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Abstract 

 

Collective foraging has been shown to benefit organisms in environments where food is 

patchily distributed, but whether this is true in the case where organisms do not rely on long-

range communications to coordinate their collective behaviour has been understudied. To 

address this question, we use the tractable laboratory model organism Caenorhabditis 

elegans, where a social strain (npr-1 mutant) and a solitary strain (N2) are available for direct 

comparison of foraging strategies. We first developed an on-lattice minimal model for 

comparing collective and solitary foraging strategies, finding that social agents benefit from 

feeding faster and more efficiently simply due to group formation. Our laboratory foraging 

experiments with npr-1 and N2 worm populations, however, show an advantage for solitary 

N2 in all food distribution environments that we tested. We incorporated additional strain-

specific behavioural parameters of npr-1 and N2 worms into our model and computationally 

identified N2’s higher feeding rate to be the key factor underlying its advantage, without 

which it is possible to recapitulate the advantage of collective foraging in patchy 

environments. Our work highlights the theoretical advantage of collective foraging due to 

group formation alone without long-range interactions, and the valuable role of modelling to 

guide experiments.  

 

Keywords: C. elegans, collective behaviour, foraging strategy, on-lattice simulation, fitness 
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Introduction 

 

Collective behaviour is displayed in many animal species including swarming insects, 

schooling fish, flocking birds, and troops of mammals (1-4). The effect of collective 

behaviour on foraging has been studied, with recent models and field experiments suggesting 

that collective search for food may improve food detection as well as food intake (5-8). For 

instance, computational models show that foraging in groups can provide an advantage for 

finding patchily (heterogeneously) distributed food, albeit using long-range interactions (9). 

While long-range interactions may apply to animals with good visual or acoustic senses (10, 

11), this type of interaction may be less relevant for smaller mesoscopic animals with limited 

sensory modalities, including nematodes (roundworms), which are known to swarm (12) but 

whose collective foraging we know little about. Moreover, direct comparison between model 

predictions and experimental data is often limited by uncontrolled natural environments that 

the animals live in (13). Here we investigate the foraging strategies of Caenorhabditis 

elegans, a 1-mm long nematode with both collective and solitary foraging phenotypes. 

Experimental accessibility of C. elegans under controlled laboratory conditions further 

facilitates comparison with modelling outcomes. 

 

C. elegans feed on bacteria that proliferate in rotten fruits and stems (14). The food resource 

in the worms’ natural environment fluctuates and is patchily distributed in space and time 

(15). Intriguingly, while C. elegans strains isolated from the wild exhibit varying degrees of 

collective feeding when cultured in the lab (16), the laboratory reference strain N2 feeds 

individually. This striking difference led us to hypothesise that the contrasting foraging 

strategies may confer advantages in the strains’ respective resource environments: Collective 

foraging may be beneficial for wild strains in their natural environments where food 

distribution is likely patchy, whereas solitary foraging may be better suited for the laboratory 

environment where food is much more homogeneous.  

 

 

 
Figure 1: Snapshots of C. elegans on E. coli bacterial lawns from brightfield microscopy. (a) Solitary N2 

worms on a bacterial lawn. (b) Hyper-social npr-1(ad609) worms on a bacterial lawn. Red circles indicate food 

boundaries, with food available only inside the circles.  

 

To test this hypothesis, we experimentally model solitary and collective behaviour with N2 

(Figure 1a) and npr-1 (Figure 1b) worms, respectively. The latter are N2 worms with a loss-

of-function mutation (ad609) in the neuropeptide receptor gene npr-1, and are hyper-social 

with pronounced and persistent aggregate formation on food (16, 17). Thus N2 and npr-1 

worms represent opposite extremes of the C. elegans collective phenotype and provide a 

useful system for comparing solitary and collective foraging strategies in a genetic 

background that is identical except for the npr-1 gene. Apart from regulating foraging, npr-1 

1 mm

(a) (b)N2 npr-1
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affects a suite of traits including the responses to O2, CO2, and pheromones (18-20). Past 

work examining the fitness consequences of these two strains either focus on the role of 

aggregation-independent behaviours such as dispersal and bordering in diverse food 

distribution environments (21), or the role of aggregation itself in relatively simple food 

environments (22). Therefore, the question remains how the solitary N2 and social npr-1 

strains perform in diverse and non-homogeneous resource environments, with contrasting 

collective foraging behaviours arising from group formation alone. 

