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Abstract 

 

A growing body of evidences has established that in many cases proteins may preserve most of their 

function and flexibility in a crystalline environment, and several techniques are today capable to 

characterise molecular properties of proteins in tightly packed lattices. 

Intriguingly, in the case of amyloidogenic precursors, the presence of transiently-populated states 

(hidden to conventional crystallographic studies) can be correlated to the pathological fate of the 

native fold; the low fold stability of the native state is a hallmark of aggregation propensity. 

It remains unclear, however, to which extent biophysical properties of proteins such as the presence 

of  transient conformations or protein stability characterised in crystallo reflect the protein 

behaviour that is more commonly studied in solution. Here, we address this question by 

investigating some biophysical properties of a prototypical amyloidogenic system, β2-microglobulin 

(β2m) in solution and in microcrystalline state. 

By combining NMR chemical shifts with Molecular Dynamics (MD) simulations, we confirmed that 

conformational dynamics of β2m native state in the crystal lattice is in keeping with what observed 

in solution. A comparative study of protein stability in solution and in crystallo is then carried out, 

monitoring the change in protein secondary structure at increasing temperature by Fourier 

transform infrared (FTIR) spectroscopy. The increased structural order of the crystalline state 

contributes to provide better resolved spectral components compared to those collected in solution 

and crucially, the crystalline samples display thermal stabilities in good agreement with the trend 

observed in solution.  

Overall, this work shows that protein stability and occurrence of pathological hidden states in 

crystals parallel their solution counterpart, confirming the interest of crystals as a platform for the 

biophysical characterisation of processes such as unfolding and aggregation.  
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Introduction 

 

The crystallisation of proteins has allowed one of the major revolutions in the understanding of 

macromolecules: to date X-ray crystallography has elucidated more than 160,000 protein structures 

(www.rcsb.org) and it is the reference method for structural biology. Protein molecules are rather 

loosely packed in crystal and the average solvent content is 50% (1). Crucially this allows enough 

conformational freedom so that many enzymes are active in crystalline form (2, 3) and many 

processes which entail internal rearrangements and minor conformational changes may be 

monitored in crystallo by serial synchrotron crystallography and time-resolved crystallography (4-6). 

However, although in crystal structures poor electron density and high B-factors indicate that 

protein molecules may retain rather dynamic and flexible conformations in crystals, the common 

view is that the study of protein crystals is limited to the determination of static structures. 

Moreover, it is unclear whether the protein-protein interactions within the crystal lattice exert an 

overwhelming stabilisation on protein molecules or if despite the stabilising effect due to the crystal 

formation fold stability may be studied in crystalline samples and the data can extrapolate protein 

behaviour in solution.   

Several techniques have been optimised to study proteins in the crystalline form. In particular, solid-

state NMR offers the unique possibility to evaluate protein dynamics in crystals by using spin 

relaxation techniques to probe motions with site and time specificity (7-10). Since the first 

pioneering studies which quantified molecular motions in crystals, critical evaluation of the 

equivalence between such dynamics and those happening in solution have been performed, 

providing pictures that differ according to the motional processes under investigation. Fast motions 

typically happening in the pico- to nanoseconds regime, have been demonstrated to be similar in 

solution and in crystals (11-13). Importantly, solid-state NMR is very sensitive to slower collective 

motions, and has revealed the presence of excited states in exchange with the main conformational 

state of the molecule at a rate of micro- to milliseconds in the crystal lattice (14). The possibility to 

detect such transient conformations is of tremendous interest as they are associated to processes 

such as molecular transport, allosteric regulation, folding/unfolding and aggregation. The amplitude 

and timescale of conformational exchange processes may be affected by crystal packing, 

nevertheless they have been shown to directly report on the corresponding motions happening in 

solution (15).  

Fourier transform infrared (FTIR) spectroscopy is another key technique which has been widely 

adopted for the analysis of proteins in very diverse kind of samples from cells and tissues to soluble 

and aggregated proteins (16-24). In particular, our group recently reported a protocol to collect 
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high-quality FTIR spectra from crystalline samples (25). Thus FTIR is well suitable to compare the 

secondary structures of proteins and protein stability in solution and in insoluble forms. 

We recently investigated the molecular bases of D76N β2-microglobulin (β2m) pathologic amyloid 

propensity by studying protein dynamics in crystals (26). Combining solid-state NMR and replica-

averaged metadynamics ensemble simulation, we showed that the presence of ‘hidden’ 

conformations and increased dynamics in crystals correlates with amyloid formation (26). 

Expectedly, an anti-correlation was observed between protein stability and aggregation propensity 

(26). 

The fact that biophysical properties of a protein are comparable in crystallo and in solution, 

however, appears as counter-intuitive to part of the community, in particular in the challenging 

context of misfolding and aggregation. Specifically, native states and pathological conformations 

may be connected by large-amplitude conformational changes, which are likely affected by 

intermolecular contacts, even in a largely hydrated lattice. It remains therefore unclear to which 

extent the minor conformations detected in crystals reflect the protein behaviour that is more 

commonly studied in solution. In the attempt to clarify this aspect, we perform here a comparative 

study of protein dynamics and fold stability of the prototypical system β2m in the crystalline state 

and in solution.  

