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Abstract— Characterizing mixed hot-carrier/bias temper-
ature instability (BTI) degradation in full {Vg, Vp} bias
space is a challenging task. Therefore, studies usually focus
on individual degradation mechanisms, such as BTl and
hot-carrier degradation (HCD). However, a simple super-
position of these mechanisms at an arbitrary {Vg, Vp}
combination often fails to predict the cumulative damage.
We experimentally acquired a large data set covering the full
bias space of a pMOSFET which allows us to obtain detailed
degradation and recovery maps. Our models for describ-
ing oxide and interface defects provide physical insights
into the underlying mechanisms and a possible interplay
between the degradation modes. Additionally, we perform a
dedicated experiment to reveal the implications of different
stress regimes onto the various types of defects by switch-
ing BTl and HCD stress conditions. The results clearly reveal
the conceptual limits of the assumption of independent
degradation regimes.

Index Terms— Bias temperature instability (BTI), defect
modeling, full bias map, hot-carrier degradation (HCD),
mixed-mode stress, reliability.

I. INTRODUCTION
SSESSING the reliability of a technology typically
focuses on idealized device degradation modes, such as
bias temperature instability (BTI) and hot-carrier degradation
(HCD). Each of these degradation modes is usually assessed in
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Fig. 1. Top panel: schematic representation of the full {Vg, Vp} bias

space together with the various degradation regimes. Middle and Bottom
panels: the calibration of the models used for describing BTl and HCD
shows a very good agreement with experimental traces.

a certain bias space regime, see Fig. | (red and blue regions),
and is characterized around their respective worst case
stress condition. Their interplay within intermediate operating
conditions (green and purple regions in Fig. 1), however,
is normally, neglected, despite its importance in modern
complementary metal-oxide—semiconductor (CMOS) digital
circuits. For example, field-effect transistors (FETs) in a logic
gate experience a broad range of bias combinations during
switching between logic levels.

So far, only a limited number of mainly experimentally
driven studies have focused on the interplay between different
degradation modes and the implications onto the various
types of defects. However, they have revealed interesting new
details and have concluded that an independent description of
the degradation mechanisms leads to incorrect extrapolations.
In recent publications [1]-[3] it has been shown that the
charging dynamics of individual oxide defects can significantly
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change depending on their spatial position and the applied
drain bias. These findings support and complement studies
on large-area devices [2], [4]-[9] where it was found that
the recoverable component disproportionally reduces with
increasing drain voltage. Furthermore, imec reported in a
series of publications [10]-[13] that nonequilibrium dynamics,
such as impact ionization (II), are a crucial component for
the understanding of degradation in full bias space and that
different degradation modes can indeed access the same defect
types. Last but not least, Tyaginov er al. [14] investigated
the consequences of prestressing devices onto the degradation
kinetics by taking into account the stress history of the device.

In this article, we investigate the degradation characteristics
of pMOSFETs in full {Vg, Vp} bias space, both experimen-
tally and from a modeling point of view using our physical
frameworks to describe oxide and interface defects. We use the
idealized degradation regimes for BTI and HCD to calibrate
our models and subsequently extend the simulations toward the
full bias space by explicitly taking into account nonequilibrium
transport dynamics. Our modeling approach properly captures
the measured trends for all bias conditions within {Vg, Vp}
space. Additionally, an experiment where we switched BTI
and HCD stress conditions reveals puzzling results which can
be fully explained by our simulation approach.

[I. EXPERIMENTAL SETUP

Production quality pMOSFETs with a gate length of
Lg = 100 nm and a 2.2 nm plasma nitrided gate oxide with an
operating condition of Vpp = —1.5 V have been used for this
article. To obtain complete degradation maps, we characterized
the devices in a broad range of {Vi, Vp} bias space larger
than the operating condition Vpp. The measurements are based
on an extended measure—stress—measure technique [15] where
the threshold voltage has been extracted using an ultrafast
measurement setup with a delay after a stress of 107 s. Using
AV, as a measure to quantify the amount of degradation
allows to continuously monitor the degradation during recov-
ery without applying additional stress. Stress and recovery data
have been recorded up to a total time of 10* s at a temperature
of T = 398 K. The recovery was measured at a constant
current of 20 A for Vp = —1.5 V, which corresponds
to a gate bias around the threshold voltage of the device,
VG ~—04V.