 

To assess the effect of collective versus solitary foraging strategies in varying food 

environments, we developed a lattice-based foraging model for movement and feeding based 

on local interactions only. We first used a minimal model to investigate the sole effect of 

group formation on food, and then created a more realistic model that incorporates additional 

strain-specific behavioural parameters in order to facilitate direct comparison with the 

experimental data.  

 

Results 

 

Collective foraging is beneficial in patchy food distribution environments in the minimal 

model  

 

To examine the exclusive effect of foraging in groups without considering any other 

behavioural differences, we first developed a minimal model where social and solitary agents 

are simulated to differ only in their ability to form groups on food. We use the terms “social” 

and “solitary” to refer to the individual propensity to aggregate, and “collective” and 

“solitary” to refer to the group-level foraging phenotypes. We refer to social individuals 

simply as those that aggregate and thus forage collectively, without any implication of 

complex social structure. 

 

The basic agent behaviour in the minimal model is designed based on two observations from 

literature and from our experiments with both N2 and npr-1 worms (Supplementary Movies 

S1-2). Firstly, worms move faster off food than on food, presumably to find new food (23). 

To implement this, at every time step both solitary and social agents move to one of eight 

lattice sites in the direct neighbourhood (to simulate slow movement) in the presence of food 

(Figure 2a, dark blue sites), or to one of sixteen sites in the remote neighbourhood (to 

simulate fast movement) in the absence of food (Figure 2a, light blue sites). In our model, an 

agent perceives food from the lattice site it is currently on and from the sites in its direct 

neighbourhood. The second experimental observation is that worms pump their pharynx and 

ingest bacteria whilst moving on food (24), which we simulate by having both types of agents 

consume one food unit per time step if they are on food.  
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Figure 2: Schematics of neighbourhoods and computation of targeted steps. (a) Direct (dark blue) and remote 

(light blue) neighbourhoods of an agent (black worm) on a square lattice. (b) Possible motion updates of the black 

social agent performing a targeted step. Red sites show the direct neighbourhood shared by the red and the black 

agents, and blue sites show the direct neighbourhood shared by the blue and the black agents. Therefore, while 

performing a targeted step, the black agent is only allowed to move to one the five coloured sites (i.e. not the white 

sites), in order to perform a targeted step to the direct neighbourhood of an adjacent agent. (c) Consecutive 

execution of targeted steps in a group of three agents. The order in which motion updates are computed is chosen 

randomly for every time step. The green agent performs the first targeted step and moves to a square adjacent to 

the blue agent. Subsequently, the blue agent executes a targeted step and moves to a square next to the red agent 

which isolates the green agent from the group. This shows that a targeted step may also separate agents from their 

group. 

 

The solitary and collective foraging strategies in the minimal model differ in the agents’ 

ability to form groups on food, and we implement this through the direction of agent 

movement. Social agents on food perform targeted steps towards neighbours (in order to form 

groups) if there are any in their direct neighbourhood (Figure 2b,c), otherwise all agents 

perform random steps (9) with step length determined by food availability. The minimal 

model simulations are thus constructed for examining exclusively the effect of neighbour 

attraction on foraging (see Materials and Methods for more details of the minimal model, and 

see Figure S1a for model flow chart). We chose to ignore long-range chemotaxis via food or 

pheromone signalling as our previous work suggests that these are not important for the 

aggregation phenotypes of the two worm strains (17). 

 

We implement smoothly-varying, inhomogeneous food distributions with different degrees of 

food clustering controlled by a parameter 𝛾 in order to compare with previous work by 

Bhattacharya & Vicsek (9), based on which we constructed our minimal model but 

emphasising limited interaction range in our case. Each food unit is placed a distance 𝑑 ≥ 1 

away from an existing one with the probability 𝑃(𝑑)~ 𝑑−𝛾 (see Materials and Methods). This 

parameterisation allows us to continuously vary between a uniformly random (𝛾 = 0) food 

distribution and distributions with increasing patchiness as 𝛾 increases (Figure 3a).  