β2m is the light chain of Major Histocompatibility Class I complex (MHC-I), well known as an 

aggregation-prone protein associated with two different amyloid-related pathologies (27). Wild type 

(wt) β2m is the causing agent of an amyloidosis affecting patients undergoing long-term 

haemodialysis, condition referred as dialysis-related amyloidosis (DRA) (28). The D76N genetic 

variant, instead, is responsible for a familial systemic amyloidosis (29), and shows increased 

aggregation propensity as compared to the wt protein (29, 30). The remarkable properties of D76N 

β2m can be related to the perturbation of a crucial network of weak intramolecular interaction 

resulting in increased dynamics, lower protein stability and increased amyloidogenicity for a native-

like excited state (26). Conversely, an artificial mutant of the evolutionary conserved Trp60 displays 

a much lower aggregation propensity (31). Given the relevance of structural and biophysical 

properties for amyloid aggregation, such three β2m variants have been studied in details (26, 31-37). 

Noteworthy, all three β2m variants crystallise under identical chemical-physical conditions and form 

the intermolecular interactions in identical crystal packing, avoiding interpretation biases of the 

solid-state data. 

The conformational exchange processes of D76N and wt β2m are simulated based on the inclusion 

of NMR chemical shifts determined either from crystalline or solution samples. Moreover, protein 



5 

stability of in solution and crystalline samples was assessed for three β2m variants (D76N, wt and 

the highly stable W60G), by following the changes in secondary structure using FTIR spectroscopy.  

Our results spot differences between solution and crystals, consistent with a systematic increase in 

protein stability in the crystal lattice. At the same time, however, they explicitly indicate a 

persistence of dynamical properties between the two environments, with conserved relative 

conformational stabilities across a set of β2m mutants. This study reinforces a picture where crystals 

contain a wealth of information about intrinsic properties of proteins as dynamics and stability and 

that deep insights into phenomena such as unfolding and aggregation can be inferred from native 

conformations in crystalline samples.  

 

Statement of Significance 

Proteins preserve their function and flexibility in a crystalline environment, but it is still unclear 

whether their properties in crystallo reflect protein behaviour in solution. To address this question, 

in this work we have combined NMR chemical shifts with Molecular Dynamics (MD) simulations and 

conformational ensembles of protein molecules in crystallo and in solution were calculated. 

Moreover, protein stability was compared in solution and in crystallo by Fourier transform infrared 

(FTIR) spectroscopy. Here we show that crystalline protein samples can provide valuable information 

beyond crystal structures. This work highlights the potential value of crystals as a platform for the 

biophysical characterisation of proteins giving possibly access to hidden conformational states 

related to pathological conditions. 

 

 

Materials and Methods 

 

β2m expression and purification.  

All β2m variants were expressed in BL21 (DE3) pLysS E. coli strain as inclusion bodies. The proteins 

were extracted and purified following previously published protocols (31). For NMR studies, 
13

C, 
15

N 

and 
2
H enrichment was obtained as described in(26). 

 

Solution NMR of D76N β2m.  

For NMR measurements, a solution of triply-labelled 
1
H

N
,
2
H,

13
C,

15
N,-D76N β2m was prepared at a 

concentration of 100 μM in a 70 mM sodium phosphate buffer, at pH 7.6. NMR experiments were 

recorded at 293 K on Bruker Avance 600 Spectrometer equipped with a TCI cryoprobe operating at a 



6 

1
H Larmor frequency of 600.6 MHz. NMR spectra were referenced to the DSS for 

1
H and indirectly 

for 
13

C and 
15

N, accounting for the isotope effect due to the deuteration of the protein, as 

recommended by IUPAC. Site-specific resonance assignment has been determined on the basis of a 

2D 
1
H,

15
N-HSQC and 3D HNCO, HNCA, and HNCACB experiments. Manual assignment was performed 

with the program CARA (http://cara.nmr.ch) (Figure S1). 

 

Molecular dynamics simulations.  

Simulations data for wt β2m and D76N β2m in crystals were taken from (26), simulations data for wt 

β2m in solution were taken from (38), where all simulations were run following comparable 

procedures. Of note, simulations are always performed in solution but using as experimental 

restraints chemical shifts measured either in the crystalline or in solution state. D76N β2m 

simulation in solution were newly performed using the corresponding NMR chemical shifts, 

following the protocol briefly reported in the following. Simulations were carried out using 

GROMACS (39) and PLUMED (40) with the ISDB module (41). The system was described using the 

Amber03W force field in explicit TIP4P05 water at 298 K (42). The starting conformation was taken 

from PDB 4FXL. The structure was protonated and solvated with ~8200 water molecules in a 

dodecahedron box of ~260 nm
3
 of volume. The metadynamics metainference (M&M) protocol was 

applied using chemical shifts and a global outlier model for the noise as previously described (43). 

Thirty replicas of the system were simulated in parallel with a restraint applied on the weighted 

average value of the back-calculated NMR chemical shifts with a force constant determined on the 

fly by M&M. 

