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ERK and Akt exhibit distinct signaling
responses following stimulation by pro-
angiogenic factors
Min Song1 and Stacey D. Finley1,2,3*

Abstract

Background: Angiogenesis plays an important role in the survival of tissues, as blood vessels provide oxygen and
nutrients required by the resident cells. Thus, targeting angiogenesis is a prominent strategy in many different
settings, including both tissue engineering and cancer treatment. However, not all of the approaches that modulate
angiogenesis lead to successful outcomes. Angiogenesis-based therapies primarily target pro-angiogenic factors
such as vascular endothelial growth factor-A (VEGF) or fibroblast growth factor (FGF) in isolation, and there is a
limited understanding of how these promoters combine together to stimulate angiogenesis. Targeting one
pathway could be insufficient, as alternative pathways may compensate, diminishing the overall effect of the
treatment strategy.

Methods: To gain mechanistic insight and identify novel therapeutic strategies, we have developed a detailed
mathematical model to quantitatively characterize the crosstalk of FGF and VEGF intracellular signaling. The model
focuses on FGF- and VEGF-induced mitogen-activated protein kinase (MAPK) signaling to promote cell proliferation
and the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway, which promotes cell survival and
migration. We fit the model to published experimental datasets that measure phosphorylated extracellular
regulated kinase (pERK) and Akt (pAkt) upon FGF or VEGF stimulation. We validate the model with separate sets of
data.

Results: We apply the trained and validated mathematical model to characterize the dynamics of pERK and pAkt in
response to the mono- and co-stimulation by FGF and VEGF. The model predicts that for certain ranges of ligand
concentrations, the maximum pERK level is more responsive to changes in ligand concentration compared to the
maximum pAkt level. Also, the combination of FGF and VEGF indicates a greater effect in increasing the maximum
pERK compared to the summation of individual effects, which is not seen for maximum pAkt levels. In addition, our
model identifies the influential species and kinetic parameters that specifically modulate the pERK and pAkt
responses, which represent potential targets for angiogenesis-based therapies.
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Conclusions: Overall, the model predicts the combination effects of FGF and VEGF stimulation on ERK and Akt
quantitatively and provides a framework to mechanistically explain experimental results and guide experimental
design. Thus, this model can be utilized to study the effects of pro- and anti-angiogenic therapies that particularly
target ERK and/or Akt activation upon stimulation with FGF and VEGF.
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Background
Angiogenesis is the formation of new blood capillaries
from pre-existing blood vessels. The essential role of
blood vessels in delivering nutrients to tissues makes
angiogenesis important in many different settings, in-
cluding both physiological and pathological conditions.
Physiologically, angiogenesis is involved in the growth of
normal blood vessels during development such as pla-
cental vascularization during pregnancy [1, 2] and the
wound healing process [3, 4]. Pathological angiogenesis
is crucial in many diseases, including cancer [5]. Thus,
targeting angiogenesis is a prominent strategy in many
contexts, for example, in both tissue engineering and
cancer treatment. In the context of tissue engineering,
researchers have sought to create artificial tissues to sub-
stitute damaged tissues in response to a great shortage
of donors for transplant surgery. Implementing strategies
that promote the formation of adequate vasculature is
critical for the long-term viability of engineered tissue
constructs. Therefore, stimulating new blood vessel for-
mation is an important strategy for tissue engineering
[6]. On the other hand, inhibiting angiogenesis is a strat-
egy for cancer treatment, as the formation of new blood
vessels is important for cancer growth and metastasis.
Therefore, understanding the angiogenesis process is
very beneficial to current strategies that target vessel
formation.
Many different pro-angiogenic growth factors, such as

fibroblast growth factor (FGF), vascular endothelial
growth factor (VEGF), and platelet-derived growth factor
(PDGF), mediate angiogenesis [7, 8]. These factors pro-
mote different cellular processes involving endothelial
cells leading to new blood vessel formation, including
proliferation, migration, survival, and vessel maturation
[9, 10]. Strategies to promote or inhibit angiogenesis
focus on modulating the effects of the factors that pro-
mote these cellular-level processes.
Unfortunately, not all approaches to promote or in-

hibit angiogenesis lead to successful outcomes. For ex-
ample, clinical trials have shown no effective
improvement in angiogenesis upon stimulation by FGF
[11] or VEGF [12]. Also, bevacizumab, an anti-
angiogenic agent designed to sequester VEGF extracellu-
larly, inhibiting VEGF-mediated signaling by preventing
VEGF from binding to its receptor [13, 14], has limited

effects in certain cancer types, and it is no longer ap-
proved for the treatment of metastatic breast cancer due
to disappointing results in patients [15]. Thus, there is a
need to better understand the molecular interactions
and signaling required for new blood vessel formation,
in order to establish more effective therapeutic
strategies.
Given the complex set of biochemical reactions com-

prising angiogenesis signaling networks, it is essential to
apply computational modeling to better understand the
dynamics of these networks. Computational modeling
serves as a powerful tool to investigate molecular re-
sponses mechanistically and to guide experimental de-
sign. Indeed, many models have been developed to
explore the angiogenic response mediated by growth fac-
tors. Models focused on the extracellular-level interac-
tions [16–19] enhance our understanding of the
distribution of angiogenic factors, which affects down-
stream angiogenic signaling. These models can be used
to study strategies that regulate the distribution of an-
giogenic factors in tumor tissue. For example, Li and
Finley constructed a compartmental whole-body model
to study the effect of anti-angiogenic therapies targeting
VEGF and TSP1 signaling in a simulated cancer patient
cohort [18]. Also, models that study intracellular signal-
ing [20, 21] can help identify potential targets and ex-
plore their efficacy for pro- or anti-angiogenic therapies.
Modulating angiogenesis signaling networks can in-

volve targeting multiple angiogenic factors. There are
few models that simulate the effects of more than one
factor on intracellular signaling reactions at a detailed
level. However, this insight is needed to better under-
stand the effect of the angiogenic factors, mechanistically
study experimental data, and guide new experiments.
Moreover, in the case of inhibiting angiogenesis, tumors
often evade the effects of drugs that target a single factor
by making use of alternate compensatory pathways to
activate signaling species needed for proliferation and
migration. For instance, FGFR activation may play a role
in the resistance mechanism of anti-angiogenic drugs,
especially anti-VEGF treatment [22, 23]. Additionally,
experiments show high levels of FGFR1 in tumors that
continue to progress, even during anti-VEGF therapy
[24]. FGF and VEGF have been shown to be particularly
important in the early stages of angiogenesis, and we are
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interested in signaling crosstalk between these factors re-
quired to initiate vessel growth. Thus, we aim to quanti-
tatively investigate the combination effects of FGF and
VEGF on activating signaling in endothelial cells and
identify potential intracellular targets by building a
molecular-detailed computational model that incorpo-
rates the crosstalk between these pathways.
Specifically, in our model, FGF and VEGF bind to their