 

In natural environments, C. elegans coexists with other bacterivores competing for the same 

food resources, so fast and efficient food depletion may enable a species to outperform its 

competitors (14, 25). Thus, we performed model simulations with populations of 40 agents 

and measured both time to 90% food depletion and foraging efficiency. In environments with 

uniform randomly distributed (𝛾 = 0) or slightly patchy food (𝛾 < 1.5), the solitary agents 

exhaust food faster than the social ones (Supplementary Movies S3-4); when food is more 
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patchy (𝛾 > 1.5), the reverse is true (Supplementary Movies S5-6). The crossover between 

the two foraging strategies can be found at approximately 𝛾 ≈ 1.5 (Figure 3b). Overall, these 

results support our initial hypothesis that a solitary foraging strategy is beneficial in 

environments with uniformly distributed food whereas collective foraging prevails in 

environments with patchy food. Interestingly, restricting food perception to the agent’s 

current lattice site diminishes the advantage of solitary agents in environments with uniformly 

random distributed or slightly patchy food (𝛾 < 1.5) (Figure S2a).  

 

 
Figure 3: Minimal model simulations with smoothly-varying, inhomogeneous food distributions. (a) Food 

distributions for different 𝛾 values. Red dots show initial positions of the agents (distributed uniformly random), 

and the colour bars show the number of food units per lattice site. (b) Number of time steps taken by social and 

solitary agents to deplete 90% of the distributed food depending on the degree of food clustering, showing a 

crossover with social agents eating faster than solitary agents in patchy food environment ( 𝛾>1.5) and vice versa. 

Error bars show 1 SD.  

 

The benefit of the collective foraging strategy can also be measured in terms of foraging 

efficiency, which is computed for individual agents by dividing the total number of food units 

it consumes by the total number of steps it takes; similar benefit-cost trade-offs had been 

considered by others in previous works (26, 27). In environments with uniformly random or 

slightly patchy food (𝛾 < 1.5), solitary agents forage with a higher median efficiency than 

social ones, while the opposite is true in environments with patchy food distributions (𝛾 >
1.5) (Figure S3a,b). However, the efficiencies of both social and solitary agents decrease as 

patchiness increases. Individual-level food consumption is less varied among solitary agents 
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than among social ones in food environments with 𝛾 ≤ 1  (Figure S3c,d). With restricted food 

perception, however, the differences between agent types in individual efficiencies (Figure 

S2b,c) and individual food consumption (Figure S2d,e) disappear for 𝛾 ≤ 1.  

 

These findings underline that collective foraging may be advantageous in environments with 

patchy food distribution due to both faster food consumption and higher foraging efficiency. 

The intuitive explanation for this is that in collective foraging the presence of other 

individuals may provide social information indicating the presence of food, like a queue 

forming at a conference buffet during lunch break. On a more abstract level, we can 

understand the advantage of collective foraging in patchy environments by considering the 

following: Initially, small aggregates may start to form anywhere in the environment. 

Aggregates at low food levels disperse more quickly as the food becomes depleted, whereas 

aggregates at high food levels persist longer, enabling aggregate growth as other agents join 

the group. Thus, social agents spend more time in regions with high food levels, leading to 

more successful foraging in patchy environments than the solitary agents who forage 

independently of other agents. 

 

Solitary N2 populations are more successful in laboratory foraging experiments 

 

To test the predictions of the minimal model, we conducted population foraging experiments 

with social npr-1(ad609) mutants that feed in aggregates and solitary N2 worms that feed 

individually (Figure 1). We used food environments containing one, two, or four spots of E. 

coli OP50 bacteria (Figure 4a) to achieve increasing patchiness, because the smoothly-varying 

inhomogeneous distributions controlled by 𝛾 (Figure 3a) are difficult to produce 

experimentally. The total amount of bacteria remains the same across different experiments 

regardless of the spot number (i.e., 20 μL for one spot, 10 μL per spot for two spots and 5 μL 

per spot for four spots; see Materials and Methods). Note that a food “spot” is conventionally 

referred as a food “patch”, but here we use the term “spot” instead of “patch” to avoid 

confusion with the term “patchiness” (as opposed to uniformity), which in this context would 

refer to the presence of multiple spots (as opposed to a single spot). Each “spot” itself has a 

uniform distribution of food.   

