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ZUSAMMENFASSUNG DER DISSERTATION

Geometrische Darstellungtheorie erlaubt es uns zu einer einfachen und einfach
zusammenhängenden algebraischen Gruppe über einem Körper und einer positiven
ganzen Zahl ` ein Vektorbündel, genannt Garbe der konformen Blöcke, überMg, dem
Stack, welcher Kurven von Geschlecht g parametrisiert, zu assoziieren. In dieser Dok-
torarbeit verallgemeinern wir diese Konstruktion indem wir die Gruppe G durch eine
verdrehte Gruppe, die von Überlagerungsdaten abhängt, ersetzten. Den Ideen von Ba-
laji und Seshadri folgend erzeugen wir, aus einer (verzweigte) galoissche Überlagerung
von Kurven q : X̃ → X mit galoisscher Gruppe Γ := Z/pZ und einem Gruppenhomo-
morphismus Γ → Aut(G), eine Gruppe H über X als die Γ-invarianten Untergruppe
von q∗(G × X̃). Das induziert eine Gruppe Huniv über der universellen Kurve Xuniv
über dem Hurwitz stack Hur(Γ, ξ)g, der Γ-Überlagerung Kurven parametrisiert. Wir
zeigen, dass es möglich ist, in Analogie zum klassichen Fall, zu Huniv und ` ein Vek-
torbündel H`(0)Xuniv

über Hur(Γ, ξ)g zu assoziieren. Den Methoden von Looijenga
benutzend beweisen wir darüber hinaus, dass die Haupteigenschaften des klassischen
Bündels der konforme Blöcke auch in dieser allgemeineren Situation gelten. Insbeson-
dere beschreiben wir den WZW Zusammenhang, die sogenannte Fortsetzung von Vacua
und die Fusionsregeln.

iii



INTRODUCTION

In conformal field theory [TUY89], there is a way to associate to a simple and simply
connected group G over an algebraically closed field k of characteristic zero, a vector
bundle H`(0)Xuniv , called the sheaf of conformal blocks, onMg, the stack parametrizing
smooth curves of genus g. The goal of this thesis is to generalize this construction to the
case in which the group G is replaced by a certain type of parahoric Bruhat-Tits group
H arising from cyclic coverings.

Classical conformal blocks. Before going into the details of the content of this
thesis, we briefly recall the properties of the sheaf of conformal blocks. Denote by g the
Lie algebra of G and by P` the set of integral dominant weights of g of level at most `.
Let X be a (nodal) curve over Spec(k) of genus g, which is stably marked by the points
p1, . . . , pn. Then, to the 2n-tuple (pi, λi)

n
i=1, with λi ∈ P`, it is possible to associate a

vector space H`(λi). This construction extends to families of n-pointed stable curves of
genus g, giving rise to the vector bundle H`(λi)Xuniv onMg,n. This is what is called the
sheaf of conformal blocks attached to the weights λi’s.

In the case in which all the λi’s are zero, the so called propagation of vacua ensures
that the associated sheaf of conformal blocks is actually independent of the marked
points, hence it descends to Mg. We denote this vector bundle, which is called the
sheaf of covacua, by H`(0)Xuniv .

The rank of H`(λi)Xuniv has been computed with the Verlinde formula [TUY89]
[Fal94] [Sor96]. The main ingredient for this computation consists in the fusion rules
which control the behaviour of the rank under degeneration of curves. Thanks to this
property the computation of the rank is reduced to the case of the projective line P1

with three marked points.
These sheaves have played an important role in algebraic geometry not only as a tool

to studyMg,n, but also in the study of BunG(X), the stack parametrizing G-bundles on
a smooth curve X. In fact, for every ` ∈N there is a canonical isomorphism

H0(BunG(X), L ⊗`)∗ ∼= H`(0)X

where L is the determinant line bundle on BunG(X) [BL94] [KNR94]. The key point
to prove this isomorphism is the uniformization theorem which describes BunG(X) as
a quotient of the the affine Grassmannian Gr(G), whose line bundles and the space of
their global sections have been described in terms of representations of g by Kumar
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[Kum87] and Mathieu [Mat88]. This theorem, which was proved initially by Beauville
and Laszlo in [BL94] for G = SLn, has been generalized for parabolic groups by Pauly in
[Pau96] and by Laszlo and Sorger in [LS97]. Finally Heinloth proved the uniformiza-
tion theorem for BunH(X), for connected parahoric Bruhat-Tits groups H in [Hei10],
where he also gave a description of the Picard group of BunH(X). Having in hand the
notion of the sheaf of conformal blocks for parahoric Bruhat-Tits groups H satisfying
factorization rules and propagation of vacua, is then the first step to describe the space
of global sections H0(BunH(X), L ) of certain line bundles L on BunH(X) and achieve,
in a second time, a Verlinde type formula for H0(BunH(X), L ), as asked by Pappas and
Rapoport in [PR10].

Parahoric Bruhat-Tits groups arising from coverings. As already mentioned, in
our generalization we replace the group G with a parahoric Bruhat-Tits groupH defined
over a curve X. Since the group H depends on the geometry of the curve, our version
of the sheaf of conformal blocks will be in general not defined over Mg,n but on a
moduli space which encodes also the information onH. Inspired by [BS15], we restrict
ourselves to consider only those groups arising from coverings in the following sense.
We fix the cyclic group Γ := Z/pZ of prime order p and a group homomorphism
ρ : Γ → Aut(G). Let q : X̃ → X be a (ramified) Galois covering of nodal curves with
Galois group Γ and denote its moduli stack by Hur(Γ, ξ)g. We remark that in contrast
to [BR11], we assume that the nodes of X are disjoint from the branch locus R of q.
Then we say that a group H on X arises from q and ρ if it is isomorphic to the group of
Γ-invariants of the Weil restriction of X̃×k G along q, i.e. H = q∗(X̃×k G)Γ.

We observe that the groups H that we consider are parahoric Bruhat-Tits groups
which in general are not generically split, while in [BS15] the authors only work in the
split situation. This reflects the condition that in their paper they only allow Γ to act
on G by inner automorphisms, i.e. ρ arises from a group homomorphism Γ → G. The
following statement is a particular instance of Theorem A.0.7 which generalizes [BS15,
Theorem 4.1.6].

THEOREM. Let q : X̃ → X be a Γ-covering of curves and ρ : Γ→ Aut(G) be a homomor-
phism of groups. Set H = q∗(X × G)Γ. Then the functor q∗(−)Γ induces an equivalence
between BunH(X) and the stack BunG

(G,Γ)(X̃) parametrizing G-bundles on X̃ equipped with
an action of Γ compatible with the one on G.

The notion of compatibility stressed in the above Theorem will be clarified in Ap-
pendix A in terms of local type of (Γ, G)-bundles. It is important to underline that in
[BS15], it has been shown that all the split parahoric Bruhat-Tits groups are defined
by means of Γ-coverings, for Γ a finite, non necessarily cyclic, group acting via inner
automorphisms on a constant group G.

Main results. In order to define the generalized sheaf of conformal blocks, we first
of all need to introduce the pointed version of Hur(Γ, ξ)g and in second place replace
P` with an appropriate set of representations of H. We denote by Hur(Γ, ξ)g,1 the stack
parametrizing Γ-coverings of nodal curves X̃ → X, where X is marked by a point p

which is disjoint from the branch locus R. In similar fashion we define Hur(Γ, ξ)g,n

for n ≥ 1. Let H be the group on Xuniv arising from the universal covering (X̃univ →
Xuniv, p) on Hur(Γ, ξ)g,1 and the homomorphism ρ : Γ → Aut(G). Set h := Lie(H) and
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denote by IrRep`(h|p) the set of irreducible representations V of h|p of level at most `
(Definition 2.2.8).

In Chapter 2 we explain how to associate to each representation V ∈ IrRep`(h|p), a
vector bundleH`(V)Xuniv

onHur(Γ, ξ)g,1 (Proposition 2.2.9 and Definition 2.2.10). This
is called the sheaf of conformal blocks attached to V . Similarly, working on Hur(Γ, ξ)g,n,
we can construct a vector bundle H`(V1, . . . ,Vn)Xuniv

on Hur(Γ, ξ)g,n attached to the
representations Vi ∈ IrRep`(h|pi) (Section 3.6).

As in the classical case, the Propagation of Vacua holds (Proposition 4.1.1), leading
to the following statement.

PROPOSITION. Let V(0) be the trivial representation of h|p. Then the vector bundle
H`(V(0))Xuniv

is independent of the choice of the marked point, hence it descends to a
vector bundle H`(0)Xuniv

on Hur(Γ, ξ)g.

Moreover, in Proposition 4.2.2 we formulate fusion rules controlling the rank of the
vector bundle under degeneration of the covering:

PROPOSITION. Let (q : X̃ → X, p) ∈ Hur(Γ, ξ)g,1(k) and let x be a nodal point of X.
Let XN be the partial normalization of X at x so that qN : X̃N → XN is a Γ-covering with
XN marked by three marked points. Then for any W ∈ IrRep`(h|p) we have a canonical
isomorphism

H`(W)X
∼=

⊕
V∈IrRep`(h|x)

H`(W ,V ,V∗)XN
.

Insights into the construction and properties of H`(V)Xuniv
. We now give an

overview of how the twisted conformal blocks are defined, generalizing the meth-
ods used in [Kac90], [TUY89] and [Loo13]. For simplicity we consider a cover-
ing of smooth curves X̃ → X which is marked by a point p ∈ X(k). We denote
by hL the restriction of the sheaf of Lie algebras h = Lie(H) to the punctured disc
L = Spec(k((t))) around the point p. Observe that since p is not a branch point, h|p
is isomorphic, although non canonically, to g and hL is isomorphic to the affine Lie al-
gebra gL := g⊗k k((t)). It follows that once we choose such an isomorphism, we can
use the classical construction [Kac90, Chapter 7] to associate to each representation
V ∈ IrRep`(h|p) ∼= P` the integrable highest weight representation H`(V) of ĥL, a cen-
tral extension of hL = h⊗k k((t)) defined in terms of Killing form and residue pairing.
The key point is to see that this construction is actually independent of the isomorphism
chosen between h|p and g . Serre duality ensures that the Lie algebra hA := h|X\p is a
sub Lie algebra of ĥL, so that we set H`(V)X to be space of hA-coinvariants of H`(V),
i.e. the quotient hA

∖
H`(V). The construction of the sheaf of conformal blocks runs sim-

ilarly for any family (X̃ → X, σ) ∈ Hur(Γ, ξ)g,1(S), being careful that the isomorphism
between h|σ(S) and g⊗k S exists only étale locally on S.

Although it is easy to show that H`(V)Xuniv
is coherent (Proposition 2.2.12), it is

not immediate from its construction that it is also locally free. Following Looijenga
in [Loo13], the first step to achieve this result is to generalizes the WZW connection
defined in terms of conformal field theory:

PROPOSITION (Corollary 3.5.2). The sheaf H`(V)Xuniv
on Hur(Γ, ξ)g,1 is equipped

with a projective connection with logarithmic singularities along the boundary ∆univ.
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This shows in particular that H`(V)Xuniv
is a locally free module over Hur(Γ, ξ)g,1.

The idea is to realiseH`(V) as a Fock-type representation of a Lie algebra of derivations
which is a central extension of the sheaf of logarithmic vector fields ofHur(Γ, ξ)g,1 along
∆univ. Combining this with the fusion rules, we are able to prove the local freeness on
the whole stack Hur(Γ, ξ)g,1 (Corollary 5.2.8). It is then clear that the fusion rules play
a double role in the theory of conformal blocks. On one side they contribute to show
that H`(V)Xuniv

is locally free on the whole Hur(Γ, ξ)g,1, and on the other side they are
a useful tool to reduce the computation to lower genera curves.
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NOTATION AND CONVENTIONS

Unless otherwise stated, we fix the following objects.

• An algebraically closed field k of characteristic zero.
• A prime p and for simplicity of notation we denote the group Z/pZ by Γ.
• A simple and simply connected algebraic group G over Spec(k).
• A group homomorphism ρ : Γ→ Aut(G).

Throughout this thesis we will use the following notation and convention.

• N denotes the set of positive integers and N0 the set of non negative integers.
• k-Alg denotes the category of unitary and commutative k-algebras.
• SchS denotes the category of schemes over a fixed scheme S. When S =

Spec(R) we write SchR := SchSpec(R).
• Let H be a finite group acting on a set M. We denote by MH the set of elements

of M which are invariant under the action of Γ. The same notation is used
when M is a sheaf.
• Let L be a Lie algebra over a ring R. We denote by UL its universal enveloping

algebra, i.e. the associative algebra

UL = ⊕n∈N0 L⊗Rn /I,

where I is the ideal generated by X⊗Y−Y⊗ X− [X, Y] for all X, Y ∈ L. We
write X ◦Y for the class of X⊗Y in UL. The same notation is used for sheaves
of Lie algebras.

1



1 | PRELIMINARIES ON GROUPS ARISING

FROM COVERINGS AND HURWITZ STACKS

In this chapter we introduce the group schemes associated to coverings as indicated
in the introduction. Since we need to work with these groups in families, we will formu-
late the definition for families of coverings of curves. We obtain in this way the family
Huniv over the universal curve Xuniv over the Hurwitz stack parametrizing coverings of
curves.

DEFINITION 1.0.1. Let π : X → S be a possibly nodal curve over S ∈ Schk. A Galois
covering of X with group Γ, called also Γ-covering, is the data of

a) a finite, faithfully flat and generically étale map q : X̃ → X between curves;
b) an isomorphism φ : Γ ∼= AutX(X̃);

satisfying the following conditions:

(1) each fibre of X̃ is a generically étale Γ-torsor over X;
(2) the singular locus of πq, i.e. the set of nodes of X̃, is contained in the étale

locus of q.

We want to attach to any Γ-covering (X̃
q→ X π→ S) and to the homomorphism

ρ : Γ → Aut(G) a group scheme H over X in the same fashion as in [BS15, Section 4].
We remark that Balaji and Seshadri consider ρ to map to the inner automorphisms of G
only, i.e. arising from a morphism Γ → G. Without imposing that restriction we allow
also groups H which are non-split over the generic point of X.

First of all we consider the scheme G̃ := X̃×k G and let q∗(G̃) be its Weil restriction
along q which is defined as

q∗G̃(T) := HomX̃(T ×X X̃, G̃)

for every T ∈ SchX. It follows from [BLR90, Theorem 4 and Proposition 5, Section 7.6]
that q∗G̃ is representable by a smooth group scheme over X. The actions of Γ on G and
on X̃ induce the action of Γ on q∗G̃ given by

(γ · f )(t, x̃) := ρ(γ)−1 f (γ(t, x̃)) = ρ(γ)−1 f (t, γ∗(x̃))

for all t ∈ T and x̃ ∈ X̃.

2



1. PROPERTIES OF Γ-COVERINGS 3

We define H to be the subgroup of Γ-invariants of q∗(G̃), i.e.

H := (q∗G̃)Γ.

We denote by h the sheaf of Lie algebras of H. Since H is smooth, as shown in [Edi92,
Proposition 3.4], h is a vector bundle on X which is moreover equipped with a structure
of Lie algebra.

REMARK 1.0.2. The action of Γ on G via ρ induces an action on g := Lie(G). We
equivalently could have defined h as the Lie algebra of Γ-invariants of q∗(g⊗k OX̃).

EXAMPLE 1.0.3. Let ρ : Γ = Z/2Z → Aut(SLn) be given by ρ(γ)M = (Mt)−1 and
q : X̃ → X a Γ-covering of smooth curves. The group H = (q∗(SLn × X̃))Γ is the quasi
split special unitary group associated to the extension k(X) ⊆ k(X̃). Observe that only
in the case n = 2 this action comes from inner automorphisms.

The stack BunH which parametrizes H-bundles on X can be described in terms of
G-bundles over X̃ which admit an action of Γ compatible with ρ. This is a corollary of
Theorem A.0.7 which holds in a more general setup and for which we refer to Appendix
A.

1.1. Properties of Γ-coverings

We recall in this section the properties of Γ-coverings of curves. Although the main
reference is [BR11], we make the stronger assumption that the ramification locus of the
covering map q consists only of smooth points.

1.1.1. Ramification and branch divisors. Consider a Γ-covering ( f : X̃
q→ X π→

S). We define the ramification divisor R̃ to be the effective Cartier divisor (p− 1)X̃Γ,
where X̃Γ is the subscheme of X̃ fixed by Γ. Equivalently, since Γ does not have proper
subgroups, X̃Γ is the complement of the étale locus of q, which is either empty or an
effective Cartier divisor of X̃. The reduced branch divisor R is the effective divisor given
by the image of X̃Γ in X. It is the reduced divisor of the proper pushforward q∗R̃.

REMARK 1.1.1. If the map q is not étale both divisors R̃ and R are finite and étale
over S. This is a proved in [BR11, Proposition 3.1.1] for the smooth case only and in
[BR11, Proposition 4.1.8] for the general situation.

The ramification divisors are naturally related to tangent bundles of X and X̃. Let
TX̃/S be the tangent bundle of X̃ relative to S, so that its sections are f−1OS-linear
derivations of OX̃. Consider its pushforward to X along q and notice that the action of Γ
on q∗OX̃ induces an action on q∗TX̃/S by sending a derivation D to γDγ−1. The follow-
ing lemma, which describes the Γ-invariants of q∗TX̃/S, follows from [BR11, Proposition
4.1.11] and we report the proof for completeness.

LEMMA 1.1.2. The sheaf (q∗TX̃/S)
Γ over X is isomorphic to TX/S(−R).