receptors and initiate signaling through the mitogen-
activated protein kinase (MAPK) and phos-
phatidylinositol 3-kinase/protein kinase B (PI3K/Akt)
pathways to phosphorylate ERK and Akt, respectively.
Previously, we studied the response of phosphorylated
ERK (pERK) upon stimulation by FGF and VEGF [25],
using mathematical modeling to gain insight into prolif-
eration signaling, one aspect of the early stage of angio-
genesis. However, angiogenesis involves not only
proliferation, but also survival and migration of the
endothelial cells. To get a more comprehensive under-
standing of this process, we expand the model to now
incorporate the PI3K/Akt pathway, which has been
shown to play an important role in cell survival [26–30]
and migration [30–32]. Thus, in this study we examine
the responses of pERK and phosphorylated Akt (pAkt)
following mono- and co-stimulation by FGF and VEGF
using mathematical modeling. The model predicts that
the maximum pERK level is more responsive to chan-
ging the ligand concentration compared to the max-
imum pAkt level for certain concentration ranges. Also,
co-stimulation with FGF and VEGF indicates a greater
effect in increasing the maximum pERK compared to
the summation of individual effects, which is not seen
for maximum pAkt levels. Using this model, we also
identified the influential species and kinetic parameters
that specifically regulate the pERK and/or pAkt re-
sponses, indicating potential targets for pro- or anti-
angiogenic therapies. The model predictions provide
mechanistic insight into FGF and VEGF interactions in
angiogenesis signaling. More broadly, this model pro-
vides a framework to study the efficacy of angiogenesis-
based therapies.

Methods
Model construction
We constructed a molecular-detailed model that de-
scribes the intracellular network of FGF- and VEGF-
induced ERK and Akt phosphorylation in endothelial
cells. The model significantly expands on previous
modeling work studying ERK [25] and Akt [21]. In our
model, FGF binding to FGF receptor 1 (FGFR1) and
heparan sulfate glycosaminoglycan (HSGAG) activates
FRS2 and then initiates PI3K/Akt pathway, and VEGF
binding to its receptor, VEGFR2, phosphorylates VEGFR2
and activates PI3K directly. In addition, activated FRS2

and Raf trigger MAPK pathway upon stimulation by FGF
and VEGF, respectively.
The molecular interactions involved in the network

are illustrated in Fig. 1. This network is implemented as
an ordinary differential equation (ODE) model using
MATLAB. The main model includes 97 reactions, 99
species, and 100 parameters (see Supplemental file S3).
The reactions, initial conditions and parameter values
are listed in Tables S1-S3. All reactions are assumed to
follow the law of mass action. Receptor internalization,
recycling, and degradation are considered in the model,
as these processes occur on a relatively fast timescale.
However, because the simulated time is within 2 hours,
we do not consider the degradation of the ligands or sig-
naling species.
We note that the concentrations of extracellular li-

gands and intracellular species are considered with dif-
ferent relative volumes. Specifically, the concentrations
of extracellular ligands are expressed relative to the vol-
ume of the cell culture media, while the concentrations
of intracellular species are usually considered in a vol-
ume of a cell. In this study we focused on endothelial
cells, which has been reported to have a mean cell vol-
ume of 1009 ± 180 μ m3 (1.01 ± 0.18 pL) [33]. Therefore,
we used 1 pL cell volume to convert concentrations of
intracellular species from molecules/cell to nM. This
same conversion factor has been used in other computa-
tional work to study endothelial cell signaling responses
[21, 34]. Details regarding interconversion between these
units are provided in File S1.

Sensitivity analysis
Before fitting the model to experimental data, we first
performed a sensitivity analysis to identify the parame-
ters and initial concentrations that significantly influence
the model outputs for model training, using the ex-
tended Fourier Amplitude Sensitivity Test (eFAST) [35]
method. Since the parameters and initial values for ERK
activation were fit to experimental data in our previous
model [25], we used the best fit values and held them
constant during the sensitivity analysis. All remaining
model parameters and initial values were varied simul-
taneously within two orders of magnitude above and
below the baseline values, where the baseline values were
taken from published literature [21]. In this way, the ef-
fects of multiple model inputs (kinetic parameters or ini-
tial conditions) on the pERK and pAkt concentrations
were computed (the total sensitivity indices, “Sti”). The
Sti values can range from 0 to 1, where a higher Sti
index indicates the input is more influential to the out-
put. Based on the experimental data that were used for
model training, we calculated the Sti values using eFAST
for all the same concentrations and time points as what
was used in the experiments. The highest Sti value
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(Stimax) across all of the concentrations and time points
was selected to represent the sensitivity index for each
variable.
We also performed eFAST for the trained and vali-

dated model to identify potential targets for pro- and
anti-angiogenic strategies. All parameters and initial
concentrations were varied simultaneously within two
orders of magnitude above and below the baseline
values. In this case, the baseline values for the fitted
variables were the median values estimated from
model fitting. We calculated the Sti values to quantify
how all the variables affected pERK and pAkt. Based
on the behaviors of maximum pERK and pAkt that
reach a plateau as the FGF and/or VEGF concentra-
tion increases, we selected five representative concen-
trations to capture the low (0.01 nM and 0.05 nM),
intermediate (0.1 nM), and high (0.5 nM and 1 nM)
levels of responses. We calculated the Sti values using
eFAST for these five concentrations of FGF and
VEGF stimulation at 15 time points ranging from
zero to 120 min. Again, the Stimax across all the con-
centrations and time points were compared for all the
variables.

Data extraction
Data from published experimental studies [36–41] were
used for parameter fitting and model validation. The
Western blot images were analyzed using ImageJ. Ex-
perimental data from plots was extracted using the gra-
bit function in MATLAB.

Model fitting and validation
Nine influential variables with Stimax values greater than
0.8 were identified by performing eFAST (Table S4).
The value of 0.8 was chosen as the cutoff to balance the
fitting results and the computational expense. However,
this included two correlated parameters, the kinetic rates k_
pFRS2PI3K and kd_pFRS2PI3K, which are the forward and
reverse rates, respectively, of the reaction pFRS2 + PI3K ↔
pFRS2:pPI3K. Thus, we held k_pFRS2PI3K constant and fit-
ted the rest of the influential variables (Table S4).
Therefore, a total of eight variables (four initial condi-

tions and four kinetic parameters) were estimated by fit-
ting the model to experimental data using Particle
Swarm Optimization (PSO) [42]. PSO starts with a
population of initial particles (parameter sets). As the
particles move around (i.e., as the algorithm explores the
parameter space), an objective function is evaluated at
each particle location. Particles communicate with one
another to determine which has the lowest objective
function value. The objective function for each param-
eter set was used to identify optimal parameter values.
Specifically, we used PSO to minimize the weighted sum
of squared residuals (WSSR):

WSSR θð Þ ¼ min
Xn

i¼1

Vpred;i θð Þ−V exp;i

V exp;i

� �2

where Vexp,i is the ith experimental measurement, Vpred,i

is the ith predicted value at the corresponding time point,
and n is the total number of experimental data points. The
minimization is subject to θ, the set of upper and lower

Fig. 1 Schematic of FGF and VEGF signaling network. Signaling is induced by growth factors binding to their receptors, culminating with
phosphorylation of ERK and Akt, through the MAPK and PI3K/Akt cascades, respectively
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bounds on each of the fitted parameters. The bounds were
set to be two orders of magnitude above and below the
baseline parameter values, which were taken from literature.
The model was fitted using four datasets as shown in

