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Abstract Motivated by the holographic self-tuning pro-
posal of the cosmological constant, we generalize and study
the cosmology of brane-worlds embedded in a higher-
dimensional bulk black hole geometry. We describe the equa-
tions and matching conditions in the case of flat, spherical and
hyperbolic slicing of the bulk geometry and find the condi-
tions for the existence of a static solution. We solve the equa-
tions that govern dynamical geometries in the probe brane
limit and we describe in detail the resulting brane-world cos-
mologies. Of particular interest are the properties of solutions
when the brane-world approaches the black hole horizon. In
this case the geometry induced on the brane is that of de Sit-
ter, whose entropy and temperature is related to those of the
higher dimensional bulk black hole.

1 Introduction, results and outlook

One of the biggest and yet unsettled problem in theoretical
physics is the explanation of the observed very small positive
cosmological constant of our expanding universe or equiva-
lently the explanation of an un-natural small vacuum energy.
This is the so called cosmological constant problem [1-3].
There are two ways to approach it from a low energy point of
view, one is using the properties of effective quantum field
theory (EQFT) and the other is using the framework of gen-
eral relativity (GR).

In more detail using the EQFT paradigm, one can describe
with much success the standard model (SM) of observed par-
ticles in the absence of gravity. If we use EQFT to compute
the energy density of the vacuum, it receives large renormal-
isations originating from UV modes. Therefore unless an
extreme fine-tuning of parameters takes place, one expects
a huge energy density from such calculations. Simultane-
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ously the vacuum energy density sources the gravitational
fields that are responsible for the curvature of the universe
thus it affects the macroscopic or classical (IR) physics and
the evolution of the observed universe today. This is in stark
conflict with the currently observed very small value of the
cosmological constant.

There are various proposals for the resolution of the cos-
mological constant problem in the literature. In this paper
we will focus on the self- tuning! mechanism proposed in
[4] that involves the use of the brane-world scenario and
holography?. In such a framework, the simplest model that
encapsulates the relevant physics, is that of a five dimensional
bulk space time that is a solution to an Einstein scalar theory.
The geometry in the UV asymptotes to that of an Ad S5 space
time. In this geometry we have embedded a four dimensional
brane that corresponds to the observed universe with the stan-
dard model fields. Employing the holographic principle, the
five dimensional bulk gravity theory is dual to a strongly
coupled four dimensional quantum field theory that interacts
with the four dimensional weakly coupled theory of the stan-
dard model brane [5-9]. The self-tuning of the cosmological
constant in this framework is achieved by the coupling of the
two sectors: the one that lives on the brane (which we will
colloquially call the SM) and the one that is dual to the five
dimensional bulk gravitational theory (which we will denote
as the “hidden sector” [11]). This interaction when we work
in mass scales below that of any messenger fields that medi-
ate interactions between the two sectors, can be described by
introducing effective brane potentials in front of the kinetic
terms of the fields that live on the standard model brane. In

1 By self-tuning of the cosmological constant (CC) we define any model
that allows the relaxation of the CC into a smaller value dynamically,
by allowing for extra degrees of freedom to backreact and exchange
energy with the SM fields.

2 This mechanism was proposed in [6,10]. These efforts however did
not manage to produce regular self-tuning solutions.
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the present simple example, these potentials are functions of
the scalar field of the five dimensional gravitational theory.

In the setup of [4], one should impose Israel junction con-
ditions at the radial point where the four dimensional brane
is inserted and solve them together with the five dimensional
bulk equations of motion. The authors then searched for sta-
ble solutions with zero cosmological constant induced on the
standard model brane and found that such solutions exist and
are stable under small perturbations, given some assumptions
about the scalar potential induced on the brane. These solu-
tions correspond to the Poincaré invariant vacua of the theory.
Moreover, the brane stabilizes at some point r¢ in the bulk
of the five dimensional space-time. The main novelty of the
self-tuning construction of [4], is demanding regularity in the
IR of the bulk geometry as a basic principle,® and searching
for a consistent solution where the brane stabilizes some-
where in the bulk space time. This is done assuming general
effective potentials that couple the bulk theory with the one
that lives on the brane and the construction is then found to
be able to give solutions that evade the issues (singular solu-
tion in the IR) present at [6, 10, 1214 Finally a mechanism
analogous to that introduced in [13], results in an effective
localisation (for some regime of scales) of the gravitational
force in four dimensions, as perceived by observers that can
perform experiments on the brane.

In [14] the authors studied time dependent curved solu-
tions that are not static but rather move in the radial bulk direc-
tion. In contrast to [15], the boundary of the five dimensional
bulk theory is the one of [4]. Thus, these time-dependent solu-
tions correspond to time-dependent states of the theory whose
vacuum (static) solutions were found in [4]. The time depen-
dence of the position of the brane induces a time dependence
on the brane metric, which leads to a cosmological evolution
as perceived from the observers on the brane. Although the
authors found the appropriate Israel junction conditions and
bulk equations of motion, they could not solve them analyti-
cally and thus relied on a probe limit analysis where the brane
does not backreact on the bulk geometry (the bulk geometry
remains static). In this limit, the time dependence enters only
in the radial direction 7 (7). Even taking such a limit, it is still
possible to find cosmological solutions in agreement with the
general principles in [16-19].

In the moving brane solutions, if the brane is moving
towards the IR, the brane universe has a contracting FRW
metric. On the other hand, moving towards the UV one finds
an expanding FRW universe. Moreover, taking the UV limit

3 At finite temperature this will translate into a regularity condition at
the bulk horizon.

4 One might argue that demanding IR regularity is a point where fine-
tuning is introduced into the construction, but in fact this is not only a
natural boundary condition, but also a dynamically required one from
the point of view of the dual QFT. It is precisely regularity that fixes the
vevs as a function of the couplings.

@ Springer

where the bulk geometry asymptotes to AdS one finds the
induced geometry on the brane to be de Sitter with a Hubble
parameter that depends on the UV values of the potentials
induced on the brane. In the IR on the other hand, there are
several possibilities depending on how the bulk geometry
ends. For example we can have acceptable forms of singu-
larities or horizons.

In this paper, our main focus will be to extend these previ-
ous studies in the case where the bulk solution corresponds
to a thermal state of the dual holographic QFT. In such a case
there will be a regular bulk horizon cloacking the bulk singu-
larity. We believe this is one of the most interesting options
physically, since it corresponds to geometries that describe
the typical high energy states of the dual strongly coupled
holographic theory, according to the eigenstate thermalisa-
tion hypothesis [20,21]. Thus, we expect our results to be
quite robust and universal, especially in the limit where the
brane approaches the regular horizon. In addition, having as
amotivation a solution to the cosmological constant problem
(for observers living on the brane), we would like to under-
stand the properties of states where the total vacuum energy
of the combined system is quite large. If the induced curva-
ture on the brane can remain naturally low even in such a
case, this is a strong indication that the mechanism proposed
in [4] is quite robust.

In practice, we follow the steps of [14], but this time we
include regular black hole geometries in the five dimensional
bulk. We first derive the full backreacting bulk equations of
motion together with the Israel junction conditions across the
brane, for three possible slicings of the bulk black hole geom-
etry, namely flat, spherical and hyperbolic. These equations
are coupled nonlinear ODE’s and one can solve them only
numerically. Nevertheless existence of solutions for some
parameter space can be established without having the pre-
cise explicit solutions.

In addition if we assume that the bulk is dual to a large-
N strongly coupled gauge theory, it is also natural to expect
that the backreaction of the small number of SM degrees
of freedom can be naturally kept low and hence there is a
good motivation to further analyse a probe brane limit. In this
limit since the only time dependence comes from the radial
position of the brane, the action that governs the dynamics on
the brane reduces to that of a quantum mechanical system.
Moreover, the induced metric on the brane is of the FRW type
and is controlled by the blackening factor, the scale factor of
the bulk geometry and the position of the brane in the radial
direction.

