopted in the
theoretical modelling of active fluids [2,3]. Many contin-
uum models of active nematics are, therefore, based on
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modifying the Ericksen-Leslie equations for liquid crystal
flow [32-34], in which orientational ordering and fluid
flow are coupled and governed through a set of partial
differential equations derived from balances of mass and
momentum, both linear and angular. The effects of activ-
ity are built into the system by modifying the Ericksen-
Leslie equations via additional stress terms which can
drive the system out of thermodynamic equilibrium [35].
In both active and inactive nematic liquid crystals, the
average direction of the constituent parts (i.e., molecules
in a classic inactive liquid crystal, or, for instance,
bacteria in an active fluid) is represented by a unit vector
known as the director, n(x,t). Other authors have also
considered an alternative mathematical description of
active nematics which uses both average orientational
ordering and a measure of the order about that average
direction, the general form of which is a second-order
tensor, commonly known as the Q-tensor [6, 7, 36, 37].
This approach is particularly useful when investigating
active systems with defects, which cannot be treated with
director-based theories of liquid crystals.

In the present work we will consider non-polar active
agents and so the active stress term we employ will also
obey the symmetry n — —n. Other work has considered
polar constituent parts, where it is possible for the macro-
scopic system to be polar. This reduction of symmetry al-
lows additional activity terms to be present, such as self-
propelling velocity and active viscosity terms [4,5,38,39].
Various different sources of activity have previously been
considered in the mathematical modelling of active flu-
ids, with active terms added to the governing equations
for non-active liquid crystals. For example, Yang and
Wang [39] consider the influence of active viscous stress
tensor and self-propelling speed terms for channel flows
of active polar liquid crystals. The former is added to the
stress tensor, whereas the latter enters the governing equa-
tion for the polar director field. More recently, Duclos et
al. [40] and Hoffmann et al. [41] consider spontaneously in-
duced flows due to an active stress term unique to active
cholesteric liquid crystals.

The specific active stress contribution we consider, de-
noted by o,, is the most common form of activity term.
First introduced by Simha and Ramaswamy [42], it has
also been considered in many subsequent papers, for in-
stance [39-41]. It can be obtained by considering each in-
dividual active agent as a permanent force dipole, leading
to local active stresses proportional to the second moment
of the molecular orientation. (A derivation can be found
in Thampi and Yeomans [1].) In terms of the director, the
active stress can be written as

(1)

where the outer product is defined as n ® n = n; n; and
n; (i = 1,2,3) is the i-th component of the director. The
coefficient ¢ is termed the activity parameter, which can
be positive or negative, and has the dimensions of pres-
sure. The magnitude of ¢ quantifies the degree of activ-
ity or, equivalently and more specifically, the stress the
active agents exert on the background fluid. The sign of

o, =(n®n,
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Fig. 1. A schematic illustration of the flow of extensile and
contractile active agents, with arrows indicating the direction
of the flow around the long axes of the active agent, indicated
by the central thick solid line.

¢ distinguishes how the active agents behave relative to
the surrounding fluid, with the agents either pushing the
fluid out or pulling the fluid in along their long axis. This
simple description of “pushers” and “pullers” to describe
active agents is commonly replaced by the terms “exten-
sile” and “contractile”, respectively. A schematic illustra-
tion of these two contrasting behaviours for active agents
is shown in fig. 1, where for extensile agents { < 0 and for
contractile agents ¢ > 0 [4, 38,39, 43]. Note that the op-
posite sign of the activity parameter has been assumed in
a number of publications, with a corresponding negative
active stress in eq. (1) [1-3,36].

In this paper we explain the large-magnitude activ-
ity asymptotics of states discovered previously, for exam-
ple in [2,3,37]. We also investigate the pressure-driven
states in active nematics where we show how the stability
of equilibria, in particular those of a certain symmetry,
can be promoted through an applied pressure gradient,
which, given the one-dimensional nature of the system, is
constant. This work will aid future experiments, and the-
oretical investigations, in controlling and designing active
nematic systems through an external pressure gradient.

2 Mathematical model

We consider an active nematic liquid crystal, confined be-
tween two parallel plates at z = 0 and z = d, and sub-
ject to a pressure gradient parallel to the a-direction (see
fig. 2). The nematic director field n is constrained to lie
in the (z, z)-plane and is described by n = (cos 8, 0,sin §),
where 0(z,t) is the director angle measured with respect
to the z-direction. We assume that surface treatment of
the bounding plates anchors the director such that it is
forced to lie in the z-direction at z = 0 and z = d, a
situation usually termed infinite anchoring. The velocity
of the fluid, v(z,t), is assumed to be in the a-direction
and satisfies the no-slip condition at the plates. The as-
sumptions of a director confined to the (z,z)-plane and
rectilinear flow are related to the nematic being “flow-
aligning” and strongly anchored in the z-direction at the
boundaries. For such liquid crystals, rectilinear flow pro-
motes alignment within the shear plane at the Leslie angle
to the flow direction [44], while rotation within the plane,
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Fig. 2. An active nematic liquid crystal in a channel between
two solid plates at z = 0 and z = d, with flow parallel to the z-
direction. The director is constrained to lie in the (z, z)-plane
and is infinitely anchored in the x-direction on the plates. The
flow velocity satisfies the no-slip condition on both plates.