 

We developed our experimental assay to circumvent the bordering and dispersal (i.e. leaving 

a food patch, instead of disbanding an aggregate) behaviours that Gloria-Soria & Azevedo 

(21) had previously focussed on, in order to assess the role of group formation on foraging 

success. We do so by using freshly seeded food spots to ensure that each spot has a uniform 

distribution without excessive bacterial growth in the border region. We also use a low level 

of peptone (0.013% w/v) in the media to minimise bacterial growth over the course of the 

experiment, which lasted up to seven hours. This foraging assay with thin, fresh bacterial 

lawns effectively eliminated bordering behaviour and led to very few food-leaving events. 

Food-leaving probability in our experiments are near zero (0.013 ± 0.013 (mean ± standard 

deviation) events per worm per hour for npr-1 and 0.025 ± 0.025 events per worm per hour 

for N2, see Supplementary Methods), consistent with our previous report that worms are 

mostly on food under the same experimental conditions (17). 

 

For experiments with either worm strain, each population consisted of 40 age-matched young 

adult worms. We measured the time taken to consume all the food in the environment. The 

end point of the assay is estimated from the detectable increase in worm speed once food 

becomes exhausted. This can be seen most clearly in Supplementary Movies S1-2, where the 

texture of the food patch changes from smooth to coarse upon consumption, and the drastic 

speed-up of the worms can be visually detected towards the end of both movies. Surprisingly, 
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solitary N2 populations were faster at depleting the bacteria relative to npr-1 populations 

independent of the number of bacteria spots (Figure 4b) (one spot: npr-1 takes 70% longer 

than N2, two-sample t-test p = 0.01; two spots: npr-1 takes 75% longer than N2, p < 0.01; 

four spots: npr-1 takes 76% longer than N2, p = 0.01). Furthermore, time to food depletion 

barely varies amongst different food spot number configurations for both npr-1 (one-way 

ANOVA p = 0.78) and N2 (p = 0.60) populations. Thus, the experimental results contradict 

the prediction of the minimal model, showing no advantage for collective feeding in patchy 

environments.   

 

 

 
Figure 4: Experimental foraging assays with multi-spot food environments. (a) Schematics of food 

distributions in experiments. Shown are E. coli spots (green) on 35-mm Petri dishes with food spots arranged in 

one-, two-, and four-spot configurations. (b) Time for populations of 40 npr-1 or N2 worms to exhaust food in the 

experiments. n = 5 independent replicates for each condition. Error bars show 1 SD.  

 

Strain-specific model confirms experimental findings 

 

In order to address the discrepancy between the minimal model predictions and our 

experimental findings, we created a more realistic, strain-specific version of the model, 

incorporating two more behaviours that differ between npr-1 and N2 worms other than their 

tendency to form groups on food. Firstly, the speeds of npr-1 and N2 worms differ depending 

on food availability. Both strains crawl at about the same speed in the absence of food; N2 

worms slow down to roughly half this speed when on food, whereas npr-1 worms only slow 

down significantly upon joining a group of worms on food (16). Secondly, npr-1 worms have 

a feeding rate that is 62% that of N2, as calculated by us previously (28). These literature 

parameters are listed in Table 1 and adapted for our strain-specific simulations; model 

parameters are listed in Table 2. We do not use different food-leaving rates in our simulations 

because food-leaving is so rare in our experiments for both worm strains. Nevertheless, since 

others report much higher food-leaving rates under different experimental conditions (29, 30), 

our strain-specific model is constructed so that different food-leaving rates can easily be 

incorporated to test additional parameter combinations (see Supplementary Methods and 
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Figure S1b for details). As in the minimal model, social agents (now called npr-1 agents) on 

food join groups by performing targeted steps, whereas solitary agents (now called N2 agents) 

only perform random steps (see model flow chart in Figure S1b). In this strain-specific model, 

agents perceive food only from the lattice sites that they currently occupy. 

 

 
Table 1: Literature values for npr-1 and N2 behavioural parameters. 

 reference npr-1 N2 

speed in the presence of food (16) 183 μm/s 109 μm/s 

speed in the absence of food  (16) 225 μm/s 232 μm/s 

feeding rate  (28) 0.62 unit 1 unit 

 
Table 2: Parameters used in modelling simulations.  