The next step is to study the induced geometries on the
brane in the IR and the UV limit. The UV asymptotics in the
case of flat slicing are the same as in [14] and in the case
of spherical slicing the only difference is that instead of the
Poincaré patch of AdS the bulk geometry asymptotes to the
global AdS space-time. In the UV limit, the induced geom-
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etry will be again de Sitter with the corresponding Hubble
parameter to be governed by the UV limits of the coupling
potentials induced on the brane, and thus we will not repeat
the analysis here. We are mainly interested in the IR analy-
sis, which is revealed to differ substantially from that of [14],
since in our case the IR geometry is that of a black hole hori-
zon. In particular we find that the induced geometry on the
brane in the IR corresponds to the Poincaré patch of dS for
all the possible slicings. Moreover the Hubble parameter and
the scale factor of the induced metric depend on the horizon
values of the induced potentials on the brane as well as on
the first derivative of the blackening factor which is related
to the temperature of the bulk black hole. The most interest-
ing result of our analysis is a relation between the induced
cosmology horizon entropy and temperature with the same
quantities in the bulk black hole side. We believe that this is a
point that certainly deserves more study, since it is quite hard
to assign appropriate microstates to the dS entropy, while
our analysis indicates that such an understanding could arise
from realising d S in a purely QFT theoretical setup (once we
understand in more detail the microscopic theory that is dual
to such braneworld geometries).’

The structure of the paper is the following: In Sect. 2 we
provide the general formulae of the self tuning theory and in
Sect. 3 we describe the matching conditions on the brane in
the case of flat, spherical and hyperbolic slicing. In Sect. 4 we
solve these equations analytically in the probe limit where the
brane does not backreact on the bulk geometry. We conclude
with Sect. 5 where we present the brane-world cosmology
in the IR limit which in our case is captured by the near
horizon region of the higher dimensional bulk black hole.
This cosmology is that of de-Sitter space (dS), and this allows
a natural relation between the entropy and temperature Syg
and T,g, with those of the higher dimensional bulk black
hole Spy, Tpy. Our paper is complemented with various
appendices, where supplementary material as well as more
detailed calculations are presented.

2 The self-tuning theory

In this section we review the self-tuning mechanism of
[4,14]. Our bulk theory is an Einstein—Dilaton theory in
d + 1-dimensions. The bulk space-time coordinates are
x4 = (r, x*). Moreover, we embed in the d + 1 bulk a
d-dimensional brane that is parametrized by x*. For such
a system the most general 2-derivative action is

S = Sbulk + Shrane (21)

3 Such a setup can be based on the ideas presented in [9,11].

with,

Sbulk — Md71 fdd+1x /_g
1
X [R - Eg“baawi?bw - V(w)} + SGH, (2.2)
Shrane = Md_l fddxv -V [—Wpg (</7)

1
X —EZB(w)J/’”aMgpa,,go + UB(¢)R(V>] 4.,
2.3)

Sc # is the Gibbons—Hawking term at the space-time bound-
ary (e.g. the UV boundary if the bulk is asymptotically AdS),
M1 = (16w G5)~! is the bulk Planck scale, g, is the bulk
metric, R is its associated Ricci scalar, V (¢) is some bulk
scalar potential, y,,, is the induced metric on the brane, R")
is the intrinsic curvature of the brane.

The ellipsis in (2.3) represent higher derivative terms
of the gravitational sector fields (¢, y,v) as well as the
action of the brane-localized fields (such as the “Standard
Model” (SM)). Wp(¢), Zp(¢) and Up (¢p) are scalar poten-
tials that are localized on the brane since they are gener-
ated by the quantum corrections of the brane-localized fields
[9]. For example, Wp (¢) contains the brane vacuum energy,
which takes contributions from the brane matter fields. All
of Wp(¢), Zp(¢) and Up (p) are cutoff dependent and they
scale as, Wp(p) ~ A%, Zp () ~ Up(p) ~ A? where A
is the UV cutoff of the brane physics as described here.
Its origin was motivated and described in [4]. Before pro-
ceeding with an analysis of the EOM’s stemming from Eqgs.
(2.2), (2.3), we should also mention that one could extend
the braneworld description of Eq. (2.3), to be that of a quasi-
localised brane having a small finite extend in the radial direc-
tion. This is natural from a holographic RG point of view,
in case that the number of degrees of freedom dual to the
braneworld are comparable to those of the bulk gravity. Some
similar arguments were also presented in [22]. Nevertheless,
in the present work we will study the leading contribution
(N — 0o, Mp — 00), where the braneworld is exactly
localised in the radial direction.

2.1 Field equations and matching conditions

The bulk equations of motion are

1 1
Rap — _gabR = —3a<.03b§0

2 2
D
S8ab | 58 0c@dap +V(p) ), (2.4)
ab A%
b (V=880 - Vg, =10 2.5)
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notice that they depend only on V (¢). The d-dimensional
brane separates the bulk into two regions. The UV region is
the one that extends from the point r( that the d dimensional
brane is located and ends on the UV boundary of the d 4 1
bulk spacetime (where the volume form becomes infinite).
The IR region is the one that extends from the point r( that
the d dimensional brane is located and ends at the interior of
the bulk space time where the volume form becomes zero.
For the case of bulk black hole geometries that we study in
this paper the IR region includes the black hole horizon and
ends at the black hole singularity.

We symbolise by gé]bv, géf and UV, ¢’k the solutions
for the metric and scalar field in the UV and IR regions of

IR
the brane respectively. The [X ]UV symbolise the “jump” of

a quantity X across the brane. Then, we can express Israel’s
junction conditions as

1. A continuity equation for the metric and scalar field:

olly =0, [l =0

(2.6)
IR

2. The extrinsic curvature and the normal derivative of ¢
should satisfy the following discontinuity conditions:

IR 1 SSbrane
[Kus = k], = 75 i
IR 1 Ssbrane
ay ] - : 2.7
[0, ST @7

here y is the induced metric on the brane, K, is the
extrinsic curvature of the brane, K = y*" K, its trace,
and 7% a unit normal vector to the brane, pointing into
the IR.

The discontinuity Eq. (2.7) for an action of the form (2.3)
are given explicitly by

IR 1
[ = J/MK]UV = [5 We (@)Y + Up@)GY)

1 1
~5Z5(9) (auwauw — Ey,w(aw)z)

+ (Y PTVPVY = VPV ) U (“’)Lom :

2.8)

[naaa‘p]lk = dWB - dUB*R(y)
uv do do

1dZp .
222
+2 d¢(<p)

—%aﬂ (zmwam] 2.9)

%o (x)

where g (x*) is the scalar field on the brane.

@ Springer

3 Embeddings of black holes

In this section we present the specific form that the relations
(2.8), (2.9) take in the presence of bulk black holes with non-
trivial scalar field profile. In the following subsections we
examine in detail the case of flat 3.1 and spherical 3.2 slicing
and in Appendix D we derive the equations in the case of
hyperbolic slicing.

3.1 Embedding of a black hole with flat slicing

In this subsection we examine what are the conditions (2.8),
(2.9) in the case that the bulk geometry is a black hole with
flat slicing with a metric of the form

2
_ A pae [ F@)ar + dxiax'].
f@)
£ (r) is the blackening factor and e?4¢) is the scale factor of
the metric. In order to compute the extrinsic curvature K,
and its trace K it is useful to bring the metric (3.1) into an
ADM form where we use as “time” the radial bulk direction
and decompose the metric as

ds? 3.1

2A(r

ds® = gyndxMdxV = YuwdxHdx"

+2N,dxtdr 4+ (N? + N,N*)dr? (3.2)

with N, N, the lapse and shift functions and y,,, the induced
metric on the hypersurfaces X,.