Fig. 2, represented by circles. We note that the datasets
shown in Fig. 2c and d were also used for fitting pERK
levels in our previous work [25]. Here, we wanted to en-
sure that the model can still match this data, even upon
expanding the model to include the PI3K/Akt pathway.
Model simulations were compared to experimental

measurements. Specifically, the relative change of the re-
sponses was calculated as following:

relative change tð Þ ¼ response tð Þ−response tref
� �

response tref
� �

where response(t) is the level of pERK, pAkt, or phos-
phorylated VEGFR2 (pR2) at time t, and response(tref) is
the response (pERK, pAkt, or pR2) at a reference time
point tref. Here, the pERK and pAkt in the model simula-
tion include all free and bound forms of singly- and
doubly- phosphorylated ERK and Akt, respectively.
We note that the FGF-induced pERK response re-

ported by Kanodia et al. was measured using the non-
small cell lung cancer cell line NCI-H1730, while the
rest of experimental measurements mentioned above
were obtained using human umbilical vein endothelial
cells (HUVECs). As in previous work [25], we assumed
the FGFR1 signaling kinetics for NCI-H1730 are the
same as in HUVECs, as FGFR1 and HSGAG levels are
fairly consistent for various cell types [36, 43–45].
We first fitted the model 40 times to experimental

data. However, we noticed that for the parameter sets
with the lowest error, the fitted values for the k_

Fig. 2 Model comparison to training data for FGF or VEGF stimulation. a Relative change of pAkt for 100 ng/ml (4.35 nM) FGF stimulation
compared with the reference time point (10 min). b Relative change of Akt phosphorylation upon stimulation with 50 ng/ml (1.11 nM) VEGF
compared with reference time point (60 min). c Relative change of ERK phosphorylation following stimulation with 50 ng/ml (1.11 nM) VEGF
compared to the pERK level at a reference time point (30 min). d Normalized pERK dynamics in response to FGF concentrations ranging from
0.16 to 500 ng/ml (0.007–21.74 nM), where pERK level was normalized by the maximum pERK stimulated by FGF across all six concentrations in 2
hours. Circles in Panels A-C are experimental data from HUVECs, and circles in Panel D are experimental data from the NCI-H1730 cell line. Curves
are the mean model predictions of the 15 best fits. Shaded regions show standard deviation of the fits
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pFRS2fPIP3 parameter were all at the upper bound. To
exclude the possibility of arbitrary bounds limiting the
parameter searching space, we took this upper bound
(20 s− 1) as the baseline value and expanded the bounds
for this parameter to be 0.2–2000 s− 1. The targeted vari-
ables were estimated another 40 times with the new
bounds. With this second round of fitting, none of the
parameters were estimated to be at one of the bounds
(Table S5).
After model training, we validated the model with

three datasets not used in the fitting. We first predicted
the VEGF-induced pR2 relative change upon stimulation
with 80 ng/ml (1.78 nM) VEGF [39]. We also simulated
the change of pAkt upon stimulation with 10 ng/ml
(0.43 nM) FGF- [40] or 20 ng/ml (0.44 nM) VEGF-
induced [41], respectively.
For all three datasets, we simulated the experimental

conditions without any additional model fitting and
compared to the experimental measurements. A total of
15 parameter sets with the smallest errors were taken to
be the “best” sets based on the model fitting and valid-
ation (Figure S2 and Table S5) and were used for all
model simulations.

Monte Carlo simulations
To study the robustness of the system, we ran the fitted
model 1000 times by generating 1000 values for all pa-
rameters and non-zero initial concentrations, sampling
from a normal distribution. For initial concentrations
and parameters that were estimated by fitting to the ex-
perimental data, the mean values (μ) were the median of
the fitted values, and we used the standard deviation (σ)
calculated from the fitted parameter sets. For all other
model variable values, we set μ to be the baseline values
and calculated σ to capture 99.7% of the possible values
given the range of μ ± 50%μ (i.e., μ ± 3σ). It is worth not-
ing that with this sampling, it is possible to get negative
values, though this is unlikely to occur. However, if any
negative values were selected, we resampled until all the
sampled variables are positive.

Signaling responses
We investigated the ERK and Akt phosphorylation re-
sponses upon stimulation by FGF or VEGF alone or in
combination.

a. Maximum pERK and pAkt. In our model
simulations, for simplification, representative values
were used as indicators for the magnitude of pERK
or pAkt responses, specifically the maximum values.
We calculated the maximum ERK and Akt
phosphorylation levels induced by the stimulation
by FGF, VEGF, or their combination.

b. Ratio, R. To compare the combination effects to the
effects of FGF and VEGF individually, we introduce
the ratio below:

R responseð Þ ¼ max response FGF and VEGFð Þ
max response FGFð Þ þ max response VEGFð Þ

When R is greater than one, it indicates that the com-
bination effect in inducing the maximum response is
greater than the summation of individual effects; when R
is equal to one, it implies that the combination effect is
additive; when R is less than one, it means that the com-
bination of FGF and VEGF effect does not surpass the
summation of individual effects and implies a competi-
tive effect.

c. Fold change, F. To explore the efficiency of varying
the identified influential variables, we define F as
the predicted maximum pERK and pAkt levels
when the parameters in Table 2 were varied by 0.1-
or 10-fold individually compared to the baseline
values. When F is greater than one, varying the par-
ameter enhances the response; when F is equal to
one, varying the parameter has no effect on the re-
sponse; when F is less than one, it indicates that
varying the parameter inhibits the response.

Results
The fitted and validated molecular-detailed mathematical
model captures the major characteristics of FGF- and
VEGF-induced ERK and Akt phosphorylation dynamics
We developed an intracellular signaling model of the
crosstalk between two pro-angiogenic factors, FGF and
VEGF. The signaling is initiated by FGF binding to
FGFR1 and HSGAGs or VEGF binding to VEGF
receptor 2 (VEGFR2), both promoting downstream sig-
naling (Fig. 1). The model focuses on FGF- and VEGF-
induced signaling through the MAPK and PI3K/Akt
pathways, leading to activation of ERK and Akt, respect-
ively. We consider that activated ERK and Akt include
both the singly and doubly phosphorylated forms of each
species (i.e., pERK and ppERK, as well as pAkt and
ppAkt). For simplicity, we collectively refer to these
species as phosphorylated ERK and Akt, pERK and pAkt,
respectively. The model reactions, initial conditions,
and parameter values are given in Supplementary Tables
S1 to S3.
The parameters and initial concentrations involved in