 

 minimal model strain-specific model 

 social agents solitary agents npr-1 agents N2 agents 

Step length 

on food 

to direct 

neighbourhood 

to direct 

neighbourhood 

in a group: to direct 

neighbourhood 

alone: to remote 

neighbourhood 

to direct neighbourhood 

Step length  

off food 

to remote 

neighbourhood 

to remote 

neighbourhood 

to remote neighbourhood to remote neighbourhood 

Feeding 

rate 

1 food unit per 
time step 

1 food unit per 
time step 

0.4*0.62 food unit per 
time step* 

0.4 food unit per time 
step* 

Food-

leaving 

probability 

Not used Not used 0  0  

* Feeding rates in the strain-specific model are scaled down to 0.4 for N2 and 62% of that for npr-1(28) to 

broadly match the experimental time to food depletion in Figure 5, based on a time step of Δt = 10 s. 

 

 

We used multi-spot food distributions with one-, two-, or four-spot configurations in the 

strain-specific model (Figure 5a) to compare simulation outcomes with the experimental 

results. To assess foraging success in the strain-specific model, we calculated the time to 90% 

food depletion for both npr-1 and N2 agent populations. N2 populations are faster at 

consuming the same amount of food than npr-1 populations independent of the number of 

food spots (Figure 5b, Supplementary Movies S7-9), which confirms the experimental 

findings. We also analysed foraging efficiency of npr-1 and N2 agents. These results show 

that N2 agents forage with a substantially higher efficiency than npr-1 in all tested conditions, 

even though the range of individual efficiencies is larger for N2 (Figure S4a,c). However, 

npr-1 agents have a higher median food intake than N2 in all environments, and fewer npr-1 

agents than N2 have an extremely low food intake (Figure S4b,d; Figure S5). 
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Figure 5: Strain-specific model simulations with multi-spot food environments. (a) Food distributions with 

one, two or four food spots. Red dots show agent configurations at the start of the simulations, clustered to mimic 

the experimental procedure of transferring worms together in a liquid droplet. Dark blue indicates no food and 

yellow indicates food. (b) Time for npr-1 and N2 agents to deplete 90% of the distributed food units, shown for 

different numbers of food spots. Error bars show 1 SD. (c) Same as b), but with npr-1 agent feeding rate set to the 

same value as N2. Simulation time is converted from time steps to real time in b) and c): As there is maximally a 

single agent per lattice site the lattice spacing is equal to the worm size (~ 1 mm). By noting that worm speed on 

food is approximately 100-200 μm/s and that it takes an agent one time step to cross the 1 mm lattice site, the 

timescale should be roughly Δt ≈5-10 s.  Eventually Δt = 10 s is chosen to approximate the order of magnitude to 

broadly match the experimental data in Figure 4. 

 

To ensure that the model outcome is not an artefact of using food environments consisting of 

distinct food spots, we repeated the strain-specific simulations with smoothly-varying 

inhomogeneous food distributions controlled by 𝛾, as in the minimal model. We explored a 

broad range of 𝛾 values from 0 to 10, and confirmed that N2 agents still consume 90% of the 

food faster than npr-1 agents for all tested food distributions (Figure 6a).  

 

 

 
Figure 6: Strain-specific model simulations with smoothly-varying, inhomogeneous food distributions. (a) 

Time for npr-1 and N2 agents to deplete 90% of the distributed food units, shown for different γ values. Error bars 

show 1 SD. Simulation time is converted from time steps to real time. (b) Same as a), but with npr-1 agent feeding 

rate set to the same value as N2. The black dashed box is zoomed in and displayed in (c). (c) Same as (b), zoomed 

in to show a crossover of the agents’ foraging advantages between γ values of 0.5 and 1.  
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Feeding rate is the key factor for N2’s foraging advantage  

 

Now that we have a strain-specific model that matches our experimental data, we sought to 

determine which behavioural parameter underlies the difference between our minimal and 

strain-specific model outcomes. We repeated the strain-specific simulations with multi-spot 

food environments, but with equal feeding rates for npr-1 and N2 agents (using the N2 value 

from Table 2). As a result, the difference between the strains in foraging time is completely 

abolished (Figure 5c). Furthermore, the distributions of individual efficiencies (Figure S4c,e) 

as well as of ingested food units (Figure S4d,f) for npr-1 and N2 agents now resemble each 

other after setting the feeding rates equal. These results suggest that the higher feeding rate of 

N2 is the main reason for its foraging advantage in the strain-specific simulations.  