Using the unit normal vector on the surface n¥ =
(1/N,—=N*"/N)® we define the extrinsic curvature and its
trace as

1
K, = z(»cng)p,v

.
=N (Vv — VuNy — VuN,.),

K =K, ,y"* 3.3)
For a metric of the form (3.1), we have that
_ N,=0
NG
vi =€y == F ). (3.4)

The extrinsic curvature components using (3.3) and (3.4) are

JTO ,
Ky === QAf@)+ f(r)e*! (3.5)
Kij =+ f(l’)AeZA(S,'j 3.6)
6 6 =nMpny = +1,0r —1 if the surface is timelike/spacelike (which is

a possibility if the bulk theory is Lorentzian), in our case ¢ = n™ny; =
+1.
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and the trace of the extrinsic curvature is

1@
dA+ = 3.7
f(r)[ +2f():| (3.7)
By substituting (3.5), (3.6), (3.7) at (2.8) we find
[Ktr - V[TK]Iljli/ =(d- 2Af(r)3/2[ ]UV
= Ly 3.8
= — W5 £ () (3.8)
or
Wg = —2(d — DVF@) [A])) (3.9)
and
IR 24 1f(r
[Kii = viK |y, = =™V () |:(d — DA+ 370 )i|
1
= EWBEZA (3.10)
or
@)
Wp=|-2(d -1 A — —— 3.11
B [ ( W () W]UV (3.11)
Moreover (2.9) becomes
o dWB
n* 0,015 =V f ) [0}y = (3.12)

For stabilization of the brane to occur at some point ¢ in the
bulk five dimensional spacetime, the conditions (3.9), (3.11)
and (3.12) should be satisfied simultaneously. That is the case
only if

£ }
=0 (3.13)
|:\/f o) |,y
which means that the derivative of the blackening factor
should be continuous before and after the location of the
brane rg. Using the superpotential formalism described in
Appendix A.1 we can rewrite the Egs. (3.9)—(3.12) as

B =V (@) Wir —Wuyv) (3.14)
f/W/ i|IR

= Wig =W — | —— 3.15

B =V (@) Wir uv) [ o0 oy (3.15)

Wp = fle)) (WI/R - W(/JV) (3.16)

where / symbolise derivatives with respect to ¢. Both
Wir, Wyy are solutions to the superpotential equation

d 5 (W' (9))?
<4<d—1>W“")_ 2 )

W/
xf(e) - T.f/(@W((p) +V(p) =0. (3.17)

Holographic self-tuning

Following [4], we use the rules of holography to fix the inte-
gration constant Cjg, of W;p by demanding regularity in
the / R.” Then the matching conditions (3.14)—(3.16) fix the
integration constant Cyy for the UV superpotential Wy,
the position of the brane ¢ in the field space and how the
blackening factor f(¢(r)) behaves around ¢g.

The integration constant Cyy through the holographic
dictionary is related to the VeV of the operator dual to ¢,
thus the effect of the insertion of the brane is to change the
VeV comparatively to the case without brane.®

In order to have self-tuning of the CC and not a fine tuning,
one should be able to find the 4d Minkowski space geometry
on the brane for generic values of the parameters. In the case
at hand, the parameters of the model are the bulk and brane
potentials, which contain the 4-d vacuum energy.’

In more detail the process is the following, for arbitrary
values of the potentials V and Wp in the bulk and on the
brane, the UV side of the geometry adjusts itself dynamically,
for given Cyy and ¢, so that the induced geometry on the
brane can be that of 4- d Minkowski. We observe that for
arbitrary initial conditions for Wyy at ¢p, the space-time
at ¢o connects to the same UV AdS region. Consequently,
we conclude that any value of Wy gives rise to a regular
geometry that satisfies the same boundary conditions.

From the boundary field theory point of view, these
geometries are distinct only due to the different VeV of the
operator dual to . This VeV is related to the integration con-
stant Cyy that fixes Wy y. We conclude that the UV geom-
etry self-adjusts such that it can be pasted to the regular IR
solution on the brane at ¢ for any value of the parameters
there.

3.2 Embedding of a black hole with spherical slicing

In this subsection we study the case of the bulk geometry
to be a black hole with spherical slicing using the following
ansatz for the metric

dr?

ds* =
YT o

+ A0 [~ f)d? + RAQG, ). (18

where f(r) is the blackening factor, ¢*4¢") is the scale fac-

tor of the metric, d€24_1 is the metric of the unit transverse
sphere and R is the radius of the transverse sphere. This

7 Usually, there is just one such solution to (3.17) or a discrete set, thus
Wk is fixed by the regularity condition.

8 Of course we can still freely specify the UV sources for our fields
through the UV boundary conditions imposed on the bulk equations of
motion.

9 It is included in the @-independent part of W (¢).

@ Springer
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ansatz is appropriate when the dual QFT to the bulk theory
is defined on an R x S9~! geometry.

In the case of five bulk dimensions the explicit metric for
the unit sphere is

dQ2 = dy? + sin (d02 +sin%6 d¢2> . (3.19)
In order to compute the extrinsic curvature and its trace it is
convenient to use the ADM form of the metric (3.2) with the
following identifications

1
N = ——, Nl. = 0,
NG

vie == ) v = AR 1 Q). (3.20)
where ;; are the metric components of the d — 1 dimensional
unit sphere.!”

Substituting (3.20) in (3.3) the components of the extrinsic
curvature are

V)

Ky = =5 QAf() + f(r)e* (3.21)
Kij = (A R 4 (Qu-1) (322)
and the trace is

_ i lgin L0
K = f(l)|:dA+2f(r):|' (3.23)
The Ricci scalar induced on the brane is

_ _ 1y,—24

gy = @=Dd—-De ™ (3.24)

R2

The Einstein tensor induced on the brane can be written in
the compact form'!

(3.26)

Gl’iv = diagonal {M —Xii} .

R2 '

10 For the case of five bulk dimensions the transverse sphere is a three
sphere and the explicit components of the induced metric are yyy =
€2AR2 _ 2AR2'2 d _ 2AR2'2 s02

, Yoo =€ sin“ ¥ and ypg = e sin“ i sin“ 6.
" In the case of a four dimensional brane the explicit form of the
Einstein tensor is

AP 00 0
0 -1 0 0
GV = 3.25
my 0 0 —sin?y 0 (3.25)
0 0 0 —sin2ysin?6

@ Springer

By substituting (3.21), (3.22), (3.23) (3.24) and (3.26) in (2.8)
we find the following two relations

[Ktr - VtrK]lI]lz/ =d -1t fry? [A]:Jf/
= W)
+Ug(p)(d — 1)% (3.27)
[Kij — Vin]{]RV = =M R xij(Qa-1DV/ f ()
IR
X |:(d— 1)A+%M}
o],
1
= EWBEZARZXij(Qdfl)
—Up(@)xij(S2a-1). (3.28)
Moreover, (2.9) becomes
n“daplify =V ) B0y
_dWp e ?(d —2)(d —1)dUp
= o — 72 o (3.29)

For stabilization of the brane to occur at some point rg in
the bulk five dimensional spacetime, the conditions (3.27),
(3.28) and (3.29) should be satisfied simultaneously. That is
the case only if

(3.30)

Usd-2) e“[f(m ]’R
R2 2 '
uv

2 | VT

Additionally from (2.3), we observe that in order to have a
positive Planck scale on the brane, U should be positive'?
and thus