FGF- and VEGF-initiated MAPK signaling are taken
from the “best” fit from our previous model [25]. As a
starting point, the newly introduced parameters and ini-
tial concentrations involved in the PI3K/Akt pathway
are acquired from literature [21]. The influential model
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parameters and initial conditions were estimated by fit-
ting the model to experimental data, as described below.
For model training, we aimed to first identify the

model variables (kinetic parameters and initial concen-
trations) that significantly influence the model outputs,
phosphorylated ERK and Akt. To do so, we performed
the eFAST sensitivity analysis [35] (see Methods for
more details) and analyzed the total sensitivity indices
(Sti) for the species’ concentrations and kinetic rates that
are involved in the PI3K/Akt pathway. The highest Sti
values (Stimax) across all of the concentrations and time
points for the 32 newly introduced variables were com-
pared, and nine of them (Table S4) were identified as in-
fluential to pERK and/or pAkt induced upon stimulation
by FGF and VEGF. Of these, eight were not correlated
(denoted by red text in Table S4), and we estimated their
values by fitting the model to experimental measure-
ments [36–38] using PSO [42] (see Methods for more
details).
The fitted model shows a good agreement with experi-

mental results (Fig. 2). It quantitatively captures the
FGF- and VEGF-induced pAkt dynamics from experi-
mental observations [37, 38] (Fig. 2a-b). In addition, this
expanded model retains the ability to reproduce the
measured pERK levels promoted by VEGF or FGF
stimulation (Fig. 2c-d), including the biphasic pERK dose
response following stimulation with FGF (Figure S1)
reported by Kanodia et al. [36], which our previous
model also reproduced. The weighted errors for 15 best
fits are all approximately 20.7 (Table S5). Also, the esti-
mated values of the fitted variables show good
consistency (Figure S2).
In addition to matching data used for fitting, the

model is consistent with independent experimental ob-
servations. To validate the model, the predictions were

compared to three independent sets of experimental
data (Fig. 3). The model-predicted pAkt dynamics with
10 ng/ml (0.43 nM) FGF- or 20 ng/ml (0.44 nM) VEGF-
induced pAkt agree with additional experimental data
from Pisanti et al., 2011 [40] and Schneeweis et al., 2010
[41], respectively (Fig. 3a-b). In addition, model predic-
tions match the levels of VEGFR2 phosphorylation fol-
lowing stimulation with 80 ng/ml (1.78 nM) VEGF
extracted from a separate set of data from Chabot et al.,
2009 [39] (Fig. 3c).
We performed Monte Carlo simulations (see

Methods for more details) to investigate the predicted
pERK and pAkt levels given variability in the initial
conditions and parameters. The model predictions
with parameters values randomly varied within the
range of the estimated values can still capture pERK,
pAkt, and pR2 dynamics stimulated by FGF and
VEGF (Figures S3 and S4). These Monte Carlo simu-
lations suggest that the overall dynamics of the model
outputs, pERK and pAkt, are relatively robust to vari-
ability or uncertainty in initial species’ concentrations
and parameters in the signaling network.

FGF produces greater maximum pAkt and pERK than
VEGF at equimolar concentrations
We first explored the individual effects of FGF and
VEGF on pERK and pAkt using the trained and vali-
dated model. The dynamics of pERK and pAkt stimu-
lated by 0.5 nM FGF and 0.5 nM VEGF are shown in
Fig. 4a. The model predicts transient activation of
ERK and Akt following stimulation by FGF or VEGF.
The species’ concentrations are predicted to peak
within 30 min and return to basal level after 60 min,
as seen in experimental data used for model fitting
and validation. These predicted time courses show

Fig. 3 Model comparison to validation data. a Relative change of pAkt upon stimulation with 10 ng/ml (0.43 nM) FGF compared with reference
time point (30 min). b Relative change of Akt phosphorylation upon stimulation with 20 ng/ml (0.44 nM) VEGF compared with reference time
point (45 min). c Relative change of VEGFR2 phosphorylation upon stimulation with 80 ng/ml (1.78 nM) VEGF using the reference time point of 7
min. Circles are experimental data from HUVECs. Curves are the mean model predictions of the 15 best fits from the model training. Shaded
regions show standard deviation of the fits
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that 0.5 nM FGF stimulation leads to higher max-
imum levels of pERK and pAkt, compared to 0.5 nM
VEGF stimulation.
We also simulated the pERK and pAkt dynamics for a

range of concentrations of FGF or VEGF. Here, we use
the maximum pERK and pAkt levels within the two
hours simulated by the model as indicators for pERK
and pAkt responses. Maximum pAkt (green) and pERK
(purple) levels increase with the increase of FGF or
VEGF concentrations (Fig. 4b). The model predicts that
the average levels of the maximum pAkt and pERK
across the 15 best fits, given 0.5 nM FGF stimulation, are
1.8 × 103 nM and 1.0 × 103 nM, respectively. In compari-
son, 0.5 nM VEGF induces an average maximum pAkt
and pERK of 6.3 × 102 nM and 5.2 × 10− 1 nM,
respectively. Thus, 0.5 nM FGF produces averaged
maximum Akt and ERK phosphorylation levels that are
3-fold and nearly 2000-fold higher than that induced by
0.5 nM VEGF, respectively.
We can use the detailed model to explain these results.

In our previous work [25], we described that the main

reasons that FGF induces a greater maximum pERK re-
sponse compared to VEGF are the relatively high level
of FGFR density compared to VEGFR2 (33.2 versus 1.7
nM; 20,000 versus 1000 molecules/cell, respectively) and
lower internalization and degradation rates for FGFR
compared to the corresponding VEGFR2 parameters.
These differences also make FGF-induced pAkt higher
than VEGF-induced pAkt. Indeed, the model predicts
that increasing VEGFR2 level by 10-fold can increase the
0.5 nM VEGF-induced maximum pAkt to approximately
the same maximum pAkt level induced by 0.5 nM FGF
(Figure S5A). In addition, decreasing VEGFR2 internal-
ization and degradation rates to be the same level as the
corresponding FGFR internalization and degradation
rates leads to an increase in VEGF-induced maximum
pAkt level (Figure S5B). This is because lower internal-
ization and degradation rates lead to more signaling
complexes available for signal transduction. Together,
these receptor-related properties (density, internaliza-
tion, and degradation) lead to stronger signaling induced
by FGF.

Fig. 4 Predicted pERK and pAkt responses stimulated by single agents. a Predicted time courses of pERK and pAkt stimulated by 0.5 nM FGF and
0.5 nM VEGF. Curves are the mean predictions for the 15 best fits from the model training. Shaded regions show standard deviation of the fits. b
Maximum pERK (Purple) and pAkt (Green) in response to FGF (left) and VEGF (right) for concentrations varying from 0.01 nM to 1 nM. Bars are
mean ± standard deviation of model predictions. Note that the y-axes are not on the same scale

Song and Finley Cell Communication and Signaling          (2020) 18:114 Page 8 of 19



Akt activation shows a stronger response than ERK in
terms of magnitude
We also compared Akt and ERK activation responses by
the mono- and co-stimulation of FGF and VEGF. The
model predictions show that the maximum pAkt level is
higher than the maximum pERK level in response to
same ligand concentration, whether considering FGF or
VEGF stimulation (Figs. 4b and 5). As shown in Fig. 4b,
when FGF concentration is varied from 0.01 to 1 nM,
the averaged maximum pAkt and pERK range from
1.6 × 103 nM to 1.8 × 103 nM and 5.0 × 102 nM to
1.0 × 103 nM, respectively. Similarly, for the same con-
centration range of 0.01–1 nM, VEGF induces an aver-
aged maximum pAkt of 3.5 × 101 nM to 7.6 × 102 nM
pAkt and maximum pERK of 8.8 × 10− 5 nM to