together with the presence of the solid boundaries, restrict
the flow to a single direction. In such a system, director
instabilities out of the shear plane could only occur if the
nematic is non—flow-aligning [45], a situation that we do
not directly consider in the present work. We will also
assume that fluid inertia is negligible, an approximation
that is valid when the Reynolds number is small or, equiv-
alently in this situation, when the timescale of changes in
the velocity are much smaller than the timescale of direc-
tor rotation [46]. The dynamics of the fluid velocity and
director angle can then be modelled by the balance of lin-
ear and angular momentum through the Ericksen-Leslie
equations for nematic liquid crystals [33,34,44], with the
inclusion of the active stress term introduced in eq. (1):

0= (g9(0)v, + m(0)6; + ¢sinfcosh), — p,, (2)
710y = (K1 cos® 0 + K3 sin? )0,
+(K3 — K1) sinfcos0(6.)* — m(0)v., (3)
where
9(0) = n1 cos? 0 + Ny sin® O + 712 5in? 0 cos? 6, (4)
1
m(6) = 5 (1 = 72) + 72 cos” 0. (5)

In eqgs. (2)—(5), p is the fluid density, K and K3 are the
Frank elastic constants associated with, respectively, splay
and bend of the director, p, represents the constant ap-
plied pressure gradient, 7; is the rotational viscosity, 72
is the torsional viscosity, while 71, 12, 112 are Miesowicz
viscosities [47]. The subscripts ¢, x or z denote the par-
tial derivative with respect to that variable. Finally, as
mentioned earlier, ¢ is a measure of the activity exhibited
by the active nematic liquid crystal. The infinite anchor-
ing and no-slip assumptions on the boundary plates mean
that egs. (2) and (3) will be solved subject to the bound-

ary conditions
0(0,t) =0=10(d,1), v(0,t) =0=w(d,t). (6)

At this stage it is worth considering the possible sym-
metries of solutions of egs. (2) and (3), with boundary
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conditions (6). The transformation 0(z,t) — —0(d — z,t)
together with v(z,t) — v(d — z,t) leave egs. (2) and (3)
unchanged for any value of the pressure gradient p,,
so we expect to obtain solutions for the director an-
gle which are antisymmetric about the channel midpoint
z = d/2, together with velocity solutions that are sym-
metric. For the opposite symmetries, 0(z,t) — 6(d — z,1)
and v(z,t) — —v(d — z,t), egs. (2) and (3) are unchanged
only if p, = 0. We therefore expect to find symmetric di-
rector and antisymmetric velocity solutions only for zero
pressure gradient. In addition to symmetry/antisymmetry
about the channel midpoint, we notice that the govern-
ing equations are also unchanged under the transforma-
tion 0(z,t) — —0(z,t), v(z,t) — —v(z,t) and p, — —p.
Therefore, changing the sign of the pressure gradient will
simply result in a change of sign of both the director angle
and velocity.

It is possible to decouple egs. (2) and (3) using the
same approach considered in Mottram et al. [46], leading
to a single, non-local, dynamic equation for the director
angle, namely

=

>9t = (K cos® 0 + K3sin? )0,

+(K3 — K1)sinfcosf(h.)?

pli-s(r-e3

+m<z—8—£)} (7

d
A= / [(Kl cos? 0 + K sin? 0)6..
0

where

3 — sin 6 cos 2 m(0) z
= /d n dz (9)
o Mg(0) —m(0)>
sm900$9 1
€= / // 9(9 (10)
dm( 51n00050 C)
D= [ ) 1)
d 2
E:/O W // —dz (12)
P [ S (3

In this approach, the Velocity is a function of the director
orientation, namely

o= [ g4

C(sin@cos@

D
CB)

—|—px<z—8— Z)) dz.
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The activity parameter ¢ enters eq. (7) only through the
fourth term whose form, sin  cos €, is similar to a magnetic
or electric field term in the classic problem of director
reorientation during a Freedericksz transition [44], albeit
rescaled by the director dependent factor m(6)/g(¢) and
“shifted” by the non-local terms C+D/B. The fifth term in
eq. (7) is the contribution from the pressure-driven flow-
director coupling.

Non-trivial analytic solutions to the nonlinear, non-
local partial differential equation in eq. (7) are not possi-
ble. However, we can still establish important information
about the system, and further progress can be made us-
ing certain simplifying assumptions. We first consider two
important asymptotic limits for the behaviour of the di-
rector in the bulk of the channel: the situation when the
magnitude of the applied pressure gradient is large; and
when the magnitude of the activity parameter is large.

3 Analysis: asymptotic solutions for large
pressure gradient or large activity

In the case when |p,| > ¢/d and |p,| > K;/d® (i = 1,3),
the dynamics of the director in the centre of the chan-
nel, i.e. away from any boundary or internal reorientation
layers, can be found by neglecting elastic effects, so that
0 = 0(t) where

O e )

The only equilibrium solutions of eq. (15), so that 6; = 0,
will be those 6 values that satisfy m(6) = 0. Such solutions
only exist in flow-aligning nematics and are 6 = nw + 0y,
where n € Z and 0y, = tan"'(y/(72 +71)/(72 — 1)) is
the Leslie angle [44]. For these constant director angle
solutions the velocity is then, as is to be expected in
this limit, the classic Poiseuille parabolic profile, v(z) =
(p2/29(01))2(2 — d).

