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Abstract
We give asymptotic estimates of the variance of the number of integer points in trans-
lated thin annuli in any dimension.

Keywords Poisson random variable · Lattice point counting · Thin annuli · Fourier
series

Mathematics Subject Classification 60D05 · 42B05 · 11P21

1 Introduction

Sinai proved in [17] that the number of integer points in the plane inside a thin annulus
of fixed area λ, of random shape and large random radius, with a suitable definition of
randomness, converges in distribution to a Poisson random variable with parameter λ.
The probabilistic proof does not exhibit a specific annulus. See also [13,14]. Indeed in
[13] it is shown that the number of integer points in the circular annulus {r − 1/4r <

|x | ≤ r +1/4r} in the plane does not converge to a Poisson distribution when r varies
randomly and uniformly in [a1L, a2L] and L goes to+∞. The reason is that, under the
condition that the annulus contains some integer points, then with probability almost
one the number of integer points in the annulus tends to infinity. On the other hand,

Dedicated to Guido Weiss, our teacher and friend. Grazie Guido.

B Giacomo Gigante
giacomo.gigante@unibg.it

Leonardo Colzani
leonardo.colzani@unimib.it

Bianca Gariboldi
biancamaria.gariboldi@unibg.it

1 Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano-Bicocca, Via R.
Cozzi 55, 20125 Milan, Italy

2 Dipartimento di Ingegneria Gestionale, dell’Informazione e della Produzione, Università degli Studi
di Bergamo, Viale Marconi 5, 24044 Dalmine, BG, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12220-020-00479-y&domain=pdf
http://orcid.org/0000-0002-1642-679X


8904 L. Colzani et al.

a translation of the annulus breaks the symmetry, and the situation changes. Indeed
Cheng et al. proved in [3] that ifΩ is a convex set in the plane with a smooth boundary
with positive curvature, then the expectation and variance for the number of integer
points in a shifted annular region of radius r and thickness c/r

[(r + c/ (2r))Ω − x] \ [(r − c/ (2r)) Ω − x] ,

where x is uniformly distributed in the unit square, are both asymptotic to the area of
the annulus 2c |Ω| as c is fixed and r → +∞. Since the mean and the variance of a
Poisson distribution coincide, this is consistent with the conjecture that this random
variable converges in distribution to a Poisson random variable. Indeed these authors
brieflymention higher dimensional analogues. The following is a proof of these higher
dimensional analogues via Fourier analysis.

Theorem 1.1 Assume that Ω is a convex body in R
d with smooth boundary with

everywhere positive Gaussian curvature, which contains in its interior the origin.
Denote by Ω (r , t) the annulus (r + (t/2))Ω \ (r − (t/2))Ω , and by |Ω (r , t)| its
volume. Then for every α > (d − 1) / (d + 1) there exists 0 < β < 1 and a positive
constant C such that for every 1 ≤ r < +∞ and every 0 < t ≤ r−αone has

∣
∣
∣
∣
∣
∣
∣

∫

Td

∣
∣
∣
∣
∣
∣

∑

k∈Zd

χΩ(r ,t)−x (k) − |Ω (r , t)|
∣
∣
∣
∣
∣
∣

2

dx − |Ω (r , t)|

∣
∣
∣
∣
∣
∣
∣

≤ C |Ω (r , t)| tβ.

The mean of the random variable that counts the number of integer points in the
annulus is the volume of the annulus, hence the above is an estimate of the variance
of this random variable. In particular, the theorem can be rephrased by saying that the
expectation and variance of the number of integer points in translated annuli are asymp-
totic when r → +∞ and t → 0+, with t ≤ r−α for some α > (d − 1) / (d + 1).
Observe that when t = o(r), then

|Ω (r , t)| = |(r + t/2)Ω| − |(r − t/2)Ω|
=
(

(r + t/2)d − (r − t/2)d
)

|Ω| ∼ drd−1t |Ω| .

In particular, under the assumption that 0 < t ≤ r−α with α > (d − 1)/(d + 1),
the measure of the annulus |Ω (r , t)| ∼ drd−1t |Ω| may diverge. Also observe that
with the above theorem in dimension d = 2 and with r = c/t one recovers the results
in [3], and indeed the assumption t = c/r can be replaced by the weaker assumption
t ≤ r−α for some α > 1/3. We do not know if this assumption 0 < t ≤ r−α with
α > (d−1)/(d+1) can be weakened, but it follows from some results in [15] that the
only assumption that the widths of the annuli converge to zero does not suffice, and
one has to require a suitable speed. Finally, also the curvature assumption is necessary.
The variance of annuli with boundary points of zero curvature may be much larger
than the mean, and an asymptotic estimate of the variance may fail. An example are
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Variance of Lattice Point Counting in Thin Annuli 8905

the annuli generated by polyhedra with faces with rational orientation. See Remark 3.2
below.

2 Proof of theMain Result

The main tool in our proof is the Fourier expansion of the random variable that counts
the integer points. As shown by Kendall in [9], an estimate from above of the variance
of the number of integer points in shifted ovals follows easily from estimates of
the order of decay of the Fourier transform of an oval. Here, in order to obtain an
asymptotic for the variance, we shall need to extract from the Fourier transform more
precise geometric informations. The proof is split in a number of lemmas. The first
two lemmas, Lemma 2.1 on the Fourier expansion of the discrepancy function, and
Lemma 2.2 on the asymptotic expansion of the Fourier transform of a convex set, are
well known and the proofs are included only for the sake of completeness. Lemma 2.3
on the Fourier transform of an annulus, and Lemma 2.4 on the asymptotic expansion
of the variance, are easy consequences of the first two lemmas and allow us to split
the variance into a sum of different terms. The actual estimate of these terms is the
core of the proof and is contained in the remaining lemmas.

Lemma 2.1 If Ω is a bounded domain in R
d , then the number of integer points in

Ω − x

∑

k∈Zd

χΩ−x (k)

is a periodic function of the translation x, and it has the Fourier expansion

∑

n∈Zd

χ̂Ω (n) exp (2π inx) .

In particular, this Fourier expansion converges in the square metric, and

∫

Td

∣
∣
∣
∣
∣
∣

∑

k∈Zd

χΩ−x (k) − |Ω|
∣
∣
∣
∣
∣
∣

2

dx =
∑

n∈Zd\{0}
|χ̂Ω (n)|2 .