PROOF. Let first observe that the natural map d(q) : TX̃/S → q∗TX/S identifies TX̃/S

with q∗TX/S(−R̃). This is clear outside R̃. On the formal neighbourhood R[[t]] of a
point x̃ ∈ R̃ the map q is given by sending t to tζ for a primitive p-th root of unity ζ. It
follows that d(q) : R[[t]]d/dt→ R[[t]]d/d(tp) sends the generator d/dt to ptp−1d/d(tp),
concluding the argument.
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We now pushforward the isomorphism d(q) : TX̃/S → q∗TX/S(−R̃) along q and take
Γ-invariants obtaining the isomorphism

(q∗d(q))Γ : (q∗TX̃/S)
Γ → (q∗(q∗TX/S(−R̃)))Γ.

Since étale morphisms induce isomorphism on the tangent bundles, this map is an
isomorphism outside the branch divisor R. Since by assumption the branch points are
smooth, we are left to check that the target of the map equals TX/S(−R) under the
condition that X → S is smooth. From the smoothness we deduce that TX/S is locally
free, so using the projection formula we obtain that (q∗(q∗TX/S(−R̃)))Γ ∼= TX/S ⊗
q∗(O(−R̃))Γ. We are left to prove that q∗(O(−R̃))Γ is isomorphic to O(−R). Observe,
for this purpose, that the sheaf q∗OR̃ is supported only atR, so we only need to compute
that its submodule of Γ-invariants is one dimensional. Let x ∈ R and note that the
formal neighbourhood of q∗OR̃ at x is isomorphic to

R[[t]]/tp−1R[[t]] ∼= R⊕ tR⊕ · · · ⊕ tp−2R

on which any element of Γ acts multiplying t by a p-th root of unity. It follows that the
only invariant submodule is R, hence (q∗OR̃)

Γ ∼= OR. �

Hurwitz data. The Hurwitz data provide a description of the action of Γ at the
ramification points. Before considering families of curves we take X̃ → X, a Γ-covering
of curves over k. Let x̃ ∈ X̃(k)Γ be a ramification point and up to the choice of a
local parameter t the formal disc around x̃ is isomorphic to Spec(k[[t]]). Since Γ fixes
x̃, one of its generators acts on k[[t]] by sending t to ζt for a primitive p-th root unity
ζ. It follows that the action of Γ on Spec(k[[t]]) is uniquely determined by non trivial
characters χx̃ : Γ → k∗. Let Char(Γ)∗ be the set of all non trivial characters of Γ and set
R+(Γ) := ⊕χ∈Char(Γ)∗Zχ. The ramification data or Hurwitz data of a Γ-covering X̃ → X
is the element

ξ := ∑
x̃∈X̃Γ

χx̃ ∈ R+(Γ).

The degree of ξ = ∑ biχi is deg(ξ) := ∑ bi. Note that deg(ξ) = deg(X̃Γ) = deg(R).

REMARK 1.1.3. In the case Γ = Z/2Z, the Hurwitz data encode only the number of
points which are fixed.

DEFINITION 1.1.4. Let X̃ → X → S be a Γ-covering with S connected. We say that
it has Hurwitz data ξ ∈ R+(Γ) if ξ is the Hurwitz data of one, hence all ([BR11, Lemme
3.1.3]), of its fibres.

We fix for the next two lemmas, a generator γ of Γ and ζ ∈ k a primitive p-th root
of 1. This identifies the set of characters of Γ with {0, . . . , p− 1}.

LEMMA 1.1.5. Denote by Ei the OX-submodule of q∗OX̃ where γ acts by multiplication
by ζ i. Then

q∗OX̃ =
p−1⊕
i=0

Ei and Ei ⊗ Ep−i
∼= O(−R).

PROOF. The action of Γ on q∗OX̃ provides the decomposition with E0 ∼= OX. For
the second statement, the tensor product Ei ⊗ Ep−i is a submodule of E0 ∼= OX as γ

acts there as the identity. Outside the branch divisor R this is an isomorphism so we
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only need to check what is the image along R. Let x ∈ R and call x̃ ∈ R̃ the point
above x so that ÔX̃,x̃

∼= R[[t]], with γ(t) = ζnt with n ∈ {1, . . . , p− 1}. If follows that

(Êi)x ∼= ti/nR[[tp]] and (Êp−i)x ∼= t(p−i)/nR[[tp]], where i/n ∈ {1, . . . , p− 1}. It follows
that (Êi)x ⊗ (Êp−i)x ∼= tpR[[tp]] which is isomorphic to the completion of O(−R) at the
point x. �

LEMMA 1.1.6. Denote by gζ i
the submodule of g where γ acts by multiplication by ζ i.

The sheaf h decomposes as

h =
p−1⊕
i=0

gζ−i ⊗k Ei.

PROOF. As the action of γ on g is diagonalizable with eigenvalues belonging to
{1, ζ, · · · , ζ p−1}, we can decompose g as ⊕gζ−i

. As h is the Lie algebra of Γ-invariants of
q∗(OX̃ ⊗k g) = q∗OX̃ ⊗k g, we can combine this with the description of q∗OX̃ provided
by Lemma 1.1.5 to obtain the wanted decomposition of h. �

1.2. Hurwitz stacks

We define in this section the stack parametrizing Γ-coverings with fixed Hurwitz
data ξ ∈ R+(Γ). Let g be a non negative integer.

Let f : X̃
q→ X π→ S be a Γ-covering of curves and let σ : S→ X be a section of π with

σ(S) disjoint from the nodes of X and from the branch locusR of q. The we say that the
covering is stably marked by σ if (X, σ ∪R) is a stably marked curve [BR11, Définition
4.3.4. and Proposition 5.1.3]. The same notion holds if we fix more sections. Let n ∈N

and fix n pairwise disjoint sections {σi}i = 1n of π which are disjoint from the branch
locus R of q. We say that the covering is stably marked by {σi} if (X, σ1 ∪ · · · ∪ σn ∪R)
is a stably marked curve.

DEFINITION 1.2.1. We define the Hurwitz stack Hur(Γ, ξ)g,n as

Hur(Γ, ξ)g,n(S) =
〈

f : X̃
q→ X π→ S, {σj : S→ X}n

j=1 such that i and ii hold
〉

i. the map q : X̃ → X is a Γ-covering of curves with ramification data ξ;
ii. (X, {σj}) is an n-marked curve of genus g with σj(S) disjoint from the branch

divisor R for all j and such that the covering is stably marked by {σj}.

When n = 0 we omit the subscript and use the notation Hur(Γ, ξ)g. We denote
by Hur(Γ, ξ)g,n the open substack of Hur(Γ, ξ)g,n parametrizing Γ-coverings of smooth
curves.

WARNING. Although the notation seems to suggest thatHur(Γ, ξ)g,n is a compactifi-
cation ofHur(Γ, ξ)g,n, this is not true because we do not allow ramification and singular
points to collide.

REMARK 1.2.2. We want to remark that the role of the ramification data, besides
fixing the genus of the curve X̃ thanks to the Riemann-Hurwitz formula, is to guarantee
the connectedness of Hur(Γ, ξ)g,n and Hur(Γ, ξ)g,n [BR11, Proposition 2.3.9].

In the previous section we explained how to associate to each Γ-covering (X̃
q→

X π→ S) ∈ Hur(Γ, ξ)g(S), a group H (resp. a sheaf of Lie algebras h) over X. This
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defines a group Huniv (resp. a sheaf of Lie algebras huniv) on Xuniv, where we denote by
X̃univ → Xuniv the universal covering on Hur(Γ, ξ)g. The same construction works on
Hur(Γ, ξ)g,n, defining Huniv and huniv on the universal curve Xuniv of Hur(Γ, ξ)g,n.

REMARK 1.2.3. The complement ∆univ := Hur(Γ, ξ)g,n \ Hur(Γ, ξ)g,n is a normal
crossing divisor. First of all observe that ∆Mg,d

:= Mg,d \Mg,d is a normal crossing
divisor: in fact given a nodal curve X → Spec(k) with a reduced divisor D of degree d,
there exists a versal deformation X → S where the locus ∆ ⊂ S consisting of singular
curves is a normal crossing divisor of S [ACG11]. We now want to compare the defor-
mation theory of a Γ-covering (X̃ → X, {σi}) to the one of (X, {σi}). Following [BR11,
Théorème 5.1.5] we see that the natural map δ : Def(X̃ → X, {σi})→ Def(X, {σi} ∪R)
fails to be an isomorphism only when the intersection betweenR and Xsing is not empty,
but since by assumption we impose that R∩ Xsing = ∅, in our context this map is al-
ways an isomorphism. This then allow to obtain, from the versal deformation X → S
of (X, {σi} ∪ R), the versal deformation (X̃ → X , {ςi}) of X̃ → X, and hence deduce
from the theory ofMg,n+deg(R) that ∆univ is a normal crossing divisor.

The following statement, which is given by [BR11, Proposition 2.3.9. and Théorème
6.3.1], describes the properties of the above stacks.

PROPOSITION 1.2.4. The stacks Hur(Γ, ξ)g,n and Hur(Γ, ξ)g,n are smooth Deligne-
Mumford stacks which are connected and of finite type over Spec(k).

Instead of marking the curve X, we can mark the curve X̃, so that we define.

DEFINITION 1.2.5. For each S ∈ Schk we set

Hur(Γ, ξ)n
g(S) =

〈
f : X̃

q→ X π→ S, {τj : S→ X̃}n
j=1 such that i and ii hold

〉
i. the map q : X̃ → X is a Γ-covering of curves with ramification data ξ;

ii. (X̃, {τj}) is an n-marked curve with qτj(S) pairwise disjoint, τj(S) disjoint
from X̃Γ for all j and such that the covering q is stably marked by {qτj}.

It follows, from the fact that the image of τ lies in the étale locus of q, that the map

Forgn
n : Hur(Γ, ξ)n

g → Hur(Γ, ξ)g,n, (X̃
q→ X π→ S, {τj}) 7→ (X̃

q→ X π→ S, {qτj})
is an étale and surjective morphism of stacks. For any n ∈N0 we also have the forgetful
map Forgn : Hur(Γ, ξ)g,n → Hur(Γ, ξ)g and in more generality, for all n, m ∈ N0 we
have the morphism Forgn+m,n : Hur(Γ, ξ)g,n+m → Hur(Γ, ξ)g,n which forgets the last m
sections.

Let (X̃
q→ X π→ S, τ) ∈ Hur(Γ, ξ)1

g(S) and write σ := qτ. Fixing τ allows us
to canonically identify H|σ(S) with G ×k S as explained in the proof of the following
statement.

PROPOSITION 1.2.6. The section τ induces an isomorphism between σ∗H and G×k S.

PROOF. Construct the cartesian diagram

S̃ σ̃
//

qS

��

X̃

q
��

S σ
// X
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and since by assumption the image of σ lies in the étale locus of q the left vertical
arrow qS is étale and it has a section given by τ. This implies that S̃ is isomorphic to
äγi∈Γ S. Observe that qS∗σ̃

∗(G̃) ∼= σ∗q∗(G̃) and that taking Γ-invariants commutes with
restriction along σ. It follows that

σ∗H =
(

σ∗q∗(G̃)
)Γ

=
(

qS∗σ̃
∗(G̃)

)Γ
=

(
qS∗

(
ä
γi∈Γ

S× G

))Γ

=

(
∏
γi∈Γ

S× G

)Γ

where γj ∈ Γ acts on ∏γi∈Γ S × G by sending (si, gi)γi to (si, γj(gi))γjγi . It follows
that the invariant elements are of the form (s, γi(g))γi for any s ∈ S and g ∈ G, so
that the projection on any component of S× G realized an isomorphism between σ∗H
and G × S. The map τ selects a preferred component, giving in this way a canonical
isomorphism. �



2 | THE SHEAF OF CONFORMAL BLOCKS

In this chapter we define the sheaf of conformal blocks H`(V)Xuniv
on Hur(Γ, ξ)g,1

attached to a representation V of σ∗huniv. To do this, we will define it for any family
( f : X̃

q→ X π→ S, σ) over an affine base S = Spec(R). We will assume moreover that
X \ σ(S)→ S→ S is affine. We will see in Remark 4.1.5 how to drop this assumption.

For the classical definition of the sheaf of conformal blocks attached to a repre-
sendetation of g one can refer to [TUY89] or to [Loo13]. We will use the latter as main
reference.

WARNING. The word conformal block has been used in literature to denote either a
certain vector bundle or its dual. We use here the word sheaf of conformal blocks to
denote what in [TUY89] is called the dual of the sheaf of conformal blocks. In [Loo13],
the author calls this sheaf the sheaf of covacua.

Let X∗ := X \ σ(S) and denote by A the pushforward to S of OX∗ , i.e.

A := π∗ jA∗OX∗

where jA denotes the open immersion X∗ → X. Since the map π restricted to X∗ is
affine we have that X∗ = Spec(A) and that A = π∗ lim−→n

I−n
σ = lim−→n

π∗I−n
σ where

Iσ = OX(−σ(S)) is the ideal defining σ(S).
We denote by Ô the formal completion of OX along σ(S): by definition σ gives a

short exact sequence

0→ Iσ → OX → Oσ(S) → 0

of OX-modules. We define

Ô := π∗ lim←−
n

OX
/
(Iσ)

n = lim←−
n

π∗OX
/
(Iσ)

n

which is naturally a sheaf of OS-modules. We denote by L the OS-module

L := lim−→
N∈N0

π∗ lim←−
n∈N

I−N
σ /In

σ

which is equipped with a natural filtration FNL = π∗ lim←−n∈N
IN

σ /IN+n
σ for N ≥ 0 and

FNL = π∗ lim←−n∈N
IN

σ /In
σ for N ≤ −1 taking into account the order of the poles or

zeros along σ(S).

8
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REMARK 2.0.1. Recall that when R = k, the choice of a local parameter t, i.e. of
a generator of Iσ, gives an isomorphism Ô ∼= k[[t]] and hence L ∼= k((t)) and so
FnL ∼= tnk[[t]]. In the general case, since Iσ is locally principal, for every s ∈ σ(S)
we can find an open covering U of X containing s and such that Iσ|U is principal. Let
denote by S′ the open of S given by σ−1(U) and by U′ the open U ∩ π−1S′. Then Iσ|U′
is principal and lim←−n

OU′/(Iσ|U′)n is isomorphic to OS′ [[t]], where t is a generator of

Iσ|U′ . This moreover implies that the completion of Ô at a point s ∈ S is isomorphic to
ÔS,s[[t]], where ÔS,s denotes the completion of OS at s.

Denote by hA the restriction of h to the open curve X∗ and by hL the "restriction of
h to the punctured formal neighbourhood around σ(S)", and consider both sheaves as
OS-modules naturally equipped with a Lie bracket. In other words we set

hA := π∗ jA∗ jA
∗(h) = π∗

(
lim−→

N∈N0

I−N
σ ⊗OX h

)
= lim−→

N∈N0

π∗(I−N
σ ⊗OX h)

hL := lim−→
N∈N0

π∗ lim←−
n∈N

I−N
σ /In

σ ⊗OX h.

The following observations follow from the definitions.

(1) The injective morphism I−N
σ → lim←−n

I−N
σ /In

σ induces the inclusion hA → hL.
(2) The filtration on L defines the filtration F∗hL as

FN(hL) = π∗ lim←−
n∈N

IN
σ /IN+n

σ ⊗OX h and F−N(hL) = π∗ lim←−
n∈N

I−N
σ /In

σ⊗OX

for all N ∈N0 and we denote F0(hL) by hÔ.
(3) We could have equivalently defined hA as the Lie subalgebra of Γ-invariants of

f∗(g⊗k jÃ∗OX̃∗) where jÃ denotes the open immersion of X̃∗ := X̃ ×X X∗ →
X̃. This follows from the equalities

jA
∗h = jA

∗(q∗(g⊗k OX̃))
Γ = (jA

∗q∗(g⊗k OX̃))
Γ = q∗(jÃ

∗(g⊗k O∗X))
Γ.

Similarly hL is the Lie subalgebra of Γ-invariants of g⊗k L̂, where

L̂ := lim−→
N

f∗ lim←−
n
(g⊗k q∗(I−N

σ )/q∗(In
σ )).

REMARK 2.0.2. Since σ(S) has trivial intersection withR, we can find an étale cover
of S such that q−1(σ(S)) = äΓ S or in other terms such that the pull back of Iσ to the
cover totally splits, i.e. q∗Iσ = ∏γi∈Γ Iσ,i. This implies that

hL ∼=
(
g⊗k

⊕
γi∈Γ

(lim−→
N

f∗ lim←−
n
I−N

σ,i /In
σ,i)

)Γ

which leads to hL ∼= (g⊗k (⊕γi∈ΓL))Γ where the action is given by

γj ∗ ((Xi fi)γi) = (γj(Xi) fi)γjγi for all Xi ∈ g and fi ∈ L.

It follows that the invariant elements are combination of elements of the type (γi(X) f )γi

for X ∈ g and f ∈ L. For every i ∈ {0, . . . , p− 1}, the projection on the i-th component

pri : hL → gL := g⊗k L, (γj(X) f )γj 7→ γi(X) f

defines a non canonical isomorphism of sheaves of Lie algebras of hL with gL. The
inverse is the map that sends the element X f of gL to the p-tuple (γj(γ

−1
i (X)) f )γj .



2. THE CENTRAL EXTENSION OF hL 10

2.1. The central extension of hL

Once we have defined hL and hA, in order to define H`(V)Xuniv
, we need to extend

hL centrally. Following [Kac90, Chapter 7], [TUY89] and [Loo13] we construct this
central extension using a normalized Killing form and the residue pairing.

Normalized Killing form. We fix once and for all a maximal torus T of G and a
Borel subgroup B of G containing T, or equivalently we fix the root system R(G, T) =
R(g, t) ⊆ t∨ := Hom(t, k) of G and a basis ∆ of positive simple roots, where t = Lie(T).
Given a root α we denote by Hα ∈ t the associated coroot.