The situation for highly active systems, where we take
I¢| > prdand || > K;/d? (i = 1,3), is more complicated
and has not previously been considered analytically. In
this case we might expect the dynamics in the bulk of the
channel, where spatial gradients are negligible and 6 =
0(t), to be governed by the equation

(% - ”;EZ))Q% _ Z;L(Sj))(sinecosé'—C— g). (16)

We can now consider two possible symmetries of the direc-
tor profile within the channel. If 6 is antisymmetric with
respect to the centre of the channel, then the integrals C
and D in egs. (10) and (11) are both zero. Therefore, in the
bulk of the channel, away from boundary and internal re-
orientation layers where director distortions are relatively
large, antisymmentric equilibria solutions for the director
angle must satisfy m(0)sin @ cos 6 = 0, leading to the pos-
sibilities 8 = 401, 0 or w/2rad (plus all 7 rotations of
these angles).

(15)
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For symmetric director profiles, C # 0 and the situ-
ation is more interesting as we find a novel solution in
which the equilibrium orientation is determined through
non-local effects. From egs. (10) and (11), a symmetric
director profile means that C = sinfcosf and D = 0,
leading to zero on the right-hand side of eq. (16) for all
values of #. Rather than all director angles in the bulk
of the channel being equilibria, as this result would sug-
gest, it is necessary to consider the non-local behaviour
in the system. To make analytic progress in this case, we
use the relatively standard one-constant approximation,
K; = K3 = K, introduce a non-dimensionalised coordi-
nate £ via z = d§ and consider the static situation. The
governing equation for the director angle is then

B m(0) ([ A+ 8D m(0) , . =
0—9§§—g(a)< B )—i—ﬁg(e) (sinfcosf—C), (17)

where 3 = (d?/K is the non-dimensionalised activity pa-
rameter, and

A= /01 m de, (18)

B= /01 W d, (19)

L L
!

T

Through an integration of eq. (11) from £ =0 to § =1,
it is straightforward to see that A + D = 0, so we now
consider solutions of

m(0)
9(0)

which will be solved subject to the boundary conditions
6(0) = 0 = 6(1). We seek the solution to eq. (22) in
the limit of large activity, i.e. as § — oco. The integro-
differential equation (22) is, however, non-local through
the integral (10). While we cannot derive a direct analytic
solution, an approximate solution is possible.

Consider first the Hamiltonian for the problem given

by eq. (22)

H(6.00) = 506 +0 [ ’;((;))

0="0c+ 0 (sin@cosf — C), (22)

(sinfcos® —C)do. (23)

Note that the integral in eq. (23) can be determined ana-
lytically, but is too lengthy to include here. It is clear from
eq. (23) that we would expect 0 ~ /B as f — oo and
will therefore set 6¢(0) = /B p, where p is to be deter-
mined. We are considering symmetric director angle pro-
files, so that 0¢(1/2) = 0, and we have 6(0) = 0 from the
boundary condition. Therefore, setting 6(1/2) = 6,,, we
consider trajectories in the phase plane that connect the
points (6,6¢) = (0,4/Bp) to (6,,0). Since the Hamilto-
nian is constant along phase plane trajectories we have
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H(0,+/8p) = H(0,0), which can be rearranged to cal-
culate p in terms of ,,:

-y [

Returning to eq. (22), and integrating between £ = 0
and £ = 1/2, we also obtain

blnﬁcosﬁ —C)do. (24)

12 . _
p= _\/B/O (9) (sinfcosf — C) d¢. (25)

9(0)

Guided by the form of the derivative of the director angle
at £ = 0, namely 0¢ = /B p, and the expectation that the
director angle will be constant in the bulk of the region,
we now make an approximation for the form of 6(§) that
allows for a linearly increasing director angle close to the
boundary

0(&) = (V/Bp) ¢ for 0 <€ <0,,/(v/Bp);
0(§) = O for O /(\/Bp) < &< 1/2.

The integrations in eq. (25), including those within C,
may be performed using the change of variables from & to
0 = (v/Bp) € within the region 0 < € < 0,,/(v/Bp) to give

Om
p= —\/B{Qg(em)/o m(0) sin @ cos 6 d@

9(0)
+(/Bp —20,,) m(0

m.) Sin Oy, €os O,

)

™ m(6)

—2qg(0,, —=dé
4 )/0 9(0)

+(\/Bp - 29m) m(

(26)
(27)

Om) x C} (28)

where

2g(9m)f09’" Smecosed@—l—(fp 20,,) sin 0, cos 0,
O fo mdé) + (VBp —20,)

6:

(29)
As B — oo the director angle will approach a constant
value in the entire cell, which we call 6*, so that 6,, — 6%,
p — p(0*) = p* and C — sin 6* cos 0*. In the limit 3 — oo,
eq. (28) can be expanded to give

= F(6") +0(1//D),

where F(6*) may be found analytically. Alternatively,
(24) in the limit S — oo has the form
9(0)

\/ / (31)

Equating eqs. (30) and (31) therefore provides an implicit
equation for 6*, which is dependent on the material vis-
cosities through m(6) and ¢(#). This is an analytical re-
sult, and valid for any nematic-forming liquid. The re-
quired viscosity measurements have not been undertaken

(30)

"mi) 4o

0
sm 0 cos 0 df —sin 0* cos 0*/
0
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for an active nematic, so, in order to estimate the value
of 0*, we will use viscosity parameter values for the liquid
crystal 5CB [44]. For these parameters we obtain the value
0* =~ 1.212rad. This approximate analytic value compares
well to the numerically computed value of 0* ~ 1.199 rad
in sect. 4.2, and even better to the value 8* =~ 1.207rad
which we find if we assume a one-constant approximation
of K = (K1 + K3)/2 while retaining the other 5CB param-
eters. Although in this paper we consider flow-aligning ac-
tive nematics, we note that for non—flow-aligning nematics
(as studied by, for instance, [28]) it is possible to make an-
alytical progress from eq. (22). This situation is included
in the appendix for reference.