Proof The first part is just the Poisson summation formula. See [18, Theorem 2.4 in
Chapter VII]. Here is a quick proof. Letting Q = {−1/2 ≤ x j < 1/2

}

be the unit
cube, then

∫

Td

∑

k∈Zd

χΩ−x (k) exp (−2π inx) dx =
∫

Q

∑

k∈Zd

χΩ(x + k) exp (−2π inx) dx

=
∑

k∈Zd

∫

Q+k
χΩ(x) exp (−2π inx) dx =

∫

Rd
χΩ(x) exp (−2π inx) dx = χ̂Ω (n) .
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Since Ω is bounded, the number of non zero terms in the above sums is finite, and the
above identities are fully justified. The final part of the lemma is Parseval’s identity,
just observe that χ̂Ω (0) = |Ω|. ��

We emphasize that the above lemma does not claim that the Fourier expansions of
the random variables converge pointwise. Anyhow, these series are summable point-
wisewith suitably strong summabilitymethods at every point x withZ

d∩∂ {Ω − x} =
∅, where the function

∑

k∈Zd χΩ−x (k) is smooth. If ϕ(ξ) is a smooth even radial func-
tion with compact support and with ϕ(0) = 1, then at every point of continuity of the
function

∑

k∈Zd χΩ−x (k) one has

lim
ε→0+

⎧

⎨

⎩

∑

k∈Zd

ϕ(εn)χ̂Ω(n) exp(2π inx)

⎫

⎬

⎭
=
∑

k∈Zd

χΩ−x (k).

Indeed it can be shown that in dimensions d = 1 and d = 2 and for domains with
smooth boundaries the above Fourier expansions are pointwise spherically convergent,
that is the above equality holds also when ϕ(ξ) is the characteristic function of the
unit ball {|ξ | ≤ 1}, but this is not necessarily the case if d ≥ 3.

The above lemma suggests the search of precise estimates of the Fourier transform
of an annulus. In order to guess the correct result, it may be helpful to have an explicit
example. The Fourier transform of the sphere {|x | ≤ r} is a Bessel function,

χ̂{|x |≤r} (ξ) = rd χ̂{|x |≤1} (rξ) = rd |rξ |−d/2 Jd/2 (2πr |ξ |) .

See [18, Theorem 4.15, Chapter IV]. Hence, the Fourier transform of the annulus
{r − t/2 < |x | ≤ r + t/2} is

χ̂{r−t/2<|x |≤r+t/2} (ξ)

= χ̂{|x |≤r+t/2} (ξ) − χ̂{|x |≤r−t/2} (ξ)

= rd/2 |ξ |−d/2 (Jd/2 (2π (r + t/2) |ξ |) − Jd/2 (2π (r − t/2) |ξ |))

+
(

(r + t/2)d/2 − rd/2
)

|ξ |−d/2 Jd/2 (2π (r + t/2) |ξ |)
−
(

(r − t/2)d/2 − rd/2
)

|ξ |−d/2 Jd/2 (2π (r − t/2) |ξ |) .

Recall the asymptotic expansions of Bessel functions, for z real and positive,

Jν (z) = 21/2π−1/2z−1/2 cos (z − π (2ν + 1) /4) + O
(

z−3/2
)

,

d

dz
Jν (z) = 2−1 (Jν−1 (z) − Jν+1 (z))

= −21/2π−1/2z−1/2 sin (z − π (2ν + 1) /4) + O
(

z−3/2
)

.
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Variance of Lattice Point Counting in Thin Annuli 8907

Then, from these formulas and with some trigonometry, one obtains the asymptotic
expansion of the Fourier transform of a spherical shell,

χ̂{r−t/2<|x |≤r+t/2} (ξ)

= 2π−1r (d−1)/2 |ξ |−(d+1)/2 cos (2πr |ξ | − π (d − 1) /4) sin (π t |ξ |)
+ O

(

r (d−3)/2t |ξ |−(d+1)/2
)

.

When the dimension of the space is odd, the Bessel functions can be written explic-
itly in terms of trigonometric functions, and one can also obtain an exact formula for
this Fourier transform in terms of elementary functions. The behavior of the Fourier
transforms of convex bodies and annuli is similar, although a bit more complicated.

Lemma 2.2 The Fourier transform of a characteristic function of a convex body Ω in
R
d with smooth boundarywith everywhere positiveGaussian curvature for |ξ | → +∞

has the asymptotic expansion

χ̂Ω (ξ) = a (ξ) |ξ |−(d+1)/2 + E (ξ) .

If σ (±ξ) are the points of the boundary of Ω with outward unit normals ±ξ/ |ξ |,
and if K (σ (±ξ)) are the Gaussian curvatures at the points σ (±ξ), then

a (ξ) = (2π i)−1 exp (−2π iσ (−ξ) · ξ − π i (d − 1) /4) K (σ (−ξ))−1/2

− (2π i)−1 exp (−2π iσ (ξ) · ξ + π i (d − 1) /4) K (σ (ξ))−1/2 .

The remainder E (ξ) satisfies the estimates

|E (ξ)| + |∇E (ξ)| ≤ C |ξ |−(d+3)/2 .

Proof This is a classical result. See [4–6], or [7, Corollary 7.7.15], or [19, Chapter
VIII]. In particular, as shown before, the lemma for a ball follows straightly from the
asymptotic expansion of Bessel functions. Anyhow, since in most references the exact
constants in this asymptotic expansion are not explicit and a control on the derivative
of the remainder is omitted, it may be helpful to recall a proof. Write ξ = ρϑ , with
ρ > 0 and |ϑ | = 1, and denote by n (x) the outward unit normal to the boundary at
the point x . By the divergence theorem,

∫

Ω

exp (−2π iρϑ · x) dx = − (2π iρ)−1
∫

∂Ω

ϑ · n (x) exp (−2π iρϑ · x) dx .

In the surface integral the phase ϑ ·x is stationary at the points σ (±ϑ)with normals
±ϑ , and one can isolate these points with a smooth cutoff ϕ (s) , with ϕ (s) = 0 if
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s ≤ 1 − 2ε and ϕ (s) = 1 if s ≥ 1 − ε for some small positive ε,

∫

∂Ω

ϑ · n (x) exp (−2π iρϑ · x) dx

=
∫

∂Ω

ϕ (ϑ · n (x)) ϑ · n (x) exp (−2π iρϑ · x) dx

+
∫

∂Ω

ϕ (−ϑ · n (x)) ϑ · n (x) exp (−2π iρϑ · x) dx

+
∫

∂Ω

(1 − ϕ (ϑ · n (x)) − ϕ (−ϑ · n (x))) ϑ · n (x) exp (−2π iρϑ · x) dx .

Since in the domain of integration of the third integral there are no critical points,
this integral decays faster than any powerρ−N whenρ → +∞, and the same is true for
the derivatives of this integral. The first and second integrals are similar to each other.
Let us consider the first one. By a suitable choice of the coordinates x = σ (ϑ)+(y, z),
with y ∈ R

d−1 and z ∈ R, one can move the singular point of the phase to the origin,
and one can assume that in a neighborhood of the origin the boundary ∂Ω is the graph
z = Φ (y) and the unit normal at the origin is (0,−1). In particular, ∇Φ (0) = 0.
Then, setting (0,−1) · n (x) = n (y), one obtains

∫

∂Ω

ϕ (ϑ · n (x)) ϑ · n (x) exp (−2π iρϑ · x) dx

= exp (−2π iρσ (ϑ) · ϑ)

∫

Rd−1
ϕ (n (y)) n (y) exp (2π iρΦ (y))

√

1 + |∇Φ (y)|2dy.