All replicas were biased by Parallel Bias Metadynamics (44) along the following four collective 

variables (CVs): the antiparallel beta content (the “anti-β” CV), the AlphaBeta CV defined over all the 

chi-1 angles for the hydrophobic side-chains (the “AB” CV), the AlphaBeta CV defined over all the 

chi-1 angles for the surface exposed side-chains (the “ABsurf” CV), and the AlphaBeta CV defined 

over all the phi and psi backbone dihedral angles of the protein (the “bbAB” CV). Definition of the 

CVs are available in the PLUMED manual. Gaussians deposition was performed with σ values 

automatically determined by averaging the CV fluctuations over 2000 steps and setting a minimum 

value of 0.1, 0.12, 0.12, and 0.12, for anti-β, AB, ABsurf, and bbAB, respectively; an initial energy 

deposition rate of 2.5 kJ/mol/ps and a bias-factor of 20. Furthermore, to limit the extent of 

accessible space along each collective variable and correctly treat the problem of the borders, 

intervals were set to 12–30, 10–40, 0–33, and 10–42 for the four CVs, respectively. Each replica has 

been run for a nominal time of 350 ns. 
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The sampling of the 30 replicas was combined using a simple reweighting scheme based on the final 

metadynamics bias B where the weight w of a conformation X is given by w=exp(+B(X)/kBT), with kB 

the Boltzmann constant and T the temperature, consistently with the quasi static behaviour at 

convergence of well-tempered metadynamics. The convergence of the simulations by block analysis, 

including error estimates, is shown in Figure S2. All the data and PLUMED input files required to 

reproduce the results reported in this paper are available on PLUMED-NEST (www.plumed-nest.org), 

the public repository of the PLUMED consortium as plumID :20.001 (45).  

 

Crystallization and sample preparation for Fourier transform infrared (FTIR) spectroscopy.  

Lyophilized wt, W60G and D76N β2m variants were solubilized in ddH2O at a concentration of 8.5 

mg/ml. All mutants were crystallized with sitting drops technique at 20°C. 160 μl of protein solution 

was mixed in a bridge with the same amount of 0.1 M MES pH 6, 27% PEG 4K, 15% glycerol, and 

placed against 0.1 M MES pH 6, 30% PEG 4K, 15% glycerol as reservoir solution. In few days, needle-

like crystals were grown. All three variants not only crystallise under the same conditions but also 

crystals have the same space group and crystal packing (29, 31). Thus, all underlying intermolecular 

interactions in the crystals are identical in the three β2m variants. This makes data obtained from 

crystals comparable. 

Before FTIR measurement the crystallization drop was collected and centrifuged at 2000 rcf for two 

minutes. Once removed the supernatant, the crystal pellet was washed and centrifuged three times 

with 0.1 M MES pH 6, 27% PEG 4K, 15% glycerol, all component solubilized in deuterated water to 

achieve the full H to D exchange of all exchangeable H. Crystals were then incubated overnight at 

4°C in 350 μl of the same deuterated buffer and washed once again before measurement. This 

washing procedure allowed a complete exchange of the buffer and the overnight incubation enabled 

the H/D exchange of labile hydrogens. 

 

FTIR of β2m crystals.  

For the FTIR analysis, crystals were resuspended in 20 μl of deuterated buffer (0.1 M MES pH 6, 27% 

PEG 4K, 15% glycerol) and then transferred in a temperature-controlled transmission cell with two 

BaF2 windows separated by a 100 μm Teflon spacer. To prevent solvent evaporation, a small amount 

of vacuum grease (Sigma-Aldrich) was applied on the outer circumference of the windows. The 

absence of air bubbles and of unfilled spaces was verified before the measurements and at the end 

of all spectra collection. FTIR spectra were collected at room temperature (~25°C), in transmission 

mode, using a Varian 670-IR spectrometer (Varian Australia, Mulgrave, Australia), equipped with a 

nitrogen-cooled mercury cadmium telluride detector (MCT), under accurate dry air purging. To 
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improve the signal-to-noise ratio in the relevant spectral region, the spectrometer configuration was 

optimized to maximise the amount of light that reaches the sample without saturation of the MCT 

detector. To this aim an optical bandpass filter (Spectrogon AB) that blocked the light at 

wavenumbers above 1900 cm-1 and below 1200 cm-1 was employed. This approach to increase the 

spectral quality in the Amide I region of protein spectra was proposed and successfully tested for the 

first time in Baldassarre and Barth 2014 (46). The background spectrum was collected under the 

following conditions: 2 cm
−1

 resolution, 25 kHz scan speed, 2000 scan coaddition, and triangular 

apodization. The spectrometer is equipped by a beam attenuator accessory that was employed for 

background attenuation. Spectra of buffers and of the protein samples were then collected without 

beam attenuator under the following conditions: 2 cm
−1

 resolution, 25 kHz scan speed, 1000 scan 

coaddition, and triangular apodization (25).  

Thermal stability experiments were carried out heating the sample from room temperature to 100°C 

at a rate of 0.4 °C/min and 1 °C/min, collecting each transmission spectrum every �3.4 °C and �4.3 

°C respectively. The FTIR spectra were obtained after subtraction of solvent absorption, collected 

under the same conditions. For a better comparison, the absorption spectra were normalized at the 

same Amide I band area before spectral smoothing (25 points) and second derivative calculation. 