4 Numerical results

After investigating the limiting solutions for large pres-
sure gradients and activity in the previous section, we now
consider the behaviour of director and velocity profiles for
finite parameter values. We will briefly recap the situation
for zero pressure gradient, before examining the effect of
applying a pressure-driven flow. We compute numerical
steady state solutions (0(z),v(z)) of the full equations (2)
and (3). In order to obtain numerical solutions and con-
tinue along solution branches, we have employed both the
finite-element package COMSOL [48] and the MATLAB-
based bifurcation analysis package MATCONT [49].

The material parameters, i.e. elastic constants and
viscosities, of active nematics have not yet been fully
characterised. Therefore, as mentioned previously, we use
the material parameters measured for the liquid crystal
5CB [44] and a channel width of d = 10 um. There is
a significant difference in length scales between the con-
stituent agents for 5CB (nanometre size) and an active ne-
matic (micron size), and the actual values of the material
parameters may be different. However, typical experimen-
tal measurements for much larger molecules in a nematic
phase, i.e. polymer nematics, show that their material pa-
rameter values can be similar to those of low molecular
weight nematics [50], at least in the ratios we consider in
the non-dimensional quantities. We therefore use the well
characterised 5CB values and suggest that the behaviour
we find below will be qualitatively the same for an active
nematic.

4.1 Extensile active nematic

As is well known [2,3,40], for zero pressure gradient the
trivial state (6,v) = (0, 0) is a solution for all values of the
activity parameter, but is unstable for activities ¢ < (.,
where (. = (872 K1m1)/((71+72)d?). The parameters used
here correspond to (. = —13.87 Pa, while the Leslie angle
is 0, =~ 0.2rad. Close to this value of activity, there are
two modes of instability where the director profile is either
antisymmetric or symmetric with respect to the centre of
the cell. The respective velocity profiles exhibit the oppo-
site behaviour. However, there are also branches of stable
solutions that do not originate from bifucations from the
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Fig. 3. (a), (c), (e): director angle 0(z) and (b), (d), (f) velocity v(z) equilibrium profiles for activity parameter values
¢ = —20,—50,—100, —250 Pa and pressure gradient p, = 0. The solutions in (a)—(d) bifurcate from the trivial state, which

is also shown.

trivial state. As a reference, in fig. 3 we show the three
types of solutions found in the absence of a pressure gra-
dient. The director angle profiles in fig. 3(a), (c) are the
modes bifurcating from the trivial state as well as the
trivial state itself. The equilibria in fig. 3(e) correspond
to symmetric director angle profiles which do not bifur-
cate from the trivial branch and are associated with large
elastic energies due to their spatial gradients. Note that,
although not shown in fig. 3 but as suggested at the end of
sect. 2, negative versions of all the solutions in fig. 3 also
exist due to the symmetry 6(z) — —60(z), v(z) — —v(z)
when p, = 0.

In fig. 4 we have plotted solution branches for the triv-
ial solution and all three non-trivial modes shown in fig. 3
as the activity varies. In plotting these branches, we use
two measures of the director angle solution in order to
characterise the symmetry of 6(z), namely

(0(2) b(2))

e %Y

d)e:

¢ (rad)

Fig. 4. Bifurcation diagram for negative activity parameter
values and zero pressure gradient, p, = 0, using the measures
for A(z) solutions given in eq. (32). Stable equilibria solution
branches are indicated by solid curves and unstable equilibria
solution branches are indicated by either dashed (one positive
eigenvalue) or dotted (two positive eigenvalues) curves.
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Fig. 5. (a), (¢): director angle 6(z) and (b), (d) velocity v(z) equilibrium profiles for activity ( = —20 Pa and pressure gradients

pe = —5,—2.5,0,2.5,5 x 10* Pam™*.

where (-) represents integration across the channel from
z=0to d, and

,(2) =sin @) ee<z>:;(1 + cos (W()SZ)

[1Paebl

Here, the subscripts “0” and “e” refer to, respectively, odd
and even (or antisymmetric and symmetric) contributions
with respect to the centre of the cell. To help focus on the
different types of mode, the equilibria branches in fig. 4
have also been projected onto the shaded horizontal and
vertical planes.

Using the continuation package MATCONT for vari-
able activity, we have calculated the eigenvalues of the
Jacobian of the discretised numerical system of equations
for each equilibrium solution. Solution branches for which
all eigenvalues are negative, and thus the system is sta-
ble, are indicated by a solid (black) curve. If exactly one
eigenvalue is positive, the branch is presented as a dashed
(blue) curve, while a dotted (red) curve corresponds to
two positive eigenvalues. For any branch with a positive
eigenvalue the solution is unstable.