4.3 × 100 nM (Fig. 4b). Thus, for FGF mono-stimulation,
the maximum pAkt level induced by low FGF concen-
tration (0.01 nM) is even higher than the maximum
pERK level activated by a high concentration of FGF (1
nM). The same holds true for VEGF mono-stimulation
– a low concentration of VEGF (0.01 nM) induces a
higher maximum pAkt than the maximum pERK stimu-
lated by high VEGF concentration (1 nM).
We then studied the effects of co-stimulation of FGF

and VEGF in inducing maximum pERK and pAkt. The
dynamics of pERK and pAkt stimulated by 0.5 nM FGF
and 0.5 nM VEGF in combination are shown in Fig. 5a
and b, respectively. Similar to mono-stimulation, the
model also predicts transient activation of ERK and Akt
by the co-stimulation of FGF and VEGF. The dynamics

Fig. 5 Predicted maximum pERK and pAkt responses with co-stimulation. Predicted time courses of pERK (a) and pAkt (b) stimulated by the
combination of 0.5 nM FGF and 0.5 nM VEGF. Curves are the mean predictions for the 15 best fits from model training. Shaded regions show
standard deviation of the fits. Maximum pERK (c) and pAkt (d) in response to co-stimulation by FGF and VEGF for concentrations varying from
0.01 nM to 1 nM
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of pERK and pAkt are predicted to reach their max-
imum level within 30 min and return to basal level after
60 min. We also predicted the averaged maximum pERK
and pAkt induced by co-stimulation of FGF and VEGF
in a range of 0.01–1 nM across the 15 best fits (Fig. 5c-
d). Maximum pAkt shows a greater response at all com-
binations of FGF and VEGF stimulation compared to
the maximum pERK induced by the same combinations
(Fig. 5c-d).
Studying the model mechanistically, we found that the

main reason that Akt showed a higher level of activation
compared to ERK is because the initial concentration of
PP2A, the phosphatase that acts on pAkt (2.5 nM), is
much lower than the initial concentrations of the phos-
phatases that act on pMEK and pERK, Ptase2 and Ptase3
(3.7 × 102 and 1.7 × 103 nM, respectively). In the model,
PP2A can be produced by PP2Aoff (see reactions R87
and R88 in Table S1); however, the initial amount of
PP2Aoff (1.1 × 102 nM) is not high enough to make the
PP2A level comparable to that of Ptase2 and Ptase3.
To confirm the effect of phosphatases, we decreased

Ptase2 and Ptase3 levels to be 2.5 × 100 nM, which is the
same level as PP2A. The model predicts that when
Ptase2 and Ptase3 levels are decreased, stimulation by
FGF, VEGF, or their combination in the range of 0.01–1
nM induced 5.6 × 102–8.3 × 102, 3.4 × 101–7.6 × 102,
and 5.6 × 102–9.6 × 102 nM for maximum pAkt, respect-
ively. In comparison, the maximum pERK is predicted to
be 3.5 × 103, 9.5 × 101 – 3.5 × 103, and 3.5 × 103 nM, re-
spectively, for these three cases, as pERK saturated to
reach its maximum level such that all of the ERK initially
present (3.5 × 103 nM) was phosphorylated. Thus, the
predicted maximum pERK level surpassed maximum
pAkt when Ptase2 and Ptase3 levels decreased, confirm-
ing that the relatively high levels of Ptase 2 and Ptase3
limit the ERK phosphorylation compared with Akt.

ERK activation is more responsive to changing the ligand
concentration compared to Akt
We compared pERK and pAkt behaviors in terms of
their responsiveness (i.e., sensitivity) to changes in FGF
and VEGF concentrations. The fold change of pAkt for
VEGF stimulation of 0.01 nM compared to 1 nM for the
baseline model is predicted to be 21.7, while the fold
change of pERK is 4.9 × 104. The fold changes for pAkt
and pERK for FGF stimulation at 0.01 nM compared to
0.4 nM are 1.2 and 2.0. In addition, there appears to be
an optimal ligand concentration required to attain the
maximum response for FGF-induced pERK and pAkt, as
their dose-response curves plateau at approximately 0.4
nM and 0.1 nM, respectively, for stimulation with a lig-
and concentration in the range of 0.01 nM – 1 nM FGF
(Fig. 4b). The maximum level of pAkt also plateaus at
0.4 nM VEGF. Before the response saturates, maximum

pERK shows a steeper increase than maximum pAkt for
increasing levels of either FGF or VEGF (Fig. 4). In
addition, maximum pERK following stimulation by
VEGF continues to increase for the concentration range
simulated here (Fig. 4b). Altogether, these results indi-
cate that pERK is more responsive to changing the lig-
and concentrations, as compared to pAkt in the range of
0.01 nM to the saturation concentration.
We next studied the effects of FGF and VEGF in com-

bination on pERK and pAkt. The maximum pERK
attained upon co-stimulation shows an increase with in-
creasing FGF and VEGF (Fig. 5c). In contrast, maximum
pAkt induced by co-stimulation with FGF and VEGF is
approximately the same for all of the combinations ex-
amined (Fig. 5d). Thus, the model suggests that with
FGF and VEGF co-stimulation, phosphorylation of ERK
is more dose-dependent compared to Akt activation,
similar to modeling predictions for mono-stimulation.
Given its mechanistic detail, we can use the model to

explain the reason for the greater sensitivity of max-
imum pERK compared to pAkt. We found that the rea-
son Akt activation is less responsive to varying ligand
concentrations is due to the interaction between pAkt
and the phosphatase PP2A, both in terms of the binding
rates and negative feedback. Regarding the binding rates
between activated (phosphorylated) species and their
phosphatases, we compare doubly phosphorylated Akt
and doubly phosphorylated MEK, as these species are
each in the first layer of phosphorylation reactions that
lead to formation of doubly phosphorylated MEK and
Akt following FGF or VEGF binding to their corre-
sponding receptors. This layered structure of the phos-
phorylation reactions enables nonlinear signaling
amplification. The association rate of ppAkt and PP2A
(k_aPP2A = 1.0 × 10− 3 1/nM/s) is two orders of magni-
tude lower than the association rate of ppMEK and the
phosphatase Ptase2 (k_dpMEK_pp = 1.4 × 10− 1 1/nM/s).
This relatively low association rate of ppAkt and PP2A
leads to accumulation of both pAkt and ppAkt, since the
phosphorylated species bind slowly to the phosphatase.
The accumulation of the phosphorylated Akt due to this
lower association rate more strongly influences the levels
of phosphorylated Akt compared to the effect of increas-
ing the concentrations of the ligands. Therefore, the
total pAkt is relatively stable in response to stimulation.
In comparison, since the association rate of phosphory-
lated MEK and Ptase2 is faster, less phosphorylated
MEK accumulates, and the system remains responsive to
increases in the ligand concentrations.
Another contributor to the differences in activation of