1. MODEL CALIBRATION

As a first and essential step toward understanding and
modeling the physical mechanisms responsible for the created
degradation in each region of the bias map, we need to cali-
brate our models for BTI and HCD. To ensure well-calibrated
model parameters possessing predictive quality and no inter-
play between oxide defects due to BTI and interface states due
to HCD, we chose the respective worst case condition for each
degradation mode, namely Vg > Vpp, Vp =0 V for BTI and
Vg ~ 0.5Vp (measurements of Ib max yield Vg = 0.53Vp)
for HCD. Additionally, the dc current characteristics of the
fresh device must be properly represented by the simulation
framework [16], [17] to ensure a correct field distribution
inside the device, see the Appendix.

To model the effect of BTI and the responsible mech-
anism of charge detrapping in oxide defects, we used the
well-established four-state nonradiative multiphonon model
(NMP) [18]-[21]. As shown in Fig. 1 (middle panel) the NMP
model is able to accurately describe the experimental data sets
for Vo = —1.8 V/ =23 V/ — 2.8 V and fyess = 0.1 ks/
1 ks/10 ks. The extracted model parameters are in full agree-
ment with previous studies and in particular the frequently
reported defect band in SiON of about 0.8 eV below the Si
valence band [20], [22], [23]. We want to emphasize that for
all subsequent simulations we used the same unique parameter
set, see the Appendix for more details.

On the other hand, describing HCD and the creation of
interface defects due to the interaction of energetic carriers
with interfacial Si—H bonds is based on our newly developed
physical framework [24]. This model assumes a resonance
state accessible, as was already proposed by the group of
Hess [25], [26], for electrons (and holes) which upon elec-
tronic relaxation excites phonon modes of the silicon-hydrogen
complex and eventually triggers bond dissociation. For
electrons, the resonance is around 3.5 eV above the Si con-
duction band, whereas for holes this state is about 0.5 eV
deeper at 4 eV in the valence band. Fig. 1 (Bottom panel)
shows good agreement between simulated and experimental
degradation traces and demonstrates the quality of the model.

IV. RESULTS

The measurement results for the degradation and the
respective recovery map in full {Vg, Vp} bias space are shown
in Fig. 2. The maximum threshold voltage drift is extracted as
the first measurement point in the recovery trace after 10 ks
of stress, and Vip max recovery is defined as the change of the
drift after a subsequent 10-ks recovery cycle. One can see a
strong degradation in the mixed mode as well as in the HCD
regime with AV}, values being three times higher than for the
BTI mode. Furthermore, the stress and recovery data clearly
reveal that the transition from the HCD to the mixed-mode
regime is very sensitive to the applied gate bias, as can be seen
for Vp = —2.8 V in Fig. 2, which will be discussed in the
following. Combining both maps in Fig. 2, on the other hand,
shows that almost 70% of the degradation due to BTI recovers
within 10 ks. Increasing Vp, however, yields a decreasing
recovery-to-degradation ratio toward the mixed-mode regime
where less than 10% of the damage is recovered within the
relaxation phase. In the case of pure HCD, which is attributed
to a more permanent degradation showing annealing effects
only at elevated temperatures, see [27], [28], the recoverable
component is almost completely absent and thus negligible.

In order to assess the behavior of BTI, HCD, and its
interplay in the full bias space, we performed simulations at
the 55 measurement points shown in Fig. 2. As we have shown
in [29], carrier energy distribution functions (EDFs) play an
important role not only for HCD [30]-[32], but also to capture
the nonequilibrium dynamics of oxide defects. Primarily the
effect of II and the resulting increased concentration of sec-
ondary carriers at the source side strongly affect the charging
kinetics of traps in the oxide. Thus, we self-consistently
solved the bipolar Boltzmann transport equation (BTE) for
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Fig. 2. Experimentally extracted degradation (left) and recovery (right) maps in full bias space outside the operating regime Vpp. In total, 55 bias
combinations have been measured as indicated by the crosses. The maximum degradation is strongly localized in the vicinity of the HCD regime,
whereas the damage in the mixed-mode region is much broader and extends toward the nonuniform BTI area. The recovery map shows a noteworthy
contribution only in the BTI regime with a decreasing trend toward the mixed mode and HCD mode. The isolines of A Vi, degradation and recovery

provide a better compara bility with the simulation results.
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Fig. 3. Simulation results for the bias conditions shown in Fig. 2 taking into account the effect of BTI described by oxide defects and the effect of
HCD due to the creation of interface defects. The general trends for degradation as well as recovery are well reproduced by the simulation approach.
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Fig. 4. Cuts along horizontal lines (V-cut) and vertical lines (V/p-cut) of the experimental and simulation degradation (left) and recovery (right) maps.
Degradation and recovery traces for all {Vg, Vp} combinations agree very well with the measurement data. For the most severe stress conditions
within each cut the individual contribution of oxide defects (dashed lines) and interface defects (dotted lines) is shown.

