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Abstract
The enhancement of nuclear relaxation rates due to the interaction with a paramagnetic center (known as Paramagnetic 
Relaxation Enhancement) is a powerful source of structural and dynamics information, widely used in structural biology. 
However, many signals affected by the hyperfine interaction relax faster than the evolution periods of common NMR experi-
ments and therefore they are broadened beyond detection. This gives rise to a so-called blind sphere around the paramagnetic 
center, which is a major limitation in the use of PREs. Reducing the blind sphere is extremely important in paramagnetic 
metalloproteins. The identification, characterization, and proper structural restraining of the first coordination sphere of the 
metal ion(s) and its immediate neighboring regions is key to understand their biological function. The novel HSQC scheme 
we propose here, that we termed R2-weighted, HSQC-AP, achieves this aim by detecting signals that escaped detection in 
a conventional HSQC experiment and provides fully reliable R2 values in the range of 1H R2 rates ca. 50–400 s−1. Indepen-
dently on the type of paramagnetic center and on the size of the molecule, this experiment decreases the radius of the blind 
sphere and increases the number of detectable PREs. Here, we report the validation of this approach for the case of PioC, a 
small protein containing a high potential 4Fe-4S cluster in the reduced [Fe4S4]2+ form. The blind sphere was contracted to 
a minimal extent, enabling the measurement of R2 rates for the cluster coordinating residues.

Keywords  Paramagnetic NMR · Iron sulfur proteins · Pulse sequences · NMR based structural restraints · Transverse 
relaxation · Paramagnetic relaxation enhancement

Introduction

The hyperfine interaction between electron and nuclear spins 
gives rise to additional contributions to chemical shifts and 
nuclear relaxation, both of which can be used as a source 
of structural restraints (Piccioli and Turano 2015; Turner 
et al. 1998). Nowadays, NMR solution structures of para-
magnetic macromolecules are obtained by a combination of 

conventional restraints (Ab et al. 2006; Mori et al. 2008), 
such as NOE and residual dipolar couplings, and of para-
magnetic-based restraints (Arnesano et al. 2006; Clore 2015; 
Kudhair, et al. 2280; Parigi et al. 2019; Pintacuda et al. 2007). 
Depending on which paramagnet is present in the system, 
different combinations of contact shifts, pseudocontact shifts, 
paramagnetic relaxation enhancements and cross correlation 
rates can be used (Koehler and Meiler 2011; Clore and Iwa-
hara 2009; Kateb and Piccioli 2003; Pintacuda 2004). How-
ever, since about two decades, many groups have promoted 
the use of paramagnetism-based NMR restraints to study also 
diamagnetic proteins: metal binding tags have been used as 
spin-labels and provide various restraints capable to comple-
ment the NMR information available on a native, diamag-
netic, derivative (Iwahara et al. 2004; Miao 2019; Matei and 
Gronenborn 2016; Liu et al. 2014; Nitsche and Otting 2017; 
Joss and Haussinger 2019). NMR of paramagnetic systems 
is not anymore a playground reserved to scientists working 
with inorganic or bio-inorganic systems, but a tool for a larger 
community of structural biologists with many potential appli-
cations (Tang et al. 2006; Softley et al. 2020).
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Very recently, we have shown that structural restraints 
derived from Paramagnetic Relaxation Enhancements (PRE) 
can be used as the unique source of restraints for the struc-
ture calculation of small metalloproteins (Trindade et al. 
2020b). A key point for a successful PRE-only approach 
is the availability of many accurate relaxation rate values 
measured throughout the entire protein, including the close 
proximity of the paramagnetic center, where nuclear spins 
are strongly affected by paramagnetism. When hyperfine 
shifted signals are well isolated outside the bulk diamag-
netic envelope, they can be characterized using 1D experi-
ments and relaxation based filters (Inubushi and Becker 
1983), although usually only a few signals, arising from 
the side chains of metal-bound residues, can be identified 
via this approach (Hansen and Led 2006; Sato et al. 2003; 
Brancaccio 2017). Paramagnetic relaxation depends on γ2 of 
the observed nucleus, therefore 13C or 15N direct detection 
(Arnesano 2003; Kolczak et al. 1999; Lin et al. 2003) have 
been successful as an efficient alternative to 1H detected 
experiments, not only for assignment purposes (Bermel 
2005; Machonkin et  al. 2002; Bertini et  al. 2005b) but 
also for the obtainment of PREs. However, the 15 N HSQC 
experiment still remains the “easiest” molecular fingerprint, 
therefore methods to exploit the use of 1HN T1 and T2 rates 
are welcome.