 

Repeating these computational experiments using strain-specific simulations but with 

smoothly-varying inhomogeneous food distributions, we confirmed that setting npr-1 and N2 

feeding rates equal abolishes N2 agents’ foraging advantage for all but the lowest 𝛾 values 

(𝛾 < 1), (Figure 6b-c). Interestingly, the crossover of foraging advantage that was previously 

seen in the minimal model (Figure 3b) now re-emerges (Figure 6c), with N2 agents having an 

advantage in environments with uniformly random or slightly patchy food (𝛾 < 1) and npr-1 

agents performing better in environments with patchy food (𝛾 ≥ 1). These results uncouple 

the dominating effect of N2’s higher feeding rate on the overall foraging success from other 

behavioural parameters, and demonstrate that an advantage of npr-1 remains under patchy 

food conditions if not for its lower feeding rate.   

 

Discussion 

 

Collective foraging may be beneficial for organisms in environments with patchy food 

distributions, but whether this also applies to organisms only relying on short-range 

communications to coordinate their collective behaviour has been unclear. We hypothesised 

that collective foraging in groups does confer such an advantage. To test this hypothesis we 

implemented lattice-based simulations, which are more computationally efficient than off-

lattice agent-based models (17) or spatial Gillespie simulations (31), and have a long history 

in ecological modelling (26). Compared to Bhattacharya & Vicsek’s previous lattice-based 

simulations with long-range interactions over a distance many times the body size of an 

individual (9), we only allowed for short-range interactions in order to exclude the role of 

visual cues and long-range chemotaxis. In both cases, an advantage for collective foraging 

can be achieved, and our minimal model with only short-range interactions is more 

appropriate for cellular behaviour or that of nematodes such as C. elegans. Our approach is 

also different from other works which investigate optimal foraging in patchy environments 

based on the marginal value theorem (26, 27). Our minimal model supports our hypothesis 

that foraging in groups can be beneficial in environments with patchy food distributions, as 

social agents deplete food faster and more efficiently than solitary ones. Intuitively speaking, 

aggregation helps worms deplete a food patch before leaving it at the risk of not finding a new 

one. As food depletion leads to aggregate dispersal, groups of social worms will spend less 

time in low-food regions, and more time in high-food regions. Put differently, the simple 

presence of a worm may convey social information to other worms, such as indicating that 

food quality is sufficiently high (13, 32, 33). This type of swarm intelligence may be 

particularly valuable in the absence of sophisticated communication systems or long-range 

interactions. 

 

In contrast to the minimal model, our more realistic strain-specific simulations show that the 

solitary N2 agents perform better than the social npr-1 agents in all tested food distribution 
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environments regardless of patchiness. Assuming fast food depletion as a fitness advantage, 

these results agree with a previous study reporting that the social strains are less fit in 

laboratory conditions (34). Moreover, a recent study shows that the observed fitness 

advantage of N2 over npr-1 worms is in fact dissociable from their collective phenotypes 

(22). Indeed, we show that N2’s better foraging performance may be more attributable to its 

higher feeding rate than to its foraging strategy. Therefore even though our strain-specific 

model suggests that collective foraging is not a more efficient strategy, at least under our 

tested food distribution conditions, our minimal model and modified strain-specific model 

(with equal feeding rates and smoothly-varying inhomogeneous food) indicate that this 

remains a theoretical possibility. 

 

Gloria-Soria & Azevedo have previously investigated how npr-1 polymorphism in C. elegans 

can promote the co-existence of solitary and social foraging strategies in nature via resource 

partitioning (21). Central to their findings are the pronounced differences in bordering and 

dispersal (food-leaving) behaviours between the strains, both of which they show to be 

independent of aggregation. Here we developed an experimental assay to circumvent these 

two confounding behaviours, as well as computationally uncoupled the effect of feeding rate 

differences to reveal the underlying effect of foraging in groups on foraging success in diverse 

food environments. We show that foraging in groups may be beneficial in patchy food 

environments. Apart from foraging, aggregation into groups may also serve other 

ecologically-relevant functions such as protecting C. elegans from desiccation or UV 

radiation (35). 