Collection and analysis of the FTIR spectra was performed by the Resolutions-Pro software (Varian 

Australia, Mulgrave, Australia) 

 

FTIR of β2m variants in solution.  

Lyophilized β2m was dissolved in deuterated buffer 50 mM Sodium Phosphate pH 7.4, 100 mM NaCl, 

at a final concentration of 2.5 mg/ml and incubated overnight at 4°C. 20 μl of the sample were 

transferred in a temperature-controlled transmission cell with two BaF2 windows separated by a 100 

μm Teflon spacer. FTIR measurements, thermal stability experiments and spectral analyses were 

performed as described above for the crystalline pellet.  

 

Results 

NMR-restrained molecular dynamics: comparison between conformational ensembles in solution and 

in crystals.  

Conformational dynamics of β2m in crystals and in solution were analysed by combining NMR 

chemical shifts and MD simulations in the theoretical framework of Metainference. In previous 

works we have characterised the conformational ensembles for wt and D76N β2m in crystal and for 

wt β2m in solution (26, 32, 38). While MD simulations were always performed in solution, the 

chemical shifts employed as restraints were obtained in either solid or in solution phase. Here, we 
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complement the analysis by collecting NMR chemical shifts in solution for D76N β2m (Figure S1), 

and deriving the corresponding conformational ensembles. 

The ensembles derived from the MD simulations were first analysed in terms of the ‘Anti-

beta’ parameter, proportional to the number of beta-sheet elements and the configuration of the 

solvent-exposed sidechains (‘Sidechain’), which have been shown to be important descriptors of the 

aggregation potential (26). From the corresponding Free Energy Surfaces (FES), which are reported 

in Figure 1, it appears clear that the overall description is highly conserved between solution and the 

solid state, indeed the differences observed are only related to a systematically increase of the beta 

content in the solid and a consequently decrease in the overall fluctuations as previously discussed 

(26). The data show also the presence of a higher-energy conformational ensemble in D76N β2m in 

solution (M1*), in line with what has been observed for the three other cases (Figure 1). The M1* is 

always characterised by a decrease in beta structure with respect to the ground state, furthermore 

the loss of beta structure is larger for D76N than for the wt. In solution this state seems to be less 

populated, or less resolved by our collective variables, than in crystallo. Both ground and excited 

states of the two proteins are more structured (as monitored by the higher ‘Anti-beta’ parameter) in 

the crystals than in solution, mirroring what is typically observed between structures obtained by X-

ray crystallography and solution NMR of the same protein. 

We subsequently investigated a second key parameter for β2m fold stability, the solvent 

accessibility of residue W95, a crucial residue for β2m hydrophobic core (31). The proximity of W95 

to the site of the D76N mutation may result in an increased accessibility to the solvent in the D76N 

variant as compared to wt β2m. The analysis of the X-ray structures did not support this hypothesis 

(29) as well as the average Solvent Accessible Surface Area (SASA) calculated over the ensembles did 

not show a clear difference between wt and D76N indicating W95 as fully buried. Here we re-

analysed our former and newly determined conformational ensembles to check for the presence of 

low-populated states that may show an increase W95 accessibility. In Figure 2 we report the free-

energy surfaces for the four conformational ensembles as a function of the beta content (as 

in Figure 1) and of W95 SASA. Crucially, a second minor high-energy state highlighted in Figure 2 by 

a vertical line, distinct from the one previously discussed, is present in D76N and it is characterised 

by rather high beta-content and by a highly solvent exposed W95 (M2*). This state is not present in 

the wt β2m projections. The high-energy state M1* was suggested to be associated with protein 

misfolding and consequently with aggregation (26, 34, 47). Conversely, given the pivotal role of W95 

in the stability of β2m buried hydrophobic core (31, 48), one may speculate that excited state M2*, 

having a highly solvent exposed W95 residue, may be associated with protein folding-unfolding and 

consequently with thermodynamic stability of the β2m fold. 



10 

FTIR spectroscopy: β2m secondary structures in solution and in the crystalline state. 

Above, we examined the molecular determinants of the unfolding and amyloidogenic properties of 

β2m in solution and in crystals and found quantitative conservation between the two states. We 

then focussed on if and how the crystal packing affects β2m stability. In order to assess whether 

such biophysical property may be monitored on crystalline samples, a comparative secondary 

structure characterisation of crystalline and soluble β2m variants was carried out by FTIR 

spectroscopy. In order to have a more representative set of protein stability values, the highly stable 

W60G β2m mutant (31) was added to the two β2m variants analysed above. 

First FTIR experiments have been performed (see below) in the crystallization solution to better 

compare the resulting data with the ones obtained from the crystalline state. The spectra collected 

for the soluble native proteins in crystallization conditions display the same spectral features of 

those collected in phosphate buffer (25), indicating comparable secondary structures (Figure 3A). 