Denote by ( | ) : g⊗g→ k the unique multiple of the Killing form such that (Hθ |Hθ) =

2 where θ is the highest root of g. As g is simple, this form gives an isomorphism ( | ) be-
tween g and g∨ := Hom(g, k). Pulling back this form to X̃ we obtain ˜( | ) : g̃⊗ g̃→ OX̃,
where g̃ := OX̃ ⊗k g. We push forward ˜( | ) along q obtaining

q∗ ˜( | ) : q∗(g̃)⊗ q∗(g̃)→ q∗(OX̃)

which is Γ-equivariant as the Killing form is invariant under automorphisms of g. Taking
Γ-invariants we obtain the pairing

( | )h : h⊗OX h→ OX

which however is not perfect because of ramification. Combining this with the multipli-
cation morphism I−N

σ /IN+n
σ × I−N

σ /IN+n
σ → I−2N

σ /In
σ and taking the limit on n and

N we obtain the perfect pairing ( | )hL : hL ⊗L hL → L.

Residue pairing. We introduce the sheaf θL/S of continuous derivations of L which
are OS linear. Denote its L-dual by ωL/S: this is the sheaf of continuous differentials of
L relative to OS.

REMARK 2.1.1. When Ô ∼= R[[t]] we have that θL/S is isomorphic to R((t))d/dt and
ωL/S to R((t))dt.

The residue map Res : ωL/S → OS is computed locally as Res(∑i≥N αitidt) = α−1.
Composing this with the canonical morphism hL

∨ × hL → L we obtain the perfect
pairing

Resh : ωL/S ⊗L hL∨ × hL → OS.

The differential of a section. Let d : OX̃ → ΩX̃/S be the universal derivation, which
induces the morphism d : g⊗k OX̃ → g⊗k ΩX̃/S by tensoring it with g. Let U = X \
{R ∪ Xsing} be the open subscheme of X which is smooth over S and which does not
intersect the branch divisor R of q and call Ũ = U ×X X̃. Once we restrict d to Ũ and
we push it forward along q we obtain the map

d : q∗(g⊗k OŨ)→ q∗(g⊗k OŨ)⊗OU ΩU/S

by using the projection formula. Taking Γ-invariants one obtains d : h|U → h|U ⊗U ΩU/S
and since σ(S) ⊂ U, this induces the map d : hL → ωL/S ⊗L hL. We can furthermore
compose this map with the morphism hL → hL

∨ given by the normalized Killing form
( | )hL , obtaining

dhL : hL → ωL/S ⊗L hL∨.
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REMARK 2.1.2. We could have equivalently defined dhL by using the local isomor-
phism between hL and gL. Using this approach, we can describe dhL as the map which
associates to the element X f ∈ gL, the element d f ⊗ (X|−) belonging to ωL/S ⊗L
(gL)∨.

REMARK 2.1.3. Given X, Y ∈ hL, we simply write (dX|Y) for dhL(X)(Y) ∈ ωL/S.
Note that the following equality holds dL(X|Y)hL = (dX|Y) + (X|dY), where dL : L →
ωL/S is the universal derivation.

The central extension of hL. We have introduced all the ingredients we needed to
be able to define the central extension 0 → cOS → ĥL → hL → 0 of hL where c is a
formal variable.

DEFINITION 2.1.4. We define the sheaf of Lie algebras ĥL to be hL ⊕ cOS as OS-
module, with cOS being in the centre of ĥL and with Lie bracket defined as

[X, Y] := [X, Y]hL + cResh (dhL(X)⊗Y) = [X, Y]hL + cRes (dX|Y)
for all X, Y ∈ hL.

The Lie algebra ĥL comes equipped with the filtration FNĥL = FNhL for all N ∈ N

and FNĥL = FNihL ⊕ cOS for N ∈ Z≤0. As hA ⊂ hL, one might wonder which is the
Lie algebra structure induced on ĥA. The following two lemmas tell us that ĥA is a split
extension of hA, hence hA is a Lie subalgebra of ĥL.

LEMMA 2.1.5. The image of hA via dhL is ωA ⊗ hA
∨.

PROOF. We can restrict to the case of family of smooth curves, as on the singular
points the result follows from [Loo13, Lemma 5.1] by identifying h with g. Recall
from Lemma 1.1.6 that h =

⊕p−1
i=0 gζ−i ⊗k Ei, and note that the image of Ei under d is

Ei(R)⊗ΩX. Moreover observe that ( | ) gives an isomorphism between gζ i
and the dual

of gζ−i
. Since Ei ⊗ Ep−i

∼= O(−R) for i 6= 0, the normalized killing form ( | )h gives an
isomorphism between gζ−i ⊗k Ei and (gζ i ⊗k Ep−i(R))∨. It follows that

dhL(g
ζ−i ⊗k Ei) = gζ i ⊗k (Ei(R))∨ ⊗OX ΩX = gζ i ⊗k E−i ⊗OX ΩX

which yields dhL(hA) = ωA ⊗ hA
∨. �

LEMMA 2.1.6. The annihilator of hA with respect to the pairing Resh, which is denoted
AnnResh(hA), is ωA ⊗ hA

∨.

PROOF. Before starting with the proof, we remark that this lemma holds if we re-
place hA with any vector bundle E on X as it is essentially a consequence of Serre
duality. We start by giving a description of the quotient hA

∖
hL, as the annihilator of

hA will be the dual of that quotient with respect to the residue pairing. The double
quotient hA

∖
hL
/

FnhL computes R1π∗(h⊗OX In
σ ). It follows that the projective limit

lim←−n≥1
R1π∗(h⊗OX In

σ )) equals lim←−n≥1
hA
∖
hL
/

FnhL which is hA
∖
hL. As the residue

pairing gives rise to Serre duality, we know that R1π∗(h⊗OX In
σ ) is isomorphic to the

dual of π∗(ΩX/S ⊗ (h⊗ In
σ )
∨). It follows that

AnnResh(hA) = lim−→
n≥1

π∗
(
ΩX/S ⊗OX (h⊗OX In

σ )
∨) .

which equals ωA/S ⊗A hA
∨. �
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2.2. Conformal blocks attached to integrable representations

This section is devoted to the definition of the sheaf of conformal blocks. Let UĥL
denote the universal enveloping algebra of ĥL and recall that F0hL = π∗ lim←−n

h ⊗OX

OX/In
σ , i.e. it is the subalgebra of hL which has no poles along σ(S). Observe that this

implies that it is also a Lie sub algebra of ĥL.

DEFINITION 2.2.1. For any ` ∈ N we define the Verma module of level ` to be the
left UĥL-module given by

H̃`(0) := UĥL
/ (

UĥL ◦ F0hL, c = `
)

.

For what follows we will need a generalization of this module attached to certain
representations of σ∗h.

DEFINITION 2.2.2. An irreducible finite dimensional representation V of σ∗h is a
locally free OS-module which is equipped with an action of σ∗h which locally étale
on S, and up to an isomorphism of σ∗h with g× OS, is isomorphic to V ⊗k OS for an
irreducible finite dimensional representation V of g.

Let V be an irreducible finite dimensional representation of the Lie algebra σ∗h:
we will see how this induces a representation of ĥL with the central element acting as
multiplication by ` ∈N. As first step, note that the exact sequence

0→ Iσ → OX → OS → 0

defining σ(S) gives rise to the map of Lie algebras [?]Iσ
: F0hL → σ∗h induced by the

truncation map lim←−n
OX/In

σ → OX/Iσ. The action of σ∗h on V is then extended to the

action of F0ĥL = F0hL ⊕ cOS by imposing, for every v ∈ V and for every X ∈ F0hL, the
relations

c ∗ v := `v and X ∗ v := [X]Iσ
v.

In view of this, once we fix ` ∈ N we always view a representation V of σ∗h as a
UF0ĥL-module with the central part acting by multiplication by `.

DEFINITION 2.2.3. For every ` ∈ N we define the Verma module of level ` attached
to V to be left UĥL-module of level ` attached to V , meaning

H̃`(V) := UĥL ⊗
UF0ĥL

V

where F0ĥL acts on UĥL by multiplication on the right and UĥL acts on H̃`(V) by left
multiplication.

REMARK 2.2.4. Note that when V is the trivial representation of σ∗h, we obtain that
H̃`(V) coincides with H̃`(0) given in Definition 2.2.1.

In the constant case σ∗h ∼= g, the properties af H̃`(V) have been studied in [Kac90,
Chapter 7] when R = k and V an irreducible representation of g of level at most `,
where it is shown that it has a maximal irreducible quotient H`(V). From this, one
generalizes the construction to families of curves, but still in the constant case σ∗h ∼= g,
which in view of Lemma 1.2.6 means working onHur(Γ, ξ)1

g. The new step is to descend
H`(V) from Hur(Γ, ξ)1

g to Hur(Γ, ξ)g,1.
We then first of all recall the construction in the constant case in Section 2.2.1 and

then show how it descends to Hur(Γ, ξ)g,1 in Section 2.2.2.
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2.2.1. Integrable representations of level ` on Hur(Γ, ξ)1
g. The forgetful mor-

phism Forg1
1 : Hur(Γ, ξ)1

g → Hur(Γ, ξ)g,1 is a finite étale covering, so if we want to
define a module on Hur(Γ, ξ)g,1, we could first define it on Hur(Γ, ξ)1

g and later show
that the construction is Γ-equivariant, hence it descends to a module on Hur(Γ, ξ)g,1.
As already written, the advantage of working on Hur(Γ, ξ)1

g, is the identification of hL
with gL, which allows us to use representation theory of g and of the affine Lie algebra
ĝL [Kac90, Chapter 7].

We recall here some facts about representation theory of g and ĝL. Let R(G, T) =
R(g, t) be the root system of g with basis of positive roots ∆. The dominant weights of
g are those element λ ∈ t∗ such that λ(Hα) ∈ N0 for all positive roots α. By [Bou75,
Théorème 1, Chapitre VIII, §7] the set of dominant weights P+ of g is in bijection with
the isomorphism classes of irreducible and finite dimensional representations of g. The
representation Vλ associated with λ is characterized by the property of being generated
by a highest weight vector vλ which is annihilated by the elements of gα for every
positive root α and such that H(vλ) = λ(H)vλ for every H ∈ t. Let θ be the highest
root and denote by Hθ the highest coroot of g. Then for every ` ∈N we set

P` := {λ ∈ P+|λ(Hθ) ≤ `}.

In view of the correspondence between weights and representations, the set P` collects
the equivalence classes of representations of level at most `, meaning those represen-
tations Vλ of g where X`+1 acts trivially on Vλ for every nilpotent element X ∈ g. In
what follows we will use P` to denote either the weights or the representations of level
at most `. Note that the trivial representation corresponds to the trivial weight λ = 0,
so that it belongs to P` for every `.

REMARK 2.2.5. We note that the action of Γ on g induces an action of Γ on P` in the
following way. Let ρλ : g×V → V be the representation associated to λ, then we define
the representation ργλ : g×V → V as ργλ(X, v) := ρλ(γ

−1X)v for all X ∈ g and v ∈ V.
The weight γλ belongs to P` since Γ sends nilpotent elements to nilpotent elements.

Let Vλ be an irreducible and finite dimensional representation of g and consider
the Uĝk((t))-module H̃`(Vλ) constructed as in Definition 2.2.3. The properties of
H̃`(Vλ) are well known and described for example in [Kac90], [KR87], [TUY89] and
in [Bea96]. The main results are collected in the following proposition.

PROPOSITION 2.2.6. Let Vλ be an irreducible and finite dimensional representation of
g of level at most `.

(1) The module H̃`(Vλ) contains a maximal proper UĝL submodule Zλ, so that it
has a unique maximal irreducible quotient H`(Vλ) := H̃`(Vλ)/Zλ.

(2) The natural map Vλ → H`(Vλ) sending v to 1⊗ v identifies Vλ with the sub-
module of H`(Vλ) annihilated by UF1gL = Ugtk[[t]].

(3) The module H`(Vλ) is integrable, i.e. for any X ∈ g nilpotent and every f (t) ∈
k((t)), the element X f (t) acts locally nilpotently on H`(Vλ). This means that
there exists n ∈N such that X f (t)◦n acts trivially on H`(Vλ).

It follows that to every (X̃ → X → Spec(k), τ) ∈ Hur(Γ, ξ)1
g(Spec(k)) and λ ∈ P`,

we can associate the irreducible UĥL module H`(Vλ) realized as quotient of H̃`(Vλ).
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Let (X̃
q→ X π→ S, τ) ∈ Hur(Γ, ξ)1

g(S) and call σ the composition qτ. An isomor-
phism of hL with gL is fixed by τ, as well as an isomorphism of σ∗h with g⊗k OS. Denote
by Vλ := Vλ ⊗k OS the extension of scalars of Vλ from k to OS, so that Vλ is naturally
a representation of g⊗k OS = σ∗h. We show how to construct H`(Vλ) as quotient of
H̃`(Vλ).

Let us assume first that Ô ∼= OS[[t]]. This implies that H̃`(Vλ) is isomorphic to

Ugt−1OS[t−1]⊗OS Vλ = Ugt−1k[t−1]⊗k Vλ ⊗k OS = H̃`(Vλ)⊗k OS.

REMARK 2.2.7. Observe that the isomorphism that we have obtained between H̃`(Vλ)

and H̃`(Vλ)⊗k OS does not depend on the choice of the parameter t.

It follows that H̃`(Vλ) has a unique maximal Uĝ⊗k k((t)) proper submodule ZS :=
Zλ ⊗ OS, where Zλ is the maximal proper submodule of H`(Vλ). We define H`(Vλ)

as the quotient H̃`(Vλ)
/
ZS or equivalently as H`(Vλ)⊗ OS. This construction uses a

choice of the isomorphism hL ∼= gL, but since Zλ and hence ZS satisfy a maximality
condition, they do not depend on the isomorphism hL ∼= gL, concluding that H`(Vλ) is
the maximal irreducible quotient of H̃`(Vλ).

We now drop the assumpion that Ô is globally isomorphic to S[[t]]. We want how-
ever show that Zariski locally on S we can reduce to Ô ∼= OS[[t]] so that we can locally
define H`(Vλ) and then show that this gives rise to a global object. Since Iσ is locally
principal, we can find an open covering {Ui} of X such that Iσ|Ui is principal. This
implies that lim←−n

OUi / (Iσ|Ui)
n is isomorphic to OSi [[t]] where Si := σ−1(Ui). Observe

that this does not imply that Ô ⊗S OSi
∼= OSi [[t]], but only that Ô ⊗̂S OSi

∼= OSi [[t]].
Consider then the sheaf of Lie algebras gLi := g⊗OSi((t)) ∼= gL ⊗̂OSi , and construct
the UĝLi-module H̃`(Vλ)i.

CLAIM. The inclusion gL ⊗ OSi → gLi induces an isomorphism of OSi -modules be-
tween H̃`(Vλ)⊗S OSi and H̃`(Vλ)i.

PROOF. We need to prove that H̃`(Vλ) ⊗S OSi → H̃`(Vλ)i is surjective. We use
induction on the length of the elements of UgLi, where the length of an element u ∈
UgLi is the minimum n such that u ∈ ⊕n

j=0gLi
⊗j. Let aX ∈ gLi with X ∈ g and

a = ∑i≥−N aiti ∈ OSi((t)), and take v ∈ Vλ. The class of aX ⊗ v in H̃`(Vλ)i is the
same as the one of [aX]⊗ v := [a]X ⊗ v, where [a] = ∑0

i≥−N aiti, which then belongs
to H̃`(Vλ)⊗S OSi . Let now Y = Y1 ◦ · · · ◦ Yn be an element of UgLi, and note that in
H̃`(Vλ)i the element Y⊗ v is equivalent to the class of ([Yn] ◦ · · · ◦ [Y1] + u)⊗ v where
u has length lower than n. Using the induction hypothesis we conclude the proof. �

We define the OSi -module H`(Vλ)|Si to be H`(Vλ)i = H̃`(Vλ)i
/
Zi. This gives rise

to the OS-module H`(Vλ) because on the intersection Sij the modules H`(Vλ)i and
H`(Vλ)j are isomorphic via to the transition morphisms defining Iσ. Equivalently we

could have defined Z|Si to be the image of Zi in H̃`(Vλ)|Si and so H`(Vλ)|Si would be
the quotient of H̃`(Vλ)|Si by Z|Si . The modules Z|Si glue and give rise to a ĝL-module
Z on S, so that H`(Vλ) is given by H̃`(Vλ)

/
Z . This construction is invariant under the

action of Γ, hence it defines ĥL as a UĥL-module.
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2.2.2. Integrable representations of level ` on Hur(Γ, ξ)g,1. We show here how

to descend H`(V) from Hur(Γ, ξ)g,1 to Hur(Γ, ξ)g,1, so let consider (X̃
q→ X π→ S, σ) ∈

Hur(Γ, ξ)g,1(S). The first issue is that, unless we choose an isomorphism between σ∗h

and g, we are not able to provide a representation of σ∗h associated to a λ ∈ P`. In
fact, one obstruction to this, as we noticed in Remark 2.2.5, is that Γ does not in general
act trivially on P`, so it is impossible to identify V as Vλ, with λ independent of the
isomorphism between hL and gL.

The conclusion is that it seems unreasonable to associate to λ ∈ P` a moduleH`(Vλ)

on Hur(Γ, ξ)g,1 because P` contains only local information. The following set is what
replaces P`.

DEFINITION 2.2.8. A representation V of σ∗h is said to be of level at most ` if for
every nilpotent element X of σ∗h, then X`+1 acts trivially on V . Equivalently this means
that locally étale we can identify V with V ⊗ OS for a representation V ∈ P`. Define
IrRep`(σ

∗h) or by abuse of notation only IrRep`(σ) or IrRep` to be the set of isomor-
phism classes of irreducible and finite dimensional representations V of σ∗h of level at
most `.