 

While using the model organism C. elegans enables us to conduct foraging experiments in 

controlled laboratory conditions, we were unable to experimentally demonstrate an advantage 

of collective foraging. Our simulation results suggest that two modifications may be 

necessary to achieve this. Firstly, we could compare the foraging performance of social npr-1 

worms to that of slow-feeding eat mutants in the solitary N2 genetic background (36), in 

order to remove the dominating effect of N2’s higher feeding rate. Secondly, using equal 

feeding rates in the strain-specific model, we only saw the re-emergence of collective 

foraging advantage in smoothly-varying inhomogeneous food distributions (Figure 6c) but not 

multi-spot environments (Figure 5c). This suggests that the multi-spot environments that we 

created experimentally and computationally were not patchy enough. We would thus need to 

discover experimentally accessible food distributions for which collective foraging has an 

advantageous in the context of our work, and testing various distributions with our strain-

specific model can help explore such possibilities.   

 

In summary, our simulations and experiments were designed to test whether collective 

foraging helps to consume patchily distributed food, which may be representative of resource 

distributions in the wild. While we conclude that it does in our minimal model, our 

experiments show that N2 populations outperform npr-1 under all tested food distributions. 

By constructing a more realistic simulation incorporating strain-specific behavioural 

parameters, we were able to not only confirm experimental outcome but also computationally 

identify N2’s higher feeding rate as the main driver of its foraging advantage. Our simulations 

only considered spatial variation in the food distributions, but have not explored temporal 

fluctuations of the environment. The dynamics of environmental fluctuations have been 

shown to influence whether sensing or stochastic phenotype switching is favoured in growing 

populations (37). An alternative approach is to consider under what environmental conditions 

collective foraging strategies emerge by evolution (38). Thus the role of both fluctuating 

environments and evolution of foraging strategies are avenues for further theoretical work on 

the benefits of collective foraging strategies. 

.CC-BY 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/744649doi: bioRxiv preprint 

https://doi.org/10.1101/744649
http://creativecommons.org/licenses/by/4.0/


 13 

 

Materials and Methods 

 

Basic simulation rules 

 

The following rules apply to all simulations: We simulate (𝑛 = 40) agents on a square-lattice 

with 𝐿2 lattice sites (𝐿 = 35) using periodic boundary conditions (9). The direct 

neighbourhood of an agent is defined as the eight surrounding lattice sites, whereas the 16 

lattice sites surrounding the direct neighbourhood are defined as the remote neighbourhood 

(Figure 2a). Each lattice site contains a certain number of food units depending on the 

underlying food distribution. Volume exclusion is enforced in all simulations so that every 

lattice site can only be occupied by a single agent. We use uniformly random initial positions 

of the agents for the minimal model (Figure 3a), and clustered initial position of the agents for 

the strain-specific model (Figure 5a) to better compare with experimental conditions. At every 

time step, each agent eats food if there are any at its current position, and attempts to move. 

The order in which agents update their motion is randomly determined for every time step. 

All simulations were implemented with MATLAB R2018b. We ran the simulations 500 times 

for each condition, using different random initial distribution of agents for each simulation. 

For every simulation the time taken to 90% food depletion is measured for the population, and 

the foraging efficiency and the total food uptake are measured for individual agents. 

 

Food distribution in simulations 

 

Two different types of food distributions are used in the simulations. The first type 

(“smoothly-varying inhomogeneous”) has smoothly-varying inhomogeneous food distribution 

parameterised by 𝛾, which controls the degree of clustering (Figure 3a) (9). For 𝛾 = 0 the 

food is distributed uniformly random on the lattice. For 𝛾 >  0, every new food unit is placed 

at a distance 𝑑 (1 ≤ 𝑑 ≤
𝐿

√2
 ) in a random direction to a random existing food unit. For 𝛾 >  0 

the distance 𝑑 is calculated as follows: 𝑑 = 𝑟
−1

𝛾 , where 𝑟 is a random number distributed 

uniformly between 0 and 1. If 𝑑 is larger than 𝐿/√2, a uniform random value between 1 and 

𝐿/√2 is chosen instead. The value of 𝑑 is calculated independently for every food unit. To 

initialise simulations, one food unit is placed on a randomly chosen lattice site and then the 

remaining food units are distributed accordingly. There is a total of 𝐿2 ∙ 10 food units in 

smoothly-varying inhomogeneous environments.   