all bias conditions using the higher order spherical harmonics
expansion simulator SPRING [33], [34]. Phonon and impurity
scattering mechanisms as well as II with secondary carrier
generation is included within these simulations. However,
to introduce a more practical implementation of the full bias
space TCAD model for BTI with a reduced complexity, we did
not use the nonequilibrium EDFs within the four-state NMP
model. Instead, we calibrated the utilized II model [35] within
our drift-diffusion setup [16], [17] against the data obtained
from solving the BTE to represent hole and electron II rates
and thus secondary generated carrier concentrations (CCs).
This approximation ensures that the interaction of oxide
defects with carriers in the valence as well as the conduction

band is properly captured, see [29]. A detailed motivation and
validation of this approach can be found in the Appendix.

Simulation results for all {Vg, Vp} bias combinations are
shown in Fig. 3. The degradation map is in very good agree-
ment with the experimental results, representing the measured
trends well in the mixed-mode region and also toward the
transitions to HCD and (nonuniform) BTI. Moreover, also the
recovery behavior is properly captured, particularly the strong
decrease along increasing drain bias conditions.

To better understand and analyze the results, Fig. 4 shows
1-D cuts along increasing Vp and Vg bias conditions.
Horizontal cuts (at a fixed V) are intuitive to understand:
The total degradation in the nonuniform BTI regime initially
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Fig. 5. Carrier energy distribution functions (EDFs) together with the CCs with at least 1 and 2 eV, respectively. Left: hole and electron EDFs and
CC along the cut Vg = —2.8 V for increasing Vp at the source (S) and drain (D) end of the channel. Right: hole and electron EDFs and CC along
the cut Vp = —2.8 V for increasing Vg at the source (S) and drain (D) end of the channel.

reduces, mainly due to the decreasing oxide field and the
amount of charged traps [2], [4], [S], [29] whereas this trend is
reversed for higher drain biases in the mixed-mode stress due
to the onset of HCD and the additional damage caused by the
creation of interface defects. While the overall degradation
characteristics are well represented by the simulations, one
feature is not properly captured: The degradation minima are
shifted toward higher Vp conditions within our simulations
compared to the experimental values. This leads to an under-
estimated degradation around Vp = Vpp, which is particularly
pronounced for Vg = —2.8 V, see Fig. 4. On the other hand,
the recoverable component is attributed only to detrapping of
oxide defects, and its decreasing trend is properly reproduced
by the model approach.

Vertical cuts along constant Vp conditions, on the other
hand, reveal a more complex behavior, particularly for
Vp = —2.8 V. Initially, the total degradation increases toward
the worst case HCD stress bias (Vg = —1.5V, Vp = —2.8 V),
then significantly drops for Vg —1.8 and —2.3 V and
subsequently increases again toward Vg = Vp —28V,
eventually causing a threshold voltage shift close to A Vip max
at the worst case HCD conditions, see Fig. 4. Such a feature
is not clearly visible for lower Vp bias conditions due to
the suppression of hot-carrier induced damage, see Fig. I.
The simulations show that the degradation along the cut
Vp = —2.8 V is mainly governed by HCD and the creation
of interface states, while oxide defects play only a minor
role at severe mixed-mode stress and reduced Vg cuts, see
also the recovery traces in Figs. 3 and 4. To understand this
behavior in detail, Fig. 5 shows the EDFs at the source and
drain side of the channel together with the concentrations of
carriers with at least 1 and 2 eV, respectively, for the cuts
with Vg = —2.8 V (left) and Vp = —2.8 V (right). Not
surprisingly, for fixed Vg and increasing Vp, holes gain more
energy at the drain side and eventually trigger II which leads to
a substantial contribution of (energetic) electrons at the source
side. This effect has two implications: First, an acceleration
and propagation of hot-carrier induced damage along the chan-
nel due to energetic secondary generated electrons [30]-[32],
see also Fig. 1, and second a modified discharging dynamics