The main step towards the definition of the sheaf of conformal blocks attached to
V ∈ IrRep` is the following result.

PROPOSITION 2.2.9. Let V ∈ IrRep`. Then there exists a unique maximal proper UĥL
submodule Z of H̃`(V).

PROOF. We show that the maximal proper submodule of H̃`(V) on Hur(Γ, ξ)1
g de-

scends along Forg1
1 to the maximal proper submodule of H̃`(V) on Hur(Γ, ξ)g,1. Recall

that since σ(S) does not intersect the branch locus of q, we can find an étale covering
S′ → S such that the pullback of (X̃ → X → S, σ) lies in the image of Forg1

1. This im-
plies that to give V ∈ IrRep` is equivalent to give an irreducible and finite dimensional
representation V ′ of σ′∗h and an isomorphism φ : p∗1V ′ → p∗2V ′ satisfying the cocycle
conditions on S′′′, where pi : S′′ = S′ ×S S′ → S′ is the i-th projection.

This tells us moreover that H̃`(V) is obtained by descending H̃`(V ′) from S′ to S.
Observe that up to the choice of an isomorphism σ′∗h ∼= g⊗k OS′ , the representation
V ′ is of the form Vλ, so that Z ′ and H`(V ′) are well defined. We construct H`(V) by
descending Z ′ to a module Z on S, so that H`(V) := H̃`(V)

/
Z .

Since hL is a module on OS, we have a canonical isomorphism φ12 : p1
∗hL|S′ →

p2
∗hL|S′ satisfying the cocycle conditions on S′′′ := S′′ ×S S′. Recall moreover that Z ′ is

the maximal proper UĥL submodule of H̃`(V ′), which is then Γ-invariant. This induces
an isomorphism between p∗1Z ′ and p∗2Z ′ which satisfied the cocycle condition on S′′′

and it is independent of the isomorphism hL ∼= gL. �

DEFINITION 2.2.10. Let V ∈ IrRep`. The maximal irreducible quotient of H̃`(V) is
denoted H`(V) and defines a sheaf

H`(V)X = hA ◦ H`(V)
∖
H`(V)

on S which is called the sheaf of conformal blocks attached to V . When V is the trivial
representation of σ∗h, we denote H`(V) by H`(0) and its quotient hA

∖
H`(0) is called

the sheaf of covacua.
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The collection {H`(0)X}X̃→X→S determines the sheaf of modules H`(0)Xuniv
on

Hur(Γ, ξ)g,1. In similar way, given compatible families {V(σ)}{X̃→X→S,σ} defining an
element V of IrRep`(σuniv), the collection H`(V(σ))X defines H`(V)Xuniv

.
Observe that Proposition 2.2.6 generalizes as follows.

COROLLARY 2.2.11. Let V ∈ IrRep`(σ), then:
(1) The natural map V → H`(V) sending v to 1⊗ v identifies V with the submodule

of H`(V) annihilated by UF1ĥL.
(2) The module H`(V) is integrable.

Inspired by [Sor96, Section 2.5] we prove the following statement.

PROPOSITION 2.2.12. The OS-module H`(V)X is coherent. It follows that H`(V)Xuniv

is a coherent module on Hur(Γ, ξ)g,1.

PROOF. This is essentially a consequence of [Sor96, Lemma 2.5.2]. As this is a
local statement, we can assume that L ∼= R((t)) and we can fix an isomorphism hL ∼=
gL. Observe that the quotient hA

∖
hL
/

F0hL is a finitely generated R-module as it
computes H1(X, h) and h is locally free over X. This implies that hA

∖
ĥL
/

F1hL is finitely
generated too over R and so we can choose finitely many generators e1, . . . , en so that
we can write

ĥL = F1hL + hA +
n

∑
i=1

Rei.

which in terms of enveloping algebras becomes

UĥL = ∑
(N1,...,Nn)∈N0

n
U(hA) ◦ e1

◦N1 ◦ · · · ◦ en
◦Nn ◦U(F1hL)

thing that can be proven using induction on the length of elements of UĥL.
We can furthermore assume that the elements ei acts locally nilpotently on H`(V),

meaning that there exists M ∈N such that e◦M
i acts trivially onH`(V). In fact we might

use the isomorphism hL with gL and the Cartan decomposition of g = t⊕α∈R(g,t) gα. The
algebras gα’s are nilpotent and generate g, so that gL is generated by ⊕α∈R(g,t)gαL. This
means that also the elements ei are generated by elements of ⊕α∈R(g,t)g

αL so that, up
to replace ei with a choice of nilpotent generators, we can ensure that all the ei’s live
in ⊕α∈R(g,t)g

αL and so using Corollary 2.2.11 (2) the ei’s will act locally nilpotently on
H`(V).

It follows that

H̃`(V) = ∑
(N1,...,Nn)∈N0

n
U(hA) ◦ e1

◦N1 ◦ · · · ◦ en
◦Nn ⊗

c=`
V

and that
H`(V) = ∑

(N1,...,Nn)∈N0
n

U(hA) ◦ e1
◦N1 ◦ · · · ◦ en

◦Nn ⊗
c=`
V
/
Z

Using induction on n and the fact that the ei’s act locally nilpotently, we can conclude
that the sum can be taken over finitely many (N1, . . . , Nn) ∈ N0

n, hence that the quo-
tient hA

∖
H`(V) = H`(V)X is finitely generated. �



3 | THE PROJECTIVE CONNECTION ON H`(V)Xuniv

We want to prove that the sheaf of conformal blocks H`(V)Xuniv
is a vector bun-

dle on the Hurwitz stack Hur(Γ, ξ)g,1, so that its rank will be constant. Since we
already know that H`(V)Xuniv

is coherent, one method to exhibit local freeness is to
provide a projectively flat connection on it. In this section we provide a projective ac-
tion of THur(Γ,ξ)g,1/k(− log(∆)) on H`(V)Xuniv

, showing its freeness when restricted to
Hur(Γ, ξ)g,1.

3.1. The tangent to Hur(Γ, ξ)g,1

Let (X̃ → X, σ) ∈ Hur(Γ, ξ)g,1(Spec(k)) and recall that in Remark 1.2.3 we saw
that the tangent space of Hur(Γ, ξ)g,1 at (X̃ → X, σ) is isomorphic to the tangent space
of Mg,(1+deg(ξ)) at (X, σ ∪R). The latter, which is the space of infinitesimal deforma-
tions of (X, σ ∪R), can be explicitely described as the space Ext1(ΩX/k, O(−R− σ(S))
[ACG11, Chapter XI] which sits in the short exact sequence

0→ H1(X, TX/k(−R− σ(S))→ Ext1(ΩX/k, O(−R− σ(S))→

→ H0(X, Ext1(ΩX/k, O(−R− σ(S)))→ 0

where the last term is supported on the singular points of X.
We now use the assumption that the curve (X, σ ∪ R) is stably marked to assume

that there exists a versal family X → S with a reduced divisor σX +RX deforming it
and such that the subscheme of S whose fibres are singular is a normal crossing divisor
∆. Call s0 the point of S such that X |s0 is X. The versality condition means that the
Kodaira-Spencer map

KS : TS/k → Ext1(ΩX/S, O(−RX − σX ))

is an isomorphism, so that we identify the tangent space of Hur(Γ, ξ)g,1 at (X̃ → X, σ)

with the tangent space of S at s0.
The conclusion is that to provide a projective connection onH`(V)Xuniv

is equivalent

to provide an action of TS/k on H`(V)X for every versal family X̃
q→ X π→ S. As

aforementioned, we will however not be able to provide a projective action of the whole
TS/k, but only of the submodule TS/k(− log(∆)), which via the Kodaira-Spencer map is
identified with R1π∗(TX/S(−R− σ(S))).

17
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3.2. Tangent bundles and the action of Γ

In view of the previous observations, we assume that the element (X̃
q→ X π→ S, σ)

of Hur(Γ, ξ)g,1(S) is a versal family, so that the locus of points s of S such that the fibres
Xs (or equivalently X̃s) are non smooth is a normal crossing divisor ∆ of S. We give
in this section a description of TS/k(− log(∆)) and TS/k, by realizing it as a quotient of
certain sheaves of derivations. Consider, to begin with, the following situation described
by Looienga [Loo13, Section 2]. Let R ∈ k-Alg and L = R((t)), then we can consider
the following two modules: θL/R consisting of continuous R-linear derivations of L and
θL,R consisting of continuous k-linear derivations of L which restrict to derivations of R
into itself. The quotient θL,R/θL/R is canonically identified with the module of k-linear
derivations of R.

Take ( f : X̃
q→ X π→ S, σ) ∈ Hur(Γ, ξ)g,1(S) as above. We already introduced in

Subsection 2.1 the OS-module θL/S of continuous OS-linear derivations of L and we
define now θL,S as the OS-module of continuous k-linear derivations of L which restrict
to derivations of OS. Observe that θL/S and θL,S depend only on the marked curve
(X → S, σ), so the following well known result belongs to the classical setting.

PROPOSITION 3.2.1. The sequence of OS-modules

0→ θL/S → θL,S → TS/k → 0

is exact.

PROOF. As exactness can be checked on formal neighbourhoods, we can assume
that L ∼= R((t)) so that the result follows from the example presented above. �

In similar fashion we now describe the subsheaf TS/k(− log(∆)) as quotient of ap-
propriate sheaves of derivations.

The sheaves θA/S(−R) and θA,S(−R). Following Looijenga’s notation, we denote
by θA/S the sheaf of derivations f∗TX∗/S. Recall that in Lemma 1.1.2 we have showed
that there is an isomorphism between (q∗TX̃/S)

Γ and TX/S(−R). This implies that
f∗(TX̃∗/S))

Γ ∼= θA/S ⊗S π∗O(−R) and by abuse of notation we will denote this sheaf
by θA/S(−R). In a similar way we consider the action of Γ on the pushforward to S of
TX̃∗,S, the sheaf of k-linear derivations of OX̃∗ which restrict to derivations of f−1OS and
we call θA,S(−R) the sub module of Γ-invariants.

REMARK 3.2.2. Recall that we defined L̃ as lim−→N
f∗ lim←−n

(q∗Iσ)−N/(q∗Iσ)n and de-
fine now

θL̃/S := lim−→
N

π∗q∗ lim←−
n
TX̃/S ⊗OX̃

q∗I−N
σ /q∗In

σ

or equivalently θL̃/S is the module of continuous derivations of L̃ which are OS linear.
Thanks to Lemma 1.1.2, the OS-submodule of Γ-invariants of f∗TX̃/S is identified with
lim−→N

π∗ lim←−n
TX/S(−R)⊗OX I−N

σ /In
σ which equals lim−→N

π∗ lim←−n
TX/S ⊗OX I−N

σ /In
σ as

R and σ(S) are disjoint. The latter is the OS-module of continuous and OS-linear deriva-
tions of L, which is θL/S.

The previous remark implies moreover that θA/S is a submodule of θL/S.
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REMARK 3.2.3. Observe that the action of TX̃/S (resp. of TX̃,S) on g⊗k OX̃ by coeffi-
cientwise derivation is Γ-equivariant. This implies that (q∗TX̃/S)

Γ (resp. (q∗TX̃,S)
Γ) acts

on h and we will say that the action is by coefficientwise derivation. By restricting our-
selves to X̃∗ this implies that θA/S(−R) (resp. θA,S(−R)) acts on hA by coefficientwise
derivation. The same holds for θL/S and θL,S acting on hL.

EXAMPLE 3.2.4. We recall in this example the local description of the quotient
θA,S

/
θA/S at nodal points [Loo13, Section 5]. Let R be a local complete k-algebra

with maximal ideal m and let A := R[[x, y]]/xy− t for some t ∈ m. We are interested
in the following R-modules: θA/R, the module of R-linear derivations of A, which lives
inside θA,R, the module of k-linear derivations of A which restrict to derivations of R.
We are interested in understanding the quotient θA,R/θA/R and we claim that this gets
identified with θR/k(− log(t)), the module of k-linear derivations of R which send the
element t to an element of the ideal tR. We in fact note that from the relation xy = t,
each derivation D ∈ θA,R should send t to a multiple of itself inside R, hence the nat-
ural map θA,R → θR/k, whose kernel is θA/R, has image landing inside θR/k(− log(t))
and what we need to prove is that this is exactly the image. Given in fact a derivation
D ∈ θR/k(− log(t)) , we claim that it is possible to extend it to a derivation of A, i.e. to
define D(x) and D(y) satisfying xD(y) + yD(x) = D(t). Since D(t) = tr = 2xyr for
some r ∈ R, it will be enough to set D(y) = yr and D(x) = xr.

PROPOSITION 3.2.5. The sequence

0→ θA/S(−R)→ θA,S(−R)→ TS(− log(∆))→ 0

is exact.

PROOF. As taking Γ-invariants is an exact functor (char(k) = 0) and Γ acts trivially
on TS/k(− log(∆)), it suffices to prove that the sequence

0→ f∗TX̃∗/S → f∗TX̃∗,S → TS(− log(∆))→ 0

is exact. This statement does not depend on the covering, and appears in [Sor96] and
[Loo13]. We give the proof of it, by starting observing that in the case X̃∗ = A1

S, the
result follows by using the same argument of the proof of Proposition 3.2.1.

Let U = S \ ∆ and denote by X̃U := X̃ ×S U. As X̃U is smooth over S, there exists
an affine covering {Spec(Ai) = X̃i} of X̃U and {Spec(Ri) = Ui} of U such that the map
fi = f |X̃i

: X̃i → Si factors through A1
Ri

via an étale map φi as in the diagram:

X̃

f
��

X̃ioo

fi

��

φi
// A1

Ri

a
~~

S Uioo

It follows that the sequence 0 → a∗TA1
Ri

/Ui
→ a∗TA1

Ri
,Ui
→ TUi |k → 0 is exact. The

étaleness of φi provides an isomorphism between fi∗TX̃i/Si
and a∗TA1

Ri
/Ui

and similarly

for fi∗TX̃i ,Ui
and a∗TA1

Ri
,Ui

, concluding the argument for the smooth points.

Let s be a geometric point of ∆ and x̃ ∈ X̃s a nodal point. This means that there
exists an isomorphism

ÔX̃,x̃
∼= ÔS,s[[x, y]]/xy− t
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for some t ∈ m̂s. It follows that the Example 3.2.4 represents the local picture of the
situation, where the result holds, concluding the proof. �

3.3. The Virasoro algebra of L

Now that we can express TS/k(− log(∆)) as θA,S(−R)
/

θA/S(−R), we will define a
projective action of θA,S(−R) on H`(V)Xuniv

which factors through that quotient.
In order to achieve this result, we will follow the methods of [Loo13] and define as

first step the Virasoro algebra θ̂L/S of L as a central extension of θL/S. We report in this
section the construction of θ̂L/S as explained in [Loo13, Section 2], for which we will
use the same notation. As mentioned before, the OS-module θL/S does not depend on
the covering, and the same holds for its central extension θ̂L/S. We will see in Section
3.4, how θ̂L/S acts on H`(V) and how it induces a central extension of θL,S.

The Lie algebra l and its central extension l̂. We denote by l the sheaf of abelian
Lie algebras (over S) whose underlying module is L. The filtration F∗L gives the filtra-
tion F∗l. Denote by Ul the universal enveloping algebra, which is isomorphic to Sym(l)

since l is abelian. This algebra is not complete with respect to the filtration F∗l, so we
complete it on the right obtaining

Ul := lim←−
n

Ul/Ul ◦ Fnl.

REMARK 3.3.1. Note that in this case the completions on the right lim←−n
Ul/Ul ◦ Fnl

and on the left lim←−n
Fnl ◦Ul

∖
Ul coincide because l is abelian. The element ∑i∈N t−i ◦ ti

belongs to Ul, as well as ∑i∈N t−(i)
m ◦ ti for every m ∈ N. However ∑i∈N t−i ◦ t is not

an element of Ul.

We extend centrally l via the residue pairing described in Section 2.1 defining the
Lie bracket on l̂ = l⊕ }OS as

[ f + }r, g + }s] = }Res(gd f )

for every f , g ∈ l and r, s ∈ OS. The filtration of l extends to a filtration of l̂ by setting
Fîl = Fil for i ≥ 0 and Fîl = Fil⊕ }OS for i ≤ 0. The universal enveloping algebra of l̂ is
denoted by U l̂ and U l̂ denotes its completion on the right with respect to the filtration
F∗̂l. Note that since } is a central element, we have that U l̂ is an OS[}] algebra so that
we will write }2 instead of } ◦ } and similarly }n for every n ∈N.

REMARK 3.3.2. Since l̂ is no longer abelian, completion on the right and on the left
differ. Take for example the element ∑i∈N ti ◦ t−i which belongs to Ul. It does not

belong to U l̂: an element on the completion on the right morally should have zeros of
increasing order on the right side, but in this case, in order to "bring the element ti on
the right side", we should use the equality ti ◦ t−i = t−i ◦ ti + }i infinitely many times,
which is not allowed.

3.3.1. The Virasoro algebra of L. We use the residue morphism Res : ωL/S → OS

to view θL/S as an OS submodule of U l̂ and induce from this a central extension. Let
D ∈ θL/S, and since ωL/S and θL/S are L dual we identify D with the map

φD : ωL/S ×ωL/S → OS, (α, β) 7→ Res(D(α)β).
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Notice that since Res(D(α)β) = Res(D(β)α), we have that φD belongs to (Sym2(ωL/S))
∨.

Moreover, since the latter is canonically isomorphic to the closure of Sym2(l) in Ul (see
Remark 3.3.3), we will consider φD as an element of Ul. We define C : θL/S → Ul by
setting 2C(D) = φD.