To date, relaxation-based restraints are indeed obtained 
via 1H T1 and T2 measurements from 15N HSQC-type exper-
iments (Donaldson 2001; Iwahara et al. 2007). However, 
many signals affected by the hyperfine interaction relax 
faster than the evolution periods used in these experiments; 
therefore, they will be broadened beyond detection or, when 
they are detected, their intensity decay cannot be properly 
sampled. Thus, we need to design novel pulse sequences to 
measure R2 and R1 rates of resonances that escape detection 
in conventional HSQC experiments. For longitudinal 1H 
relaxation rates, we have shown that an inversion recovery 
filtered 15N HSQC experiment acquired in antiphase (15N 
IR-HSQC-AP) (Ciofi-Baffoni et al. 2014) is very effec-
tive for the identification of signals severely affected by 
paramagnetism, and also for obtaining R1 rates faster than 
those measurable in established experiments. However, it 
has been reported that 1H R2 values are less susceptible to 
internal motions and cross relaxation than 1H R1 values (Iwa-
hara et al. 2004; Iwahara and Clore 2010). Therefore, we 
are interested to develop an experiment to obtain accurate 
measurements of 1H transverse relaxation also in the close 
proximity of a paramagnetic center.

The experiment we present here has been customized 
for the case of the HiPIP (High Potential Iron-sulfur Pro-
tein) PioC from Rhodopseudomonas palustris TIE-1 (Bird, 
et al. 2014). PioC has 54 amino acids, contains the typical 
HiPIP binding motif CXXCXnCXmC and it is the smallest 
HiPIP isolated so far. Due to the high reduction potential 

(E0 =  + 450 mV vs SHE) of the [Fe4S4]3+/[Fe4S4]2+ redox 
pair (both oxidation states are paramagnetic), the protein is 
stable in the reduced [Fe4S4]2+ state. The paramagnetic 1H 
NMR spectrum of PioC is very similar to the NMR spectra 
of other HiPIPs in the reduced state (Bertini 1992), thus 
indicating that the electronic relaxation time (τe) in PioC 
must be similar to previously studied HiPIPs (Banci et al. 
2018). However, PioC is the smallest HiPIP isolated so 
far and about 60% of the protein is affected by paramag-
netic relaxation. Counter-intuitively, the small size of the 
protein makes it more difficult to study, because paramag-
netic effects are active in the majority of the protein, scalar 
and dipolar couplings are quenched and a number of HN 
signals are not observable in a conventional HSQC experi-
ment (Cheng and Markley 1995; Machonkin et al. 2005; 
Lin 2009). Throughout this article we will first review why 
experimental approaches that are effective to study proteins 
containing metal bindings tags are not equally efficient for 
native metalloproteins; then we will discuss how implemen-
tation of this novel HSQC scheme allows the measurement 
of relaxation rate values in a range 50–400 s−1. Rates in this 
range were once very difficult to measure reliably, however 
they are necessary to reduce the blind sphere enabling the 
characterization, and proper structural restraining of the first 
coordination sphere of the metal ion(s) and its immediate 
surrounding residues.

Materials and methods

Protein expression and purification

PioC was expressed and purified as previously reported 
(Bird et al. 2014). Uniformly 15N labeled samples of PioC 
were produced and the expression and purification protocol 
was identical throughout except in the addition of ammo-
nium sulfate (15N2, 99%) in the M9 minimal media. BL21 
DE3 cells were double transformed with pET32h, a plasmid 
containing the construct thioredoxin–6xHis–thrombin cleav-
age site–PioC, and with pDB1281, a plasmid that carries 
the machinery for the assembly of iron-sulfur clusters. Cells 
were grown in Luria–Bertani (LB) medium supplemented 
with 100 mg*dm−3 ampicillin and 35 mg*dm−3 chloram-
phenicol until the OD600nm of 0.6 where they were induced 
with 1.0  mM arabinose and 20  μM FeCl3 and 200  μM 
cysteine were added. Cells were again incubated until the 
OD600nm of 1 and then harvested and washed in M9 mini-
mal media salts before resuspension in M9 minimal media. 
Once re-suspended, cells were incubated for one hour before 
induction with 0.5 mM IPTG. After 4 h cells were harvested 
by centrifugation and disrupted using a French Press at 
1000 psi. The lysate was ultra-centrifuged at 204,709×g for 
90 min at 4 °C to remove cell membranes and debris and the 
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supernatant was dialyzed overnight against 50 mM potas-
sium phosphate buffer pH 5.8 with 300 mM NaCl before 
injection in a His-trap affinity column (GE Healthcare). 
The fraction containing Histag-PioC eluted with 250 mM 
imidazole and was incubated overnight with Thrombin (GE 
Healthcare) for digestion. The final purified PioC (His-tag 
free) was then concentrated from the flow through of a 2nd 
passage through the His-trap column using an Amicon Ultra 
Centrifugal Filter (Millipore) with a 3 kDa cutoff. The purity 
of PioC was confirmed by SDS-PAGE with Blue Safe stain-
ing (NzyTech) and by UV–Visible spectroscopy.