The modes in fig. 3(a), (b) and (c), (d) are all to be
expected, with director distortion being linked to activity-
induced flow, and have been found previously in, for ex-
ample, Marenduzzo et al. [37]. In fig. 3(a), (c) we see that
for large activities (in magnitude), the director aligns in
the bulk of the channel, i.e. away from boundary and in-

ternal reorientation regions, at +6;, =~ =+0.2rad, which
was predicted as one possibility in sect. 3. The mode in
fig. 3(e), (f) is less well studied, perhaps because the so-
lution branch is not connected to the trivial state and
contains high gradients in 6 (note the different scale of
the vertical axis in fig. 3(e) compared to fig. 3(a), (c)).
For all solutions in fig. 3, the director angle exhibits flow
alignment to 61, in regions of positive shear, v, > 0, and
flow alignment to —6y, or (m — 6,) in regions of negative
shear, v, < 0. As predicted in sect. 3, there will also
be higher-order mode solutions similar to fig. 3(a) and
fig. 3(c) at larger values of the activity parameter magni-
tude, but where the director angle alternates between 6,
and —0, an increasing number of times. We also predict
that there will be equivalent higher-order mode solutions
that are not connected to the trivial solution branch, sim-
ilar to fig. 3(e) but with the director angle alternating
between (nmw + 0y,) and (mm — 6y,) for n,m € Z. However,
all these higher-order modes will involve large elastic dis-
tortions and may be unstable or metastable.

Having produced the reference bifurcation diagram for
the zero pressure gradient case, fig. 4, we now consider
how the introduction of a non-zero pressure gradient alters
the (0(z),v(z)) profiles and bifurcation structures. We will
concentrate here on the trivial state and its bifurcations,
so fig. 5 focuses on how a pressure gradient affects the
equilibrium solutions seen previously in fig. 3(a)—(d) for a
particular value of the activity parameter, ( = —20Pa. In
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Fig. 6. Bifurcation diagram for negative activity parameter
values and pressure gradient p, = —2.5 x 10* Pam ™!, focusing

on the effect of the pressure gradient on the bifurcations from
the trivial state. Stable equilibria solution branches are indi-
cated by solid curves and unstable equilibria solution branches
are indicated by either dashed (one positive eigenvalue) or dot-
ted (two positive eigenvalues) curves.

a non-active Newtonian fluid, the addition of a negative
pressure gradient, p, < 0, would lead to a parabolic veloc-
ity profile with a maximum velocity in the centre of the
channel, similar to the flow shown in fig. 3(b). For an ac-
tive nematic, therefore, such a pressure gradient reinforces
the positive flow velocity associated with an antisymmet-
ric director angle solution, thus enhancing the alignment
with the Leslie angle and increasing the magnitude of the
shear gradients near the boundaries, as seen in the curves
for p, < 0 in fig. 5(a) and (b). The addition of a positive
pressure gradient would, in a Newtonian fluid, lead to a
parabolic velocity profile with a minimum velocity in the
centre of the channel, in opposition to the activity-induced
flow shown in fig. 3(b). Such a pressure gradient acts to
negate the positive flow velocity associated with an an-
tisymmetric director angle solution, thereby reducing the
alignment with the Leslie angle and decreasing the magni-
tude of the shear gradients near the boundaries, as seen in
the curves for p, > 0 in fig. 5(a) and (b). Further increases
in the positive pressure gradient lead to reverse flow near
the channel boundaries and, at sufficiently high p, values,
force the active nematic to flow in the negative z-direction
throughout the channel. For both p, < 0 and p, > 0,
the pressure gradient-induced and activity-induced veloc-
ity profiles share the same symmetry about the centre of
the channel, so the spatial symmetry of the final state
is unaffected. The opposite antisymmetric 0(z) solutions
(i.e. the negative of the solutions in fig. 5(a) and (b)) are
not presented in fig. 5. However, as mentioned in sect. 2,
we can establish their behaviour by recognising that the
governing equations (2) and (3) are unchanged under the
transformation § — —0, v — —v, P, — —p,.

We can see in fig. 6 that a fixed pressure gradient (e.g.
pr = —2.5 x 10* Pam~!) will enhance one version of the
antisymmetric §(z) solution (as shown in fig. 5(a)) while
the opposite (or negative) antisymmetric 0(z) will be di-
minished. This effect can be seen in the breaking of the
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0o — —¢o symmetry of the bifurcation diagram result-
ing in a perturbed pitchfork bifurcation structure for the
stable branches in the ¢, = 0 plane, as shown in fig. 6.

For symmetric director angle profiles, i.e. 6(z) shown
in fig. 3(c) and the equivalent opposite state —6(z), the
introduction of a pressure gradient will increase the veloc-
ity in one half of the channel while decreasing it in the
other. Consequently, both positive and negative pressure
gradients will induce a flow that will lead to an asymme-
try with respect to the centre of the channel, as shown
in fig. 5(c) and (d). As a result, the equilibrium branches
move out of the plane ¢, = 0, illustrated by the dashed
curve in fig. 6. However, even when a pressure gradient
is applied, the 6(z) profile in fig. 3(¢) and the equivalent
opposite state —0(z) retain a symmetry with each other,
namely 6(z) = —0(d — z). Therefore, although the sym-
metry of the individual states is broken, the bifurcation
diagram in fig. 6 retains the ¢, — —¢, symmetry that
occurred in the case of zero pressure gradient.