MAPK versus the PI3K/Akt pathway is negative feed-
back induced by phosphorylated Akt. Production of
PP2A, the phosphatase that acts on pAkt and ppAkt, is
promoted by ppAkt itself [21, 46] (see reactions R87 and
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R88 in Table S1). This feedback highly regulates pAkt
and ppAkt levels such that when more ppAkt is pro-
duced, the level of PP2A also increases. The presence of
this negative feedback loop makes phosphorylated Akt
levels less responsive to increased ligand concentration.
In contrast, the amounts of the phosphatases Ptase2
(which dephosphorylates MEK) and Ptase3 (which
dephosphorylates ERK) do not depend on upstream spe-
cies. Thus, varying the amount of FGF or VEGF does
not affect the phosphatases’ concentrations.
We confirmed the influence of ppAkt-PP2A binding

and PP2A negative feedback by systematically altering
the network for Akt activation to be more like the net-
work for ERK activation (Table 1). We first increased
the association rate of doubly phosphorylated Akt and
PP2A to be the same as the rate for doubly phosphory-
lated MEK and Ptase2 binding. For this case, the fold
change of ppAkt comparing two levels of VEGF stimula-
tion (1 nM versus 0.01 nM) is 6.0 × 103. When the net-
work is modified such that PP2A is not activated by
doubly phosphorylated Akt, the fold change is predicted
to be 3.4 × 103. If the ppAkt-PP2A association rate is in-
creased and negative feedback is removed, the fold
change in ppAkt is 1.0 × 105. Thus, in all three of these
cases where the network is modified, the fold change for
ppAkt is much higher than the baseline case. The fold
change of ppAkt in response to two levels of FGF stimu-
lation (0.4 nM versus 0.01 nM) is also predicted to be
higher than the baseline case when the association rate
of doubly phosphorylated Akt and PP2A is increased
(Table 1). However, when the negative feedback is re-
moved, Akt is used up, even by the stimulation of 0.01
nM FGF. Thus, the fold change of ppAkt in response to

FGF stimulation is even lower than the baseline model
because of the shortage of Akt. These simulations con-
firm that the unresponsiveness of pAkt to changes in lig-
and concentration is due to the particular properties of
the Akt activation pathway. Overall, the model predic-
tions and analysis provide quantitative insight that helps
to better understand how the signaling response can be
modulated to achieve a desired effect.

The co-stimulation by FGF and VEGF has a greater impact
on phosphorylation of ERK compared to summation of
the ligands’ individual effects
To explore how FGF and VEGF influence pERK and
pAkt responses together, we compared the combination
effects to the summation of individual effects in inducing
maximum pERK and pAkt. The dynamics of pERK and
pAkt stimulated by 0.5 nM FGF and 0.5 nM VEGF in
combination (solid lines) and in summation (dashed
lines) are shown in Figure S6. We observed greater
pERK levels induced by the co-stimulation of 0.5 nM
FGF and 0.5 nM VEGF compared to the summation of
individual effects within before the activation gets atten-
uated. On the other hand, the summation of 0.5 nM
FGF and 0.5 nM VEGF induced pAkt is greater than the
co-stimulation at all simulated time. To more concisely
represent the signaling response induced by the growth
factors, we compared the maximum pERK and pAkt in-
duced by FGF and VEGF co-stimulation to the summa-
tion of individual effects. We defined this ratio as
R(response), where response stands for pERK or pAkt
(see Methods for more details).
Figure 6a shows that R(pERK) is greater than one for

combinations of FGF and VEGF ranging from 0.01 nM

Table 1 Fold change for pAkt and pMEK in response to varying ligand concentration

0.01 nM
VEGF
(nM)

1 nM
VEGF a

(nM)

Fold change (comparing the two
ligand concentrations)

0.01
nM
FGF
(nM)

0.4 nM
FGF b

(nM)

Fold change (comparing the two
ligand concentrations)

Doubly phosphorylated Akt

Baseline model 4.88 ×
10−1

1.91 ×
102

3.92 × 102 7.75 ×
102

1.08 ×
103

1.39

Increase association rate of doubly
phosphorylated Akt and PP2A

3.94 ×
10−3

2.38 ×
101

6.03 × 103 3.13 ×
102

5.45 ×
102

1.74

Remove PP2A negative feedback
mediated by ppAkt

4.96 ×
10−1

1.69 ×
103

3.41 × 103 2.33 ×
103

2.35 ×
103

1.01

Increase association rate and remove
negative feedback

3.94 ×
10−3

3.96 ×
102

1.00 × 105 2.31 ×
103

2.34 ×
103

1.01

Doubly phosphorylated MEK

Baseline model 4.33 ×
10−6

2.10 ×
10−1

4.86 × 104 2.48 ×
101

5.27 ×
101

2.12

a 1 nM VEGF is the highest concentration considered in model simulations. The maximum pERK has not saturated at this ligand level
b 0.4 nM FGF is used as the highest concentration since both maximum pERK and pAkt have saturated by this ligand level
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to 1 nM, specifically R(pERK) ranges from 1.01 to 1.44,
and 53% of combinations that we simulated have
R(pERK) greater than 1.25. This indicates that the com-
bination effect of inducing maximum pERK is greater
than the summation of individual effects, which is con-
sistent with our previous work [25]. Our simulations
show that 0.01 nM FGF induces a maximum of
5.0 × 102 nM pERK, while 1 nM VEGF produces 4.3 nM
pERK. Given this 100-fold difference, we believe a 25%
increase in maximum pERK by the co-stimulation
compared to FGF stimulation alone is significant. As ex-
plained in 3.2, the reason VEGF is not as potent as FGF
in inducing maximum pERK could be due to the low
VEGF receptor level and high trafficking parameters,
compared to FGF receptors [25].
In contrast, R(pAkt) for combinations of FGF and

VEGF concentrations ranging from 0.01 nM to 1 nM is
less than one (Fig. 6b). This suggests that the combin-
ation of FGF and VEGF is not as effective in inducing
maximum pAkt, as compared to the summation of the
responses induced by each ligand individually.
We again applied the model to explain these predicted

behaviors. We find that the values of R(pERK) are
greater than one because the co-stimulation compen-
sates for limitations observed when only one ligand is
applied [25]. Because there is abundant Raf available in
comparison to limited FRS2 level, VEGF co-stimulation
helps to overcome the stoichiometric limitations of FRS2
for FGF mono-stimulation. Also, because pFRS2 phos-
phorylates MEK faster than aRaf, FGF co-stimulation
provides a high level of pMEK. Therefore, FGF and
VEGF co-stimulation exhibits a greater effect in phos-
phorylating ERK than the summation of individual
effects.

The reason why the R(pAkt) values are less than one is
due to features of the network. Specifically, phosphory-
lated Akt is more stable in response to the change of lig-
and concentration as a result of the low association rate
for ppAkt and the phosphatase PP2A and the negative
feedback of ppAkt promoting the production of its own
phosphatase, PP2A. As explained in the previous section,
with mono-stimulation, the pAkt level remains relatively
constant, even as the ligands’ concentrations change.
Additionally, the pAkt levels induced by combinations of
FGF and VEGF are approximately the same as the pAkt
levels induced by FGF alone (Figs. 4b and 5b). Thus,
summing the individual effects to include the VEGF-
induced maximum pAkt level means that the denomin-
ator in the ratio R is greater than the numerator, forcing
R to be less than one.
We note that mono- and co-stimulation of FGF and

VEGF affects not only the magnitude of pERK and pAkt
levels, but also the time required to reach the maximum
responses and the duration of the responses. The time-
scale of the pERK response was a major focus of our
previous work [25]. Briefly, we found that the combin-
ation of FGF and VEGF exhibits a fast and sustained
pERK response compared to mono-stimulation [25].