NMR spectroscopy

Measurements of 1H R2 transverse relaxation rates were car-
ried out using 11.7 T Bruker AVANCE 500 equipped with a 
triple resonance, inverse detection, cryoprobe (TXI). 1HN R2 
measurements were obtained from a series of R2-weighted 
15 N-HSQC-AP experiments, developed throughout this arti-
cle. For each experiment, 256 scans were collected over 256 
increments. Acquisition time and recycle delay were 47.1 ms 
and 150 ms. A series of sixteen R2-weighted 15N-HSQC-AP 
experiments was recorded, using INEPT transfer periods of 
0.2 ms, 0.4 ms, 0.6 ms, 0.8 ms, 1.2 ms, 1.6 ms, 2.0 ms, 
2.4 ms, 2.8 ms, 3.2 ms, 4.0 ms, 4.8 ms, 5.6 ms, 6.4 ms, 
8.0 ms, 10.0 ms. Total experimental time was about 58 h. 
1HN R2 measurements have been obtained also with the 
established approach (Donaldson 2001), in which a relaxa-
tion delay T is inserted into the INEPT building block of an 
in-phase 15 N HSQC experiment. For each experiment, 32 
scans were collected over 156 increments, using acquisition 
time and recycle delay of 47.1 ms and 4 s, respectively. A 
series of fourteen15N-HSQC-IP experiments was recorded 
using relaxation delays T of 13.3 ms, 17.3 ms, 21.3 ms, 
33.3 ms, 45.3 ms, 57.3 ms, 69.3 ms, 81.3 ms, 93.3 ms, 
117.3 ms, 141.3 ms, 165.3 ms, 205.3 ms and 245.3 ms. A 
1400 μs selective 1HN inversion pulse was used for 3JHNHα 
decoupling. Total experimental time was about 80 h. Both 
series have been performed using 256 × 1024 data point 
matrices, over spectral windows of 80.0 ppm × 21.7 ppm. 
Squared cosine weighting functions and apodization were 
used in both dimensions prior to FT, spectra dimensions was 
512 × 2048 data points. Peak intensities were used to calcu-
late R2 values, using the equations described in the results 
section. All relaxation data were analyzed using the Bruker 
Topspin Dynamics Center.

NMR assignment of PioC

The backbone NMR assignment of PioC (Trindade et al. 
2020a) has been published on Biomolecular NMR Assign-
ment and deposited in the BMRB data bank (ID 34487).

Results

State of the art: an overview

The state-of-the-art approach for 1H R2 relaxation is to use a 
15N HSQC experiment and insert a relaxation period within 
the INEPT block to measure HN rates (Donaldson 2001). 
Relaxation rates R2 can then be obtained either by collecting, 
for each HN signal, a complete decay curve or by measuring 
R2 rates from a two time-point measurement, thereby ena-
bling the direct determination of R2 values and their asso-
ciated errors without any fitting procedure (Iwahara et al. 
2007). For non-deuterated proteins, band selective 1H 180° 
pulses should be used to avoid the evolution of 3JHNHα cou-
pling during the relaxation period. The paramagnetic con-
tribution to the overall nuclear relaxation is given (Bertini 
et al. 2016) by Eq. (1)

when R2dia and R2obs values can be measured with high pre-
cision and accuracy (Iwahara et al. 2007), then very small 
values of paramagnetic relaxation enhancement R2para can 
be obtained by the difference of the two measured values. 
This has been exploited by attaching a metal binding pep-
tide, such as ATCUN or HHP at the N-terminus site of a 
diamagnetic protein, as shown in Fig. 1a (Donaldson 2001). 
Metal binding peptides containing ions with long electronic 
correlation times, such as, for instance, Cu2+ or Mn2+, pro-
vide paramagnetic relaxation enhancements that can be 
measured, in the case of Cu2+ ion, for all protons located 
approximately 10–30 Å apart from the metal center (Don-
aldson 2001; Harford and Sarkar 1997; Jensen et al. 2004; 
Keizers and Ubbink 2011). The strength of this approach 
is that, within the above range, both R2obs and R2dia can be 
experimentally measured with high accuracy and R2para as 
small as 0.5 s−1 can be obtained, thus allowing the use of 
Paramagnetic Relaxation Enhancement (PRE, hereafter) 
for long metal-to-proton distance restraints. Protein–pro-
tein interaction surfaces and catalytic centers typically fall 
within this range, therefore one could obtain additional 
structural information for protein–protein/protein–ligand 
interactions, structure refinement, etc. (Battiste and Wag-
ner 2000; Hass and Ubbink 2014; Cetiner 2019; Anthis and 
Clore 2015; Spronk 2018). On the other hand, signals at 
less than 12 Å from the copper(II) ion will experience R2para 
larger than 50 s−1, that will give rise to signals that, in the 
R2 experiment, will be very weak and eventually broad-
ened beyond detection. The loss of information typically 
occurs in a protein region where no catalytic reactions or 
biochemical events occur, since the metal binding peptide 
is attached far from the protein core, usually at the N-term 
site. In metalloproteins, however, the topology of the system 