F)ig = Fuylr=r <0, (3.31)

which means that the derivative of the blackening factor
should be discontinuous at the point = r¢ where the brane
is located and decreasing from the UV (19 + €, € > 0) to
the IR (r9 — €, € > 0). Using the superpotential formalism
presented in Appendix B.1 we can rewrite the equations
(3.27)—(3.29) as

12 A special case is Up = 0 when f(r) is continuous. In such a case
the conclusions of subsection 3.1 hold.



Eur. Phys. J. C (2020) 80:660

Page 7 of 19 660

V@) Wig —Wyy)

—24 1
=Wp —2e ““Up(p)(d — l)ﬁ (3.32)
f‘/W/ IR
v ) (Wigr — W — | ——
Xy f(p(r)) (Wig uv) [ f(€0(r))]Uv
1
=Wgp —2¢ U ((p)ﬁ (3.33)
—24
, d-2d-1
=V @r) (Wig —Wiy) (3.34)
where the / are derivatives with respect to ¢ and
1 W
Alg) = @) 4 (3.35)

T2d -1 Jp Wi

Moreover, both W;r, Wy are solutions to the superpoten-
tial equation

d 2 W' @eN* ,
(4(d—1)W (so)—T>f(<p)
1
—EW’(w)W(w)f/(so) +V(p)—(d—1)d—-2)T(p) =0.

(3.36)

The discussion presented in the Sect. 3.1 about the holo-
graphic self-tuning, follows similarly here. Additionally, in
this case we have one more parameter Up on the brane that is
related through (3.30) to the discontinuity of the blackening
factor at the point where the brane is inserted.

3.3 Embedding of a black hole with hyperbolic slicing

The case of a bulk black hole with hyperbolic slicing is pre-
sented in detail in the Appendix D. We briefly state here, that
one follows the exact same steps as for the case of spheri-
cal slicing, the only difference in the present case is that the
curvature (3.24) has an overall minus sign. Due to this sign
flip in the curvature, the equivalent equation to (3.29) in the
hyperbolic case is

a1ty =V F ) Brelfy
dWg e ?4(d —2)(d — 1) dUg
= o + R2 do (3.37)
The Eqgs. (3.27), (3.28) and (3.30), (3.31), as well as the holo-
graphic self-tuning procedure remain the same.

To conclude this section we comment on the possibility
of addressing the full backreacting problem. The bulk equa-
tions of motion (2.4) and (2.5) supplemented by the junction
conditions (2.8) and (2.9) can be solved analytically only
in the static case as was done in [4]. In the present note we
are interested in the induced cosmology on the brane thus the
metric on the brane should be time dependent. Unfortunately,
in such a case one cannnot solve the equations analytically,

only numerically. Since we want to have analytic control on
our results, in the following we constrain our analysis in the
probe limit where the brane does not backreact on the bulk
geometry.

4 The probe brane limit

In this section we study the brane dynamics in the probe
limit. In this limit one has to solve the bulk equations of
motion (2.4) and (2.5) without taking into account the back-
reaction of the brane in the bulk geometry.'® This translates
into accepting that the bulk geometry is smooth across the
brane and we simply have to set the (2.7) equal to zero. Con-
sequently, the bulk geometries in our examples are given by
(3.1) and (3.18) respectively.

The induced action on the brane before gauge fixing, in
this regime is

~ V4
Sy = M3/d4w—§ (—WB @) + Up(9)R — 7‘9(3«))2 +- ) ,
4.1)

where £# are world-volume coordinates and the hat indicates
induced quantities.

4.1 Flat slicing

In this subsection we study the probe brane limit in the case
where the bulk black hole geometry has a flat slicing and is
described by the metric (3.1). Moreover, we work in the static
gauge, £" = x/, and hence the only dynamical variable is
r(x*) that we allow it only to depend on time. Thus the brane
in the probe limit has only one dynamical degree of freedom
namely 7 (¢). The induced metric on the brane is given by

d§? = §dErdE,

-2
_ (e2A ) — r—) di® + Adx dx 42)
f@)
where in the rest of this section a dot denotes: " = %.

13 As we saw in Sect. 2 for a self-tuning mechanism to operate, the
brane should backreact on the bulk geometry. In order to take the probe
limit we need a regime of parameters such that the induced action of the
brane is much smaller than the bulk one, hence the brane cosmological
term cannot be big. Despite this shortcoming our analysis can still offer
a qualitative understanding of self-tuning cosmologies as was discussed
in [14].

@ Springer



660 Page 8 of 19

Eur. Phys. J. C (2020) 80:660

The induced Ricci scalar on the brane times the square
root of the determinant of the induced metric is found to be

Jai L SNV (A &Y
(eZA 2 - fz)%
+6e3A¢7 (—A%F2 + AFF)
(24 f2 — 72)?
334Af (eZAf2 + 1‘2)
ST (242 —72)F
We then foliate the induced metric with spacelike surfaces of

constant time. The extrinsic curvature and its trace of these
surfaces can be computed to yield

(4.3)

8ij/Fe
Kij = T
2 (eZAfz _ };2)2
3A
K = —\/71 4.4)
(e2Af2 _ ,:2)7
Substituting then (4.4) into (4.3) we have
. —6e3A\/7A2
/-8R = —
(e2A f2 _ ,;2)5
125, (ﬁzK) (4.5)

where 7;ij = SijeZA, i, j = 1, ey 3.
One can then express the action of the brane (4.1) as

Sp = —M3V3/dt [ (24 f2 — f2)

Z
x (WB (@) + TBg’%bZ)]

—M3V; / dt e** (Up(p) + Up(p)A)
6/ fA

T

(eZAfz _ ,;2)2

where we cancelled the total derivative term with the
Gibbons-Hawking term at the boundaries of the time integral.
The action is then reduced to the one of a one dimensional

Lagrangian mechanics problem.
Using the definition for the superpotential (A.9)

e3A

NG

(4.6)

W () =—6A, ¢=WrF, Ug(p)=UpW'F 4.7)
we can write the action (4.6) as

2472

Splr ()] = —M3V3/dt e4A\/?|: 1— — (Wg + Ff)

Ff _
_71 L,-2A,z2:| = /dl Ly,

-5

(4.8)

@ Springer

where V3 is the spatial volume and

UgW? aw dug 1 dw \?
w7z, (=) . @9
S + 1o do +2 B <d<p> (4.9)

Flp) = -

4.1.1 The general solution for flat slicing

The Hamiltonian corresponding to the action (4.8) is con-
served since the action (4.8) is explicitly time-independent.
The momentum conjugate to r is

_ 8Ly
Pr="gr
_ e2A,’.ﬁ
- 3
—2A;:2\2
(1= <7)
1 — 2472
X |:Ff + <T> (Wp + Ff)} (4.10)
and the conserved Hamiltonian is
24
H:z‘p,.—Lbze—z/F,23
(1— )3
f2
’:2
X [eZAWB—i—(Ff—WB)F] —E, 4.11)

where we have reabsorbed the overall M3V into a new one,

namely E.
Given E, we can solve (4.11) for r
e2452 5 72
E(l- =) = e“ﬁ[e“wg +(Ff - WB)F]
(4.12)

From the solution of (4.12) we obtain 72 as a function of

e2A0) - £(r) and ¢(r). Moreover, by performing the follow-
ing coordinate transformation in (4.2) we obtain

[ 22 . A
ezAf—r?dtzdr — Z—;:ﬁ—ezj—r.
1 (dr T
V1+7 ()

(4.13)
Then, we can write the induced metric on the brane as
ds? = —dv? + 4 Pdxidx’ (4.14)

where 7 is the proper time on the brane. Finally, by introduc-
ing the new variable y

1 (dr\?
=./1+=1—) . ith y>1 4.15
y + 7 < dr) with y > (4.15)
we can express (4.12) in this simpler form
E ="y JfIFf(y* — 1) + Wg]. (4.16)

This is a cubic equation for y, that can be solved according to
the analysis of Appendix C. Consequently, we have translated
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the problem of finding the trajectory of the probe brane in
the bulk geometry into solving (4.16) for y(r) for fixed E '
taking into account that y(r) > 1.