REMARK 3.3.3. The fact that (Sym2(ωL/S))
∨ is canonically isomorphic to the clo-

sure of Sym2(l) in Ul is essentially a consequence of the fact that L is defined as
a limit of finitely generated OS-modules I−n

σ /Im+1
σ . We assume, for simplicity, that

L = OS((t)). Write ωL/S as lim−→n
lim←−m

ωn
m where ωn

m is the free OS-module generated by
{t−ndt, · · · , tmdt}. The maps defining the projective system are truncation maps, while
the ones for the inductive limit are inclusions. As the direct limit is given by unions,
we deduce that (Sym2(ωL/S))

∨ is isomorphic to lim←−n
lim−→m

HomOS(ω
n
m ◦ ωn

m, OS). The
residue pairing gives the isomorphism between HomOS(ω

n
m, OS) and the sub OS-module

of l generated freely by {t−m−1, · · · , tn−1} which we denote by lm+1
n−1 . As these are free

modules of finite dimension we get canonical identification with

lim←−
n

lim−→
m

(
lm+1
n−1 ◦ l

m+1
n−1

)
= lim←−

n

(
tn−1OS[t−1] ◦ tn−1OS[t−1]

)
.

As the product is symmetric, this is identified with lim←−n

(
OS((t)) ◦ tn−1OS[t−1]

)
. By de-

composing OS((t)) as tn−1OS[t−1]⊕ tnOS[[t]] this module equals lim←−n

OS((t)) ◦OS((t))
OS((t)) ◦ tnOS[[t]]

,

which is the closure of Sym2(l) in Ul.

REMARK 3.3.4. Assume for simplicity that R = k and identify L with k((t)). For
every i ∈ Z we set αi = t−i−1dt and ai = ti so that Res(aiαj) = δij and {αi} and {ai}
are linearly independent generators of ωL/S and L. Then we can write explicitly

C(D) =
1
2 ∑

i∈Z

D(t−i−1dt) ◦ ti.

In general, let {αi} and {ai} be linearly independent generators of ωL/S and L with
the property that Res(aiαj) = δij. Then we can write

C(D) =
1
2 ∑

i∈Z

D(αi) ◦ ai

which is a well defined object of Ul thanks to the previous remark.

As explained in [Loo13, Section 2], the central extension l̂ of l and the inclusion
C : θL/S → U l̂ induce a central extension θ̂L/S of θL/S. We recall here how this is
achieved. Consider now l⊗ l, and call l2 its image in U l̂. This means that l2 = l⊗ l⊕}OS
modulo the relation f ⊗ g = g ⊗ f + }Res(gd f ). Denote by l2 its closure in U l̂ and
observe the following diagram

0 // }OS // l2
[−]}
// Sym2(l) // 0

θL/S

C

OO

where [−]} is the reduction modulo the central element }OS so that the short sequence
is exact.
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DEFINITION 3.3.5. We define θ̂L/S to be the pullback of θL/S along [−]}. Equiva-
lently its elements are pairs (D, u) ∈ θL/S × l2 such that C(D) = u mod }OS.

Denote by Ĉ : θ̂L/S → U l̂ the injection Ĉ(D, u) = u and we write [−]θ} for the
pullback of [−]} along C so that we have the commutative diagram with exact rows

0 // }OS // l2
[−]}

// Sym2(l) // 0

0 // }OS // θ̂L/S

Ĉ

OO

//
[−]θ}

// θL/S

C

OO

// 0.

Observe, for example using Remark 3.3.4, that the map C is not a Lie algebra mor-
phism, and so θ̂L/S does not arise naturally as a Lie algebra which centrally extends
θL/S.

We however want to induce a Lie bracket on θ̂L/S from the one of U l̂ by conveniently
modifying Ĉ. To understand how to do this, local computations are carried out.

DEFINITION 3.3.6. Choose a local parameter t so that locally L ∼= OS((t)). Define
the normal ordering : ? : : Sym2(l)→ l2 by setting

: tn ⊗ tm :=

{
tn ⊗ tm n ≤ m

tm ⊗ tn n ≥ m

and extend it by linearity to every element of Sym2(l).

The map : ? : defines a section of [−]}, so that (Id, : ? : C) is a section of [−]θ}. Once
we make the choice of a local parameter defining the ordering : ? :, we will denote by
D̂ the element (D, : C(D) :) ∈ θ̂L/S. Consider the following relations which hold in U l̂

and which are proved in [Loo13, Lemma 2.1].

LEMMA 3.3.7. Let D ∈ θL/S and Di = ti+1d/dt ∈ θL/S, Then we have

(1) [Ĉ(D̂), f ] = −}D( f ) for every f ∈ l ⊂ l̂;

(2) [Ĉ(D̂k), Ĉ(D̂l)] = −}(l − k)Ĉ(D̂k+l) +
k3 − k

12
}2δk,−l. �

This suggests to rescale the morphism Ĉ and to define

T := − Ĉ
} : θ̂L/S → U l̂

[
1
}

]
which is injective and its image is a Lie subalgebra of the target. Denote by c0 the
element (0,−}) which is sent to 1 by T. By construction we obtain the following result.

PROPOSITION 3.3.8. [Loo13, Corollary-Definition 2.2] The Lie algebra structure in-
duced on θ̂L/S by T is a central extension of the canonical Lie algebra structure on θL/S by
c0OS. This is called the Virasoro algebra of L.

3.4. Sugawara construction

In this section we generalize to our case, i.e. using ĥL in place of ĝL, the construc-
tion of

Tg : θ̂L/S →
(

UĝL[(c + ȟ)−1]
)Aut(g)
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described by Looijenga in [Loo13, Corollary 3.2], which essentially represents the local
picture of our situation. In the classical case the idea is to use the Casimir element of
g to induce, from Ĉ the map Ĉg : θ̂L/S → UĝL which, in turn, will give the map of Lie
algebras Tg. When in place of gL we have hL, we can run the same argument using the
element Casimir c of hL. This is the content of this section.

As in Section 2.1, we consider the normalized Killing form defined on g. Recall that
it provides an isomorphism between g and g∨, hence it gives an identification of g⊗ g

with Endk(g) = g⊗ g∨. Moreover, as σ(S) is disjoint from the ramification locus, we
also have that ( | )hL provides an isomorphism of hL with hL

∨, giving in this way an
identification of hL ⊗L hL with EndL(hL). The Casimir element of hL with respect to
the form ( | )hL is the element in hL ⊗L hL corresponding to the identity IdhL via the
identification provided by ( | )hL . We denote it by c.

REMARK 3.4.1. We could have defined the Casimir element of hL via the local iso-
morphism of hL with gL. Let c(g) be the Casimir element of g, and observe that via
the inclusion g → gL, we can see it as an element of gL⊗L gL. Since c(g) is invariant
under automorphisms, it is invariant under Γ, hence it gives an element hL⊗L hL which
equals c.

Since ( | )hL is a symmetric form, we have that also c is a symmetric element of
hL ⊗L hL and moreover c lies in the centre of UL(hL). As hL is simple over L, this
implies that there exists ȟ ∈ k such that ad(c)X = 2ȟX for all X ∈ hL, where ad(−)
denotes the adjoint representation of hL.

REMARK 3.4.2. Locally, for every bases {Xi}dim(g)
i=1 and {Yi}dim(g)

i=1 of hL such that

(Xi|Yj)hL = δij we have the explicit description of c as ∑dim(g)
i=1 Xi ◦ Yi. It follows that ȟ

is given by the equality ∑dim(g)
i=1 [Xi, [Yi, Z]] = 2ȟZ for every Z ∈ hL.

Let denote by UĥL the completion on the right of UĥL with respect to the filtration
F∗ĥL given by FnhL for n ≥ 1. We now construct γ̂c : l→ UĥL which composed with Ĉ
will give Ĉh : θ̂L/S → UĥL.

Let consider the map γc : l⊗OS l → hL ⊗OS hL ⊂ UĥL given by tensoring with c.
This map uniquely extends to a map of Lie algebras l2 → UĥL as follows. Using local
bases as in Remark 3.4.2 and the symmetry of c we deduce the following equality

γc (}Res(gd f )) = γc( f ◦ g− g ◦ f ) = c dim(g)Res(gd f ) + c
dim(g)

∑
i=1

Res( f g(dYi|Xi))

and recalling that Remark 2.1.3 implies that (dXi|Yi) = −(dYi|Xi), we conclude that

γc (}Res(gd f )) = c dim(g)Res(gd f ).

We then define γ̂c : l2 → UĥL by sending } to c dim(g) and acting as γc on l⊗ l. Such
a map can be extended to the closure of l2 in U l̂ once we extend the target to UĥL,
obtaining γ̂c : l2 → UĥL. We define Ĉh as the composition

γ̂cĈ : θ̂L/S → UĥL.

As for Ĉ, also in this case the morphism Ĉh does not preserve the Lie bracket, and
thanks to local computation we understand how to solve this issue. Following [TUY89]
we first of all extend the normal ordering defined in 3.3.6 as as follows.
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DEFINITION 3.4.3. Let fix an isomorphism between L and R((t)) for a local param-
eter t ∈ Iσ. Let Xtn and Ytm be elements of gL = g⊗ R((t)). Then we set

◦
◦ Xtn ⊗Ytm ◦

◦ =


Xtn ⊗Ytm n < m
1
2
(Xtn ⊗Ytm + Ytm ⊗ Xtn) n = m

Ytm ⊗ Xtn n > m.

This definition is Γ-equivariant, hence defines a normal ordering on hL ⊗ hL.

This defines a section from the image of γc to the image of γ̂c which makes the
diagram to commute:

0 // cOS // Im(γ̂c)
[−]c

// Im(γc)

◦
◦?
◦
◦

cc

// 0

0 // }OS //

OO

l2
[−]}

//

γ̂c

OO

Sym2(l) //

γc

OO

:?:

aa
0

θ̂L/S

Ĉ

OO

// θL/S.

C

OO

For any D ∈ θL/S, we write Ĉh(D̂) to denote the element ◦◦ γcC(D) ◦◦ = γ̂c : C(D) :.

REMARK 3.4.4. As we have done in Remark 3.3.4 we can write locally the ele-
ment Ĉh(D̂) in a more explicit way. Consider the morphism 1 ⊗ ( | ) : ωL/S ⊗ hL →
ωL/S ⊗ hL

∨ and, after tensoring it with hL, compose it with Resh to obtain the pairing
Res( | ) : ωL/S ⊗L hL × hL → OS. Let {Ai} and {Bi} be orthonormal bases of ωL/S ⊗ hL
and hL with respect to Res( | ). Then for every D ∈ θL/S we have

Ĉh(D̂) =
1
2 ∑ ◦

◦D(Ai) ◦ Bi
◦
◦

where we see D as a linear map ωL/S → L, so that D(Ai) ∈ hL.

As in [Loo13, Lemma 3.1] we have the following result.

LEMMA 3.4.5. The following equalities hold true in UĥL:

(1) [Ĉh(D̂), X] = −(c + ȟ)D(X) for all X ∈ hL and D ∈ θL/S;

(2) [Ĉh(D̂k), Ĉh(D̂l)] = (c + ȟ)(k− l)Ĉh(D̂k+l) + c dim(g)(c + ȟ)
k3 − k

12
δk,−l where

Di = ti+1d/dt.

As Lemma 3.3.7 also Lemma 3.4.5 suggests to rescale Ĉh and consider instead the
map

Th := − Ĉh

c + ȟ
: θ̂L/S → UĥL

[
1

c + ȟ

]
which is compatible with the Lie brackets of θ̂L/S and UĥL[(c + ȟ)−1], proving the fol-
lowing statement.

PROPOSITION 3.4.6. The map Th is a homomorphism of Lie algebras which sends the
central element c0 = (0,−}) to (c dim(g))/(c + ȟ). We call Th the Sugawara representa-
tion of θ̂L/S.
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3.4.1. Fock representation. We induce the representation Th to the quotientF+(hL)

of UĥL defined as

F+(hL) :=
(

UĥL
/

UĥL ◦ F1ĥL
) [ 1

c + ȟ

]
=
(

UĥL
/

UĥL ◦ F1ĥL
) [ 1

c + ȟ

]
By abuse of notation call Th the composition of Th with the projection of UĥL to F+(hL),
so that F+(hL) is a representation of θ̂L/S. We can depict the result as follows

0 // OS · Id // End(F+(hL)) // PEnd(F+(hL)) // 0

0 // OSc0

OO

// θ̂L/S

Th

OO

// θL/S

OO

// 0

where the first vertical arrow maps c0 to c dim(g)(ȟ + c)−1 · Id and by abuse of notation
we wrote Th instead of Th(−)◦.

REMARK 3.4.7. We give a local description of how the action looks like. Choose for
this purpose a local parameter t of Iσ so that we can associate to D ∈ θL/S the element
D̂ ∈ θ̂L/S. Let Xr ◦ · · · ◦ X1 be representatives of an element of F+(hL) whith Xi ∈ hL.
Then the action of θL/S is described as follows

Th(D̂) ◦ Xr ◦ · · · ◦ X1 =
r

∑
i=1

Xr ◦ · · · ◦ D(Xi) ◦ · · · ◦ X1 + Xr ◦ · · · ◦ X1 ◦ Th(D̂)

where D(Xi) denotes the image of Xi under coefficientwise derivation by D (Remark
3.2.3).

3.4.2. Projective representation of θL,S. We want to define in this section a map
of Lie algebras PTh,S : θL,S → PEnd(H`(V)) which is induced by Th and which will lead,
in a second time, to a projective connection on the sheaves of conformal blocks. The
construction of PTh,S in the classical case is the content of [Loo13, Corollary 3.3].

Let F0θL/S be the subsheaf of θL/S given by those derivations D such that D(F1L) ∈
F1L, and similarly we set F0θL,S to be the subsheaf of θL,S whose elements D satisfy
D(F1L) ∈ F1L.

REMARK 3.4.8. Assume that L = OS((t)) so that every element of F0θL/S is written

as D = ∑i≥0 aitid/dt. The element Th(D̂) acts on V as the operator
a0

−2(`+ ȟ)
c where c

is the Casimir element of h, hence the action is by scalar multiplication. Combining this
with Remark 3.4.7, we obtain that F0(θL/S) acts onH`(V) by coefficientwise derivation
up to scalars.

As in the classical case, also in our context this observation is the key input to define
PTh,S. In fact we let F0θL,S act onH`(V) by coefficientwise derivation so that we obtain
a map

F0θL,S × θL/S → PEnd(H`(V))
which uniquely defines the Lie algebra homomorphism

PTh,S : θL,S → PEnd(H`(V))

and hence the central extension θ̂L,S → θL,S and the map Th,S : θ̂L,S → End(H`(V)).
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PROOF. We only have to prove that the Lie algebra generated by F0θL,S and θL/S is
θL,S. This can be checked locally, where the choice of a local parameter t allows us to
split the exact sequence

0→ θL/S → θL,S → TS/k → 0,

hence to write θL,S as θL/S ⊕ TS/k. We can in fact decompose every element D ∈ θL,S
as Dver ⊕ Dhor which are uniquely determined by the conditions

(?) Dver ∈ θL/S, Dhor(t) = 0 and Dhor(s) = D(s) for all s ∈ OS.

This implies that F0θL,S = F0θL/S ⊕ TS/k, concluding the argument. �

REMARK 3.4.9. Assume that L = R((t)) so that we can write every element D ∈ θL,S
as D = Dver + Dhor satisfying (?). Then Remark 3.4.7 tells us that the action of D on
H`(V) is given by componentwise derivation by D plus right multiplication by T(D̂ver).

REMARK 3.4.10. We want to remark that in the case in which V is the trivial rep-
resentation, then the central extension θ̂L,S is isomorphic to θ̂L/S ⊕ TS/k, viewed as a
Lie subalgebra of gl(H`(0)), where the action of TS/k is by coefficientwise derivation.
In fact in the previous proof we saw that locally on S, and up to the choice of a local
parameter this is the case. By looking at Remark 3.4.8 and the previous proof, we note
that the obstruction to deduce this statement globally lies in the action of the Casimir
element c on V . When V is the trivial representation c acts as multiplication by zero,
hence there is no obstruction. In particular, the central charge c0 = (0,−}) ∈ θ̂L,S acts
by multiplication by dim(g)`/(`+ ȟ).

3.5. The projective connection on H`(V)Xuniv

The aim of this section is to induce, from PTh,S, the projectively flat connection
∇ : TS/k(− log(∆))→ PEnd(H`(V)X). In Proposition 3.2.5 we realised TS/k(− log(∆))
as the quotient θA,S(−R)/θA/S(−R), so that the content of this section can be sum-
marized in the following statement.

THEOREM 3.5.1. The actions of θA,S and of θA/S(−R) on H`(V) induce a projective
action of TS(− log(∆)) on H`(0)X. In particular H`(V)X is locally free if restricted to
S \ ∆.

As a consequence of it, we obtain that H`(V)Xuniv
is locally free on Hur(Γ, ξ)g,1.

COROLLARY 3.5.2. The sheaf H`(V)Xuniv
on Hur(Γ, ξ)g,1 is equipped with a projec-

tive connection with logarithmic singularities along the boundary ∆univ. In particular
H`(V)Xuniv

is locally free on Hur(Γ, ξ)g,1.

PROOF. As pointed out in Subsection 3.1 the tangent space ofHur(Γ, ξ)g,1 at a versal

covering (X̃
q→ X π→ S, σ) is identified via the Kodaira-Spencer map with the tangent

bundle TS/k(− log(∆)). The previous theorem gives the projective action of the latter
on H`(V)X, concluding in this way the argument. �

Proof of Theorem 3.5.1. We first of all prove that the action of θA,S(−R) onH`(V)
descends to H`(V)X.