(1)R2obs = R2para + R2dia



434	 Journal of Biomolecular NMR (2020) 74:431–442

1 3

is completely different: the metal center(s) and its first coor-
dination sphere always constitute the core region for the pro-
tein function. Structural biologists are therefore interested 
to obtain detailed information in the close proximity of the 
metal center(s), where the biochemically relevant events 
occur. Assuming the same paramagnetic relaxation enhance-
ment of the previously described situation, we face a loss 
of information in the most interesting part of the protein. 
Such blind region (Balayssac et al. 2006) is, indeed, always 
the core region of a metalloprotein (Fig. 1B). In this frame, 
reducing the blind sphere around the paramagnetic center(s) 
by measuring relaxation rates of nuclear spins that are most 
affected by paramagnetism becomes extremely important.

The replacement of Cu(II), i.e. the metal ion used in the 
case of Ubiquitin shown in Fig. 1a, with another metal ion 
will change the radius of the sphere where paramagnetic 
relaxation enhancement is effective and measurable, but the 

above consideration will remain: the metal center is always 
surrounded by a blind sphere, where signals are broadened 
beyond detection, and by an outer sphere, in which PREs 
can be measured and factorized. The situation is described 
in Fig. 1c, where we considered 50 s−1 as upper limit value 
to obtain reliable R2 measurements and 0.5 s−1 as lower limit 
for the precision of the measurement. At 500 MHz, consider-
ing a protein of small size and neglecting contact relaxation, 
R2 is dominated by the Solomon equation (Solomon 1955) 
which, in turn, depends on the electronic relaxation time. 
For τe = 5*10–9 s, which is an estimate for the electronic 
relaxation time of non-blue Cu2+ chromophores, 1H signals 
at less than 11 Å are predicted to be unobservable while 
those at more than 24 Å are almost unaffected by paramag-
netism. Different cases may occur for iron ions: for a high 
spin (S = 2) Fe2+, with typical τe = 5*10–12 s, the above 
limits would be, respectively, 8 Å and 17 Å, while for a low 

Fig. 1   Measurable paramag-
netic relaxation enhancements 
vs metal-to-proton distances. a 
Assuming a 10 Å blind sphere 
and a 10–30 Å sphere where 
PREs can be measured, the 
use of a metal binding tag at 
the N-term site of Ubiqui-
tin (Donaldson 2001) gives 
measurable PRE for about 90% 
of the protein. b When the 
same relaxation enhancement 
parameters is considered for a 
small metalloprotein such as 
HiPIP (Trindade et al. 2020b), 
more than 70% of the protein 
would fall in the blind sphere. 
c Different electronic correla-
tion times (τe) provide different 
dimensions for the regions 
affected by PREs. Assuming 
50 s1 and 0.5 s−1 as upper and 
lower limits for the detection of 
PREs, the simulated behavior 
of paramagnetic centers with 
different τe is shown
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spin (S = 1/2) Fe3+, with τe = 1*10–12 s, they would be 4 Å 
and 9 Å, respectively. Different electronic relaxation times, 
together with other experimental parameters, such as mag-
netic field strength and protein size will give rise to different 
radii for the blind sphere and for the sphere where PREs are 
measurable. Also the replacement of 1H with 13C or 15 N 
nuclei reduces both spheres and provides an alternate route 
to obtain PREs (Mateos et al. 2019). To extend the range of 
application of PREs in 1H detected experiments it is neces-
sary, on the one hand, to increase the accuracy of experi-
mental methods and observe smaller PRE values and, on the 
other hand, to measure with reliability R2 values larger than 
those achievable with the existing experimental approaches.