However, under such conditions, proteins tend to precipitate leading to low quality non-

reproducible measurements (data not shown). Thus, high quality spectra and temperature ramps 

have been carried out in deuterated phosphate buffer for the soluble β2m variants while proteins in 

the crystalline state have been studied in deuterated crystallization solution, as described in 

Materials and Methods section. 

Figure 3A shows the second derivatives in the Amide I region of the FTIR absorption spectra 

collected at room temperature for the wt β2m protein in solution and in the crystalline state. The 

Amide I band is due to the C=O stretching mode of the peptide bond and it is particularly sensitive to 

the protein secondary structures, including the intermolecular β-sheet structures in protein 

aggregates (16, 17, 19, 24, 25, 49). The second derivative spectrum of crystalline wt β2m displays 

sharper Amide I peaks suggesting more rigid protein molecules compared to what observed in the 

solution spectra (Figure 3A). The peak due to the native antiparallel β-sheets is downshifted from 

~1636 cm
−1

 in solution to ~1628 cm
−1 

in the crystals, likely reflecting a stronger hydrogen bonding in 

the β-sheets of the protein related to the crystal packing (19, 25). Due to the increased structural 

order of the crystalline state, new and better-resolved bands are detectable in the crystalline sample 

(25). In fact, the turn absorption band at ~1670 cm
−1

 is narrowed in wt β2m crystalline sample 

compared to solution. Moreover, two closed components at ~1689 and the new at ~1677 cm
−1

 have 

been assigned to intramolecular β-sheet structures and/or turns, while the new band at ~1649 cm
−1

 

in the crystal has been related to loop regions (19, 25, 50). The peak position of the ~1689 cm
-1

 band 

in the soluble native β2m suggests that the β-sheet core of the protein was partially H/D exchanged 

since this component have been reported at lower wavenumbers (at around 1682 cm
-1

) after fully 

H/D exchange (25, 51, 52). The small peaks observed in the 1650-1680 cm
-1

 region in some spectra 
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can be assigned to residual vapor interferences (Figure S3). However, the spectral changes discussed 

in the present study are well above those expected for the fully H/D exchange of the protein (25) or 

due to vapor interference (Figure S3).   

The spectroscopic data reported in Figure 3 are in agreement with a previous study on β2m variants 

where FTIR microspectroscopy was used to characterise single β2m crystals transferred in D2O (25). 

In the present study, instead, bulk crystalline samples were transferred in deuterated crystallization 

buffer (0.1 M MES pH 6, 27% PEG 4K, 15% glycerol) and the spectra of random oriented crystals 

were measured by a temperature-controlled IR cell after overnight incubation at 4°C.  

Spectra of the D76N and W60G variants were also collected both in solution and in crystalline state 

and compared to the analyses carried out on wt β2m (Figure 3B and C). As mentioned above for the 

wt protein, the same relevant differences are observed between the spectra measured in solution 

and in crystals. Indeed, better resolved components are well detectable together with the downshift 

of the main native β-sheet band, in agreement with our previous study (25). Neither the comparison 

of spectra taken from crystalline samples nor the one from samples in solution detect significant 

differences between the three variants. Altogether the data are in agreement with the 

conformational ensembles obtained by MD and NMR where β2m in crystal display higher beta 

content than in solution and where wt and D76N do not show particular differences in the 

secondary structure content (Figure S4). 

 

Temperature ramps of the wt, D76N and W60G variants in solution and in the crystalline state.  

The thermal stability of the β2m variants in solution and in the crystalline states was studied by FTIR 

spectroscopy heating the samples from room temperature (RT) to 100°C. In both crystalline and 

solution states, the three variants show that the loss of native β-sheet structures is followed by 

protein aggregation, as demonstrated from the appearance of new bands at ~1619 and 1684 cm
−1 

(Figure 4A-I and Figure S5), related to the formation of intermolecular β-sheet structures, as 

previously reported (25).  

Taking the D76N variant as a representative case for the spectral changes observed in solution, the 

native β-sheet component at ~1636 cm
-1

 was found to be stable up to ~42 °C and to rapidly decrease 

above this temperature (Figure 4D, 4M). The loss of the native β-sheet structures was accompanied 

by the raising of the ~1619 cm
-1

 and 1684 cm
-1

 peaks (Figure 4D, 4M).  As shown in Figure 4A and 

4G, thermal treatments induced similar spectral changes for the wt and W60G β2m in solution 

compared to D76N solution. The temperature dependencies of the native β-sheet peak height and 

of that of the β-sheets in protein aggregates for the three variants in solution are shown in Figure 4 J 

M and P. The calculated mid-point temperatures (Tmp) inferred from the thermal denaturation 
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curves of the native structures are reported in Figure 5B. The Tmp values indicate the following 

stability trend: W60G (~79.8°C) > wt (~ 63.6°C) > D76N (~ 51.5 °C), which is in fully agreement with 

previous results obtained by different spectroscopic approaches (25, 37). The intensity changes of 

the IR peaks assigned to the native β-sheets and to the protein aggregates suggest a pretransition 

event starting from about 37-40°C in the case of V60G (Figure 4P). However, the observed 

spectroscopic variations could be also related to full H/D exchange, which occurred at temperatures 

below the thermal unfolding of soluble W60G. In the case of the less stable variants in solution, the 

spectral changes eventually related to these phenomena could be hidden by the much more 

important spectral variations associated to protein unfolding and aggregation (Figure 4). Further 

investigations are required for a definite interpretation of these results.    