of oxide defects caused by the interaction with electrons in
the conduction band [29]. The cut along fixed Vp = —2.8 V
shows a more intricate Vg dependence. For Vg up to —1.5V
the II rate monotonously increases which is reflected in an
increasing number of electrons. This can be seen on the
drain side in Fig. 5, where the concentration of electrons
increases, however, their distribution over the energy changes
toward lower values. On the source side, on the other hand,
electrons gained a substantial amount of energy which also
enhances the respective concentrations with at least 1 and
2 eV. Therefore, the damage in the HCD region, particularly
the worst case stress condition which corresponds to Isub max»
is caused by a dominant contribution of energetic electrons.
However, increasing Vg further actually reduces the effect of
II, and thus the created damage. Only at severe mixed-mode
stress conditions this trend is again reversed, see Fig. 5, which
again leads to an increase in AV, see Fig. 4.

This analysis clearly shows that device degradation in full
{Vi, Vp} bias space can only be modeled and understood by
performing thorough transport simulations and using models
based on fundamental physical frameworks.

V. ALTERNATING DEGRADATION REGIMES

In order to further investigate the implications of different
stress regimes on charge trapping in oxide and the creation of
interface defects, we performed experiments with alternating
stress conditions followed by a final relaxation phase. In total,
we used 14 devices, divided into two groups which have been
stressed at a temperature of T = 443 K and bias conditions
of Vg = =28 V,Vp = 0.0 V (BTD and Vg —05V,
Vb = —2.8 V (HCD). The first group of devices was subjected
to 10 ks of HCD stress, followed by a 10-ks BTT stress phase
and a final relaxation of 10 ks at recovery bias (Vg = —0.5V,
Vp = 0.0 V). For the second group the BTI and HCD stress
sequences have been switched, that is, BTI with a subsequent
HCD stress cycle. The measurement results are summarized
in Fig. 6 (middle panel). After the HCD stress cycle the first
group experiences a threshold voltage drift of AVy =40 mV,
which is increased to a shift of AVy = 170 mV due to
the subsequent BTI stress. Within the relaxation phase the
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Fig. 6. Experimental and simulation results for the alternating stress con-
ditions experiment. Middle panel: measurement data for seven devices
subjected to each sequence. Although HCD—BTI (blue) is intuitive to
understand, BTI—HCD (magenta) exhibits an abnormal recovery trend
starting from the HCD stress phase. Top panel:simulation results for the
first group. In this case, HCD only adds a (permanent) damage whereas
BTI follows the well-known behavior. Bottom panels: simulation results
for the second group. Although the first BTI cycle behaves as expected,
the subsequent HCD stress actually accelerates discharging of oxide
traps and simultaneously creates damage due to interface defects.

degradation reduces to AVy = 98 mV. Interestingly, if BTI
is applied prior to HCD, the first stress phase creates AVy, =
140 mV of degradation. Even more intriguingly, it seems that
a subsequent 10 ks HCD stress does not trigger additional
degradation, but rather decreases the AVy, shift by 65 mV.
Additionally, the final relaxation phase does not show any
additional recovery effect.

By means of our simulation framework described above we
are able to shed light on the mechanisms behind this puzzling
phenomenon. The results for the first group of sequences
(HCD— BTI— Relaxation) is shown in the upper panels of
Fig. 6. The initial HCD stress induces ~45 mV of degradation,
mainly due to the presence of energetic electrons at this spe-
cific bias combination, see Fig. 5. The subsequent BTI stress
and recovery cycle follows the well-known characteristics of
negative bias temperature instability (NBTI), matching the

experimental results very well. The accessible oxide defects
become charged during the stress phase and subsequently emit
the charges again during the following recovery cycle. Thus,
one can conclude that for this group of devices, HCD only adds
a preexisting damage to the device, which slightly perturbs the
device electrostatics, but without further implications for oxide
defects.

The second stress sequence (BTI—HCD— Relaxation) is
shown in the lower panels of Fig. 6. Starting with BTI,
the device experiences ~140 mV of AVy, drift. Due to the
presence of a fresh device without any damage at the interface,
this value is slightly higher than for the BTI sequence after
HCD for the first group. The following HCD stress sequence
reveals an interesting behavior. Contrary to the assumption
that only another portion of damage will be added to the
predamaged device, the specific HCD condition strongly
influences the discharging dynamics of oxide defects. The
high concentration of secondary generated electrons along
the channel, see Fig. 5, actually accelerates discharging of
oxide defects and thus the recovery of BTI damage. However,
the competing effect of additional damage due to the creation
of interface defects overshadows this mechanism within the
experiments and is only accessible by simulations (note that
the effect of HCD is slightly reduced due to charged oxide
defects perturbing the device characteristics).