As extensively studied in the past, [Fe4S4]2+ clusters in 
proteins have an electronic ground state S = 0 due to the 
antiferromagnetic coupling (Phillips et al. 1970; Mouesca 
and Lamotte 1998; Bertini et al. 1992). However, each iron 
ion is formally in the oxidation state Fe2.5+ and the system is 
paramagnetic at room temperature due to the population of 
the excited energy levels of the electron spin ladder (Banci 
et al. 1990). The distribution of population among the spin 
levels depends on the extent of the antiferromagnetic cou-
pling constant(s) operative in the [Fe4S4]2+ cluster (Blondin 
and Girerd 1990). Therefore, the choice of the parameters to 
input in the Solomon equation to predict the behavior of R2 
vs H-Fe distance in [Fe4S4]2+ clusters is not obvious (Bertini 
et al. 1997): if we consider that each iron ion will relax with 
the same electronic relaxation time of a High Spin Fe2+ ion 
(τe = 5*10–12), and that paramagnetism at room tempera-
ture arises from the population of the first excited state of 
the electron spin energy ladder, characterized by S = 1, we 
obtain, as shown in Fig. 1C, a behavior somehow intermedi-
ate between the two cases considered here for iron ions, with 
expected values for the blind sphere and for the PRE sphere 
of about 6 Å and 13 Å. This makes PioC an ideal test case 
for the optimization of sequences aiming at measuring R2 
rates in the proximity of the cluster.

Pulse sequence description

Here we propose a novel pulse sequence, shown in Fig. 2a, 
in which the relaxation delay is embedded within the INEPT 
evolution, the refocusing INEPT is removed and signal is 
acquired as antiphase doublet as soon as the HyNz mag-
netization is created by the last 1H 90° pulse. We called 
the experiment 1H R2-weighted 15N-HSQC-AP because 
the INEPT period, typically 1/(2JHN), is replaced here by a 
variable relaxation delay T. In this very simple sequence, 1H 
transverse relaxation is active only during the delay T, when 
the 2HxNz coherence evolves from Hy as HxNzsin(πJHNT). 
The relaxation rate of the 2HxNz antiphase term is a combi-
nation of 15 N R1 and 1H R2 relaxation rates; paramagnetic 
relaxation rates have a γ2 dependence from the observed 

nucleus (Solomon 1955; Bertini 1986), therefore the con-
tribution of 15N R1 can be neglected and the observed rates 
are fully due to 1H R2 relaxation (Iwahara et al. 2007). Also 
cross correlation between 1H Curie Spin Relaxation and HN 
dipole–dipole relaxation is not contributing to the observed 
rates (Pintacuda et al. 2003; Mori et al. 2010). In order to 
sample 1H relaxation rates also at T values of a few μs, we 
avoid using pulsed field gradients, generally applied dur-
ing the INEPT period. The delay T can then be arrayed 
from zero to 10 ms to sample the evolution of Hy → 2HxNz 
coherence transfer for half a sinusoidal period (1/J), during 
which 1H R2 relaxation is active. To avoid signal losses due 
to 1H R2 relaxation, the inverse INEPT block is removed 
and the 2HyNz coherence, created by the two 90° pulses at 
the end of 15N evolution, is acquired in antiphase without 
15N decoupling. Removing the 15N decoupling also rules 
out duty cycle problems: without decoupling, one can safely 
use very short recycle delays in order to increase S/N of fast 
relaxing signals and to suppress water signal via progressive 
saturation (Camponeschi et al. 2019). This may affect the 
observed relaxation rates of HN signals; however, when the 
observed values in Eq. (1) are dominated by R2para, water 
saturation should not play a significant role. Another very 
important feature of this sequence is the suitability for cryo-
probes, because there are no risks associated to coil heating 
due to an excess of RF power (Helms and Satterlee 2013). 
The use of a refocusing INEPT and 15N decoupling during 
acquisition is indeed a severe limiting factor for the recycle 
delay that, by no means, could have been as short as we used 
in our experiments.  

The R2-weighted HSQC-AP is essentially the simplest 
possible scheme for measuring 1H R2 relaxation with an 
HSQC-type experiment. Figure 2b shows the features of the 
R2-weighted building block with respect to the relaxation 
building block commonly used (Donaldson 2001). For the 
latter, the relaxation delay T must accommodate the selec-
tive 1H 180° pulse, the Pulsed Field Gradients, the INEPT 
transfer period 2τa. The shortest possible value of the relaxa-
tion delay T is set to about 12 ms, indeed this is why very 
fast relaxing signals are not observed with this approach. 
The removal of the 1H 180° selective pulse and shorter gra-
dients allow one to decrease this value, even though it can’t 
be below 6.5 ms. As shown in Fig. 2b, for an R2 rate of 
70 s−1 signals will be already at 50% of the initial intensity 
at the first time point of the series, while those exceeding 
150 s−1 will be beyond detection after two time points of 
the R2 series, for all these situations the exponential decay 
could not be properly analyzed. On the other hand, the R2-
weighted INEPT building block is highly complementary 
to this approach, because it will monitor the evolution of 
signal intensities during the first 10 ms of the relaxation 
recovery, starting from T period as small as 100 μs, therefore 
being able to monitor also very fast relaxing signals. Another 
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interesting feature of the R2-weighted HSQC is that fast and 
slow relaxing resonances will be measured with comparable 
precision.