By [19, Proposition 6, Chapter VIII, §2], if {μk}d−1
k=1 are the eigenvalues of the

Hessian matrix
[

∂Φ (y) /∂ yi∂ y j
]

at the point y = 0, then

∫

Rd−1
ϕ (n (y)) n (y) exp (2π iρΦ (y))

√

1 + |∇Φ (y)|2dy

= ρ−(d−1)/2
d−1
∏

k=1

(−iμk)
−1/2 + O

(

ρ−(d+1)/2
)

.

The eigenvalues of the Hessian matrix are the principal curvatures of ∂Ω at σ (ϑ),
and the product of these eigenvalues is the Gaussian curvature,

d−1
∏

k=1

(−iμk)
−1/2 = exp ((d − 1) π i/4) K (σ (ϑ))−1/2 .
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Hence,

− (2π iρ)−1
∫

∂Ω

ϕ (ϑ · n (x)) ϑ · n (x) exp (−2π iρϑ · x) dx
= − (2π i)−1 exp (−2π iσ (ξ) · ξ + (d − 1) π i/4) K (σ (ξ))−1/2 |ξ |−(d+1)/2

+ O
(

|ξ |−(d+3)/2
)

.

In order to obtain the main term in the asymptotic expansion one has to sum the
contribution of the point σ (ϑ)with the one of the antipodal point σ (−ϑ). In this way
one obtains the decomposition

χ̂Ω (ξ) = a (ξ) |ξ |−(d+1)/2 + E (ξ) .

The remainder has the property |E (ξ)| ≤ C |ξ |−(d+3)/2 as |ξ | → ∞. Since χ̂Ω (ξ)

is an entire function of finite exponential type, the above equality can be differentiated
and one obtains

∇χ̂Ω (ξ) = |ξ |−(d+1)/2 ∇a (ξ) − ((d + 1)/2)a (ξ) |ξ |−(d+5)/2 ξ + ∇E (ξ) .

This is the same as

∇E (ξ) = ∇χ̂Ω (ξ) − |ξ |−(d+1)/2 ∇a (ξ) + ((d + 1) /2)a (ξ) |ξ |−(d+5)/2 ξ.

The term ((d + 1) /2)a (ξ) |ξ |−(d+5)/2 ξ is O (|ξ |−(d+3)/2), and both terms
∇χ̂Ω (ξ) and |ξ |−(d+1)/2 ∇a (ξ) are O (|ξ |−(d+1)/2), but the main parts of these last
terms are the same and they cancel, and what is left is O (|ξ |−(d+3)/2). Let us first
identify the main part of |ξ |−(d+1)/2 ∇a (ξ) that comes from the point σ (ϑ). Recall
that σ (ξ) · ξ = supx∈Ω {x · ξ}, the support function of the convex body, has gradient
∇ (σ (ξ) · ξ) = σ (ξ). See [1], or [16, Corollary 1.7.3]. Hence,

∇
(

− (2π i)−1 exp (−2π iσ (ξ) · ξ + (d − 1) π i/4) K (σ (ξ))−1/2
)

= − (2π i)−1 exp (−2π iσ (ξ) · ξ + (d − 1) π i/4) ∇
(

K (σ (ξ))−1/2
)

+ exp (−2π iσ (ξ) · ξ + (d − 1) π i/4) K (σ (ξ))−1/2 σ (ξ) .

Since σ (ξ) is homogeneous of degree 0, ∇ (K (σ (ξ))−1/2) is homogeneous of
degree −1, so that the main contribution to |ξ |−(d+1)/2 ∇a (ξ) that comes from the
point σ (ϑ) is

exp (−2π iσ (ξ) · ξ + (d − 1) π i/4) K (σ (ξ))−1/2 |ξ |−(d+1)/2 σ (ξ) .

Let us now identify the main part of ∇χ̂Ω (ξ) that comes from the point σ (ϑ). The
gradient ∇χ̂Ω (ξ) is defined by an integral similar to the one that defines χ̂Ω (ξ), and
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it has a similar asymptotic expansion,

∇
(∫

Ω

exp (−2π iξ · x) dx
)

= −2π i
∫

Ω

x exp (−2π iξ · x) dx

= − |ξ |−2 ξ

∫

Ω

exp (−2π iξ · x) dx + |ξ |−2
∫

∂Ω

x exp (−2π iξ · x) ξ · n (x) dx .

The first integral is similar to the previous one, but the factor |ξ |−2 ξ gives an extra
decay,

∣
∣
∣
∣
|ξ |−2 ξ

∫

Ω

x exp (−2π iξ · x) dx
∣
∣
∣
∣
≤ C |ξ |−(d+3)/2 .

Arguing as before and isolating the critical point σ (ϑ), with the change of variables
x = σ (ϑ) + (y, z) one obtains

ρ−1
∫

∂Ω

xϕ (ϑ · n (x)) ϑ · n (x) exp (−2π iρϑ · x) dx
= ρ−1 exp (−2π iρσ (ϑ) · ϑ)

×
∫

Rd−1
(y, Φ (y)) ϕ (n (y)) n (y) exp (2π iρΦ (y))

√

1 + |∇Φ (y)|2dy
+ ρ−1 exp (−2π iρσ (ϑ) · ϑ)

× σ (ϑ)

∫

Rd−1
ϕ (n (y)) n (y) exp (2π iρΦ (y))

√

1 + |∇Φ (y)|2dy.

In the first integral the factor (y, Φ (y)) vanishes at the singular point y = 0 of the
phase, and again by [19, Proposition 6, Chapter VIII, §2] and the note that follows it,
this implies that

∣
∣
∣ρ

−1 exp (−2π iρσ (ϑ) · ϑ)

∣
∣
∣

×
∣
∣
∣
∣

∫

Rd−1
(y, Φ (y)) ϕ (n (y)) n (y) exp (2π iρΦ (y))

√

1 + |∇Φ (y)|2dy
∣
∣
∣
∣

≤ Cρ−(d+3)/2.

In other words, one obtains the exponent (d + 3)/2 rather than the usual exponent
(d+1)/2 because the amplitude of the oscillatory integral vanishes at the critical point.
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The second integral is exactly the same that appears in the computation of χ̂Ω (ξ),

ρ−1 exp (−2π iρσ (ϑ) · ϑ)

× σ (ϑ)

∫

Rd−1
ϕ (n (y)) n (y) exp (2π iρΦ (y))

√

1 + |∇Φ (y)|2dy
= exp (−2π iρσ (ϑ) · ϑ + (d − 1) π i/4) K (σ (ϑ))−1/2 ρ−(d+1)/2σ (ϑ)

+ O
(

ρ−(d+3)/2
)

.