4.2 Contractile active nematic

We now turn our attention to contractile agents, for
which ¢ > 0. A linear analysis shows that, in the absence
of a pressure gradient, the trivial state is stable for all
¢ > 0 [3], although other solutions of egs. (2) and (3) do
exist. Solution profiles for contractile active nematics are
characterised by director angle configurations that exhibit
large gradients close to the boundaries or the centre of the
channel (fig. 7(a), (c), respectively). These are associated
with localised “jets” in the velocity (fig. 7(b), (d)) which
increase in magnitude and become increasingly sharp
as the activity increases. From fig. 7(a), (c) we also see
that our solutions match the predicted behaviour from
sect. 3 for high values of the activity parameter, namely
that the director angle may take the values § = 7/2 or
0* ~ 1.212rad in the bulk of the channel. While sect. 3
used an approximate form of the director angle and
here we have obtained solutions numerically, we see that
our numerically calculated value 8* ~ 1.199rad is very
close to that determined analytically. The solution in
fig. 7(a), (b), we believe, has been observed previously
in the paper of Marenduzzo et al. [37], albeit for lower
values of the activity so that the asymptotic value 6* was
less readily observable. Furthermore, there have been no
previous investigations into the bifurcation and stability
of either the symmetric or anti-symmetric contractile
director angle solutions, even for this zero pressure case.
As with extensile agents, the symmetry 0(z) — —6(z),
v(z) — —v(z) means that there are also states of opposite
sign in addition to the solutions in fig. 7.

In fig. 8 we show the reference zero pressure bifurcation
diagram, observing that the non-trivial branches annhi-
late at fold (saddle-node) bifurcations. When we include
the trivial state, there are up to nine possible equilibria for
each activity parameter. In fig. 7 we have shown solutions
on only two of the eight non-trivial solution branches: sta-
ble symmetric director profiles in fig. 7(a), (b), and anti-
symmetric director solutions in fig. 7(c), (d) that are un-
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Fig. 7. (a), (c): director angle 6(z) and (b), (d) velocity v(z) equilibrium profiles for p, = 0 and activity parameter values

¢ =5,10,50, 250 Pa.
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Fig. 8. Bifurcation diagram for positive activity parameter val-
ues and zero pressure gradient, p, = 0, using the measures for
0(z) solutions given in (32). Stable equilibria solution branches
are indicated by solid curves and unstable equilibria solution
branches are indicated by either dashed (one positive eigen-
value) or dotted (two positive eigenvalues) curves.

stable up to a single perturbation mode. The stable sym-
metric branches, and the equivalent solutions of opposite
sign, are the non-trivial solid curves in the plane ¢, = 0
in fig. 8, while the unstable antisymmetric branches are
the dashed curves in the plane ¢, = 0. These are stable
to antisymmetric director angle perturbations but unsta-

ble to symmetric director angle perturbations. The pres-
ence of non-trivial stable solutions, and the fold bifurca-
tion points, is particularly interesting as it demonstrates
multistability of solutions in the contractile situation.

When a pressure gradient is introduced, the solutions
in fig. 7 adapt in a similar way to the extensile case, as
seen in fig. 9. For equilibria with antisymmetric velocity
profiles (e.g. fig. 7(a), (b)), the introduction of a pressure
gradient leads to asymmetry in both the director angle and
velocity (fig. 9(a), (b)). The positive and negative solution
branches in the plane ¢, = 0 in fig. 8 both adapt in the
same way and are promoted to occur at lower values of
the activity parameter. For a negative pressure gradient,
equilibria for which the velocity is symmetric and positive
(fig. 7(c), (d)) will be enhanced and occur at smaller values
of activity. Conversely, the pressure gradient-induced flow
will retard negative velocity solutions meaning they can
occur only for larger activities. This break in the ¢, —
—¢o symmetry is observed in the plane ¢, = 0 in fig. 10.

As was shown in the extensile case, we have seen that
for contractile active nematics, certain solutions are pro-
moted. In other words, they exist over a wider range of
activities, while the span of other solutions is reduced.
One key result here is that the stable non-trivial state in
the contractile case is promoted through the application
of a pressure gradient. The ranges of activity for which
each solution exists, as the pressure gradient is changed,
can now be investigated to understand the existence of
each solution branch in the ({, p,)-parameter plane.
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Fig. 9. (a), (c): director angle §(z) and (b), (d) velocity v(z) equilibrium profiles for activity ( = 10 Pa and pressure gradients
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Fig. 10. Bifurcation diagram for positive activity parameter
values and pressure gradient p, = —10° Pam™", using the mea-

sures for 6(z) solutions given in (32). Stable equilibria solution
branches are indicated by solid curves and unstable equilibria
solution branches are indicated by either dashed (one positive
eigenvalue) or dotted (two positive eigenvalues) curves.

5 Two-parameter continuation

We can summarise the effect of varying the activity pa-
rameter and applied pressure gradient on the various equi-

libria, for both extensile and contractile active nematics,
by considering the critical bifurcation points in the ({, p,)-
space, i.e. the location of fold and pitchfork bifurcations.
By constructing a (¢, p.)-space diagram for this multi-
stable system, we are able to determine which of the var-
ious solutions found in the previous section exist over a
range of pressure gradients and activity strengths.

There are seven possible critical bifurcation points: the
single fold/pitchfork point in fig. 6 associated with the
branches of positive and negative versions of the solutions
shown in fig. 5; the two fold points in fig. 4 related to
fig. 3(e), (f); and the four fold points shown in fig. 10
associated with the solutions in fig. 9 and their negative
versions. However, for clarity we do not plot the locations
of the two fold points of the branches of unstable solutions
in the ¢, = 0 plane in fig. 10 because, being unstable, these
solutions are unlikely to be observed in reality. Of the
remaining five critical points, the two pairs of fold points
occur at the same value of the activity parameter and so
the locations of the critical points will lead to only three
loci in the (¢, p.)-space. We plot these three loci in fig. 11.