 

The second type of food distribution (“multi-spot”) consists of one, two, or four food spots 

distributed on the lattice, and food is distributed evenly between and within each spot (Figure 

5a). The total food level is approximately 𝐿2 ∙ 10 in multi-spot food environments, but varies 

slightly depending on the number of food spots, because each spot is made up of an integer 

number of lattice sites. To ensure consistent comparisons, we calculated the time to 

consuming 𝐿2 ∙ 10 ∙ 0.9 food units as time to depletion for every simulation.  

 

Minimal model simulations 

 

Minimal model simulations are conducted with parameters listed in Table 2, and a flow chart 

is provided in Figure S1a. Different random initial food distributions are used for each 

simulation. Food is perceived from the lattice site that the agent currently occupies and from 

the eight sites in its direct neighbourhood. Social agents that are on food and has at least one 

other agent present in its direct neighbourhood perform a targeted step towards nearby 

neighbour(s) by moving randomly to one of the lattice sites located next to another agent in 

.CC-BY 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/744649doi: bioRxiv preprint 

https://doi.org/10.1101/744649
http://creativecommons.org/licenses/by/4.0/


 14 

the direct neighbourhood (Figure 2b,c). Otherwise, all agents perform a random step to the 

direct neighbourhood if on food and to the remote neighbourhood if off food. The basics of 

random and targeted steps are also explained in the main text (Figure 2). An agent attempts 

movement into any unoccupied lattice site that fit the criteria, and if no such site is available, 

the agent remains at its current position. Agents eat one unit of food per time step if food is 

present. For the calculation of individual efficiencies, moving to the remote neighbourhood 

counts as two steps, moving to the direct neighbourhood counts as one step, and if the agent 

remains at its position then it counts as zero steps.  

 

Strain-specific model simulations  

 

The parameters for strain-specific simulations including movement speeds and feeding rates 

are given in Table 2, and a flow chart is provided in Figure S1b. The initial food distribution 

for the strain-specific simulations is identical for each simulation (uniform spots), to mimic 

experimental conditions. In these simulations, an agent perceives food only from the lattice 

site that it currently occupies. Agents perform targeted and random steps in the same way as 

in the minimal models. The strain-specific model also incorporates food-leaving probability  

(see Supplementary Methods), which is set to zero for our simulation results here. Foraging 

efficiencies for strain-specific simulations are calculated in the same way as in the minimal 

model simulations. 

 

Experimental procedure to validate the strain-specific simulations 

 

The experimental procedures used here are identical to the “Bright field standard swarming 

imaging” method that we previously published (17). A step-by-step protocol is available at 

http://dx.doi.org/10.17504/protocols.io.vyhe7t6. Briefly, 35-mm imaging plates containing 

low peptone (0.013% w/v) NGM agar were seeded with 20 μL of diluted E. coli OP50 

bacteria (OD600 = 0.75) shortly before imaging, with the 20 μL equally divided between the 

required number of food spots to produce different patchiness conditions (i.e., four spots of 5 

μL each, two spots of 10 μL each, or one spot with 20 μL). Only freshly seeded (< 2 hours) 

plates were used for imaging to ensure food uniformity within each food spot, as long 

incubation would lead to a thicker border region due to bacteria growth. Forty age-

synchronised young adult worms are washed and transferred onto the imaging plate in a liquid 

drop away from the bacterial spots, and imaging commences immediately. Time-lapse images 

were recorded at 25 fps for 7 hours at 20° C with Gecko software (v2.0.3.1) and a custom-

built six-camera rig equipped with Dalsa Genie cameras (G2-GM10-T2041). Five replicates 

of the experiments are available for each combination of worm strain and food distribution 

condition, and the data are available at https://doi.org/10.5281/zenodo.3625159. 

 

Estimating the time to food depletion from experimental data 

 

Time to food depletion was defined as the time difference between foraging start and 

complete food exhaustion, and these points were identified by visual assessment of recorded 

experiments. As worms were transferred to the imaging plates in a liquid drop that prevents 

escape, we defined foraging start time as the moment that the liquid drop is completely 

absorbed into the media allowing all worms to crawl out. As for the end point of food 

depletion, we identified drastic increases in overall worm speeds in our recordings as a proxy, 

because worms visibly speed up when food becomes exhausted. Such speed increases can 

occur more than once when multiple food spots exist as not all spots become simultaneously 

exhausted; we used the final instance to identify the point of total food depletion from all food 

spots.  
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