In conclusion, the main parts of ∇χ̂Ω (ξ) and |ξ |−(d+1)/2 ∇a (ξ) cancel, and all
that is left is O (|ξ |−(d+3)/2). ��

Lemma 2.3 The Fourier transform of the annulus Ω (r , t) = (r + t/2)Ω \
(r − t/2)Ω can be decomposed into

χ̂Ω(r ,t) (ξ) = A (r , t, ξ) + B (r , t, ξ) .

The main term is

A (r , t, ξ) = −π−1r (d−1)/2 |ξ |−(d+1)/2 exp (−2π irσ (−ξ) · ξ − π i (d − 1) /4)

× K (σ (−ξ))−1/2 sin (π tσ (−ξ) · ξ)

+ π−1r (d−1)/2 |ξ |−(d+1)/2 exp (−2π irσ (ξ) · ξ + π i (d − 1) /4)

× K (σ (ξ))−1/2 sin (π tσ (ξ) · ξ) .

The remainder has the property that there exists C > 0 such that for every r |ξ | ≥ 1
and for every 0 < t ≤ r ,

|B (r , t, ξ)| ≤ Cr (d−3)/2t |ξ |−(d+1)/2 .

Proof With the notation of the previous lemma χ̂Ω (ξ) = a (ξ) |ξ |−(d+1)/2 + E (ξ),

χ̂Ω(r ,t) (ξ) = (r + t/2)d χ̂Ω ((r + t/2) ξ) − (r − t/2)d χ̂Ω ((r − t/2) ξ)

= r (d−1)/2 (a ((r + t/2) ξ) − a ((r − t/2) ξ)) |ξ |−(d+1)/2

+
(

(r + t/2)(d−1)/2 − r (d−1)/2
)

a ((r + t/2) ξ) |ξ |−(d+1)/2

−
(

(r − t/2)(d−1)/2 − r (d−1)/2
)

a ((r − t/2) ξ) |ξ |−(d+1)/2

+ (r + t/2)d (E ((r + t/2) ξ) − E ((r − t/2) ξ))

+
(

(r + t/2)d − (r − t/2)d
)

E ((r − t/2) ξ) .
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The estimates on E (ξ) and on ∇E (ξ) give

∣
∣
∣

(

(r + t/2)d − (r − t/2)d
)

E ((r − t/2) ξ)

∣
∣
∣ ≤ Cr (d−5)/2t |ξ |−(d+3)/2 ,

∣
∣
∣(r + t/2)d (E ((r + t/2) ξ) − E ((r − t/2) ξ))

∣
∣
∣ ≤ Cr (d−3)/2t |ξ |−(d+1)/2 .

Similarly, one also has

∣
∣
∣

(

(r ± t/2)(d−1)/2 − r (d−1)/2
)

a ((r ± t/2) ξ) |ξ |−(d+1)/2
∣
∣
∣

≤ Cr (d−3)/2t |ξ |−(d+1)/2 .

The main term comes from a ((r + t/2) ξ) − a ((r − t/2) ξ), and it needs a
slightly more precise analysis. Since σ (±ξ) is homogeneous of degree zero, one
has σ (± (r ± t/2) ξ) = σ (±ξ), and a little computation gives

a ((r + t/2) ξ) − a ((r − t/2) ξ)

= −π−1 exp (−2π irσ (−ξ) · ξ − π i (d − 1) /4) K (σ (−ξ))−1/2 sin (π tσ (−ξ) · ξ)

+ π−1 exp (−2π irσ (ξ) · ξ + π i (d − 1) /4) K (σ (ξ))−1/2 sin (π tσ (ξ) · ξ) .

��
At this point one can already show that the variance is bounded up to a constant by

the mean. Indeed, it follows from the above lemma that if t ≤ r and r |ξ | ≥ 1, then

∣
∣χ̂Ω(r ,t) (ξ)

∣
∣ ≤ Cr (d−1)/2 |ξ |−(d+1)/2 min {1, t |ξ |} .

Hence, by Parseval’s equality,

∫

Td

∣
∣
∣
∣
∣
∣

∑

k∈Zd

χΩ(r ,t)−x (k) − |Ω (r , t)|
∣
∣
∣
∣
∣
∣

2

dx =
∑

n∈Zd\{0}

∣
∣χ̂Ω(r ,t) (n)

∣
∣2

≤ Crd−1t2
∑

0<|n|≤1/t

|n|1−d + Crd−1
∑

1/t<|n|<+∞
|n|−1−d ≤ Crd−1t .

Proving an asymptotic estimate of the variance is a more difficult task. One has
to take into account not only the size of the Fourier transform, but also the oscilla-
tions. In particular, the curvature K (x) and the support function supy∈Ω {x · y}, which
determine the geometry of the convex body, will play a crucial role.

Lemma 2.4 The variance of the number of integer points in the shifted annulus can
be decomposed into

∫

Td

∣
∣
∣
∣
∣
∣

∑

k∈Zd

χΩ(r ,t)−x (k) − |Ω (r , t)|
∣
∣
∣
∣
∣
∣

2

dx = X (r , t) + Y (r , t) + Z (r , t) ,
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where

X (r , t) = 2π−2rd−1
∑

n∈Zd\{0}
K (σ (n))−1 sin2 (π tσ (n) · n) |n|−d−1 ,

Y (r , t) = −2π−2rd−1
∑

n∈Zd\{0}
cos (2πr (σ (n) − σ (−n)) · n − π (d − 1) /2)

× K (σ (n))−1/2 K (σ (−n))−1/2 sin (π tσ (n) · n) sin (π tσ (−n) · n) |n|−d−1 .

The remainder Z (r , t) has the property that there exists a constant C such if r ≥ 1
and t ≤ r then

|Z (r , t)| ≤ C |Ω (r , t)| r−1t log (2 + 1/t) .

Proof By Lemmas 2.1 and 2.3, the variance equals

∑

n∈Zd\{0}

∣
∣χ̂Ω(r ,t) (n)

∣
∣
2

=
∑

n∈Zd\{0}
A (r , t, n) A (r , t, n) +

∑

n∈Zd\{0}
A (r , t, n) B (r , t, n)

+
∑

n∈Zd\{0}
B (r , t, n) A (r , t, n) +

∑

n∈Zd\{0}
B (r , t, n) B (r , t, n).

Since c |n| ≤ σ (n) · n ≤ C |n| for some C ≥ c > 0, Lemma 2.3 implies that

|A (r , t, n)| ≤ Cr (d−1)/2 |n|−(d+1)/2 min {1, t |n|} ,

|B (r , t, n)| ≤ Cr (d−3)/2t |n|−(d+1)/2 .

These estimates give

∑

n∈Zd\{0}
|A (r , t, n)| |B (r , t, n)|

≤ Crd−2t2
∑

0<|n|≤1/t

|n|−d + Crd−2t
∑

1/t<|n|<+∞
|n|−d−1

≤ Crd−2t2 log (2 + 1/t) ,

and

∑

n∈Zd\{0}
|B (r , t, n)|2 ≤ Crd−3t2

∑

n∈Zd\{0}
|n|−d−1 ≤ Crd−3t2.