PROPOSITION 3.5.3. The projective action of θA,S(−R) on H`(V) preserves the space
hA ◦ H`(V), hence induces a projective action on H`(V)X.
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PROOF. By the local description of the action of θA,S(−R) ⊂ θL,S explained in
Remark 3.4.9, it suffices to show that the action of θA,S(−R) on hA by coefficientwise
derivation is well defined. This follows from Remark 3.2.3. �

We denote by PThA,S the morphism θA,S(−R) → H`(V)X induced by PTh,S. To
conclude the proof of Theorem 3.5.1 we are left to show the following proposition.

PROPOSITION 3.5.4. The morphism PThA,S : θA,S(−R) → PEnd(H`(V)X) factorizes
through

PThA,S : TS(− log(∆)) = θA,S(−R)/θA/S(−R)→ PEnd(H`(V)X).

PROOF. We need to prove that θA/S(−R) acts on H`(V)X by scalar multiplication.
As this can be checked locally, we can assume to have a local parameter, so that we can
associate to D ∈ θA/S the element D̂ ∈ θ̂L/S. We need to prove that, up to scalars,
Th(D̂) lies in the closure of hA ◦ hL in UĥL[(c + ȟ)−1].

For this purpose we use the description of Ĉh(D̂) provided in Remark 3.4.4. Let
consider the orthonormal bases with respect to Res( | ) given by elements {αi, β j} and
{ai, bj} of ωL/S ⊗ hL and hL and with ai ∈ hA. From Remark 3.4.4 we can write

Th(D̂) = ∑ ◦
◦ D(αi) ◦ ai

◦
◦ + ∑ ◦

◦ D(β j) ◦ bj
◦
◦.

Observe that up to an element in cOS we have the equality ∑ ◦◦ D(αi) ◦ ai
◦
◦ = ∑ ai ◦

D(αi), so that to conclude it is enough to show that D(β j) ∈ hA. To do this, we
first need to identify where β j’s live. Since the basis is Res( | )-orthonormal we know
that (1⊗ ( | )hL)(β j) ∈ ωA ⊗ hA

∨. Recall that in Lemma 1.1.6, we decomposed h as
⊕gζ−i ⊗ Ei. Using this decomposition, and the fact that ( | )h provides an isomorphism
between gζ−i ⊗k Ei and (gζ i ⊗k Ep−i(R))∨ for i 6= 0, we deduce that

β j ∈
(
gΓπ∗OX∗ ⊕

p−1⊕
i=1

(
gζ i ⊗k π∗Ep−i(R)|X∗

))
⊗ωA

It follows that

D(β j) ∈ gΓπ∗OX∗(−R)⊕
p−1⊕
i=1

(gζ i ⊗k π∗Ep−i|X∗)

and hence is contained in hA. �

3.6. The semi local case

We extend the notions introduced so far to the stackHur(Γ, ξ)g,n with n ≥ 1. In fact,
as in the classical case one needs to work with curves with many marked points, also in
our context we will need to fix more sections of the covered curve. This is explained in
the classical context in the last paragraphs of [Loo13, Section 3].

Let (X̃
q→ X π→ S, σ1, . . . , σn) be an S = Spec(R) point of Hur(Γ, ξ)g,n. For all

i ∈ {1, . . . , n} we denote by Si the divisor of X defined by σi and by Ii its ideal of
definition. We denote by X∗ the open complement of S1 ∪ · · · ∪ Sn in X and we denote
by hA the pushforward to S of h restricted to X∗, in other words hA := π∗(h⊗OX OX∗).
As in the case n = 1, we assume that X∗ → S is affine.
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In the same way as we defined Ô in the case n = 1, we set now Ôi to be the formal
completion of OX at Si, i.e. Ôi = π∗ lim←−n

OX/(Ii)
n. We set Li = lim−→N

π∗ lim←−n
I−N

i /In
i

and
hLi := lim−→

N
π∗ lim←−

n
I−N

i /In
i ⊗OX h

for all i ∈ {1, . . . , n}. The direct sum hL1 ⊕ · · · ⊕ hLn is denoted by hL and L = ⊕Li.
We extend centrally hLi in the same way as we did in the case n = 1 obtaining ĥLi

with central element ci. We denote by ĥL the direct sum of ĥLi modulo the relation that
identifies all the central elements ci’s so that

0→ cOS → ĥL → hL → 0

is exact. The Lie algebra hA is still a sub Lie algebra of ĥL.

3.6.1. Sheaves of conformal blocks. Let i ∈ {1, . . . , n}. We denote by IrRep`(i) the
set of irreducible and finite dimensional representations of σi

∗h of level at most `. As we
have done in Section 2.2.2 we attach to any Vi ∈ IrRep`(i) the irreducible UĥLi -module
H`(Vi). Taking their tensor product we obtain

H`(V1, . . . ,Vn) := H`(Vi)⊗ · · · ⊗H`(Vn)

which then is an irreducible UĥL-module with central charge c acting by multiplication
by `. Since hA is a sub Lie algebra of ĥL, it acts on the left and we are interested in the
sheaf of coinvariants.

DEFINITION 3.6.1. The sheaf of conformal blocks attached to (Vi)
n
i=1 is the OS-module

H`(V1, . . . ,Vn)X := hA ◦ H`(V1, . . . ,Vn)
∖
H`(V1, . . . ,Vn).

For every i ∈ {1, . . . , n}, we consider Vi as a representation of σi,un
∗h defined by

a compatible family {Vi(σi)}{X̃→X→S,{σj}} of representations of σi
∗h. The collection

of H`(V1(σ1), . . . ,Vn(σn))X defines H`(V1, . . . ,Vn)Xuniv
, the universal sheaf of conformal

blocks attached to {Vi}.

3.6.2. The projectively flat connection on H`(V1, . . . ,Vn)Xuniv
. Also the construc-

tion of projectively flat connection extends to the semilocal case. Observe first of
all that the identification of the tangent space of Hur(Γ, ξ)g,n at a versal covering

(X̃
q→ X π→ S, {σi}) with TS/k(− log(∆)) still holds. Since Proposition 3.2.5 still holds,

this implies that we are allowed to provide the projective connection onH`(V1, . . . ,Vn)X
in terms of a projective action of θA,S(−R) on H`(V1, . . . ,Vn)X.

We denote by θL/S the direct sum of θLi/S, and we obtain a central extension θ̂L/S

thereof as the quotient of the direct sum of θ̂Li/S which identifies (0,}i) ∈ θ̂Li/S with
(0,}j) ∈ θ̂Lj/S. The Sugawara representation Th : θ̂L/S → UĥL[(c + ȟ)−1] is induced

from the Sugawara representations of θ̂Li/S and gives the projective action of θL,S on
H`(V1, . . . ,Vn).

Combining all these elements with the case n = 1 we obtain the following general-
ization of Theorem 3.5.1 and Corollary 3.5.2.

COROLLARY 3.6.2. For every i ∈ {1, . . . , n} let Vi ∈ IrRep`(σi,un
∗h). The module

H`(V1, . . . ,Vn)Xuniv
is a coherent module over Hur(Γ, ξ)g,n which is equipped with a pro-

jective action of THur(Γ,ξ)g,n
(− log(∆)). In particular it is locally free over Hur(Γ, ξ)g,n.



4 | FACTORIZATION RULES AND

PROPAGATION OF VACUA

In this chapter we prove the properties of the sheaves of conformal blocks men-
tioned in the introduction. More precisely we show that the sheaf H`(0)Xuniv

descends
to Hur(Γ, ξ)g by means of the propagation of vacua, and we provide the factorization
rules which compare the fibre of H`(0)Xuniv

over a nodal curve X with the fibres of the
sheaves H`(V)Xuniv

on its normalization XN. We will proceed following the approach of
[Loo13, Section 4].

4.1. Independence of number of sections

In this section we want to show that the sheaf H`(0)Xuniv
actually descends to a

vector bundle on Hur(Γ, ξ)g as a consequence of Proposition 4.1.1. Following [Bea96,
Proposition 2.3] we state and prove the aforementioned proposition, called also prop-
agation of vacua, because it shows that we can modify the sheaf of conformal blocks
by adding as many sections as we want to which we attach the trivial representation to
obtain a sheaf isomorphic to the one we started with.

SETTING AND NOTATION. In this section we fix the following objects.

• Let (X̃
q→ X π→ S = Spec(R), σ1, . . . , σn, σn+1, . . . , σn+m) be an element of

Hur(Γ, ξ)g,n+m(S).
• Denote by B := OX\{S1,...,Sn} and by A := OX\{S1,...,Sn,Sn+1,...,Sn+m} and set hB :=

π∗(h⊗B) which is contained in hA := π∗(h⊗A).
• For every i ∈ {1, . . . , n} fix Vi ∈ IrRep`(i) := IrRep`(σ

∗
i h) and for every j ∈

{1, . . . , m} we fixWj ∈ IrRep`(n + j).

Under these conditions we notice that hB acts on each Wj since σn+j
∗π∗hB maps

naturally to σn+j
∗h and the latter acts onWj by definition.

PROPOSITION 4.1.1. The inclusionsWj → H`(Wj) induce an isomorphism

hB
∖H`(V1, . . . ,Vn)⊗

m⊗
j=1

Wj

 ∼= hA
∖
H`(V1, . . . ,Vn,W1, . . . ,Wm)

of OS-modules.

29
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PROOF. We sketch here the main ideas of the proof, using the same techniques of
the original one [Bea96, Proof of Proposition 2.3]. By induction it is enough to prove
the assertion for m = 1, so that we need to prove that the inclusion W → H`(W)

induces an isomorphism

φ : hB
∖
(H`(V1, . . . ,Vn)⊗W)

∼=−→ hA
∖
H`(V1, . . . ,Vn,W).

The morphism is well defined on the quotients as the inclusion of hB in hLn+1 factors
through hB → hA.

Since the inclusionW → H`(W) factors through H̃`(W), we prove the proposition
in two steps.

Claim 1. The inclusionW → H̃`(W) induces an isomorphism

φ̃ : hB
∖
(H`(V1, . . . ,Vn)⊗W) −→ hA

∖ (
H`(V1, . . . ,Vn)⊗ H̃`(W)

)
.

Claim 2. The projection map

hA
∖ (
H`(V1, . . . ,Vn)⊗ H̃`(W)

)
−→ hA

∖
(H`(V1, . . . ,Vn,W))

is an isomorphism.
We give the proof of Claim 1, as for Claim 2 one can refer to [Bea96, (3.4)]. We

just remark that in the proof of Claim 2 it is used that the level ofW is bounded by `.
Since checking that φ̃ is an isomorphism can be done locally on S, there is no loss

in generality in assuming that the Ii’s are principal so that Ô ∼=
⊕

R[[ti]] and that there
are isomorphisms hLi

∼= gLi. Observe that the exact sequence of R-modules

0→ hB → hA → hA/hB → 0

splits because the quotient h− := hA/hB is isomorphic to hLn+1 /hÔn+1
which can be

identified with g⊗k R[t−1
n+1]t

−1
n+1. We then are left to prove that

H`(V1, . . . ,Vn)⊗W −→ h−
∖ (
H`(V1, . . . ,Vn)⊗ H̃`(W)

)
is an isomorphism. Observe that this statement no longer depends on the covering
X̃ → X, so once we choose isomorphisms hLi

∼= gLi, this follows from the classical
case. �

As previously announced, this proposition has important corollaries.

NOTATION. Let Xuniv
π→ Hur(Γ, ξ)g,n be the universal curve over Hur(Γ, ξ)g,n with

sections σ1, . . . , σn. For every i ∈ {1, . . . , n} we denote by Xuniv,i the open curve Xuniv \
{σ1, . . . , σi} and whenever hAi := π∗(h ⊗ OXuniv,i) acts on a module M, we denote
the quotient hAi

∖
M by MXuniv,i . In particular, for i = n we can use the notation

H`(V1, . . . ,Vn)Xuniv,n
instead of H`(V1, . . . ,Vn)Xuniv

to stress that the action takes into
account all the sections.

COROLLARY 4.1.2. For all n and m ∈N there is a natural isomorphism(Forgn+m,n
)∗

(H`(V1, . . . ,Vn))⊗
m⊗

j=1

Wj


Xuniv,n

∼= H`(V1, . . . ,Vn,W1, . . .Wm)Xuniv,n+m

of vector bundles on Hur(Γ, ξ)g,n+m. �
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In particular if we assume that theWj’s are trivial representations, we obtain the so
called propagation of vacua.

COROLLARY 4.1.3. For all n and m ∈N there is a natural isomorphism(
Forgn+m,n

)∗ (H`(V1, . . . ,Vn)Xuniv,n

)
∼= H`(V1, . . . ,Vn, 0, . . . 0)Xuniv,n+m

of vector bundles on Hur(Γ, ξ)g,n+m. �

Which leads to the following result.

COROLLARY 4.1.4. The vector bundle H`(0) defined on Hur(Γ, ξ)g,1 descends to a
vector bundle on Hur(Γ, ξ)g.

PROOF. We can construct the sequence

Hur(Γ, ξ)g,3 ////
// Hur(Γ, ξ)g,2

f1

//

f2
// Hur(Γ, ξ)g,1 // Hur(Γ, ξ)g

where the horizontal morphisms, which are faithfully flat, are given by forgetting one
of the sections. The vector bundle H`(0)Xuniv,1

on Hur(Γ, ξ)g,1 then descends from
Hur(Γ, ξ)g,1 to Hur(Γ, ξ)g because Corollary 4.1.3 provides a canonical isomorphism
φ12 between f ∗1H`(0)Xuniv,1

and f ∗2H`(0)Xuniv,1
. The compatibility of the isomorphisms φij

on Hur(Γ, ξ)g,3 holds by construction. �

REMARK 4.1.5. When we defined H`(V)X on Hur(Γ, ξ)g,1, we assumed that X \ σ

was affine. Corollary 4.1.3 allows us to remove this assumption: in fact if this is not the
case, we can add finitely many sections, say M, to which we attach the trivial represen-
tation and setH`(V)X,1 to beH`(V , 0, . . . , 0)X,M+1. The same holds forH`(V1, . . . ,Vn)X
on Hur(Γ, ξ)g,n.

4.2. Nodal degeneration and fusion rules

In this section we want to compare the sheaf of covacua H`(0)X attached to a cov-
ering of nodal curves X̃ → X, to the sheaves of the form H`(V)XN

, attached to the
normalization X̃N → XN of the covering we started with.

SETTING AND NOTATION. We will consider the following objects.

• Let (X̃
q→ X π→ Spec(k), p1, . . . , pn) ∈ Hur(Γ, ξ)g,n(Spec(k)) and assume that

X is irreducible and has only one double point p ∈ X(k).
• Let XN be the normalization of X and set qN : X̃N := X̃ ×X XN → XN. The

points of XN mapping to p are denoted p+ and p−.

REMARK 4.2.1. Observe that qN is a Γ-covering with the action of Γ induced by
the one on X̃, so that it is ramified only over R. The Lie algebra hN := h×X XN is
then isomorphic to the Lie algebra of Γ-invariants of g⊗k qN∗OX̃N

. Furthermore, the
normalization provides an isomorphism between the k-Lie algebra h|p and hN |p± .

Let πN : XN → Spec(k) be the structural morphism and consider the Lie algebras

hAN := πN∗(hN ⊗OXN\{p1,...,pn})
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and

hLN :=
n⊕

i=1

lim−→
N

π∗ lim←−
m

hN ⊗ I−N
i /Im

i

which are the analogues of hA and hL for the marked covering (X̃N → XN , {pi}).
Observe that since X and XN are isomorphic outside of p, the Lie algebras hLN and hL
are isomorphic.

As observed in the previous remark, since h|p and hN |p± are isomorphic, every rep-
resentationW of h|p, is also a representation of hN |p± . Let denote byW∗ the dual ofW
and view W ⊗kW∗ as a representation of hN |p+ ⊕ hN |p− , with hN |p+ acting on W and
hN |p− onW∗. This induces an action of hAN onW ⊗kW∗ as

α ∗ (w⊗ φ) = [X]p+w⊗ φ + w⊗ [X]p−φ

where [?]p± denotes the reduction modulo the ideal defining p±. Let bW denote the
trace morphism End(W) = W ⊗W∗ → k which is compatible with the action of h|p.
We can formulate the fusion rules controlling the nodal degeneration as follows.

PROPOSITION 4.2.2. The morphisms {bW} induce an isomorphism⊕
W∈IrRep`(h|p)

hAN

∖
(H`(V1, . . . ,Vn)⊗ (W ⊗W∗))→ hA

∖
H`(V1, . . . ,Vn)

The proof of this result is a mild generalization of the proof of [Loo13, Proposition
6.1], which in turn is a consequence of Schur’s Lemma. We give an overview of it.

PROOF. Fix an isomorphism between h|p and g so that IrRep`(h|p) is identified with
P`. Denote by Spec(A) = X \ {p1, . . . , pn} and Spec(AN) = XN \ {p1, . . . , pn} and let
Ip ⊂ A be the ideal defining p, so that the normalization gives the diagram

0 // Ip // A //

��

k //

∆
��

0

0 // Ip // AN // k⊕ k // 0

whose rows are exact. As in the classical case, we consider a similar diagram of Lie
algebras. Define hI as the tensor product Ip⊗A hA, and observe that the quotient hA/hIp
is h|p, which is then isomorphic to g. Repeating the construction on XN, we obtain the
commutative diagram of k-Lie algebras

0 // hIp
// hA //

��

g //

∆
��

0

0 // hIp
// hAN

// g⊕ g // 0.