The loss of native secondary structures upon temperature increase was monitored on crystalline 

samples at two different heating rates, 0.4 °C/min and 1 °C/min (Figure 4). Along the temperature 

ramps, FTIR signal shifts from native beta structures (component at ∼1628 cm
−1

) to the formation of 

protein aggregates (bands at ∼1619 and ∼1684 cm
−1

). Such large conformational rearrangement 

implies crystal melting. Under these conditions, at temperature around 90°C the intensity of the 

∼1619  component decreases in parallel to the increase in signal corresponding to random coil 

(band at ∼1648 cm
−1

), indicating a further protein unfolding at high temperatures (Figure S6A). This 

behaviour is evident in the case of the less stable variants: the wt and the D76N β2m (Figure 4). In 

general, at high temperature the protein in the crystallization conditions displays a higher content of 

random coils and a lower content of intermolecular β-sheets in comparison with sample in 

phosphate buffer (Figure 4 and Figure S5 and S6). Therefore, the employed crystallization buffer 

induced the precipitation of the native soluble proteins at room temperature and appeared to 

favour the random coil state at high temperature. 

At the two heating rates similar spectral changes in β2m crystalline samples were detected but 

differences are evident in Tmp values, calculated from the native β-sheet component ~1628 cm
-1

. 

Comparable stabilities have been observed for the three protein variants at 0.4°C/min while the Tmp 

for crystals heated at 1°C/min clearly indicated remarkable differences in stability for the W60G and 

wt β2m compared to the D76N mutant (Figure 5). Tmp observed at 1 °C/min were found remarkably 

higher compared to the ones calculated from the experiments at 0.4°C/min (Figure 4 and 5). These 

observations strongly indicate that the stability trends observed for all crystalline samples have 

relevant kinetic components, likely due to crystal dissolution and to the formation of protein 

aggregates as indicated by the specific IR marker bands. Interestingly, rapid temperature increase in 

the experiments at a heating rate of 1°C/min alters the unfolding pathway reducing the formation of 

protein aggregates. Indeed, in all the investigated samples the structural changes induced by the 
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thermal treatments were found to be irreversible as indicated by the spectra collected after cooling 

the samples down to room temperature (25), where the FTIR bands typical of protein aggregates are 

still present at high intensity (Figure S5).  

The comparison of the Tmp calculated from the temperature dependence of the native β-sheet peak 

height for crystalline and soluble samples indicated higher Tmp values for the three variants in the 

crystalline state (Figure 5). The increased stability of the protein crystals is particularly evident in the 

case of the less stable variants (D76N and wt β2m). This behaviour is in accordance with the 

downshift of the intramolecular β-structure component of the protein in the crystalline state thus 

linkable to the more ordered and tight structure of the protein under these conditions. 

Importantly, the thermal stability trend for the three variants obtained in solution as well as in the 

crystalline states at a heating rate of 1 °C/min, is in keeping with the ones previously reported 

(W60G > wt > D76N) (25, 29, 32, 37) (Figure 5). 

 

Temperature-induced conformational changes monitored by tyrosine FTIR absorption  

Further comparative analysis can be performed on the different events occurring during protein 

denaturation in the solution and crystalline states by monitoring the Tyr ring ν(CC) band at around 

1514 cm
−1

 (53). The peak position of this band reflects Tyr chemical environment, therefore 

providing information on the protein tertiary structures. In the thermal treatments of the β2m 

variants in solution the Tyr peak positions were found to change by less than 1 cm
-1

, either in 

deuterated phosphate buffer or in the crystallization conditions (Figure 5C). These results agree with 

the Tyr peak positions previously reported (52) for deuterated native β2m (~1515 cm
-1

) and for 

deuterated amorphous aggregates obtained after heat treatment of the protein at neutral pH 

(~1514 cm
-1

).  

Conversely, in the crystalline samples the peak position of the Tyr peak is upshifted of more than 2 

cm
-1

 during the temperature ramp (Figure 5C, Figure S3). The higher shift observed for the 

crystalline samples (Δ wavenumber > 2cm
-1

) compared to the proteins in solution (Δ wavenumber 

<1cm
-1

) indicates a relevant change in Tyr environment during the thermal treatments of the 

crystals, likely reflecting crystal melting. Indeed, the Tyr residues embedded into the crystal “are 

forced” to interact with the surrounding residues while when crystals melt and release protein 

molecules in solution, the chemical environment around the Tyr residues undergoes a drastic 

change. Remarkably, the conformational changes detected by this spectroscopic probe along the 

thermal treatment of crystalline samples indicate a stability trend in agreement with the 

measurements of native beta structure in solutions and in crystals: W60G > wt > D76N (Figure 5C).  
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Discussion 

 

The present work aims at clarifying the extent at which biophysical properties such as protein 

dynamics and stability assessed in crystallo are representative of protein behaviour in solution. Wt 