The main term is
∑

n∈Zd\{0} |A (r , t, n)|2, and one can check that it is equal to
X (r , t) + Y (r , t). ��
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It follows from the Cauchy–Schwarz inequality that in the statement of the above
lemma the series Y (r , t)with cosines is smaller than the series X (r , t). Moreover, the
cancellations due to the change of sign of the cosine lead to conjecture that Y (r , t) is
indeedmuch smaller than X (r , t), and it gives a negligible contribution to the variance.
Also observe that the single terms in the expansions X (r , t) andY (r , t) give negligible
contributions to the series. This suggests that these series are asymptotic to integrals,
and at least for X (r , t) this is the case.

Lemma 2.5 If |Ω| is the volume of the convex body, and with the definition of X (r , t)
in Lemma 2.4, we have

X (r , t) = d |Ω| rd−1t + W (r , t) .

The remainder W (r , t) has the property that for some C and every r ≥ 1 and
t ≤ r ,

|W (r , t)| ≤ C |Ω (r , t)| t log (2 + 1/t) .

Proof Identifying the torus T
d = R

d/Z
d with the unit cube {−1/2 ≤ x j < 1/2} and

decomposing R
d into

⋃

n∈Zd

{

T
d + n

}

, one gets

X(r , t) = 2π−2rd−1
∑

n∈Zd\{0}
K (σ (n))−1 sin2 (π tσ (n) · n) |n|−d−1

= 2π−2rd−1
∫

Rd
K (σ (x))−1 sin2 (π tσ (x) · x) |x |−d−1 dx

− 2π−2rd−1
∫

Td
K (σ (x))−1 sin2 (π tσ (x) · x) |x |−d−1 dx

− 2π−2rd−1
∑

n∈Zd\{0}

∫

Td

(

K (σ (n + x))−1 − K (σ (n))−1
)

× sin2 (π tσ (n + x) · (n + x)) |n + x |−d−1 dx

− 2π−2rd−1
∑

n∈Zd\{0}
K (σ (n))−1

∫

Td
|n + x |−d−1

×
(

sin2 (π tσ (n + x) · (n + x)) − sin2 (π tσ (n) · n)
)

dx

− 2π−2rd−1
∑

n∈Zd\{0}
K (σ (n))−1 sin2 (π tσ (n) · n)

×
∫

Td

(

|n + x |−d−1 − |n|−d−1
)

dx .
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First of all, one has

2π−2rd−1
∫

Td
K (σ (x))−1 sin2 (π tσ (x) · x) |x |−d−1 dx

≤ 2rd−1t2
∫

Td
K (σ (x))−1 (σ (x) · x)2 |x |−d−1 dx ≤ Crd−1t2.

Then observe that σ (x) is smooth in R
d \ {0} and homogeneous of degree zero.

Moreover, as mentioned before, c |x | ≤ σ (x) · x ≤ C |x | for some C ≥ c > 0 and
every x ∈ R

d . Hence also K (σ (x))−1 is smooth in R
d \ {0} and homogeneous of

degree zero, and for every x ∈ T
d and n ∈ Z

d \ {0} one has

∣
∣
∣K (σ (n + x))−1 − K (σ (n))−1

∣
∣
∣ ≤ C |n|−1 .

Hence,

2π−2rd−1
∑

n∈Zd\{0}

∫

Td

∣
∣
∣K (σ (n + x))−1 − K (σ (n))−1

∣
∣
∣

× sin2 (π tσ (n + x) · (n + x)) |n + x |−d−1 dx

≤ Crd−1t2
∑

0<|n|≤1/t

|n|−d + Crd−1
∑

1/t<|n|<+∞
|n|−d−2

≤ Crd−1t2 log (2 + 1/t) .

Similarly, by the trigonometric identity sin2(x)− sin2(y) = sin(x + y) sin(x − y),
and since |σ(x) · x − σ(y) · y| ≤ C |x − y|,

2π−2rd−1
∑

n∈Zd\{0}
K (σ (n))−1

∫

Td
|n + x |−d−1

×
∣
∣
∣sin2 (π tσ (n + x) · (n + x)) − sin2 (π tσ (n) · n)

∣
∣
∣ dx

≤ 2π−2rd−1
∑

n∈Zd\{0}
K (σ (n))−1

∫

Td
|sin (π t (σ (n + x) · (n + x) + σ (n) · n))|

× |sin (π t (σ (n + x) · (n + x) − σ (n) · n))| |n + x |−d−1 dx

≤ Crd−1t2
∑

0<|n|≤1/t

|n|−d + Crd−1t
∑

1/t<|n|<+∞
|n|−d−1

≤ Crd−1t2 log (2 + 1/t) .
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And the last term is

2π−2rd−1
∑

n∈Zd\{0}
K (σ (n))−1 sin2 (π tσ (n) · n)

∫

Td

∣
∣
∣|n + x |−d−1 − |n|−d−1

∣
∣
∣ dx

≤ Crd−1t2
∑

0<|n|≤1/t

|n|−d + Crd−1
∑

1/t<|n|<+∞
|n|−d−2 dx

≤ Crd−1t2 log (2 + 1/t) .

Finally, an integration in polar coordinates x = ρϑ with a change of variables gives

2π−2rd−1
∫

Rd
K (σ (x))−1 sin2 (π tσ (x) · x) |x |−d−1 dx

= 2π−2rd−1
∫ +∞

0

∫

{|ϑ |=1}
K (σ (ϑ))−1 sin2 (π tρσ (ϑ) · ϑ) ρ−2dρdϑ

= 2π−1rd−1t

(∫ +∞

0
sin2 (s) s−2ds

)(∫

{|ϑ |=1}
K (σ (ϑ))−1 σ (ϑ) · ϑ dϑ

)

.

The first integral can be evaluated using residues,

∫ +∞

0

sin2 (s)

s2
ds =

∫ +∞

−∞
1 − cos (2s)

4s2
ds = Re

(∫ +∞

−∞
1 − exp (2i z)

4z2
dz

)

= π

2
.

The integral with the curvature is d times the volume of the convex body Ω ,

∫

{|ϑ |=1}
K (σ (ϑ))−1 σ (ϑ) · ϑ dϑ = d |Ω| .

This comes from the definition of the curvature as the Jacobian determinant of the
Gauss map. K (σ (ϑ))−1 dϑ = dA is an infinitesimal element of surface area of ∂Ω ,
and σ (ϑ) · ϑ is the height of the cone with vertex 0 and base dA. Hence,

2π−2rd−1
∫

Rd
K (σ (x))−1 sin2 (π tσ (x) · x) |x |−d−1 dx = d |Ω| rd−1t .