As expected, the most representative spectra of the two 
R2 series are rather different. In Fig. 3a, the first time point 
of the exponential decay of the in-phase experiment is 

superimposed to the spectrum of the R2-weighted HSQC-
AP series, recorded with T = 2.4 ms. Several signals, such 
as those of residues 22, 27–28, 36–37, 47–51, are indeed 
observable only in the R2-weighted HSQC-AP, while other 
residues are only barely visible in the first point of the 
exponential decay (e.g. residues 25 and 35). Fast relaxing 

Fig. 2   The 1H R2 weighted 15N HSQC-AP pulse experiment. a Pulse 
sequence used for the experiment. Hard 90° and 180° pulses are 
used for both 1H and 15N channels, using phase x when undefined. 
Phase cycling: φ1 = x, −x, y, −y; φ2 = 2(y), 2(x); φ3 = 2(x), 2(−x); 
φ4 = 4(x), 4(−x); φrec = x, −x, −x, x, −x, x, x, −x. PFG gradients 
of 200  μs were used, with 100  μs for gradient recovery. Standard 
parameters to measure fast relaxing nuclei as follows: aq  =  47  ms, 
T = ranging from 200 μs to 10 ms, recycle delay = 150 ms. b Com-
parison between different R2 relaxation building blocks. Considering 

the relaxation building block shown on the left panel (Donaldson 
2001; Iwahara et al. 2007), using τa = 2.65 ms and T/4 = 1.8 ms as 
shortest possible delay, the exponential decay can be measured from 
about 12.5  ms. Signals with R2 values over 70  s−1 will be lost or 
detected at very weak intensities for few points. In the R2-weighted 
building block shown in the right panel, they could be easily meas-
ured for a sufficient number of time delays in the range 0–10  ms, 
provided signals have enough S/N. The time scales of the two curves 
highlight the complementarity of the two experiments
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signals are much better observed in the R2 weighted experi-
ment, although signals are much broader than in the in-
phase experiment, because they have been acquired as HN 
antiphase doublets. Like homonuclear 1H and 13C cases, a 
dispersion phase mode of the antiphase doublets produces 
the sum of the two dispersive components of opposite phase, 
thus giving rise to a pseudo-singlet with the maximum of 
signal intensity (Turner 1993; Bertini et al. 1994, 2005a). 
As an example, Fig. 3b shows selected rows for His7 and 
Asn27. In the case of His7, which has a negligible R2para 
contribution, we observe that, when the signal linewidth is 
smaller than the splitting of the HN doublet, the typical pat-
tern of an antiphase doublet phased in dispersion mode is 
observed; when signals are broader than the scalar coupling 

constant, like the case of Asn27 (R2 = 221 s−1), the doublet 
splitting is lost and the dispersive component of the doublet 
give rise to a well pseudo observable pseudo singlet. The 
removal of the inverse INEPT prevents transverse relaxation 
to be operative before 1H detection. Indeed, an additional 
refocusing would prevent the observation of signals charac-
terized by T2 shorter than the INEPT period.

Fitting of R2 values. The intensity of observed signals in 
the R2-weighted HSQC-AP can be analyzed according to:

where T is the variable delay. In principle, a three-parameter 
fitting will provide values for I0, J and R2,  respectively 
representing the initial signal intensity, the 1JHN scalar cou-
pling constant, and the 1H R2 relaxation rate. However, the 
interplay between the two parameters J and R2 is such that a 
three parameters fitting of the buildup curves tends either to 
over-estimate J and then compensate it with an under-eval-
uation of R2 values or the other way around (smaller J and 
higher R2 values). We therefore used a two-parameter fitting 
for Eq. (2), with constant J values. As shown in Fig. 4a, for 
J values in the range 92–96 Hz, i.e. the range of admissible 
values for 1JHN scalar coupling at 500 MHz (residual dipolar 
couplings are expected to be negligible at 500 MHz for a 
protein of this size containing a [Fe4S4]2+ cluster), the devia-
tions among calculated R2 values were much smaller than 
the errors observed in each two-parameters fitting. We there-
fore decided to consider values and uncertainties taken from 
the two-parameter fitting obtained using J = 94 Hz as a fixed 
value. Some representative build-up curves are reported in 
Fig. 4b. The R2-weighted, 15 N-HSQC-AP experiment is 
able to measure R2 values for all HN signals of the protein, 
including those belonging to residues of the iron-bound 
cysteines, to residues H-bonded to cluster sulfide ions, and 
those spatially close to the 4Fe-4S cluster although not in 
direct electronic contact with the prosthetic group.