Let consider the quotient M := hIp
∖
H`(V1, . . . ,Vn) of the hAN -moduleH`(V1, . . . ,Vn)

and observe that it is a finite dimensional representation of g⊕ g, because the quotient
hA
∖
H`(V1, . . . ,Vn) is finite dimensional and the quotient hA/hIp is one dimensional. It

is moreover a representation of g⊕ g of level less or equal to ` relative to each factors.
Since hIp acts trivially onW ⊗W∗, the maps {bW} induce the morphism⊕

W∈P`

hI
∖
H`(V1, . . . ,Vn)⊗ (W ⊗W∗)→ hI

∖
H`(V1, . . . ,Vn)
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Observe that if we consider M as a g-module via the diagonal action, and we denote
this g-representation by M∆, then g

∖
M∆ is exactly hA

∖
H`(V1, . . . ,Vn). After these

considerations, the proof of the proposition boils down to showing that if M is a finite
dimensional representation of g⊕ g of level at most `, then the morphisms {bW} induce
the isomorphism ⊕

W∈P`

g⊕ g
∖
(M⊗ (W ⊗W∗))→ g

∖
M∆.

Schur’s Lemma ensures that the set of morphisms between irreducible Lie algebra rep-
resentations is a skew field, and since without loss of generality we might assume M to
be an irreducible g⊕ g representation of the form V1⊗V2 for Vi ∈ P`, we conclude. �

Denote by hAN
∗ the Lie algebra πN∗(hN ⊗ OXN\{p1,...,pn,p+,p−}). Then Proposition

4.1.1 allows us to rewrite the previous proposition as an isomorphism⊕
W∈IrRep`(h|p)

hAN
∗
∖
H`(V1, . . . ,Vn,W ,W∗)→ hA

∖
H`(V1, . . . ,Vn)

and in particular implies the isomorphism⊕
W∈IrRep`(h|p)

H`(W ,W∗)XN
→ H`(0)X

where we see XN naturally marked by p+ and p−.

REMARK 4.2.3. We assumed, at the beginning of this section, that X is an in irre-
ducible curve with a unique nodal point p. The irreducibility conditions ensures that the
curve X \ {p1, . . . , pn} is affine and, as we have seen in in Remark 4.1.5, we can drop
this assumption in view of the Propagation of Vacua. Moreover, also the assumption
that p is the only nodal point of X is not necessary. In the case in which X has other
nodes, then it will be enough to replace XN with the partial normalization of X at the
point p.

REMARK 4.2.4. Let (X̃ → X → S, σ) ∈ Hur(Γ, ξ)g,1(S) and assume that it is possible
to normalize the family (for example assuming that the nodes of X are given by a section
ς : X → S). Then Proposition 4.2.2 still holds by replacing the index set IrRep`(h|p) with
IrRep`(ς

∗h).



5 | LOCALLY FREENESS OF THE SHEAF

OF CONFORMAL BLOCKS

In this chapter we prove that the sheaves of conformal blocks H`(V1, . . . ,Vn)Xuniv

are locally free also on the boundary of Hur(Γ, ξ)g,n. For simplicity only we will assume
n = 1.

5.1. Canonical smoothing

As previously stated, we want to prove that H`(V)Xuniv
is a locally free sheaf on

Hur(Γ, ξ)g,1. For this purpose we describe here a procedure to realise a covering of
nodal curves as the special fibre of a family of coverings which is generically smooth.
The idea is to induce a deformation of the covering X̃ → X from the canonical smooth-
ing of the base curve X provided in [Loo13]. As already noted in Remark 1.2.3, it is
essential that the branch locus R of the covering q : X̃ → X is contained in the smooth
locus of X.

Let (X̃
q0→ X

π0→ Spec(k), σ0) ∈ Hur(Γ, ξ)g,1(Spec(k)) with p ∈ X(k) the unique
nodal point of X. The goal of this section is to construct a family X̃ → X belonging to
Hur(Γ, ξ)g,1(Spec(k[[τ]])) which deforms (X̃ → X) and whose generic fibre is smooth,
i.e. it lies in Hur(Γ, ξ)g,1(Spec(k((τ)))).

5.1.1. The intuitive idea. The idea which is explained in [Loo13], is to find a
deformation X of X which replaces the formal neighbourhood k[[t+, t−]]/t+t− of the
nodal point p with the k[[τ]]-algebra k[[t+, t−, τ]]/t+t− = τ. This can be achieved
with the following geometric construction. We first normalize the curve X obtaining
the curve XN with two points p+ and p− above p. We blow up the trivial deformation
XN [[τ]] of XN at the points p+ and p− and note that the formal coordinate rings at p±
in the strict transform are of the form k[[t±, τ/t±]]. We then obtain the neighbourhood
k[[t+, t−, τ]]/t+t− = τ by identifying t+ with τ/t−. The deformation X̃ of X̃ is induced
from the one of X because the singular point p does not lie in R.

5.1.2. Construction of X̃ → X . We will realise the canonical smoothing of X̃ → X
it by constructing compatible families

(X̃ n qn→ X n πn→ Spec(k[τ]n), σn) ∈ Hur(Γ, ξ)g,1(Spec(k[τ]n))

34
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where k[τ]n := k[τ]/(τn+1) for n ∈ N0. As these are infinitesimal deformations, we
only need to change the structure sheaf. As we have previously done, we normalize X̃
and X obtaining (X̃N

q→ XN
π→ Spec(k), σ0, p+, p−) ∈ Hur(Γ, ξ)g,3(Spec(k)) . We fix

furthermore local coordinates t+ and t− at the points p+ and p−.
Let U be an open subset of X and n ∈N0. If U does not contain p we set OX n(U) :=

OX(U)[τ]/τn+1. Otherwise, if p ∈ U, we set

OX n(U) := ker
(

k[[t+, t−]][τ]
t+t− = τ, τn+1 ⊕OX n(U \ {p})

αn−βn
//

k((t+))[τ]
τn+1 ⊕ k((t−))[τ]

τn+1

)
where

αn :
k[[t+, t−]][τ]

t+t− = τ, τn+1 −→
k((t+))[τ]

τn+1 ⊕ k((t−))[τ]
τn+1

is the k[τ]n-linear morphism given by t+ 7→ (t+, (t−)−1τ) and t− 7→ ((t+)−1τ, t−), and

βn : OX n(U \ {p}) −→ k((t+))[τ]
τn+1 ⊕ k((t−))[τ]

τn+1

sends ψ ∈ OX n(U \ {p}) to (ψ+, ψ−) where ψ± is the expansion of ψ at the point p±
using the identifications

OX n(U \ {p}) = OX(U \ {p})[τ]/τn+1 = OXN (UN \ {p+, p−})[τ]/τn+1.

REMARK 5.1.1. Observe that the completion of OX n at the point p is isomorphic
to k[[t+, t−]][τ]/(t+t− = τ, τn+1) = k[[t+, t−]]/(t+t−)n+1. In fact note that once

we take the completion of OX n(U \ p) at the point p we obtain exactly
k((t+))[τ]

τn+1 ⊕
k((t−))[τ]

τn+1 , the map βn becoming the identity. The kernel of αn − βn is then identified

with k[[t+, t−]][τ]/(t+t− = τ, τn+1) as claimed.
Observe furthermore that once we take the limit for n→ ∞, then the formal neigh-

bourhood of p will be k[[t+, t−, τ]]/t+t− = τ as asserted in the subsection 5.1.1. The
map αn describes the process of glueing the formal charts around p+ and p−.

Note moreover that for all n ∈ N there are natural maps gn : X n−1 → X n induced
by the identity on topological spaces and by the projection k[τ]n → k[τ]n−1 on the
structure sheaves.

LEMMA 5.1.2. For every n ∈ N0 the family X n is a curve over Spec(k[τ]n) which
deforms X.

PROOF. We need to prove that OX n is flat and proper over Spec(k[τ]n). Once we
show that the X n is of finite type, we can use the valuative criterion to deduce that X n

is proper over k[τ]n. Observe that the kernel of the map gn∗ : OX n → OX n−1 → 0 is
τnOX. Outside p, as the deformation is trivial, this is true. On an open U containing p,
the snake lemma tells us that this is the kernel of

τn k[[t+, t−]]
t+t−

⊕ τnOX(U \ {p})
αn−βn

// τnk((t+))⊕ τnk((t−))

where αn and βn are the gluing functions defining τnOX. We can conclude that OX n is
of finite type by using induction on n and observing that X 0 = X. This moreover shows
the flatness of the family. �
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This deformation of X induces a deformation of X̃ which is, in rough terms, obtained
as the trivial deformation outside the points p1, . . . , pp lying above X̃ over p, and for
every j ∈ {1, . . . , p}, the formal neigbourhood of X̃n around pi will be isomorphic to the
formal neighbourhood of Xn around p.

To do this, let denote by pj,+ and pj,− the two points of X̃N mapping to pj. We fix
local coordinates tj,+ at pj,± so that

X̃N ×XN Spec(k[[t±]]) ∼= Spec
(
⊕p

j=1k[[tj,±]]
)

and let consider U an open subset of X̃. If U is disjoint from q−1(p) = {p1, . . . , pp}, we
set OX̃ n(U) = OX̃(U)[τ]/τn+1. Let i ∈ {1, . . . , p} and if U contains pi but not pj for all
j 6= i we set

OX̃ n(U) := ker
(

k[[ti,+, ti,−]][τ]

ti,+ti,− = τ, τn+1 ⊕OX̃ n(U \ {pi})
α̃n−β̃n

//
k((ti,+))[τ]

τn+1 ⊕ k((ti,−))[τ]

τn+1

)

where the maps α̃n and β̃n are defined as in the case of X n.

REMARK 5.1.3. As was shown for X n, also X̃ n is a curve over Spec(k[τ]n) deforming
X .

Let denote by Rn the trivial deformation of the branch locus R inside X n. The
natural map qn : X̃ n → X n which extends q0 : X̃ → X realizes X̃ n → X n as a Γ-
covering which is étale exactly outsideRn since the map qn is étale on p by construction.
Furthermore, as σ0 is disjoint from the singular locus, it follows that for every n ∈ N0

we can set σn to be the trivial deformation of σ0.
By taking the direct limit of this family of deformations we obtain the Γ-covering of

formal schemes X̃∞ → X∞ over Spf(k[[t]]). To prove that X̃∞ → X∞ is algebraizable,
i.e. that is comes from an algebraic object X̃ → X → Spec(k[[τ]]]), we can invoke
Grothendieck’s existence theorem ([Gro63, Théorème 5.4.5]) so that we are left to
prove that the family (X̃ n → X n)n is equipped with a compatible family of very ample
line bundles. This is true because given a smooth point P of X which is not in R and m
sufficiently big, we know that O(mP) is a very ample line bundle on X whose pullback
to OX̃ is also very ample. Since P lies in the smooth locus of X these line bundles extend
naturally to very ample line bundles on X n and on X̃ n, providing the wanted family of
very ample line bundles.

We refer to the covering (q : X̃ → X , σ) that we have just constructed as the canoni-
cal smoothing of (q0 : X̃ → X, σ0). Observe that the generic fibre of X̃ → X is a covering
of smooth curves over k((τ)) because, as one can deduce from Remark 5.1.1, the formal
neighbourhood of p is given by k[[t+, t−]]((τ))/t+t− = τ.

5.2. Local freeness

The aim of this section is to show that, in the setting of the previous section,H`(V)X
is a locally free k[[τ]]-module. We can depict the situation that we described in the
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previous section in the following diagram

X̃ = X̃0 //

q0

��

X̃

q

��

X̃η
oo

qη

��

X = X0 //

π0

��

X

π
��

Xη
oo

πη

��

Spec(k)

σ0

AA

0
// Spec(k[[τ]])

σ

@@

Spec(k((τ)))
η

oo

ση

DD

where the covering X̃η → Xη is a Γ-covering of smooth curves and we denote by p

the nodal point of X. Let V ∈ IrRep`(σ) so that H`(V) is a k[[τ]]-module. We use the
subscript 0 to denote the pullback along 0, i.e. the restriction to the special fibre, so that
V0 denotes the induced representation of σ0

∗h.

REMARK 5.2.1. Observe that there is a canonical injection of k[[τ]]-modulesH`(V)→
H`(V0)[[τ]] which is an isomorphism modulo τn for every n ∈ N. Moreover we have
by construction that (hA)0 is isomorphic to hA0 = hA and so (H`(V)X )0 is isomorphic
to H`(V0)X.

The main result is that H`(V)X is the trivial deformation of H`(V0)X as stated in
the following theorem.

THEOREM 5.2.2. There is an isomorphism

H`(V)X ∼= H`(V0)X[[τ]]

of k[[τ]]-modules. In particular H`(V)X is a free k[[τ]]-module.

5.2.1. Proof of Theorem 5.2.2.

NOTATION. In what follows we denote by ÔN := k[[t+]] ⊕ k[[t−]] the k-algebra
which is the coordinate ring of the disjoint union of the formal neighbourhoods at the
points p± in XN. Similarly LN := k((t+)) ⊕ k((t−)) represents the disjoint union of
the punctured formal neighbourhoods at the points p± in XN. Moreover we will write
k[[t+, t−]] in place of k[[τ, t+, t−]]

/
t+t− = τ. Recall that this is the completion of OX at

the point p.

LEMMA 5.2.3. The canonical smoothing identifies k[[t+, t−]] with the subalgebra of
LN [[τ]] consisting of elements

Ôp :=

{
∑

i,j≥0
aij

(
ti−j
+ τ j , tj−i

− τi
)
| aij ∈ k

}

via the map sending t+ to (t+, t−1
− τ) and t− to (t−1

+ τ, t−).

PROOF. Taking the limit of the definition of OX n we identify the formal neighbour-
hood of X∞ at p with

ker
(

k[[t+, t−]]⊕LN [[τ]]
α−Id−→ LN [[τ]]

)
where α(t+) = (t+, t−1

− τ) and α(t−) = (t−1
+ τ, t−). �
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In view of Proposition 4.2.2 we identify H`(V0)X[[τ]] with⊕
W∈IrRep`(h|p)

hAN

∖
(H`(V0)⊗ (W ⊗W∗)) [[τ]]

or equivalently with ⊕
W∈IrRep`(h|p)

hAN
∗
∖
H`(V0, W, W∗)[[τ]].

Recall that ĥL is a filtered Lie algebra, hence this induces a filtration on UĥL and
by consequence on F+(ĥL). Since for every W ∈ IrRep`(h|p) the k-vector space H`(W)

is a quotient of F+(ĥL), also the latter is equipped with a filtration F∗H`(W) in-
ducing the associated decomposition H`(W) =

⊕
d≤0H`(W)(d) where H`(W)(d) =

FdH`(W)
/

Fd−1H`(W).

REMARK 5.2.4. Once we choose local coordinates and an isomorphism between hL
and gL we observed that the elements of F+(ĥL) are k[(c + })−1]-linear combinations
of elements Xrt−kr ◦ · · · ◦ X1t−k1 ◦ e0 with kr ≥ · · · ≥ k1 ≥ 0 and r ≥ 0, where e0 stands
for 1 ∈ k. We can explicitly write the graded pieces of F+ĥL as

F+(ĥL)(−d) =

〈
Xrt−kr ◦ · · · ◦ X1t−k1 ◦ e0 |

r

∑
i=1

ki = d

〉
so that it is not zero only for d ≤ 0 and in particular F+(ĥL)(0) = k which shows that
H`(W)(0) = W.

The key ingredient to provide a morphism betweenH`(V)X andH`(V)X[[τ]] lies in
the construction of the element ε(W) given by the following Proposition which we can
see as a consequence of [Loo13, Lemma 6.5].

PROPOSITION 5.2.5. Let W ∈ IrRep`(h|p) and b0
W : W ⊗W∗ → k be the trace mor-

phism. Then there exists an element

ε(W) = ∑
d≥0

ε(W)d · τd ∈ (H`(W)⊗H`(W∗)) [[τ]]

satisfying the following conditions:

(a) the constant term ε(W)0 ∈ W ⊗W∗ is the dual of b0
W and for every d ∈ Z≥0 we

have ε(W)d ∈ H`(W)(−d)⊗H`(W∗)(−d);
(b) ε(W) is annihilated by the image of hk[[t+,t−]] in UĥLN [[τ]].

PROOF. We choose an isomorphism between hLN and g⊗LN, as well as an isomor-
phism between hÔp

and g⊗ Ôp. The construction of ε(W) essentially lies in showing

that the pairing b(0)W : W ⊗W∗ → k extends to a unique pairing

bW : H`(W)⊗H`(W∗)→ k

such that for all (u, v) ∈ H`(W)⊗H`(W∗) we have

(1) bW(Xtm
+u, v) + bW(u, Xt−m

− v) = 0

for all m ∈ Z and X ∈ g and that bW is identically zero when restricted to H`(W)(d)⊗
H`(W∗)(d′) if d 6= d′. This is essentially [TUY89, Claim 1 of the proof of Proposition
6.2.1] and we report here the proof for completeness.
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Since we have that H`(W) = lim−→d∈N0
F−dH`(W), it is enough to show that b0

W

extends uniquely to b(−d)
W : F−dH`(W) ⊗ F−dH`(W∗) → k satisfying the above condi-

tions. By induction hypothesis, assume that b(−j)
W is already defined for every j ≤ d, and

we show how to extend it to b(−d−1)
W . Let u ∈ F−dH`(W) and assume that Xt−m

+ u ∈
F−d−1H`(W) for some m ≥ 1. Let v ∈ F−d−1H`(W∗) and set

b(−d−1)
W (Xt−m

+ u, v) := −b(−d)
W (u, Xtm

−v)

which is well defined as Xtm
−v ∈ F−d−1+mH`(W∗). As every element of F−d−1H`(W) is

obtained as linear combinations of elements of the above type, this defines uniquely the
form b(−d−1)

W and hence bW . It follows by construction that bW is identically zero when
restricted H`(W)(−d)⊗H`(W∗)(−d′) if d 6= d′ and it is a perfect pairing when d = d′.