��
Observe that the only restriction on the indexes in the above lemmas is r ≥ 1 and

t ≤ r , and the assumption t ≤ r−α with α > (d − 1) / (d + 1) in the statement of the
theorem has not been used. It remains to estimate Y (r , t), and this is the most delicate
part of the proof. If one assumes that the series that defines Y (r , t) is asymptotic
to an integral, then one can easily check that this integral is negligible with respect
to X (r , t). We do not know under which assumptions the series that defines Y (r , t)
is asymptotic to an integral, as it is the case for X (r , t). But, by Remark 3.1, some
assumptions are necessary. For this reason we need to follow a more circuitous path.
By the Cauchy–Schwarz inequality, |Y (r , t)| ≤ X (r , t) ≤ Crd−1t . In order to obtain
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some better estimates one has to take into account the cancellations in the series that
defines Y (r , t). We need a couple of preliminary lemmas.

Lemma 2.6 If X and Y are two convex bodieswith smooth boundarieswith everywhere
positive Gaussian curvature, then also the Minkowski sum X + Y , that is the set
obtained by adding each vector in X to each vector in Y , is a convex body with smooth
boundary with everywhere positive curvature.

Proof The fact that X + Y has smooth boundary is proved in [11]. The fact that the
boundary has positive Gaussian curvature can be seen as follows. The strict convexity
of X and Y implies that for every z on the boundary ∂ (X + Y ) there exist only one
x ∈ ∂X and one y ∈ ∂Y with z = x + y . The curvature assumption implies that
there exist balls Bx and By with x ∈ ∂Bx , X ⊆ Bx , y ∈ ∂By , Y ⊆ By . It follows that
x + y ∈ ∂

(

Bx + By
)

and X + Y ⊆ Bx + By . Hence the curvature of ∂ (X + Y ) at
the point x + y is at least as large as the curvature of Bx + By , which is a ball with
radius the sum of the radii of Bx and By . By the way, without the curvature assumption
the smoothness of the Minkowsky sum may fail. Indeed it has been proved in [10]
that there exist convex sets in the plane with real analytic boundaries, but with the
smoothness of the sum not exceeding C20/3. And if the boundaries are only C∞ then
the smoothness of the sum may break out at the level C5. ��
Lemma 2.7 Denote by σ (±x) the points of the boundary ∂Ω with outward unit nor-
mals ±x/ |x |, and define

ζ (x) = (σ (x) − σ (−x)) · x .

Also denote by A = Ω + (−Ω) the Minkowski sum of Ω and −Ω . Finally, assume
that ψ (x) is a smooth function in R

d with support in ε ≤ |x | ≤ 1/ε, and such that
for some η and for every multi index k,

∣
∣
∣
∣

∂k

∂xk
ψ (s)

∣
∣
∣
∣
≤ C (k) ε−η−|k|.

Then for every j > 0 there exist positive constants C and γ , such that for every ξ in
R
d , every λ > 0, and every 0 < ε < 1, one has

∣
∣
∣
∣

∫

Rd
ψ (x) exp (2π iλ (ζ (x) − ξ · x)) dx

∣
∣
∣
∣

≤ Cε−γ min
{

λ−(d−1)/2, (λ distance {ξ, ∂A})− j
}

.

Proof Recall that σ (x) · x = supy∈Ω {y · x}, the support function of the convex
body, has gradient ∇ (σ (x) · x) = σ (x). See [1], or [16, Corollary 1.7.3]. Also
observe that when x varies in R

d \ {0}, then σ (x) − σ (−x) describes the boundary
of A = Ω + (−Ω). Hence,

|∇ ((σ (x) − σ (−x)) · x − ξ · x)| = |(σ (x) − σ (−x)) − ξ | ≥ distance {ξ, ∂A} .
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8918 L. Colzani et al.

Then a repeated integration by parts gives

∣
∣
∣
∣

∫

Rd
ψ (x) exp (2π iλ (ζ (x) − ξ · x)) dx

∣
∣
∣
∣
≤ Cε−γ (λ distance {ξ, ∂A})− j .

See e.g., [19,ChapterVIII, §2.1]. This proves half of the lemma. In order to complete
the proof, observe that the function (σ (x) − σ (−x)) · x is the support function of
A = Ω + (−Ω), and recall that, by the previous lemma, the boundary of this body
is smooth with everywhere positive Gaussian curvature. It follows that this support
function is homogeneous of degree one, and that one eigenvalue of the Hessian matrix
is zero, but all other eigenvalues are positive. See [16, Corollary 2.5.2]. Hence, the
Hessian of the phase ζ (x) − ξ · x , which is the Hessian of (σ (x) − σ (−x)) · x , has
rank d − 1, and it follows that

∣
∣
∣
∣

∫

Rd
ψ (x) exp (2π iλ (ζ (x) − ξ · x)) dx

∣
∣
∣
∣
≤ Cε−γ λ−(d−1)/2.

In order to see this, it suffices to apply the coarea formula to the level set of the
function ζ (x). Then one ends up to estimate the Fourier transformof a smoothmeasure
carried by a smooth surfacewith everywhere positiveGaussian curvature. See e.g. [12],
or [19, Chapter VIII,§2.3 and §3.1]. ��
Lemma 2.8 With the definition of Y (r , t) in Lemma 2.4, if α > (d − 1)/(d + 1)
there exist positive constants C and β such that for every 1 ≤ r < +∞ and every
0 < t ≤ r−α one has,

|Y (r , t)| ≤ C |Ω (r , t)| tβ.

Proof In order to simplify the notation, set

ϑ = π (d − 1) /2,

ζ (x) = (σ (x) − σ (−x)) · x,
ϕ (x) = K (σ (x))−1/2 K (σ (−x))−1/2 sin (πσ (x) · x) sin (πσ (−x) · x) |x |−d−1 .

Then one can rewrite the series that defines Y (r , t) as

Y (r , t) = −2π−2rd−1t
∑

n∈Zd\{0}
tdϕ (tn) cos

(

2πr t−1ζ (tn) − ϑ
)

.

Observe that the factor rd−1t in front of the series is of the order of |Ω (r , t)|.
Hence, in order to prove the lemma it suffices to show that the series is bounded by
Ctβ when t ≤ r−α . Let 0 < ε < 1/2 and let χ (s) be a smooth function with support
in ε ≤ s ≤ 1/ε, with 0 ≤ χ (s) ≤ 1 and equal to 1 in 2ε ≤ s ≤ 1/2ε, and with

∣
∣
∣
∣

d j

ds j
χ (s)

∣
∣
∣
∣
≤ Cε− j .

123



Variance of Lattice Point Counting in Thin Annuli 8919

With this cut off function, one can decompose

∑

n∈Zd\{0}
tdϕ (tn) cos

(

2πr t−1ζ (tn) − ϑ
)

=
∑

n∈Zd\{0}
td (1 − χ (|tn|)) ϕ (tn) cos

(

2πr t−1ζ (tn) − ϑ
)

+
∑

n∈Zd\{0}
tdχ (|tn|) ϕ (tn) cos

(

2πr t−1ζ (tn) − ϑ
)

.