Within the final relaxation phase the simulations predict a
total recovery of 17 mV, of which only 6 mV are due to
discharging of oxide traps. Such a suppressed recovery behav-
ior can be explained by the preceding accelerated discharging
phase. However, note that the measurement results are nearly
perfectly flat for 10 ks, see Fig. 6. The additional 11 mV
recovery, with a strong onset toward longer recovery times,
is due to the effect of interface state recovery, as, for instance,
proposed by Stesmans [27]. However, as clearly visible in the
measurement data for the second group, such a mechanism is
apparently absent within our experimentally recorded traces.

VI. CONCLUSION

We have presented a comprehensive study on the degrada-
tion and recovery dynamics of mixed hot-carrier/BTI degra-
dation in full {Vg, Vp} bias space. Our simulation framework
uses physical models for the charge transition kinetics of oxide
defects as well as the creation of interface defects. Further-
more, our modeling approach explicitly takes nonequilibrium
transport effects, such as I and the creation of secondary
generated carriers into account, which has two implications:
First, heated secondary carriers along the channel and on the
source side enhance or even dominate HCD. Moreover, they
can interact with oxide defects thereby severely distorting their
charging kinetics. Our simulation results agree well with the
experimental trends and are supported by a detailed analysis
which provides insight into the degradation and recovery
behavior for various bias regimes.

Additionally, a dedicated experiment where we have alter-
nated BTI and HCD stress conditions reveals peculiarities of
their interplay. Alternating the stress order, 10-ks BTI followed
by 10-ks HCD or vice versa, resulted in a difference of
AVy =90 mV in total degradation. Our simulations showed
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that while HCD— BTI is intuitive to understand—HCD simply
adds preexisting damage to the subsequent BTI stress—the
flipped order possess a hidden feature. When BTI is applied
prior to HCD, the high drain bias triggers the creation of
secondary carriers which accelerates the recovery of oxide
defects. However, super-imposed is the creation of interface
traps caused by hot-carriers which clouds this effect in the
measurements.

The presented work enables a detailed understanding
of degradation and recovery processes in full bias space
and ultimately stresses the conceptual limits of independent
degradation regimes.

APPENDIX
A. Simulation Benchmark

Here, we motivate our simulation approach described
in Section IV. As already discussed in [29], an increased
drain bias accelerates the carriers in the channel which results
in a heated carrier ensemble, described by a nonequilibrium
EDF, and the generation of secondary carriers by II. Both,
the (energetic) minority and majority carriers in the valence
and conduction band, can interact with oxide defects and
influence the respective nonradiative multiphonon transition
rates given by Grasser [18] and Gos et al. [19]

k" (© =/ &p.)E) [, EYAp,myE) fis(E)AE (1)
)

B

with g being the density of states, f is the EDF, A accounts
for the coupling between band and defect states and is approx-
imated using a Wentzel-Kramer—Brillouin (WKB) factor, and
fis represents the thermal average of the overlaps between
initial and final state of the phonon system. As we have
concluded in [29], the biggest impact onto the characteristics
of oxide defects is due to the presence of secondary generated
carriers.

In the following, we use three model variants to validate
our approach: The equilibrium model NMP, only accounts
for minority carriers (holes) and changes of the electric field
and CC across the interface with applied drain bias. To access
the interaction with secondary generated electrons we use an
extended model NMP, .1 where the effect of II is included
within our DD-simulations, while the EDFs are approxi-
mated using Fermi—Dirac statistics. The computationally most
expensive implementation is the full nonequilibrium model
NMP,q. which includes the nonequilibrium EDFs for holes
and electrons calculated as a solution of the bipolar BTE.
Fig. 7 shows the simulation results for the different model
variants for two stress conditions, namely Vg = —2.8 V and
Vb = —1.5 V (Top panels) and Vp = —2.8 V (Bottom panels).
One can clearly see that the NMP,y model overestimates the
degradation, and hence, the recovery due to oxide defects. The
other two approaches, NMPeq 11 and NMP,, , yield similar
and consistent results with only minor differences visible in
the stress and recovery characteristics. These subtle differences
arise due to the nonequilibrium EDFs and the heated carrier
ensemble which is considered in the NMPy., model.