4.2 Spherical slicing

In this subsection we study the probe brane limit in the case
where the bulk black hole geometry has a spherical symmetry
and is described by the metric (3.18). Again, we work in the
static gauge, £# = x*, and hence the only dynamical variable
is r(x*) that we allow it only to depend on time. Thus the
brane in the probe limit has only one dynamical degree of
freedom namely r(¢). The induced metric on the brane is
given by

d§* = g dE" dé,
22
. (eZAf(r) - %) di* + AR, (4.17)

where d€2;_ is the metric of the transverse unit sphere. In

the case of five bulk dimensions the explicit metric is

A9} = dy? +sin® ¢ (40 + sin’ 0 dg?) . (4.18)

The induced Ricci scalar on the brane times the square root
of the determinant of the induced metric is found to be

VT (A + A?)
N VT (—A%% + A;"i")
(24 £2 —2)2
Af (€2Af2 + ’;2)

2\/? (62Af2 _ ,:2)%

V—8R = 6R3*¢*" sin” ¢ sin 6

o—2A (eZAfZ _ r-z)%

R2f1/2

+6R3e34 sin? /ESHY
(4.19)

We then foliate the induced metric with surfaces of con-
stant time. The extrinsic curvature and its trace are

R2xij/Fe
Kij = - 1
2 (eZAfZ _ ,;2)2
3A
K = ﬁ : (4.20)

(2Af2 —f2)7

14 F acts as an initial condition for the brane’s trajectory. The second
initial condition is just a shift of the initial time point.

Substituting (4.20) in (4.19) we have

V—=8R = 634 R3 sin® ¢ sin 6
1
€_2A (€2Af2 _ ’:2)2

R2f1/2

+29; <\/;K)

s
(€24 f2 — 2)?

421

X

where )7,"1' = X,‘jR2€2A,
can be written as

i,j=1,...,3 and the action (4.1)

€3A

Sp = M3V3/dt[ (eZAfZ—ﬂ)ﬁ

UB€_2A
)]
+M3V; f dt 4 [Z—;«az —6A (Up(p) + Ug (go)A)}
Vi

x—L 4.22)
(€24 £2 — 2)2

where we cancelled the total derivative term with the
Gibbons—Hawking term of the action.
Using the definition for the superpotential (A.9) we have

X (—WB () +6

FW(p) = —6A, ¢=W'F,

Up(p) = UpW'r (4.23)

and the action (4.22) can be written in a more compact form
as

f YW
Splr(t)] = —M3V3/dt A= eJTr

UB€_2A
x <WB +Ff -6
Ff
——— 4.24)
-

where V3 is the spatial volume and F is the same as in the
flat slicing case, namely

Flg) =

UgW? dw dUg 1 (dW
B

2
—_— 4+ = — ) . 425
6 + do d<p+2 d(p) ( )

4.2.1 The general solution for spherical slicing
We will again use the fact that the Hamiltonian to the action

(4.24) is conserved since the action (4.24) is explicitly time-
independent. The momentum conjugate to r is
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SLp
87

€2AI:\/7
3
12 (1 _ e—;lf;fz) 2
242 2A
x [Ff + <1"—’) Ws + Ff — 675 )]

pr=

f2 R2
(4.26)
and the conserved Hamiltonian is
H =7pr—Lp
__ T
- —2A;2 3
(1 —¢ f2r )2
UBesz
X [e“(WB -6 )
Upe A 2
+(Ff —Wp+ 6T)F =F, 4.27)
where we have reabsorb the overall M3V3 into a new one,
namely E.
Given E, we can solve (4.27) for 7
—2A:2 —24A
e r° o3 - Upge
E(l= =2 =Vf [e“(wg —6— )
UBe_zA 72
+(Ff —Wp+ 6T)ﬁ
(4.28)
2

From the solution of (4.28) we obtain 7/~ as a function of
e2A0) - £(r) and ¢(r). Moreover, by performing the follow-
ing coordinate transformation in (4.17) we obtain

22 A -
/ezAf—}?dtzdr — Z—;:ﬁ—ezzj—’.
1 (dr T

Vit (5)

(4.29)
Then we can write the induced metric on the brane as
d§’s = —dt> + 24O R%AQ; (4.30)

where 7 is the proper time on the brane. Finally, by introduc-
ing the new variable y

y=,/1+ % <Z—Z)2 with y > 1 (4.31)
we can write

= yz—;l fre (4.32)
and the equation (4.28) simplifies to

E =My /FIFFO7 = 1)+ W — 6UB;;2A] (433)

@ Springer

(4.33) is a cubic equation for y, and can be solved as shown
in Appendix C. Consequently, the problem of finding the
trajectory of the probe brane in the bulk geometry translates
into solving (4.33) for y(r) for fixed E and imposing y(r) >
1.

4.3 Hyperbolic slicing

For the bulk black hole with hyperbolic slicing the procedure
is exactly the same as in the case of the spherical slicing
described in the Sect. 4.2. The induced metric on the brane
is now

-2
d§? = gdetds, = — <€2Af )= ﬁ> a"

+e*AR2dH3 (4.34)

where d’H4_1 is the metric of the transverse hyperbolic space.
In the case of five bulk dimensions the explicit metric is

dH2 = dy?* + sinh? ¥ (d02 + sinh? 6 d¢2> . (4.35)
The induced action on the brane is
Spulr()] = —M>V3 / dr e*\/f
o—2A72 Upge 24
1= (WB+Ff+6 e )
F
_—f (4.36)
o242
1-— 7

where now V3 is the volume of the hyperbolic space instead
of the volume of the 3-sphere.

The induced metric on the brane after the coordinate
change (4.29) is

d§? = —dt® + 2O R2dH;, (4.37)

and the third degree algebraic equation associated with the
trajectory of the brane is

U36_2A

R2

Essentially, the differences in the equations in the case
of spherical and hyperbolic slicings come from the relative
minus sign of the curvature.

Ey ="y JIIFfG? — 1) +Wg +6

1. (4.38)

4.4 The mirage cosmology

After we have solved (4.16) or (4.33) we can determine the
location of the brane r (t) as a function of 7 by integrating

dr )
I £/ f0) () = 1),
T

(4.39)
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to obtain
(@) dr
ro f@) G2 -1

= +(t — 10) (4.40)

then we invert (4.40) for r(t) in order to write the induced
scale factor on the brane
a(t) = eA("(T)), (4.41)

with the corresponding induced Hubble parameter being
determined by

T adt  dt
_dAdr

T drdt
= D Jr) 20 - 1) @a2)

lda dA
H_

The cosmological scale factor ¢4 is monotonically increas-

ing with r from the IR to the UV. Moreover, f (y2 —1=>0
always and thus the contraction or expansion of the universe
is determined only by the sign of (4.42). We conclude that as
the brane moves further inside the bulk (IR) the universe con-
tracts. Conversely as the brane heads towards the boundary
of the bulk spacetime (UV) the universe expands [16—19].

5 Asymptotic cosmologies

In this section we present the induced geometry on the probe
brane when itis located close to the IR and the UV limit of the
bulk geometry. This is the cosmology as seen by the observer
on the brane. The parameter that defines the cosmology on
the brane is the scale factor a(7).

The UV region is reached as r — —oo and the IR region
when r — rj, where the black hole horizon is located.