β2m and the two mutants D76N and W60G were chosen because of the detailed structural and 

biophysical characterisation already available. Simulations on wt and D76N β2m result in ensembles 

which are consistently more rigid when restrained with NMR chemical shifts determined in crystals, 

as compared to those calculated using solution chemical shifts. The most relevant features emerging 

from the simulations, however, are preserved in the two environments. Notably, the effects of D76N 

mutation are qualitatively similar and a comparable scenario can be derived in crystals and in 

solution. Indeed, all simulations describe an excited state which is particularly flexible for the D76N 

variant and significantly differs from the native ground state. Conversely, the excited state observed 

for wt β2m closely resembles the native ground state. Therefore, the systematic comparison of MD 

simulations performed using solution and solid-state NMR data fully agree with our recent finding 

that crystals preserve ‘hidden’ conformations reminiscent of pathological states observed in solution 

(26, 47). 

In addition, this new analysis reveals the population of solvent-exposed conformations of D76N β2m 

W95 side-chain, in both protein states. The position of W95 is central in β2m hydrophobic core and 

its mutation greatly destabilises the protein fold (31, 48). It is likely that β2m conformations with an 

exposed W95 may be highly destabilised and may represent an important step in the folding-

unfolding pathway. While this conformation could not be detected by X-ray crystallography, it may 

be a key to understand the low stability of the protein. In contrast, the more stable wt β2m did not 

show any evidence of such W95 exposure to solvent.  

In order to go further in the description of protein crystal properties, protein thermal stability in 

crystals was then compared to the ones in solution. Melting temperatures of wt, D76N and W60G 

β2m crystals were in good agreement with previous data in solution (25, 33, 37). This confirms the 

relevance of assessing fold stability of proteins in crystalline form. Also for this parameter, some 

systematic differences are observed between crystals and solution samples. Tmp values are higher in 

crystals than in solution, an effect likely due to favourable interactions present in the crystal lattice. 

Such contribution is more notable for the unstable D76N variant compared to the highly stable 

W60G (Figure 5B). However, the general trend of protein stability is identical in solution and in 

crystallo: W60G mutant is more stable than wt β2m, D76N is the least stable of the three variants. 

All temperature ramps presented in this work induce irreversible protein unfolding and all the 

observed processes are non-thermodynamic. Thus, it is not surprising that in the experiments on 
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crystals the kinetic component is relevant and specifically so because crystal melting and protein 

unfolding appeared as concomitant processes, as additionally suggested by the change of the Tyr 

peak position. However, at different heating speeds, the Tmp values are different but the underlying 

stability of each of the β2m variants is prevalent and the stability trend is identical in all our 

experiments. In other words, these data suggest that the experimental setup may change specific 

values but not general trends in comparative studies adding further to the solidity of this kind of 

experiments. In summary, the present data suggest that biophysical properties of proteins such as 

protein dynamics and protein stability are retained in crystals and therefore they can be reliably 

studied in crystallo.  

These results are of particular importance to understand and analyze solid-state NMR data. Indeed, 

solid-state NMR has the unique advantage to probe dynamical processes on different timescales in 

hydrated crystals or microcrystals. The recent major advances in magic-angle spinning techniques 

have widened the size range of proteins which can be investigated with site specificity. Here, 

although we chose to investigate processes - folding and unfolding - implying important 

conformational changes, the experimental data and simulations indicate that ‘hidden’ 

conformations of proteins in crystals explain their stability and amyloidogenic properties as 

consistently as their solution counterpart does. This underlines the pertinence of such approach for 

the investigation of biological processes where conformational dynamics plays a role. 

In addition, the results outline an important role for FTIR spectroscopy to characterise secondary 

structure content and protein stability on bulk crystalline samples. Even though FTIR spectroscopy 

has been applied to study very diverse kind of protein samples (16-19, 22, 24, 25), to the best of our 

knowledge, this work is the first example where FTIR has been used in this context. Crucially, FTIR 

spectra collected at increasing temperature on crystalline samples were shown to provide specific 

information on protein unfolding, aggregate formation and crystal melting. This was possible by 

monitoring the temperature-dependent variation in intensity of the native and inter-molecular beta-

sheet components and Tyr peak position.  

Previously we showed that FTIR spectra on single crystals (25) provide more insightful information as 

compared to the spectra recorded in solution, displaying better resolved components. This suggests 

that crystals are ideal samples to acquire FTIR spectra of excellent quality. However, in our previous 

work the handling of single crystals was not straightforward and high-quality spectra were 

successfully collected thanks to the excellent stability of β2m crystals (25). Conversely, crystal pellets 

are easier to prepare and are more amenable samples, resulting in easily reproducible 

measurements. Crucially, FTIR spectra collected on bulk crystalline samples provide data of the same 
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excellent quality as single crystals allowing a broader application of this technique in different 

contests.  

Overall, our data indicate that variations of protein stability can be assessed in crystals. This 

observation suggests that any effect which triggers a variation in protein stability may be 

appreciated by FTIR experiments: for example, protein stabilisation upon ligand binding may give 

rise to crystals with an increased stability. Thus, FTIR unfolding experiments may be preliminary or 

complementary to diffraction data collection to assess the formation of protein complexes. This 

would be specifically useful in cases of poorly diffracting crystals or limited accessibility to X-ray 

sources.  