Curve (A) in fig. 11(a) indicates the location of the
fold bifurcations where the four solution branches meet
in fig. 6 for p, # 0 (or the pitchfork bifurcation point in
fig. 4 when p, = 0). The fold bifurcation points in the
plane ¢, = 0 in fig. 4 for p, = 0 correspond to symmetric
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Fig. 11. (a) Location of pitchfork and fold bifurcation points
for solution branches exhibiting stable equilibria. (b) An ex-
panded view in the grey boxed area in (a), close to { = —2.1 Pa.

director angle profiles. The position of these bifurcation
points as p, varies, coinciding with the director angle los-
ing symmetry, is represented by curve (B). Similarly, curve
(C) corresponds to the fold bifurcation points lying in the
plane ¢, = 0 in fig. 8. In the region between curves (B)
and (C), the only stable equilibria will therefore be on the
stable branch of the perturbed pitchfork bifurcation that
exists for all values of (, as seen in figs. 6 and 10. This
region in the (¢, p,)-space is characterised by solutions of
relatively low director distortion and velocity, for which
the activity parameter is too small in magnitude to dom-
inate either the elastic or the pressure gradient effects. In
fact, when the pressure gradient is absent, the solutions re-
vert to the trivial case (6,v) = (0,0). Therefore, in fig. 11
we denote the low distortion regime as the “trivial state”,
though it is generally more accurate to describe it as the
perturbed trivial state. For (¢, p;) to the left of curve (A)
there are four stable equilibria, characterised by antisym-
metric flow-alignment close to +6;, and asymmetric flow-
alignment close to +(m — 0,) rad. (The asymmetry is the
result of a pressure gradient on a symmetric director angle
structure similar to the behaviour in figs. 5(c) and 9(a).)
Between curves (A) and (B) for extensile active nemat-
ics, and to the right of (C) for a contractile agent, there
are two stable, asymmetric director angle solutions as well
as the trivial state. These correspond, respectively, to an
alignment close to +(m—#6y,) rad in much of the channel for
extensile activities or at the angle approximated by +6*
as found in sect. 3 for contractile activities. The process
of transition between these states in the connected region
surrounding the shaded area between curves (B) and (C)
is now investigated.
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The extent of the region between (B) and (C), where
the perturbed trivial state is the only equilibrium, de-
creases as the magnitude of the pressure gradient in-
creases, with the two curves meeting at approximately
¢ = —2.05Pa. Figure 11(b) focuses on the region close to
this activity parameter for p, < 0 highlighted by the grey
box in fig. 11(a) and demonstrates a swallowtail catastro-
phe [51]. Curves (B) and (C) are symmetric with respect
to the pressure gradient, so a similar swallowtail feature
occurs for p, > 0. The process is expanded upon in fig. 12
where we show bifurcation plots in the (¢, @e)-plane as
|p.| increases. The ¢, measure for equilibria 6(z) will be
non-zero for these solutions, but the transition can be il-
lustrated by restricting the attention to ¢.. The horizontal
dotted lines in fig. 11(b) correspond to the pressure gra-
dients used in fig. 12. The perturbed trivial branch is not
shown in fig. 12, but it does also exist for this range of
pressure gradients and activities.

For p, = —7.7 x 10° Pam™! in fig. 12(a), there is a
small interval of activity over which the trivial state is the
only equilibrium, between the left-hand fold point (curve
(B) in fig. 11) and the right-hand fold (curve (C) in fig. 11).
In fig. 12(b), the right-hand fold has transformed at a cusp
catastrophe and this branch now has three fold points as-
sociated with it. In fig. 12(b) there is still an interval of

activities close to ¢ = —2.03Pa where only the trivial
state exists. However, there is also a very narrow range of
activities close to ( = —1.99 Pa where extra states exist.

Once p, = —7.739 x 105 Pam ™! in fig. 12(c), the range of
activity for these extra states has widened. Also, there are
no longer any activities for which the trivial state is the
unique equilibrium. Between fig. 12(¢) and fig. 12(d), at
ps = —T7.76 x 10° Pam™"', the two uppermost fold points
have merged creating a stable branch of solutions that
exists for all activity parameter values, and with two un-
stable branches now linked through two fold points and a
stable branch. Finally, for large enough [p.|, in fig. 12(e),
the final two fold points have annihilated leaving one sta-
ble and one unstable branch, which both exist for all ac-
tivity parameter values. It is the formation of this stable
branch that allows the continuous transition between so-
lutions with alignment close to +(m — 6y,) rad for extensile
activity, to solutions with alignment close to £6* for con-
tractile flow.

In figs. 13 and 14, we consider this transition between
+(r — fp)rad, and +60* alignments for a value of |p]|
greater than the value considered in fig. 12(e). Clearly
pressure gradient-induced flow dominates for small activ-
ity parameter values (. However, activity still dominates
the pressure gradient effects for sufficiently large |(| val-
ues. Figure 14(a) shows the transformation from a solu-
tion in which there is alignment with (7 — 6y,)rad (e.g.,
¢ = —200Pa), to a solution in which there is alignment
with 6* (¢ = 200 Pa). The corresponding flow profiles are
plotted in fig. 14(b), (c). Figure 13 shows, therefore, that
for sufficiently high pressure gradients it is possible to
transition from a director state where alignment with 6*
dominates to a state where alignment with the Leslie angle
dominates through changes in activity.
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Fig. 13. Stable equilibrium branch for pressure gradient p; =
—10°Pam™*, using the measure ¢ for (z). As the activity
parameter ¢ increases, the asymmetric director angle solutions
transition from activity-induced alignment at (r — 0r)rad in
much of the channel to alignment at 6.