As the brane moves towards the IR the observer perceives
a contracting geometry in contrast as the brane moves in
the opposite direction to the UV he/she sees an expanding
universe. Since r decreases monotonically as one moves from
the IR to the UV, we can use the velocity 7 to detect the
direction of the motion of the brane. If # < 0 it moves towards
the boundary of the bulk geometry (UV) whereas if 7 > 0 it
moves towards the horizon of the bulk black hole (IR).

Since we work in the IR and the UV limits our analysis is
valid only approximately and thus in the expressions below
we use “~” as opposed to “=" when necessary.

In this note we omit the UV analysis since it is identical
to the one in [14]. We just state their result for completeness.
The brane geometry is asymptotically a dS universe, with the
scale factor and the Hubble parameter given by

hw
-t 1d
a(t) =~ ape T Hepf = it

_1 hw
T\ hy

where n = =+, ag is set by initial conditions, £ and Ay y are
constants governed by ¢, f defined in the UV region.

In the next subsections we will proceed to discuss the
induced cosmology on the brane close the horizon of the
bulk black hole for the cases of flat and spherical slicing.

(5.1

5.1 Expansion near a flat horizon

To study the cosmology induced on the brane close to the
black hole horizon we have to first expand the blackening
factor f(r), the scale factor of the bulk metric A(r) and the
scalar field ¢ (7). For our purposes it is enough to keep up to
order one with respect to r — rj, where r, is the location of
the black hole horizon. A more detail analysis can be found
in Appendix A.2.

ﬂm~ﬁ“;”) (52)
AG) ~ Ay + 4, _E"h) (5.3)
mm~w+m“;”) (5.4)

where fi, A;, ¢; are dimensionless and the relations of the
constants to the physical parameters of the solution can be
found in the Appendix A.2.

Substituting the expansions in (4.41), (A.9) and (4.25)
and keeping either zero order or up to order one in r — ry,
expansion we get

a(rp) = 4, Wy, = —644,

Wy=g91, For=ry)=F, (5.5)
Close to the horizon (4.16) becomes
—4Ap p3/2
e L Wt
Y+ x( ’ ) (5.6)

Frfitr —r)

from the Appendices C and C.1we find the solution of (5.6)
to be

Fufi e —rip32

c

T e

y ~
where C > 0 is a positive constant that depends on
Ap, A1, Fi, E L, 1.

Then using (4.29) we can compute the derivative of the
radial direction with respect to the cosmological time t on
the brane
dr f1

+

i C 5.8
dt l (5-8)
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and by integrating it once we obtain the radial position of the
brane from the black hole horizon r — rj, as a function of the
cosmological time ©

r—ry = :l:\/gC(‘r —170).

(5.9)
The corresponding Hubble parameter is
H ~ j:Al,/%C. (5.10)

From (5.5) and (5.10) we conclude that the induced geometry
on the brane — as the brane approaches the horizon of the black
hole — is that of the Poincaré patch of de Sitter with scaling
factor (5.5) and the Hubble parameter (5.10). Depending on
whether the brane moves towards the rj, or away from r, the
observer that lives on the brane sees a contracting H < 0 or
an expanding H > 0 universe respectively.

Moreover, close to the black hole horizon the dS radius
is Iy ~ |H|™! and thus the temperature and the entropy
associated to the dS static patch close to the bulk black hole
horizon are:

1 |AL/4c
Tas = = ,
2mlgs 2
Sys = BRom il (5.11)
ds = = » .
T ke

where from Appendix A.2 we find that A} = —% and f;

is related to the bulk black hole temperature as Tpyy = %.

Thus, the de Sitter temperature (determined by H) is directly
related to the bulk black hole temperature and the same holds
for the d S entropy with the bulk black hole entropy. Unfortu-
nately the relation is not simple since the constant C is acom-
plicated function of the black hole temperature that comes
after solving the cubic equation presented in Appendix C.

5.2 Expansion near a spherical horizon

To study the cosmology induced on the brane close to the
black hole horizon we have to first expand the blackening
factor f(r), the scale factor of the bulk metric A(r) and the
scalar field ¢ (r). For our purposes it is enough to keep up to
order one with respect to r — ry, where 7y, is the location of
the black hole horizon. A more detail analysis can be found
in Appendix B.2.

foy~ 1l _Erh) (5.12)
AG) ~ Ap + A L) (5.13)
o) ~ g+ o1 ;rh) (5.14)
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where f;, A;, ¢; are dimensionless and the relations of the
constants to the physical parameters of the solution can be
found at the Appendix B.2.

Substituting the expansions in (4.41), (A.9) and (4.25)
and keeping either zero order or up to order one in r — ry,
expansion we get

a(rp) = ¥, W, = =64y,

Wy =¢1, Fo=ry)=Fp. (5.15)
Close to the horizon (4.33) can be written as
o—4Ang3/2
Fu i = i3
) +y( —6A1L Upe*Mn 1)
Fnfitr—=rn)  Fufi(r —rp)R?
(5.16)

from the Appendices C and C.2we find the solution of (4.38)
to be

C

y ~
where C > 0 is a positive constant that depends on
Ap, A1, Fy, E, £, f1, R. Then using (4.29) we can compute
the derivative of the radial direction with respect to the cos-
mological time t on the brane

dr f1 =~
— ~+,/=C
dt £

and by integrating it once we obtain the radial position of the
brane from the black hole horizon r — rj, as a function of the
cosmological time 7

r—r, = :I:@é(r —170).

(5.18)

(5.19)
The corresponding Hubble parameter is
H ~ j:Al,/%C‘. (5.20)

From (5.15) and (5.27) we conclude that the induced geome-
try on the brane — as the brane approaches the horizon of the
black hole — is that of a part of global de Sitter!’ with scaling
factor (5.15) and the Hubble parameter (5.27). Depending if
the brane moves towards the 7, or moving away from r;, the
observer that lives on the brane sees a contracting H < 0 or
an expanding H > 0 universe respectively. At late times we
can go to a flat slicing. The relation becomes T, ~ Triar
and the metric takes the asymptotic form

dsFiy ~ —dtf i, + R2MT T @y +)2dQ3)  (5.21)

15 Surprisingly, although in this case the slicing of the bulk geometry is
spherical, we do not obtain a global dS geometry induced on the brane
taking the combination of probe and IR limit.
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We therefore find again the relations for the temperature and
entropy

1 [A1 f%él
Tys = = ,
21l 21
TR?

Y
pere

Sas = B R* = (5.22)

2 2
with A} = W and R = %e‘AO. f1is related to the

bulk black hole temperature as Tpy = f‘%':h.

5.3 Expansion near a hyperbolic horizon

In the case of the hyperbolic slicing the procedure is exactly
the same as in the spherical case described in Sect. 5.2, the
only difference stems from the relative minus sign in the
curvature (3.24), thus the expansions close to the horizon
(5.12)—(5.14) are the same as well as (5.15). The expansion
close to the horizon of the Eq. (4.38) is

e—44np3/2

Fu 0 = 32
—6A; L
3
=y +
' y(Fhﬁ(r—rh)

UheZA” )
1
Fp fi(r —rp)R?

(5.23)

from the Appendices C and C.2we find the solution of (4.38)
to be

N

C

~ (5.24)

y

where C > 0 is a positive constant that depends on
Ap, A1, Fy, E, £, f1, R. Then using (4.29) we can compute
the derivative of the radial direction with respect to the cos-
mological time t on the brane

dl” f] A
=~z /8¢
dt £

and by integrating it once we obtain the radial position of the
brane from the black hole horizon r — rj, as a function of the
cosmological time T

r—ry =:l:,/%é(r—‘ro).