Previous reports stressed the relevance of assessing stability of crystals when they are used for 

industrial application, as materials or as catalysts (54, 55). Crystal stability has been previously 

assessed using differential calorimetry (54, 55). Our data put forward FTIR spectroscopy as a new 

insightful and relatively easy-to-use technique to assess crystal stability by monitoring secondary 

and tertiary structure unfolding and protein aggregation simultaneously.  

 

Conclusions 

In conclusion, here we have presented a detailed comparison of protein dynamics and fold stability 

using crystalline and solution samples. Our data reinforce the picture that crystals contain a wealth 

of information about intrinsic properties of proteins such as dynamics and stability and thus, data 

from crystalline samples may provide deep insights into phenomena such as unfolding and 

aggregation.  
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Figure Legends: 

 

Figure 1. Conformational ensembles for native β2m variants in solution and in crystallo. Free 

Energy Surfaces (FES) in kJ/mol for the conformational ensembles of wt β2m and D76N β2m using 

solution or solid-state NMR chemical shifts as experimental restraints. The FES are shown as a 

function of the Anti-b RMSD, which is proportional to the amount of beta structure, and of the 

Sidechain CV, which reports about the overall configuration of the solvent exposed side-chains. FES 

for wt β2m in solution is taken from (38), the FES for wt- and D76N- in the solid state are from (26), 

while the FES for D76N β2m in solution is reported here for the first time. The dotted lines indicate 

the position of the minima in the FES. 

 

 

Figure 2. W95 role in β2m’s conformational ensembles. Free Energy Surfaces (FES) in kJ/mol for the 

conformational ensembles of wt β2m and D76N β2m using solution or solid-state NMR chemical 

shifts as experimental restraints. The FES are shown as a function of the Anti-b RMSD, which is 

proportional to the amount of beta structure, and of the Solvent Accessible Surface Area (SASA) in 

nm
2
 of the W95 residue. The dotted lines indicate the position of the minima. This representation 

shows how both the previously identified ground and excited state are characterised by a buried 

W95 but that in the case of D76N there are minima associated with a solvent exposed W95 

compatible with the lower protein stability. 

 

 

Figure 3. FTIR spectroscopy of wt, D76N and W60G β2m variants in solution and in the crystalline 

state. (A) The second derivatives of the absorption spectra of wt β2m in solution compared with 

that of wt protein in the crystalline state. (B) Comparison of the second derivative spectra of wt, 

D76N and W60G β2m in deuterated phosphate solution. (C) Comparison of the second derivative 

spectra of wt, D76N and W60G β2m crystals in deuterated crystallization solution. The peak 

positions of the main Amide I components are indicated. 
a
 Samples in deuterated crystallization 

solution; 
b
 Sample in deuterated phosphate solution. 

 

 

Figure 4. Temperature dependence of FTIR spectra of the β2m variants in solution and in crystals. 

(A-I) Second derivatives of the absorption spectra collected at increasing temperature. The β2m 

variants were analysed in solution in deuterated phosphate buffer (left panels) and in the crystalline 
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state (middle and right panels) in crystallization conditions. The heating rates were indicated. The 

assignment to the protein secondary structures of the main Amide I components is reported in the 

upper panels. The arrows point to increasing temperatures. (J-R) Temperature dependence of the 

native β-sheets (blue) and of β-sheets in protein aggregates (red) evaluated from the peak 

intensities in the second derivative spectra of panels A-I, respectively.  

 

 

Figure 5. Thermal stability of β2m variants assessed by FTIR spectroscopy. (A) The temperature 

dependence of the native β-sheet peak height of β2m variants in solution and in the crystalline 

state. Proteins in solution were heated at 0.4°C/min and the intensities of the ~1636 cm
−1

 peak, 

taken from second derivative spectra, were reported. For protein crystals, samples were heated at 

1°C/min and the intensities of the ~1628 cm
−1

 peak, taken from second derivative spectra, were 

reported. (B) Calculated mid-point transition for the thermal denaturation experiments. Tmp values 

are obtained from the native β-sheet peak height measured on the protein in phosphate solution 

(0.4°C/min heating rate) and in crystalline state (heating rates of 0.4 °C/min and 1 °C/min). Values 

are calculated by fitting the data with the Boltzmann function. Error bars are the standard deviation 

from two-four independent experiments. Orange stars indicated Tmp values reported in the literature 

for the three variants in solution (see main text for details). (C) Temperature dependence of the 

tyrosine peak positions (ring ν(CC) mode), taken from the second derivative spectra, of β2m variants 

in solution and in the crystalline states. The data from the same samples of panel (A) are reported. 

Orange arrows point to the peak positions reported in the literature (see main text) for deuterated 

native β2m at neutral pH (orange *) and for deuterated amorphous aggregates obtained after heat 

treatment of the protein at neutral pH (orange **). The red bar indicates the range of Tyr peak 

positions here observed for the native soluble variants at room temperature in deuterated 

crystallization solution. 
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