One has
∣
∣
∣
∣
∣
∣

∑

n∈Zd\{0}
td (1 − χ (|tn|)) ϕ (tn) cos

(

2πr t−1ζ (tn) − ϑ
)

∣
∣
∣
∣
∣
∣

≤ π2 sup
{

|σ (n)|2 K (σ (n))−1
}

t
∑

0<|n|<2ε/t

|n|1−d

+ sup
{

K (σ (n))−1
}

t−1
∑

1/(2εt)<|n|<+∞
|n|−d−1

≤ Cε.

Again, in order to simplify a bit the notation, set

f (x) = χ (|x |) ϕ (x) cos
(

2πr t−1ζ (x) − ϑ
)

.

Then, if f̂ (ξ) = ∫

Rd f (x) exp (−2π iξ · x) dx is the Fourier transform of f (x),
the Poisson summation formula with a change of variables gives

∑

n∈Zd\{0}
tdχ (|tn|) ϕ (tn) cos

(

2πr t−1ζ (tn) − ϑ
)

=
∑

n∈Zd

td f (tn) =
∑

n∈Zd

f̂
(

t−1n
)

.

Observe that the function f (x) is smooth with compact support, and that f̂ (ξ)

has fast decay at infinity. In particular, in the above series there are no problems of
convergence. Writing a cosine as a sum of exponentials, one has

f̂
(

t−1n
)

=
∫

Rd
χ (|x |) ϕ (x) cos

(

2πr t−1ζ (x) − ϑ
)

exp
(

−2π i t−1n · x
)

dx

= 2−1 exp (−iϑ)

∫

Rd
χ (|x |) ϕ (x) exp

(

2π ir t−1
(

ζ (x) − r−1n · x
))

dx

+ 2−1 exp (iϑ)

∫

Rd
χ (|x |) ϕ (x) exp

(

2π ir t−1
(

−ζ (x) − r−1n · x
))

dx .
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Then the previous lemma with λ = r t−1 and ξ = ±r−1n gives for every j ,

∣
∣
∣ f̂
(

t−1n
)∣
∣
∣ ≤ Cε−γ min

{(

r t−1
)−(d−1)/2

,
(

t−1distance {n, ∂ (r A)}
)− j

}

,

where the term ±n in the right-hand side has been replaced by n because A is sym-
metric.

At this point, without pretense of rigor one could conclude the proof as follows. The
above Fourier transform is concentrated within the annulus {distance{n, ∂(r A)} ≤
t} which has a measure dominated by Crd−1t , and in this annulus

∣
∣ f̂
(

t−1n
)∣
∣ ≤

Cε−γ
(

r t−1
)−(d−1)/2

. This should imply that

∑

n∈Zd

∣
∣
∣ f̂
(

t−1n
)∣
∣
∣ ≤ Cε−γ

(

r t−1
)−(d−1)/2

rd−1t = Cε−γ r (d−1)/2t (d+1)/2.

If t ≤ r−α with α > (d − 1) / (d + 1) , then one can choose ε → 0+ such that
ε−γ r (d−1)/2t (d+1)/2 → 0+ as r → +∞, and this would conclude this pseudo proof.
The proof with full details is a bit more involved. For every 0 < s < 1,

∑

n∈Zd

∣
∣
∣ f̂
(

t−1n
)∣
∣
∣ ≤ Cε−γ r−(d−1)/2t (d−1)/2

∑

distance{n, ∂(r A)}≤s

1

+ Cε−γ t j s− j
∑

distance{n, ∂(r A)}≤1

1

+ Cε−γ t j
+∞
∑

k=1

2− jk

⎛

⎝
∑

distance{n, ∂(r A)}≤2k

1

⎞

⎠ .

In order to estimate the sum over {distance {n, ∂ (r A)} ≤ s}, observe that for some
positive constant c and for every s < 1 ≤ r one has

{distance {n, ∂ (r A)} ≤ s} ⊆ (r + cs) A \ (r − cs) A.

By Lemma 2.6 the convex body A = Ω + (−Ω) has a smooth boundary with
everywhere positive Gaussian curvature, and it has been proved in [5,6] that there
exists a positive constant C such that for every r ≥ 1,

∣
∣
∣
∣
∣

∑

n∈r A
1 − rd |A|

∣
∣
∣
∣
∣
≤ Crd(d−1)/(d+1).
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See also [7, Theorem 7.7.16]. This implies that

∑

distance{n, ∂(r A)}≤s

1

≤
∣
∣
∣
∣
∣
∣

∑

n∈(r+cs)A

1 − (r + cs)d |A|
∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣

∑

n∈(r−cs)A

1 − (r − cs)d |A|
∣
∣
∣
∣
∣
∣

+
∣
∣
∣(r + cs)d − (r − cs)d

∣
∣
∣ |A|

≤ C
(

rd(d−1)/(d+1) + rd−1s
)

.

The choice s = r−(d−1)/(d+1), so that rd(d−1)/(d+1) = rd−1s, then gives

ε−γ r−(d−1)/2t (d−1)/2
∑

distance{n, ∂(r A)}≤s

1 ≤ Cε−γ r (d−1)2/(2d+2)t (d−1)/2.

In order to estimate the sum over
{

distance {n, ∂ (r A)} ≤ 2k
}

, observe that

∑

distance{n, ∂(r A)}≤2k

1 ≤
{

Crd−12k if 2k ≤ r ,

C2dk if 2k ≥ r .

It follows that, with the choice s = r−(d−1)/(d+1),

ε−γ t j s− j
∑

distance{n, ∂(r A)}≤1

1 ≤ Cε−γ rd−1+ j(d−1)/(d+1)t j .

And if j is suitably large it also follows that

ε−γ t j
+∞
∑

k=1

2− jk

⎛

⎝
∑

distance{n, ∂(r A)}≤2k

1

⎞

⎠ ≤ Cε−γ rd−1t j .

Collecting all these estimates, and assuming that t ≤ r−α for some α >

(d − 1) / (d + 1) and that j is sufficiently large, one obtains that

∑

n∈Zd

∣
∣
∣ f̂
(

t−1n
)∣
∣
∣

≤ Cε−γ
(

r (d−1)2/(2d+2)t (d−1)/2 + rd−1+ j(d−1)/(d+1)t j + rd−1t j
)

≤ Cε−γ
(

r (d−1)2/(2d+2)t (d−1)/2 + rd−1+ j(d−1)/(d+1)t j
)
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≤ Cε−γ r (d−1)2/(2d+2)t (d−1)/2
(

1 + rd−1
(

r (d−1)/(d+1)t
) j−(d−1)/2

)

≤ Cε−γ
(

r (d−1)/(d+1)t
)(d−1)/2

.

Assuming again that t ≤ r−α for some α > (d − 1) / (d + 1), and with the choice

ε = (r (d−1)/(d+1)t
)(d−1)/(2γ+2)

, one obtains

|Y (r , t)| ≤ C |Ω (r , t)|
(

ε + ε−γ
(

r (d−1)/(d+1)t
)(d−1)/2

)

≤ C |Ω (r , t)|
(

r (d−1)/(d+1)t
)(d−1)/(2γ+2)

≤ C |Ω (r , t)|
(

t1−(d−1)/((d+1)α)
)(d−1)/(2γ+2)

.