(5.25)

(5.26)
The corresponding Hubble parameter is
H ~ :I:Al,/%é. (5.27)

From (5.15) and (5.27) we conclude that the induced geom-
etry on the brane — as the brane approaches the horizon of
the black hole — is that of a part of de Sitter with hyperbolic

slicing!® with scaling factor (5.15) and the Hubble parameter
(5.27). Depending if the brane moves towards the r;, or mov-
ing away from r, the observer that lives on the brane sees a
contracting H < 0 or an expanding H > 0 universe respec-
tively. At late times we can go to a flat slicing. The relation
becomes Ty, ~ Tfiqr and the metric takes the asymptotic

form
ds%, ~ —d T}, + R2HM T @y + y2dH3) (528

We therefore find again the relations for the temperature and
entropy

1 1A LC
TdS = = b
ZjTlds 2
TR?2
Sas = 3gnR* = ————— (5.29)
2 f
e
with A; = % and R = %e‘AO. f1 1s related to
the bulk black hole temperature as Tpy = ! ‘467:}' .

‘We now conclude this section, by summarizing our results.
Remarkably, for all the slicings (flat, spherical and hyper-
bolic) of the bulk black hole geometry, we find that the cos-
mologies induced on the probe brane both in the UV and in the
IR are de-Sitter spacetimes, with different scaling factors and
Hubble parameters. Thus we conclude that the cosmological
models constructed in our paper interpolate between two de
Sitter geometries. This is in contrast with the cases studied
in [14], where the probe brane acquires a big bang/crunch
singularity when its location is close to the bulk’s IR. In
particular in our regular horizon bulk geometries, the big
bang/crunch singularity is encountered only when the brane
passes through the horizon and reaches the bulk black hole
singularity.
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Appendices

A Black-hole ansatz with a flat slicing

In this appendix we present the equations of motion for the
Einstein Dilaton action when the ansatz of the metric is a

black hole with flat slicing as the one in (3.1). For complete-
ness we rewrite here the ansatz for the metric

ds2 = 47y pae [— Fr)de? + dxidx’ ] . (A1)
f@)

The equations of motion for the action (2.2) are

2(d — DA@F) + ¢*(r) =0, (A.2a)
Fe)+dfr)Ar) =0 (A.2b)
d—-DAE f(r)

-2
+ £ [d(d — DA%*(r) - ‘%} +V(p) =0. (A.2¢)
5 + (dA(r) + &> o) — = (A3)
f) f)

where " is the derivative with respect to the radial coordinate.
We integrate (A.2b) once to obtain

f=Ce (A.4)
where C is an integration constant.
From (A.2a) we can express (A.2c) as

d—1 [f'A+f(dA2+A')]+v -0 (A.5)
or

@=1 (fA edA) _V o4 (A.6)
Moreover, (A.3) can be written as

(% (f¢ edA> — V' edA (A7)

where / is a derivative with respect to the scalar field. For
f@r)=1,and A(r) =r/¢, (3.1)1is an AdS metric, with AdS
radius £. For f(r) = —1 the metric is dS with radius ¢

A(r)=rH

1
, H=-. A8
; (A.8)
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A.1 The superpotential formalism

In this subsection we present the superpotential formalism.
We begin by defining the superpotential W as usual

W(p) = —2(d — DAGF), ¢=W'. (A.9)
By using
3 = W'(9)d, (A.10)
the Eq. (A.2b) becomes a function of ¢
Iy "o d r_
W "+ <W —2(d — 1)W> ff=0 (A.1D)
which we integrate once to obtain
el fa
=W eXp[z(d— ) /dwwl (A12)
Then using (A.9) and A.2¢c
d ., W' (9))?
<WW (§0)——)f( )
_MW@)_’_V(@ = 0. (A.13)
or
d 2 w ’(fﬂ))z
(mw (o) — ) f®)
W,
—7f (@W(p)+V(p)=0. (A.14)
Then we rewrite (A.2b) as
= %e—‘“‘ (A.15)
such that (A.14) becomes
d ., W' ())?
<mw () — —>f( )
—%W((p)e_‘m +V(p)=0. (A.16)

Moreover, the integration of (A.2b), gives
r d o) W (o'

fr) = / drexp | ———— dy’ /((p/) +1,
oo 2d-1) J, W' (¢")
(A.17)

where f(r) — 1 asr — —oo, and @, is an integration
constant.
A more detailed analysis can be found in [23].

A.2 Expansion near a flat horizon

In this subsection we present the expansion of the blackening
factor f (), the scalar field ¢ () and of the scale factor A(r)
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close to the black hole horizon at r = ry,

=rn) =)’

f)y=hH—7 2 7
3 —ry)
+LIo +c9((r —m?) (A.18)
r—rp) Ay (r—rp)?
A(ry=A A —
(r) = An+ Ay 7 R
Az (r —rp)? 4
e +0<(r—1h) ) (A.19)
B r—rw) @2 —rp)?
() =on +¢1 7 2
@3 (r —rp)’
a0 ((; — ) ) (A.20)
We have defined the coefficients f;, A;, ¢; such that they are
dimensionless.

Substituting the expansions above into (A.2a)—(A.3) we
obtain

d=DALfi+C V=0, figi—V;=0 (A21)
and
2 21

2 = V), Ay=——"T"—"—

fipp =1 L7V, 2= "3a -1

fo=—dfiA (A.22)

with the following definitions
Vie=Vign) . Vy=Vien. (A.23)

In order for the horizon to be regular, f; # 0 which implies

_ 2
T -

2 ’
= (A.24)

f1

“vvy
@2 = 2f]2
Z4 V/2

Ay =~y

2(d — D f}

__4d 5
fr= 7= 1)5 Vi (A.25)
g3 = £°
5 VidV)? —dVyV) +(d — DV +2(d — DV,
6d—Df}
(A.26)
IN2Y/ I
A3 = —56 7(‘/}1) Vh 3
2(d — ) fj
4 dQdVE+d =DV

=t =TT, (A.27)

The above is a solution even in the case where the potential
vanishes at the horizon V (¢;,) = 0. The AdS-Schwarzschild
black hole is obtained in the case that the scalar potential

has an extremum on the horizon V/(g;) = 0. In this case
¢ = constant and A is linear in r.

In the case that we expand around r = ry,, the solutions to
the equations of motion are governed only by three parame-
ters. This can be seen from the Egs. (A.24)—(A.27) combined
with (A.21) which relates f; with ¢1. This has the conse-
quence that when Vj = 0 then from (A.24) A ~ A=0at
r=rp.

In the case that V' (¢;) = 0 (A.24)—(A.27) become

A= V(¢n)
(d—=Dh
Ay =A3=---=0
pr=¢g2=---=0 (A.28)
d
= —V
) 71 (en)
d>  V3(gn)
_ A.29
3 a1 7 (A.29)
the blackening factor can be resummed as
Fr) = fl [1 _ e*‘“‘l’] , (A.30)

where ¢ is constant. From this equation we can observe that
the location of the horizon can be at any point.

B Black hole ansatz with a spherical slicing

In this Appendix we present the equations of motion for the
Einstein Dilaton action when the ansatz of the metric is a
black hole with spherical slicing as the one in (3.18). For
completeness we rewrite here the ansatz for the metric

dr? .

ds? = &4 20 [—f(r)dt2 +R? dszfl,l] NG D)
f@r)

with d 9(21_ | we denote the (d —1)-dimensional sphere metric

with radius one and R is the radius of the sphere. We are
interested in the case d = 4, but our method applies for
cases d > 2. The equations of motion are

6A(r) +¢*(r) =0, (B.2a)
; Lo 4 ouor
F) +47OAC) + 7 " =0 (B.2b)
)
3A)F0) + F(r) [12A2(r) _ %}
+V(p) — Fe_ZA(") =0. (B.2¢)

. fa )> . V'(p)

)+ (44 L7 - -0 B.3
<p(7)+( (r)+f() @) ) (B.3)
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We rewrite (B.2b) as

( f e4A). - —%e“ (B.4)
and (B.2c¢) as

6
— =0

3(fA e4A) +ehy - (B.5)
We then integrate (B.2b) to obtain
. 4 —4A(r) r .
fory=Ce A0 20 = / dr' A0 (B.6)
ro

A more detailed analysis can be found in [23].
B.1 The superpotential formalism

As in all the previous cases, we introduce a superpotential by
defining

W(p) = —6A(r), ¢ =W ().