Data evaluation and assessment

The R2 values obtained with the R2-weighted HSQC-AP 
experiments are summarized in Table 1, together with those 
measured using the standard sequence. A data assessment 
is reported in Fig. 5, where, for both series, the value of the 
relative error (ΔR2/R2) vs R2 is shown. When R2 values are 
lower than 45 s−1, the accuracy of the sequence based on 
exponential decay and in-phase acquisition is much higher 
than that of the R2-weighted-HSQC-AP. Indeed, when 
INEPT (2τa) and R2 relaxation (T) evolve into separate build-
ing blocks, a single exponential decay is measured and sev-
eral methods allow one to measure R2 values with very good 
precision and accuracy (Iwahara et al. 2007). However, in the 
range 45–80 s−1 the relative errors become larger than those 

(2)I(t) = �
�
sin(pTJ)exp

(

−T�
�

)

Fig. 3   a 15N HSQC spectra of PioC obtained with an R2-weighted 
15N-HSQC-AP experiment collected with T  =  2.4  ms (blue) and 
the first point of the R2 series collected with the standard experi-
ment with an overall relaxation delay = 12.5 ms (red). Experiments 
were recorded using a 500  MHz NEO-Avance Bruker spectrometer 
equipped with Triple resonances inverse cryoprobe (CP-TXI). R2-
weighted 15N-HSQC-AP was recorded with 256 scans each fid using 
an overall recycle delay of 200  ms, the in-phase experiment with 
16 scans each fid and 4 s as recycle delay. Folded peaks are marked 
with an asterisk. b Expanded plot of selected rows of R2-weighted 
15 N-HSQC-AP, corresponding to His7 and Asn27
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obtained with the R2-weighted-AP and, above 80 s−1, R2 val-
ues are measurable only (with the experimental conditions 
we used to perform the experiments) with the R2-weighted-
AP sequence, up to R2 rates as large as 310 s−1. This indi-
cates that, for signals with R2 rates larger than ca. 50 s−1, the 
R2-weighted-AP sequence should be the preferred method to 
measure relaxation rates, while the standard approach should 
be used in all other cases. Because all backbone HN signals 
of PioC have been identified and assigned and this was the 
fastest rate among them, it is not possible to set the upper 
limit threshold of the R2-weighted-HSQC-AP experiment. 
In principle (see Fig. 2b), one should be able to measure R2 
values up to 400–500 s−1, provided that very broad signals 
do not fall within a crowded spectral region.

The poor agreement between the two sets of values 
obtained with the two experiments and reported in Table 1 
also deserves a comment. Indeed, the R2-weighted HSQC-
AP experiment has been optimized to measure R2 rates of 
fast relaxing signals, which are the target of this experiment. 
To this end, we have used, for the R2-weighted HSQC-AP, 
recycle delays that are a factor 20 shorter than those used 
in the in-phase sequence (200 ms vs 4 s). Due to the fast 
repetition of the experiment, signals with R2 < 35 s−1 suffer 
from partial saturation. As a matter of speculation, it would 

always be possible to perform the R2-weighted HSQC-AP 
experiment with longer recycle delays to properly fit R2 val-
ues of slower relaxing signals. However, the obvious com-
plementarity between the two experiments, given by the time 
scale of the recoveries measurable with the two experiments, 
and the intrinsic higher precision of the in phase experiment 
provided by the single exponential dependence, suggest that 
a combination of two R2 measurements, respectively opti-
mized for the quantification of small and large PREs would 
be, by far, the most efficient approach.

Conclusions

In summary, the R2-weighted HSQC-AP experiment, pro-
posed here, is the simplest experiment for R2 relaxation, in 
which 1H magnetization is kept along the transverse plane 
only during the relaxation delay and t2 acquisition and all 
periods of JHN evolution/refocusing are removed. This sim-
plified scheme not only detects signals that escape detection 
in a conventional HSQC experiment, but measures R2 values 
that are fully reliable, in the range of rates 50–400 s−1. This 
is extremely important for metalloproteins, where the first 
coordination sphere of the metal ion(s) and its immediate 

Fig. 4   Peak intensities in the 
R2-weighted 15N-HSQC-AP 
experiment. Relative intensity 
are expressed with respect to 
I0 term of Eq. (2). a Buildup 
curves obtained with a two-
parameter fitting of Eq. (2) 
using fixed J values. Fitted 
intensities are those of the 
R2-weighted 15N-HSQC-AP 
experiment for the case of 
Cys22 HN signal. When J was 
varied from 92 to 96 Hz, the 
interplay between J and R2 
provide essentially the same 
best fitting curve, with R2 
values in the range 308–319 s−1. 
The uncertainty of R2 due to 
the admissible values of J is 
smaller than the standard error 
(± 19.6 s−1) of each individual 
fitting. b Experimental build-up 
curves of some selected signals. 
Curve fitting using a two-
parameter fit and J = 94 Hz give 
R2 values as indicated in Figure
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Table 1   500 MHz, 298 K, 
observed transverse relaxation 
rates for PioC HN amide 
protons