It is worth noting that the special case ( = 0Pa in
fig. 14 does not represent the classic Poiseuille flow for a
nematic with a parabolic velocity profile. Poiseuille flow
would be the result of applying a pressure gradient to the
trivial state in the absence of activity, leading to a sym-
metric velocity and an antisymmetric director angle solu-
tion which vanishes in the centre of the channel. The states
examined in figs. 13 and 14 are inherently asymmetric with
the director angles non-zero except at the boundaries.

6 Conclusions

We have analysed the effects of introducing an applied
pressure gradient on the flow in a channel containing an
active nematic. As expected, in the limit of large pressure
gradients, the nonlinear equation for the director angle has
equilibrium solutions that demonstrate flow-alignment as-
sociated with the Leslie angle, y,, with an associated clas-
sic Poiseuille parabolic flow. However, less intuitively, in
the limit of large activity, we found analytically that there
were other possible director orientations in the bulk of the
channel, specifically where 8 = 0,7/2 or 8* ~ 1.212rad.

Considering steady-state solutions of the full nonlinear
system, we then determined the effect of an applied pres-
sure gradient on the various symmetric and antisymmetric
director angle solutions. For an extensile active nematic,
the application of a pressure gradient leads to a perturbed
pitchfork bifurcation in which the pressure introduces ele-
ments of directional bias in the system. We observed that
the antisymmetric director angle solutions coinciding with
zero pressure gradient remained antisymmetric when a
pressure gradient is applied, whereas the corresponding
symmetric director structures became asymmetric. For a
contractile active nematic, we found nine possible solu-
tion branches, including the trivial state, although only
two of the non-trivial branches contain stable solutions.
The pressure gradient has a similar effect on the symme-
try of the solutions as in the extensile case. Crucially, it
promotes some non-trivial solutions which then occur over
larger ranges of activity.
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We have therefore discovered a rich bifurcation struc-
ture in this model of pressure-driven flow of an active ne-
matic within a channel. We have found that director angle
solutions that align at a non-intuitive angle 8* can, under
sufficiently high pressure gradients, be induced to occur
for a wide range of activity values, extensile or contractile.
In fact, beyond a critical value of |p,|, these solutions form
a continuous transition to flow-aligning solutions that ex-
tends over all activity values. The presence of two stable
states, for instance the trivial state, 6 = 0, and the 6 = 6*
state, is important when considering the rheology of ac-
tive nematics. For instance, in microfluidics applications
the effective viscosities of these two states, g(0) = n; and
g(60*) = 12, can be very different (in 5CB, they vary by a
factor of five, 73 = 0.0204 Pas and 7; = 0.1052 Pas) and
so the volumetric flow rate will also be very different. One
way of manipulating the flow in a channel will be to influ-
ence the stable director orientation of the active nematic.
Given the current interest in designing microfluidic sys-
tems in which active fluids play a role in driving flow and
guiding behaviour at channel junctions, we would hope
that the state diagram in fig. 12 would be useful in using
pressure gradients to design specific microfluidic devices.
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Appendix A. Large activity asymptotics for
non—flow-aligning nematics

There is one particular parameter regime for which we are
able to make progress by assuming a local form of eq. (22).
This parameter regime exists if the nematic viscosities are
such that m(0)/g(6) = A, a non-zero constant. This is the
situation, or an approximation to the situation, for non—
flow-aligning nematics, i.e. when m(#) = 0 does not have
a solution, and m(#) is of one sign. We now consider the
local form of eq. (22) by taking C to be a constant, which
we set to be Z, so that

0="0¢ + BA(sinfcost —I), (A1)
and the Hamiltonian is
1
H(0,0¢) = 5952 — %(005(29) + 476). (A.2)

For any particular value of Z, it can be shown that there
are solutions to the non-local version of eq. (A.1) pro-
vided f3 is larger than a minimum value, i.e. 3 > ™ (7).
Furthermore, when 3 = ™" (Z) the solution to the local
equation (A.1) satisfies the level curve of the Hamiltonian
H(6,6:) = H(0,0) = —fA/4 and, importantly, is also the
steady state solution to the non-local problem eq. (22).
Through solving the local problem in eq. (A.1) directly, we
find that the function 3™"(Z) is monotonically increasing
with ™" — oo as T — Z* (see Schaaf [52]). In this limit
(0 — 0*, T — I*, ™" — o) we therefore have 0 — 0
and so 0* must satisfy H(0*,0) = H(0,0), or equivalently

1

1
—1(005(29*) +4770%) = ~1 (A.3)
Given the definition of Z*, namely Z* = sin8* cos 6,
eq. (A.3) is equivalent to tan@* = 20*. This equation
may be solved numerically to give §* ~ 1.166rad. This

is the predicted director angle in the bulk of the region,
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away from any boundary or reorientation regions, for sym-
metric € solutions in the limit of large positive (contrac-
tile) activity parameter for a non-flow-aligning nematic.
We have also determined numerically the director pro-
file for a contractile active nematic in the situation when
m(0)/g(0) is a constant. When we choose parameter val-
ues K1 = K3 = 107N, n1 = n2 = 0.0204 Pas, 12 = 0,
1 = 0.0777Pas and d = 10 um, the behaviour of the
director angle in the centre of the cell, for increasing ac-
tivity parameter, is similar to that in the flow-aligning
case, with the asymptotic value exactly equal to the value
determined analytically, namely 6* ~ 1.166 rad.
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under the terms of the Creative Commons Attribution
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permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.
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