We notice that (B.2a) is satisfied automatically and (B.2b)
becomes

(B.7)

2
W’[W’f” + <W” - 5W) f’] +4T(p) =0, (B.8)
where
_ Lo W
T(Ql)) = Fe ¢ ) T/ = 3W’ (B9)
and
1 (Y W),

A —_. do'. B.10

(9) 6 o W' (¢') 4 ( )

Moreover (B.2¢) is

15 (W' (9))?
<§W () — T).f(fp)

1
X — EW’(@W((P)f/((/)) +V(p) —6T(p) =0. (B.11)
We integrate (B.8) to get

fs(@) = —4fr(9) /w L(p/)dw/, (B.12)
o [R@OW'(¢)?

with F referring to flat slicing and S to the spherical one.
B.2 Solutions near a spherical horizon
In this subsection we present the expansion of the blackening

factor f (), the scalar field ¢ () and of the scale factor A(r)
close to the black hole horizon at r = ry,

r—rn) o —r)?
f)=hn 7 75—2
. 3
+§(’z+h) +0 (0 =m*) (B.13)
r—rp) Ay (r—rp)?
A@r) = Ay +AIT 7E—2
A _ 3
3—'3—“ g;h) +0 (=) (B.14)
r—rn) @2 (r—rp)?
o) = on + @1 ; ?E—Z
_ -1\3
%—(r z;h) +(9((r—rh)4) (B.15)

We have defined the coefficients f;, A;, ¢; such that they are
dimensionless.

Substituting the expansions above into (B.2a)—(B.2c) we
obtain

27/ 2 p2
_ V() A= 6R” — -V (¢n) (B.16)
fi 3
4 €4v/ \ 2
fr= 3 (EVign) = 9R?) A2=—# (B.17)
6/1
V' (n) (£2V" () + 4R
o= V0 el ) (B.18)
2fi
2 (—132R202V 504R* + 304V (@) + 84V (¢p)?
= ( (on) + + (on)” + (on)?) (B.19)
9f1
OV (@p)? (V" 4R?
P (on)* ( 3(‘Ph)+ ) (B.20)
6/1
4y7/ " 2v// ’ 3 (3) 4 2 4 " 2 _ / "
s =4R2€ 14 (</Jh)3V (on) +8R4£ 14 gw;) Z64V (pn)” + 6V (op)V'(pp)” + 3V (¢§)V (on)” — 4V (en)V'(en) V" (1)
f] f] 18f1
(B.21)
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where

¢ _
= —¢ 0

< (B.22)

C Solving the cubic equation

In this appendix, we present the possible solutions of (4.16),
(4.33). For a more detailed analysis one can look at the
appendix D of [14].

In general a cubic equation of the form

V¥ 4+by+c=0, with b, ceC (C.1)
has the general solution
1/3
_ einzTﬂ l —c+ & /
yﬂ - 2 27
1/3
P 21 1 IA?,
—lnT _ o .
n=1(0,12). (C.2)
where
Az = —(4b* +27¢?) (C3)

We summarize the various possibilities taking into account
the condition y > 1. The details can be found in appendix D
of [14]

Number of solutions with y > 1

A3 <0 One,ifb < —(c+ 1)

A3 =0 Two (coincident), if ¢ > 2

A3 =0 One,ifc<—%

A3 >0 One,ifb < —(c+ 1)

Az >0 Two,ifc >2and b > —(c+ 1)

C.1 Solution close to the flat horizon

We can write Eq. (4.16) as

—4Ay W

E—0r =3 — -1 C4
with

w e~ 4An
b= — — =-F—— C.5

Ff Ff3/2 €3
Close to the horizon it becomes

€_4Ah 63/2 3 Wyt
E =Y (o~ 1) (C6)
Fu 20 = 32 Epf1(r —ra)

with
Wit
he — hT
Fpfi(r —rp)
oe—4Anp3/2
c=- (C.7)
Fu 2 = ri)32
—4 x 62 A3 + 2TF, E2e~ 84103
Az, = (C.8)

4% 27F f(r —rp)?

Depending on the sign of A3 we have different solution given
in C, but all have the form

C

T ©

y ~
where C > 0 apositive constant thatdepends on Ay, A1, Fi,

E. ¢, f1.

C.2 Solution close to the spherical and to the hyperbolic
horizon

We can write (4.33) and (4.38) as

_ 6Upe*A
e 4 W F =

E——=)
F y7 4 y( Fr

where the upper sign is for the spherical case and the lower
for the hyperbolic one, with

-1 (C.10)

w 24y
b= F65 5 _
Ff " FfR2
o—4A
and
Close to the horizon they become
o—4Anp3/2
Fn i — )32
—6A¢L Upe*An
=y +y ( — F 5 —1
Fnfi(r —rp) Fnfi(r —rn)R
(C.12)
and
—6A¢ UpeAn
b= F 3
Fpfi(r —rp) Fpfi(r —rp)R
o—4Anp3/2
c=—E (C.13)
Fuf P — )32
3 —4 x 6(Ay F Upe*An JR?)3 4+ 27F, E?e=84n
Az =4

4 x 2TF} 2 (r —rp)?
(C.14)
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Depending on the sign of A3 we have different solutions
given in appendix C, but all of them have the form

C
Vs =i
¢
= ©1>

where C, C > 0 positive constants that depends on
Ap, AL, B, EL L f1L R

D Embedding of a Black hole with hyperbolic slicing

We now examine the case of hyperbolic slicing. This corre-
sponds to the ansatz

_ar
- f)

where d’H,—1 is the metric of the transverse sphere. In the
case of five bulk dimensions the explicit metric is

ds* + A0 [~ f)a? + R, | )

dH2 = dy? + sinh® (d92 +sin20 d¢2> (D.2)
The Ricci scalar induced on the brane is
RY — _6e1;22A _ - 2)(6122— 1)e24 D3)
The Einstein tensor on the brane is

S0 0 0
Gl = (O) (1) sinl(l)2 W 8 D4

0 0 0 sinh®ysin?0

We substitute the above at the Eq. (2.8) and we find the fol-
lowing two relations

(K = K]y = @ = D £y [A]y
— _lW 2A
= —5Wse f)
U — DL ;2) (D.5)
[Kij = viiK )y = = R2xij(Qu-DV/F(r)
. Lf0)
x| (d— 1)A+§f(r)

1
—EWBBZARZX,'j(Qdfl) +Up(9)G};

1
—EWBe“sz,»,-(szd_l)

=Up(®) xij(S2a-1) (D.6)

@ Springer

For (D.5) and (D.6) to be consistent the following equation
should then be satisfied

. IR
Upd—2) | f(r) O
RZ 2 | JF() '
uv
Equation (2.9) then becomes
n“8.9l1ty = V() 13017y
dw “24d —-2)d - 1) dU
_dWp ¢ ( 2)( )dUp D.8)
do R do

We notice that the only difference comparatively to the spher-
ical slicing is in (D.8) where there is a minus sign in front
of the second term due to the opposite sign in the curvature.
The Eq. (D.7) remains the same since the explicit form of the
transverse metric drops out from the equations.
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