The model identifies potential targets for influencing ERK
and Akt activation and evaluates their efficacy
We applied the model to determine the parameters and
initial concentrations that significantly influence pERK
and pAkt levels, providing insight for researchers seeking
to effectively modulate the MAPK and PI3K signaling
pathways required for angiogenesis. We identified the
influential model variables by evaluating the Stimax

calculated in the eFAST global sensitivity analysis

Fig. 6 Comparison of mono- and co-stimulation. Ratios, R, comparing the combination effects to the summation of individual effects in response
to FGF and VEGF for maximum pERK (a) and pAkt (b)
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(Figure S7 and Table 2) (see Methods for more details).
As a rule of thumb, we consider variables to not be in-
fluential if their Stimax values are lower than 0.5, and the
variables that have Stimax values greater than 0.7 are
taken as influential. The influential variables (Table 2)
could be potential targets for pro- or anti-angiogenic
strategies. Interestingly, this analysis shows that species’
concentrations and kinetic parameters of the upstream
signaling network are strong regulators for both pERK
and pAkt levels and are shown to have high Stimax values
for both pERK and pAkt levels. This includes: initial
concentrations of HSGAG, VEGFR2, and FGFR; kinetic
parameters kf5a, k_pR2, and kf0, which are involved in
ligand receptor binding reactions; as well as the param-
eter k_1PI3K, which is the association rate of pR2 and
PI3K and plays an important role in the competition be-
tween the two pathways. Not surprisingly, species and
kinetic parameters involved in intermediate or

downstream signaling leading to ERK are influential and
specific modulators of pERK. Similarly, we identify
model variables that specifically influence Akt. For in-
stance, Stimax values of the MEK-Raf dissociation rate
(kd_aMEKRaf), pMEK phosphorylation rate mediated by
pFRS2 (kf37) and the ERK level are shown be greater
than 0.7 for pERK but less than 0.1 for pAkt; while Akt
and PI3K levels that are involved in PI3K/Akt pathway
are only influential to pAkt.
The eFAST analysis tells which model variables the

variances in the predicted pERK and pAkt can be attrib-
uted to. However, it is also important to determine how
finitely changing those influential variables affects the
output. That is, we aim to understand i) whether the in-
fluential variables promote or inhibit ERK and Akt acti-
vation and ii) how much the pERK and pAkt levels
change when the influential variables are changed.
Therefore, the ratios of the maximum pERK and pAkt

Table 2 The total sensitivity index Sti values

Parameter
name

Sti values a Description

pERK pAkt

Only influential to pERK kd_dpRaf 0.87 0.00 Dissociation rate of Raf_a and Ptase1

[ERK] 0.84 0.08 Initial concentration of ERK

kd_aMEKRaf 0.84 0.00 Dissociation rate of MEK and Raf_a

kd_RasGDP 0.83 0.00 Ras-GTP activation rate

[Ptase1] 0.80 0.03 Initial concentration of Ptase1

kf37 0.77 0.06 pMEK phosphorylation rate via pFRS2

ked_MEKRaf2 0.77 0.00 pMEK phosphorylation rate via aRaf

[Ptase2] 0.73 0.10 Initial concentration of Ptase2

k_aERKMEK 0.73 0.05 ERK/pERK and ppMEK association rate

Only influential to pAkt [Akt] 0.21 0.83 Initial concentration of Akt

[PI3K] 0.44 0.80 Initial concentration of PI3K

k_fPIP3 0.04 0.78 PIP3 activation rate via pR2:pPI3K:PIP2

[PP2Aoff] 0.08 0.76 Initial concentration of active PP2A

[PIP2] 0.27 0.73 Initial concentration of PIP2

[PTEN] 0.22 0.72 Initial concentration of PTEN

[Ras-GDP] 0.35 0.71 Initial concentration of Ras-GDP

Influential to pERK and pAkt [H] 0.87 0.79 Initial concentration of HSGAG

[R2] 0.86 0.83 Initial concentration of VEGFR2

kf5a 0.84 0.71 FGFR and FGF:HSGAG association rate

[R] 0.83 0.79 Initial concentration of FGFR

[FRS2] 0.78 0.73 Initial concentration of FRS2

[MEK]* 0.76 0.67 Initial concentration of MEK

k_pR2 0.75 0.80 VEGFR2 phosphorylation rate

kf0* 0.66 0.75 FGF and HSGAG association rate

k_1PI3K* 0.65 0.81 Association rate of pR2 and PI3K
a The variables that have Sti values greater than 0.7 are considered as influential, but not very influential if their Sti values are lower than 0.5. In the category of
influential to pERK and pAkt, [MEK], kf0, and k_1PI3K are labeled with asterisks as they do not strictly meet these criteria; they have Sti > 0.7 for one output and
0.6–0.7 for the other
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levels compared to the baseline values were predicted
when the parameters in Table 2 were varied by 0.1- and
10-fold (Fig. 7). This ratio is defined as the fold change,
F, in the response (see Methods for more details). We
consider the parameters that cause log2(F) to be greater
than |1| (i.e., a two-fold change) as effective targets.
We calculated log2(F) for the variables in Table 2,

identifying effective targets that modulate pERK and
pAkt upon stimulation with 0.5 nM FGF or 0.5 nM
VEGF, or with co-stimulation with 0.5 nM FGF and 0.5
nM VEGF. These predictions complement in vitro stud-
ies that focus on the responses induced by angiogenic
agents. The model predicts that increasing ERK and
MEK levels can strongly promote FGF- and VEGF-
induced pERK (Fig. 7a and c), and increasing Akt pro-
motes FGF- and VEGF-induced pAkt (Fig. 7b and d).
Similarly, decreasing ERK, MEK and Akt can effectively
inhibit pERK and pAkt. These predicted targets are in-
tuitive, as they are directly related to the signaling spe-
cies of interest.

Excitingly, the model predicts several other targets. For
example, increasing the phosphatase Ptase2, which de-
phosphorylates pMEK and ppMEK, and decreasing FRS2,
which is an upstream FGF-mediated signaling species, sig-
nificantly inhibits FGF-induced pERK (Fig. 7a). Also, de-
creasing PIP2, the substrate for producing PIP3, which
further phosphorylates Akt and pAkt, is another effective
means of inhibiting FGF-induced Akt phosphorylation
(Fig. 7b). In addition, our model predicts that the initial
concentrations of VEGFR2 and Ras-GDP positively
regulate VEGF-induced ERK phosphorylation (Fig. 7c),
while increasing the VEGFR2 level and the PIP3 activation
rate (k_fPIP3) are effective strategies to promote VEGF-
induce pAkt (Fig. 7d). Also, increasing the concentrations
of phosphatases Ptase1 and Ptase2, which deactivate Raf
and MEK, respectively, can inhibit VEGF-induced pERK,
as they are negative regulators of ERK phosphorylation
(Fig. 7c). Increasing PTEN (the phosphatase for PIP3) and
the Ras-GDP level can inhibit VEGF-induced pAkt as well
(Fig. 7d). It is noteworthy that the model predicts that the