Finally, in order to prove the lemma it suffices to choose

β ≤

(

α − d − 1

d + 1

)

(d − 1)

α (2γ + 2)
.

��
Proof of Theorem 1.1 By the previous lemmas, choosing β < 1 in Lemma 2.8, one has

|W (r , t)| + |Z(r , t)| + |Y (r , t)|
≤ C |Ω(r , t)|

(

t log(2 + 1/t) + tr−1 log(2 + 1/t) + tβ
)

≤ C |Ω(r , t)|tβ

��

3 Final Remarks

We conclude with some remarks.

Remark 3.1 As said in the introduction, for the validity of the theorem the assumption
that the widths of the annuli converge to zero does not suffice, and one has to require a
suitable speed. Indeed in [15] a somehow stronger failure of an asymptotic estimate is
proved. In any dimension d the variance of spherical annuli {r − t/2 < |x | ≤ r + t/2}
is always smaller than Crd−1t , and for some sequences r → +∞ it is larger than
crd−1t . Moreover, there exist sequences r → +∞ and t → +∞ with associated
variance much smaller than crd−1t for every c > 0. In dimension d ≡ 3 modulo 4 this
also holds for some sequences of widths that stay bounded or that tend to zero slower
than any negative power of the radii. This is related to the location of the zeroes of
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the Fourier transform of an annulus. See also [2] for related results on higher order
moments.

Remark 3.2 As said in the introduction, the variance of annuli with boundary points
of zero curvature may be much larger than the mean, and an asymptotic estimate of
the variance may fail. A simple example are the flat annuli in the plane generated by
squares with sides parallel to the axes,

A = {x = (x1, x2) : n − t/2 < max {|x1| , |x2|} ≤ n + t/2} ,

B = {x = (x1, x2) : n < max {|x1| , |x2|} ≤ n + t} .

The diameters and thicknesses of these two annuli are approximately the same, but
the random variables that count the lattice points are quite different when n is a large
integer and t is a small positive number. The random variable N (A, x) that counts the
number of integer points in A − x takes the value 8n on a set with measure t2, the
value 4n on a set with measure 2t − 2t2, and 0 otherwise, and the mean and variance
are

∫

T2
N (A, x)dx = 8nt,

∫

T2
|N (A, x) − 8nt |2 dx = 32n2t − 32n2t2 ∼ 32n2t .

Similarly, the random variable N (B, x) that counts the number of integer points in
B − x takes the value 4n + 1 on a set with measure 4t2, the value 2n on a set with
measure 4t − 8t2, and 0 otherwise, and the mean and variance are

∫

T2
N (B, x)dx = 8nt + 4t2 ∼ 8nt,

∫

T2
|N (B, x) − (8nt + 4t2)|2dx = 16n2t − 32n2t2 + 32nt2 − 64nt3 + 4t2 − 16t4

∼ 16n2t .

Observe that the means of N (A, x) and N (B, x) are approximately the same and
they are much smaller than the variances, and that the variance of N (A, x) is about
twice the variance of N (B, x). In particular, the variances of these flat annuli have a
sort of oscillating behavior.

Remark 3.3 The above are estimates of the discrepancy between volume and integer
points in translated annuli. As in [8,13,14,17], one may ask about similar estimates
when the annuli are not translated and the averages are with respect to dilations. We
suspect that the discrepancy with respect to dilations of spherical annuli may be much
larger than the discrepancy with respect to translations, and indeed in [8] it is proved
that this is the case for annuli in the plane, that is in dimension d = 2.

123



8924 L. Colzani et al.

Acknowledgements The authors acknowledge support by the GNAMPA - INdAM Project 2019 “Dis-
tribuzione uniforme di punti su varietà”.

Funding Open access funding provided by Università degli Studi di Bergamo within the CRUI-CARE
Agreement.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bonnesen, T., Fenchel, W.: Theory of Convex Bodies. BCS Associates, Moscow, ID (1987)
2. Brandolini, L., Colzani, L., Gigante, G., Travaglini, G.: L p and Weak − L p estimates for the number

of integer points in translated domains. Math. Proc. Camb. Philos. Soc. 159, 471–480 (2015)
3. Cheng,Z., Lebowitz, J.L.,Major, P.:On the number of lattice points between twoenlarged and randomly

shifted copies of an oval. Probab. Theory Relat. Fields 100, 253–268 (1994)
4. Herz, C.S.: Fourier transforms related to convex sets. Ann. Math. 75, 81–92 (1962)
5. Herz, C.S.: On the number of lattice points in a convex set. Am. J. Math. 84, 126–133 (1962)
6. Hlawka, E.: Uber Integrale auf convexen Korpen, I, II. Monatsh. Math. 54(1–36), 81–99 (1950)
7. Hörmander, L.: TheAnalysis ofLinear PartialDifferentialOperators I—Distribution theory andFourier

analysis. Springer-Verlag, Berlin (1983)
8. Hughes, C.P., Rudnik, Z.: On the distribution of lattice points in thin annuli. Int. Math. Res. Not. IMRN

13, 637–657 (2004)
9. Kendall, D.: On the number of lattice points inside a random oval. Q. J. Math. 19, 1–26 (1948)

10. Kiselman, C.O.: Smoothness of vector sums of plane convex sets. Math. Scand. 60, 239–252 (1987)
11. Krantz, S.G., Parks, H.R.: On the vector sum of two convex sets in space. Can. J. Math. 43, 347–355

(1991)
12. Littman, W.: Fourier transforms of surface-carried measures and differentiability of surface averages.

Bull. Am. Math. Soc. 69, 766–770 (1963)
13. Major, P.: Poisson law for the number of lattice points in a random strip with finite area. Probab. Theory

Relat. Fields 92, 423–464 (1992)
14. Minami, N.: On the Poisson limit theorems of Sinai and Major. Commun. Math. Phys. 213, 203–247

(2000)
15. Parnovski, L., Sidorova, N.: Critical dimensions for counting lattice points in Euclidean annuli. Math.

Model. Nat. Phenom. 5, 293–316 (2010)
16. Schneider, R.: ConvexBodies: TheBrunnMinkowski Theory. CambridgeUniversity Press, Cambridge

(2014)
17. Sinai, Y.G.: Poisson distribution in a geometric problem. Adv. Sov. Math. 3, 199–214 (1991)
18. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University

Press, Princeton, NJ (1971)
19. Stein, E.M.: Harmonic Analysis, Real Variable Methods, Orthogonality, and Oscillatory Integrals.

Princeton University Press, Princeton, NJ (1993)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/

	Variance of Lattice Point Counting in Thin Annuli
	Abstract
	1 Introduction
	2 Proof of the Main Result
	3 Final Remarks
	Acknowledgements
	References