We define ε(W)d as the dual of b−d
W : H`(W)(−d)⊗H`(W∗)(−d)→ k.

We prove now the points of the proposition and for simplicity of notation we will
write ε instead of ε(W) throughout the rest of the proof.

(a) This is true by definition.
(b) Since bW is characterized by the property (1) we have that this implies that

(Xtm
+, 0)εm+d + (0, Xt−m

− )εd = 0

for every m ∈ Z and d ∈ N0. This means that (Xtm
+, Xt−m

− τm) annihilates ε,
which by Lemma 5.2.3, is exactly the image of g⊗k k[[t+, t−]] in UĝLN [[τ]].

�

We saw how to attach to any representation W the element ε(W): we now use
these elements to obtain the isomorphism map between H`(V)X and H`(V0)X[[τ]].
The following statement, combined with Proposition 4.2.2 implies Theorem 5.2.2.

PROPOSITION 5.2.6. The k[[τ]] linear map

E : H`(V) ⊂ H`(V0)[[τ]]→
⊕

W∈IrRep`(h|p)
H`(V0 ⊗W ⊗W∗)[[τ]]

u = ∑
i≥0

uiτ
i 7→ (u⊗ ε(W))W∈IrRep`(h|p) =

(
∑

i,d≥0
ui ⊗ ε(W)dτi+d

)
W∈IrRep`(h|p)

induces the isomorphism

EhA : H`(V)X →
⊕

W∈IrRep`(h|p)
H`(V0 ⊗W ⊗W∗)XN

[[τ]].

of k[[τ]]-modules.

PROOF. In order to prove that EhA is an isomorphism we first mod out by τ and
using the identifications observed in Remark 5.2.1 we get the map

[EhA ]τ=0 : hA
∖
H`(V0)→

⊕
W∈IrRep`(h|p)

hAN
∗
∖
H`(V0 ⊗W ⊗W∗)

which sends the class of u to (u0 ⊗ ε(W)0)W∈IrRep`(h|p). Property (a) of ε(λ) tells us that
[EhA ]τ=0 is, up to some invertible factors, the inverse of the morphism induced by the
{bW}, which we showed to be an isomorphism in Proposition 4.2.2. Since hA

∖
H`(V)

is finitely generated, Nakayama’s lemma guarantees that EhA is an isomorphism. �
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REMARK 5.2.7. The argument we used run similarly if instead of starting with
a covering of curves over Spec(k), we would have considered a family of coverings

(X̃
q→ X π→ S, σ) where the singular locus of X is given by one (or more) sections of

π and whose normalization is a covering of versal pointed smooth curves. Using these
assumptions we are able to construct the canonical smoothing X̃ → X of X̃ → X over
S[[τ]] which is moreover a versal deformation of (X̃

q→ X π→ S, σ). Once we have this
construction, the analogue of Theorem 5.2.2 follows.

COROLLARY 5.2.8. The sheaves of conformal blocksH`(V1, . . . ,Vn)Xuniv
are locally free

on Hur(Γ, ξ)g,n.

PROOF. We consider only the case n = 1. Let (X̃
q→ X → Spec(k), σ0) be a k-

point of Hur(Γ, ξ)g,1 \ Hur(Γ, ξ)g,1. We are left to show that H`(V)Xuniv
is locally free

on a neighbourhood of (X̃
q→ X → Spec(k), σ0), i.e. that for one (hence any) versal

deformation (X̃ → X → S, σ) of (X̃ → X → Spec(k), σ0), the OS-module H`(V)X
is locally free. Assume, for simplicity only, that p ∈ X(k) is the only nodal point of
X. Consider the normalization (X̃N → XN , σ0, p+, p−) of (X̃ → X, σ0) and denote by
(X̃N → XN → S, σ,P+,P−) its universal deformation. Since we can see X̃ → X as a
fibre of the covering obtained from X̃N → XN by identifying P− and P+, the previous
remark allows us to conclude. �



A | THE EQUIVALENCE BUNHP
∼= BUNPΓ,G

This appendix provides a generalization of some of the results of [BS15] from the
case in which ρ is a homomorphism Γ → G, to the case in which ρ : Γ → Aut(G) can
detect also outer automorphisms of G. Along the way we clarify an issue in [BS15,
Lemma 4.1.5] by refining the notion of local type of a (Γ, G)-bundle.

In this section we relax the assumptions on k, Γ and G as follows.

SETTING AND NOTATION. Throughout this appendix we fix the following objects.

• A finite group Γ;
• A field k whose characteristic does not divide the order of Γ;
• An algebraic group G over k.
• A group homomorphism ρ : Γ→ Aut(G).
• A (ramified) Galois Γ-covering π : Ỹ → Y of locally Noetherian schemes, i.e.

– π is a finite flat morphism;
– the group of automorphisms of Ỹ over Y is isomorphic to Γ:
– Ỹ is a generically étale Γ-torsor over Y via π.

The ramification locus of π is the subscheme of Ỹ which is the support of the sheaf
of relative differentials ΩỸ/Y. Its image in Y is denoted by R and called, by analogy
with the case of the curves, the reduced branch locus of π.

A.0.1. (Γ, G)-bundles. Given a G-bundle P on Ỹ we denote by GP the automor-
phisms group scheme IsoG(P ,P). For any other G-bundle P ′ on Ỹ, the scheme
IP (P ′) := IsoG(P ,P ′) is a GP -bundle.

The following statement is a version of [BS15, Lemma 4.1.4].

LEMMA A.0.1. Let P ′ be a G-bundle over Ỹ, then π∗IP (P ′) is a π∗GP -bundle.

PROOF. It is clear from the theory of Weil restriction (see for instance [BLR90, Sec-
tion 7.6]) that π∗IP (P ′) and π∗GP are smooth schemes over X. Since fibred prod-
uct and Weil restriction commute π∗GP still acts on π∗IP (P ′). Similarly we have that
π∗IP (P ′)×Y π∗GP ∼= π∗IP (P ′)×Y π∗IP (P ′) via the canonical map ( f , g) 7→ ( f , f g),
so we are left to prove that for every point y ∈ Y(k) there exists an étale neighbourhood
U of y such that (π∗IP (P ′))(U) 6= ∅. Since π is finite we know that π−1{y} is a finite
scheme over Spec(k) over which both P and P ′ are trivial. It follows that the map
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q : π∗I (P)→ Y is surjective. We conclude that q is smooth and surjective, so applying
[Gro67, Corollaire 17.16.3] for every y ∈ Y there exists an étale neighbourhood U of y
such that (π∗IP (P ′))(U) 6= ∅. �

DEFINITION A.0.2. A (Γ, G, ρ)-bundle or simply a (Γ, G)-bundle, on Ỹ is a G-bundle
P together with an action of Γ on its total space lifting the action of Γ on Ỹ and which
is compatible with the action of Γ on G given by ρ, i.e. for any γ ∈ Γ we require

γP (pg) = γP (p)ρ(γ)(g)

for all p ∈ P and g ∈ G.

To every (Γ, G) bundle P , we attach a group scheme HP on Y as follows. Let γP be
the automorphism of the total space of P induced by γ. Then we define the action of Γ
on GP via the map ρP : Γ→ Aut(GP ) given by

ρP (γ)(φ) := γPφγ−1
P

for all γ ∈ Γ and φ ∈ GP . The group HP is defined as (π∗(GP ))Γ, and by [Edi92,
Proposition 3.4], we know that it is a smooth group over Y.

Observe that for any (Γ, G)-bundle P ′, the scheme IP (P ′) is a (Γ,GP , ρP )-bundle
where the action of Γ is given by

(γ, φ) 7→ γPφγ−1
0

for all γ ∈ Γ and φ ∈ IP (P ′). It is natural to wonder whether (π∗IP (P ′))Γ is an
HP -bundle. Before providing the answer (Proposition A.0.6), we first give an example
showing that this is not always the case.

EXAMPLE A.0.3. Let Γ = Z/2Z = {±1} and G = S4, the symmetric group on four
elements with ρ given by ρ(−1)(α) = (34)(12)α(12)(34). Let P0 be the trivial G bundle
with ρP0 = ρ and let P be the (Γ, G)-bundle which is trivial as a G-bundle, but with Γ
acting by (−1)(α) = (12)ρ(γ)(α). Assume that y ∈ Y is a ramification point and U a
neighbourhood of y. Then we see that

(π∗P)Γ(U) = {α ∈ S4 | α = (34)α(12)(34)} = ∅

but
(π∗G)Γ(U) = {α ∈ S4 | α = (34)(12)α(12)(34)} 6= ∅.

which then tells us that (π∗P)Γ cannot be locally isomorphic to (π∗G)Γ, hence cannot
be a (π∗G)Γ-bundle.

A.0.2. Local type of a (Γ, G)-bundle. The failure is essentially due to the fact that
the required compatibility of the actions of Γ and G on P does not imply that P is
locally isomorphic to G as a (Γ, G)-bundle. This shows that [BS15, Lemma 4.1.5] does
not hold in general. To correct this problem we will refine the concept of local type.

DEFINITION A.0.4. Let P1 and P2 be two (Γ, G)-bundles on Ỹ. Then they have the
same local type at y ∈ Y(k) if one of the equivalent conditions holds

(1) IsoG
(
P1 × π−1{y},P2 × π−1{y}

)Γ is not empty;

(2) IsoG
(
P1 × (π−1{y})red,P2 × (π−1{y})red

)Γ is not empty.

We say that P1 and P2 have the same local type, and we write P1 ∼ P2, if they have the
same local type at any geometric point of Y.
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We need to prove that the two conditions are equivalent, so that the notion of local
type is well defined.

PROOF. We only have to prove that (2) implies (1). Let π−1{y} = Spec(A) where
A is a finite Artin k-algebra. Let m be its maximal nilpotent ideal, so that

(
π−1{y}

)
red =

Spec(A/m). Let Spec(B) = IsoG(P1,P2) and by assumption there exists ϕ0 : B →
A/m which is Γ-invariant and makes the diagram commute:

B
ϕ0

ww

A/m Aoo

OO

The aim is to lift ϕ0 to a Γ-equivariant morphism B→ A. We construct this lift by induc-
tion, showing first how to find a Γ-equivariant lift ϕ1 : B → A/m2 and then repeating
this procedure finitely many times we obtain a Γ-invariant map ϕn : B→ A/mn = A.

We reduce in this way to consider only the case m2 = 0. Since B is smooth over A
we know that ϕ0 admits a lift ϕ : B → A. For any γ ∈ Γ the element γ(ϕ) is another
lift of ϕ1, so the association γ 7→ ϕ− γ(ϕ) defines a map h : Γ → DerA(B,m). Since
h satisfies the cocyle condition, we have that h ∈ H1(Γ, DerA(B,m)), which is zero
because the characteristic of k does not divide the order of Γ. This means that there
exists a derivation ∂ ∈ DerA(B,m) such that h(γ) = γ(∂) − ∂ for every σ ∈ Γ. This
implies that the lift ϕ1 := ϕ + ∂ is a Γ-invariant lift of ϕ0 and concludes the proof. �

LEMMA A.0.5. Let P1 and P2 be two (Γ, G)-bundles on Ỹ. Then P1 and P2 have the
same local type if and only if they have the same local type at any geometric point of R.

PROOF. It is sufficient to show that any two (Γ, G) bundles have the same local
type on Y \ R. Thus it is sufficient to prove that for every (Γ, G)-bundle P and for
any open U ⊆ Y disjoint from R, there exists an étale covering V of U such that
(π∗IsoG(G,P))Γ (V) 6= ∅. We can moreover assume that P is the trivial G-bundle.

As π is étale on Y \ R we can chose V → U such that π−1(V) = äγ∈Γ V, where
the action of Γ permutes the points on the different components. We need to show that
there always exists an element

α ∈ IsoG

(
ä
γ∈Γ

G×V, ä
γ∈Γ

G×V

)

which is Γ-equivariant, where the action on γ on the source is given by ρ(γ) and on the
target by γP . Giving α is equivalent to give maps αγ ∈ IsoG (G×V, G×V) = G(V)

for all γ ∈ Γ, and α is Γ-invariant when αγσ · (ρ(γ))(g) = γ(ασ · g) for all γ, σ ∈ Γ. The
map α defined by αγ := γP (1) does the job. �

PROPOSITION A.0.6. Let P be a (Γ, G)-bundle over Ỹ. Then the sheaf (π∗IP (P ′))Γ is
an HP -bundle if and only if P ′ has the same local type as P .

PROOF. We have already proved in Lemma A.0.1 that π∗I (P) is a π∗GP -bundle,
so that we have the isomorphism

α : π∗I (P)×Y π∗GP ∼= π∗IP (P ′) (P)×Y π∗IP (P ′) (P)
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induced from IP (P ′) (P)×Ỹ GP ∼= IP (P ′) (P)×Ỹ IP (P ′) (P). This is Γ-equivariant,
hence it induces an isomorphism

αΓ :
(
π∗IP (P ′)

)Γ ×Y HP ∼=
(
π∗IP (P ′)

)Γ ×Y
(
π∗IP (P ′)

)Γ .

In order to finish we need to check that (π∗IP (P ′))Γ is locally non trivial if and
only if P ′ has the same local type as P . Suppose that for every point y ∈ Y there
exists an étale neighbourhood f : (u, U) → (y, Y) of y such that there exists φ ∈
(π∗IP (P ′))Γ (U). This implies in particualr that the composition φu is an element
of (π∗IP (P ′))Γ (y) which means that P and P ′ have the same local type.

Conversely, assume that P ′ and P have the same local type. By definition this
means that π∗I (P)Γ (y) 6= ∅ for every geometric point y. It follows that the map
q : (π∗I (P))Γ → Y is surjective on geometric points and since it is smooth, then q
it is surjective. Invoking [Gro67, Corollaire 17.16.3] we can then conclude that for
every y ∈ Y, the map q admits a section on an étale neighbourhood U of y, and so
(π∗IP (P ′))Γ (U) 6= ∅. �

A.0.3. The equivalence BunP(Γ,G)
∼= BunHP . Let BunP(Γ,G) be the stack over Y parametriz-

ing (Γ, G)-bundles on Ỹ which have the same local type as P and let BunHP be the stack
parametrizing HP -bundles over Y. The above proposition just showed that the map

π∗IP (−)Γ : BunP(Γ,G) → BunHP

is well defined. The following theorem generalizes [BS15, Theorem 4.1.6].

THEOREM A.0.7. The map π∗IP (−)Γ : BunP(Γ,G) → BunHP is an equivalence of stacks.

PROOF. As in [BS15, Theorem 4.1.6], we construct the inverse to π∗IP (−)Γ as

π∗(−)×π∗HP P : BunHP → BunP(Γ,G)

where π∗HP acts on P via the map π∗HP → GP , provided by adjunction from the
inclusion HP → π∗GP .

To simplify notation we will give our definitions for HP -bundles over Y instead of
families of bundles.

First we show that for any HP -bundle F , the scheme FP := π∗(F ) ×HP P is a
(Γ, G)-bundle. Observe that it has a natural right action of G and a left action of Γ
induced by the ones on P . Let γ ∈ Γ and g ∈ G and consider ( f , p) ∈ FP . The
equalities

γ(( f , p)g)) = γ( f , pg) = ( f , γ0(pg)) = ( f , γ0(p)ρ(γ)(g)) = (γ( f , p)) ρ(γ)(g)

tell us that FP is a (Γ, G)-bundle on Ỹ. We check that FP has the same local type as P .
Let y be a geometric point of Y, then then the isomorphism

FP ×Ỹ π−1{y} =
(

π∗F ×Ỹ π−1{y}
)
×π∗HP×π−1{y}

(
P ×Ỹ π−1{y}

)
=

= π∗ (F ×T {y})×π∗(HP×T{y})
(
P ×Ỹ π−1{y}

)
∼=

∼= π∗ (HP ×T {y})×π∗(HP×T{y})
(
P ×Ỹ π−1{y}

)
=

= P ×Ỹ π−1{y}
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is Γ-invariant because it is induced by the isomorphism between the sheaves F|y and
H`(V)P |y on which Γ acts trivially. It follows that FP ∼ P .

We now show that this construction provides the inverse of the map π∗IP (−)Γ.
The assignment f 7→ [φ f : q 7→ ( f , p)] defines a morphism from π∗F to IP (FP ). By
pushing it down to Y and taking Γ invariants we obtain a map

F → π∗IP (FP )Γ = π∗IP
(

π∗F ×π∗HP P
)Γ

.

Since F is locally trivial, this map is HP -equivariant, hence it is an isomorphism.
Conversely, take a (Γ, G)-bundle P ′ with the same local type as P . Applying first

(π∗IP (−))Γ and then π∗(−)×π∗HP P to P ′ we obtain

π∗
(

π∗(IP (P ′))Γ
)
×π∗HP P .

The inclusion (π∗(IP (P ′))Γ ⊆ π∗(IP (P ′)) induces by adjunction the map of π∗HP -
bundles

π∗
(

π∗(IP (P ′))Γ
)
→ IP (P ′), f 7→ α f

which extends to

α : π∗
(

π∗(IP (P ′))Γ
)
×π∗HP P → IP (P ′)×π∗HP P , ( f , p) 7→ (α f , p).

The map β : IP (P ′)×π∗HP P → P given by evaluation, β(φ, p) = φ(p) allows us to
obtain the morphism

βα : π∗
(

π∗(IP (P ′))Γ
)
×π∗HP P → P ′.

which we are left to show to be equivariant with respect to the actions of Γ and G.
Since both α and β are G-equivariant, also their composition is. The Γ-invariance trans-
lates in showing that α f (γP (p)) and γP ′(α f (p)) coincide, which holds because α f is
Γ-equivariant. �
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