δ1H (ppm) δ15 N (ppm) residue R2 (s−1) AP error (s−1) AP R2 (s−1) IP error (s−1) AP

VAL 1

8.26 117.2 THR 2 11.1 0.4
8.42 123.7 LYS 3 15.4 1.3
8.43 121.8 LYS 4 23.0 6.9 19.1 1.5
8.76 122.3 ALA 5 25.8 7.3 23.4 0.8
9.08 115.2 SER 6 38.8 5.2 17.8 0.6
9.64 116.3 HIS 7 37.8 4.4 21.3 0.8
8.49 116.5 LYS 8 52.9 19.1 32.8 2.2
8.13 119.5 ASP 9 35.3 5.3 16.9 0.7
8.23 118.2 ALA 10 34.6 4.3 19.6 0.8
7.69 105.0 GLY 11 46.8 3.9 20.0 1.4
8.19 116.3 TYR​ 12 36.6 3.8 29.9 1.5
8.67 124.5 GLN 13 54.3 3.8 46.4 4.1
8.22 115.2 GLU 14 19.4 1.1
7.29 112.8 SER 15 21.9 5.8 21.6 1.0

PRO 16
7.92 116.4 ASN 17 31.2 4.4 22.8 1.1
8.17 111.6 GLY 18 43.5 5.2 25.1 1.5
8.78 126.9 ALA 19 52.6 12.0 44.4 2.8
7.62 118.4 LYS 20 41.8 10.9 17.8 0.8
7.47 115.9 ARG​ 21 38.0 2.8 44.4 3.1
9.47 131.4 CYS 22 313.6 19.6 n.o
8.62 97.5 GLY 23 60.3 6.2 48.8 6.3
8.62 109.8 THR 24 45.9 4.1 42.0 2.8
8.36 130.0 CYS 25 65.0 5.1 44.1 7.5
9.28 131.4 ARG​ 26 47.9 4.9 55.5 5.3
9.62 141.7 GLN 27 221.0 15.1 n.o
7.72 123.4 PHE 28 172.3 8.4 n.o
8.19 128.2 ARG​ 29 39.2 5.2 44.9 3.0

PRO 30
PRO 31

8.15 111.8 SER 32 43.5 5.2 25.1 1.5
7.55 114.9 SER 33 43.4 4.3 24.2 0.8
8.55 129.0 CYS 34 37.5 3.9 42.5 3.7
8.36 126.0 ILE 35 84.5 5.9 65.6 26
8.75 127.6 THR 36 115.0 12.3 n.o
7.00 149.9 VAL 37 161.5 10.7 n.o
8.61 122.8 GLU 38 43.0 4.0 24.2 0.8
8.43 115.7 SER 39 35.2 8.3 19.7 1.0

PRO 40
7.28 118.2 ILE 41 25.4 7.5 27.7 1.3
7.84 116.4 SER 42 36.7 3.8 42.8 2.4
9.12 121.2 GLU 43 24.1 3.4 19.2 0.5
7.98 116.8 ASN 44 25.7 5.2 27.4 1.5
7.20 102.6 GLY 45 55.5 3.8 46.2 6.5
7.86 113.7 TRP 46 73.1 5.0 54.8 14.8
6.47 118.9 CYS 47 182.7 11.0 n.o
6.79 115.2 ARG​ 48 57.9 5.3 74.0 28.6
7.74 154.7 LEU 49 168.4 12.4 n.o
6.02 119.5 TYR​ 50 56.6 14.3 n.o
5.46 119.0 ALA 51 216.6 42.0 n.o
8.33 109.7 GLY 52 39.4 4.4 23.0 1.3
8.43 120.2 LYS 53 24.9 5.0 18.0 0.9
8.04 128.5 ALA 54 7.7 0.3
8.53 124,0 TRP sc 46 53.1 4.2 33.9 2.1

Columns 5–6 refer to values observed with the R2-weighted HSQC-AP experiment, columns 7–8 to values 
observed with an in-phase HSQC experiment with a single exponential T2 decay prior to INEPT
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neighboring regions can be identified, characterized and, 
finally, restrained into NMR structure calculations only 
when it is possible to obtain paramagnetism-based struc-
tural restraints such as PREs. The small HiPIP protein PioC 
is a challenging and significant example of the application 
of this experiment, where this objective was achieved and 
the R2 could be measured for all four cysteines coordinating 
the paramagnetic cluster. Finally, it is worth noting that this 
approach can be useful in all other cases where R2 is larger 
than 50 s−1: conformation dynamics and exchange phenom-
ena often increase relaxation rates above this threshold also 
in diamagnetic systems, thus extending the potential applica-
tions of this approach.
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