Simulations for a single defect further highlight short-
comings of the NMP, model and validate the extended
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Fig. 7. Benchmark of the three different model realization for two stress
conditions.
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Fig. 8.  Comparison of the simulation results obtained with the three

models for a single oxide defect. The NMPpeq. model is taken as a
reference, see [29] for a detailed discussion.

model scheme. Fig. 8 shows the characteristic capture and
emission times of a single oxide defect (with a defect level of
Er = —0.92 eV and spatial position of x7 = 66.5 nm and
yr = 1.61 nm) characterized over a broad range of drain bias
conditions. The data are taken from [29] where also a detailed
discussion and analysis is presented. It was shown that the
NMP,q. model properly captures the experimental trend and
is able to explain the characteristic quantities for increased Vp
bias, which is taken as a reference here (solid lines). The sim-
plified extended model approach NMPeg 41 still captures the
qualitative features of the full nonequilibrium model, in par-
ticular, the rapidly decreasing emission time with increasing
drain bias. On the other hand, the NMP., model, which
effectively only accounts for the interaction with holes in the
valence band (due to the absence of electrons), fails to model
the defect behavior and actually predicts an increasing ..

The presented simulation results support the validity of the
extended model NMP¢q 11 and indicate that the impact of an
increased drain bias onto oxide defects is mainly due to the
interaction with secondary generated carriers by II. Finally,
Table I shows the parameter set used for the simulations within
this article.

B. Additional Measurements

The presented study utilizes the threshold voltage shift
AVy, as a measure to quantify the degradation which allows
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TABLE |
PARAMETERS OF THE FOUR-STATE NMP MODEL USED WITHIN THIS
ARTICLE [18], [19]. THE POSITIVELY CHARGED STABLE
CONFIGURATION 2 IS ALIGNED WITH THE VALENCE
BAND AND USED AS A REFERENCE

Parameter u o
E; trap level in state 1 —0.83eV  0.33eV
Ey trap level in state 1’ —0.52eV  0.42eV
Ey trap level in state 2’ 0.43eV  0.37eV
Ry» curvature ratio of 1 and 2’ 1.1 0.48
Ry, curvature ratio of 1’ and 2 0.84 0.48
S, relaxation energy 2’ — 1 2.74eV  0.81eV
Syp relaxation energy 2— 1/ 1.68eV  0.79eV
€/ activation energy 1— 1/ 0.43eV  0.32eV
&y activation energy 2— 2’ 1.16eV  0.36eV
Normalized Ip ji, degradation [1]
2.80 - 0.15
2.30
E 1.80 0.10
2
~ 125 0.05
0.75
0.25 0.00

0.0 0.5 1.0 1.5 2.0 2.5 2.8
[Vp| VI

Fig. 9. Degradation map after 10 ks of stress using Ip ji, as a measure
to quantify the degradation. The results are qualitatively the same
compared to the shift of the threshold voltage, see Fig. 2.

us to continuously monitor the device characteristics during
recovery. On the other hand, most studies related to HCD focus
on the degradation of the drain current, Ip, 1, Or Ip, sa. Since
the corresponding bias conditions would potentially introduce
an additional stress during the recovery cycle and adversely
affect the measurement results, we chose to measure AV, in
this article. However, additional measurements after 10 ks of
stress, see Fig. 9, shows that the qualitative behavior during
stress is the same when using Ip ji to quantify the degradation
map.

C. Calibration of the Unstressed Devices

Furthermore, as mentioned in Section III, another vital
component is a well-calibrated drift-diffusion simulation setup
to properly represent the Ip—Vg characteristics of the fresh
device. The simulations have been performed using the
GTSFramework [16] and minimos-NT [17]. A drift-diffusion
setup in conjunction with the well-calibrated mobility model
of minimos 6 (MM6) [36], [37] has been utilized. It accounts
for the temperature dependence of the Ilattice mobility,
the low-field mobility reduction due to ionized impurity scat-
tering and surface scattering as well as the mobility reduction
caused by a high field. Additionally, an improved modified
local density approximation (IMLDA) [38] has been employed

|Ip| [A]

Symbols: Measurements

Lines: Simulations

1 1 1 1
1.5 0.0 0.5 1.0 1.5
[V [V]

Fig. 10. DC current calibration in the linear and saturation regime for
two different temperatures.

to account for the effects of hole inversion layer quantization in
a pMOSFET and properly model the formation of a pinch-off
region. The results are shown in Fig. 10. All subsequent
calculations, such as the EDFs and the evaluation of the
models, are based on the calibrated DD simulations.
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