Fig. 7 Predicted targets for modulating pERK and pAkt responses. Log2(F) for 0.5 nM FGF-induced pERK (a) and pAkt (b); 0.5 nM VEGF-induced
pERK (c) and pAkt (d); and combination of 0.5 nM FGF- and 0.5 nM VEGF-induced pERK (e) and pAkt (f). x-axes are log2(F), y-axes are variables
from Table 1. Bars are mean ± standard deviation of model predictions
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VEGFR2 level and k_pR2 positively regulate both VEGF-
induced pERK and pAkt. Thus, VEGFR2 and k_pR2 are
targets for promoting or inhibiting the activation of both
pathways mediated by VEGF.
Interestingly, the model predicts strategies to explore

the effect on ERK and Akt activation individually. There
are three potential targets that have opposing effects for
the two pathways and can be utilized to enhance the
signal transduction for one pathway and dampen the re-
sponse of the other pathway. Also, these targets could
play a role in the mechanism of resistance in which inhi-
biting one pathway enables greater activation of the
other. Specifically, decreasing the PI3K level and the
pVEGFR2 and PI3K association rate (k_1PI3K) can en-
hance VEGF-induced pERK, but reduces VEGF-induced
pAkt. This opposing effect is because decreasing PI3K
level and k_1PI3K can reduce the signal transduction for
PI3K/Akt pathway, however decreasing PI3K level means
there is relatively less PI3K (upstream species for PI3K/
Akt pathway) competing against Ras-GDP (upstream
species in the MAPK pathway) for pVEGFR2 induced by
VEGF (Fig. 1). Also, decreasing pVEGFR2 and PI3K as-
sociation rate (k_1PI3K) reduces the competition of
PI3K/Akt pathway for pVEGFR2. Therefore, there is
relatively more pVEGFR2 utilized for activating the
MAPK pathway when the competition of PI3K/Akt
pathway is reduced, and this further leads to an elevated
pERK level induced by VEGF. In addition, increasing
Ras-GDP level promotes VEGF-induced pERK but in-
hibits VEGF-induced pAkt. This is also caused by the
competition between two pathways. Increased Ras-GDP
level consumes more pVEGFR2, which limits PI3K acti-
vation by pVEGFR2 and further reduces pAkt level in-
duced by VEGF.
Our model predicts other potential effective pro- and

anti-angiogenic strategies (Fig. 7); however, it is of inter-
est to investigate the effects of the crosstalk. Since FGF
and VEGF are typically both present in physiological or
pathological conditions, it is relevant to identify variables
that affect activation of ERK and Akt upon co-
stimulation with FGF and VEGF (Fig. 7e-f). The model
shows that an increase in ERK, MEK, and VEGFR2
levels, as well as increasing the kd_RasGDP rate pro-
motes ERK phosphorylation. Decreasing the Ptase1 level
also enhances pERK. In addition, increasing the initial
level of Akt is the most effective pro-angiogenic strategy
to enhance Akt phosphorylation. On the other hand, in-
creasing Ptase2, and decreasing the MEK, ERK, and
FRS2 levels inhibit pERK. Lastly, decreasing the Akt,
PI3K and PIP2 levels is effective anti-angiogenic strat-
egies to inhibit pAkt.
Finally, we compared the effect of the identified effect-

ive potential targets under different treatments (FGF-,
VEGF-, and FGF/VEGF-stimulation). Interestingly, we

found that some potential targets predicted to have an
effect in response to mono-stimulation had only limited
effects in response to co-stimulation. For instance, in-
creasing the initial level of Ptase1 was predicted to ef-
fectively inhibit VEGF-induced pERK (Fig. 7c); however,
increasing Ptase1 leads to a log2(F) value of only − 0.3
(an 0.8-fold change) when we simulate FGF and VEGF
co-stimulation. This implies that FGF-mediated signal-
ing can diminish the inhibitory effect of increasing
Ptase1 that occurs with VEGF-induced pERK, and
further illustrates the effect of compensatory pathways
in the overall results. Our simulations show that it is
critical to study the network systematically to identify
potential effective targets for specific conditions.

Discussion
We developed an intracellular signaling model of the
crosstalk between two pro-angiogenic factors, FGF and
VEGF. The model focuses on pERK and pAkt responses
as indicators for signaling promoted by the two pro-
angiogenic factors. In this study, we built on our previous
modeling work and incorporated PI3K/Akt pathway to get
a more comprehensive understanding of the angiogenesis
process, as the PI3K/Akt pathway is important in regulat-
ing cell survival [26–30] and migration [30–32].
Excitingly, the primary model predictions are sup-

ported by experimental students, providing confidence
that the model can be used to examine novel aspects of
FGF- and VEGF-mediated signaling. Our model predicts
that the maximal levels of FGF- and VEGF-induced
pERK and pAkt plateau as the ligand concentration in-
creases. This prediction is supported by experimental
studies showing an optimal concentration for FGF- and
VEGF-induced human umbilical vein cells (HUVECs)
tube formation on Matrigel for 24 h (0.1 ng/ml (0.004
nM) and 25 ng/ml (0.56 nM), respectively), also 0.1 ng/
ml (0.004 nM) FGF exhibits approximately same level of
increase in HUVECs proliferation and migration as 25
ng/ml (0.56 nM) VEGF stimulation [47]. In addition, the
model predicts that the combination of FGF and VEGF
stimulation induces ERK phosphorylation to a greater
extent than the sum of the individual effects of FGF and
VEGF. In contrast, the combination of FGF and VEGF
does not promote enhanced Akt phosphorylation com-
pared to the summation of the response stimulated by
FGF and VEGF individually. These predictions are con-
sistent with experimental observations.
Researchers have shown that endothelial sprouting is

FGF and VEGF dose dependent [47, 48], and that the
combination of FGF and VEGF induces greater total
sprout length than summation of individual effects [48].
Goto et al. also demonstrated a synergistic effect on
endothelial cell proliferation upon co-stimulation by
FGF and VEGF [49]. In addition, it has been reported
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that FGF and VEGF have significantly greater effects in
combination, compared to their individual effects in
angiogenesis in vivo [50]. Specifically, the systolic pres-
sure ratio of ischemic limb to healthy limb, the stem ar-
tery diameter, as well as the capillary density of New
Zealand White rabbits treated with FGF and VEGF in
combination were significantly greater than FGF or
VEGF treated alone [50]. These results are consistent
with the model prediction that R(pERK) is greater than
one, where pERK is expected to directly influence prolif-
eration. Moreover, Ratajska et al. showed that co-
stimulation with FGF and VEGF did not have synergistic
effect on migration distance in E12 embryonic hearts
[51], which is consistent with our model prediction that
R(pAkt) is less than one for all combinations of FGF and
VEGF simulated, assuming pAkt directly influences mi-
gration. The model predictions for the pERK and pAkt
responses following stimulation by FGF and VEGF mir-
rors these experimental observations, providing confi-
dence in the model and its utility.
The molecular-detailed model presented here can be

applied in various ways. We can use the model to in-
crease understanding of the FGF- and VEGF-mediated
angiogenic mechanisms and provide quantitative insight
regarding the downstream signaling that mediates a
cell’s response. As such, our work complements models
that predict cellular behavior. Norton and Popel con-
structed a computational model to study vessel growth
in tumor and showed that the proliferation rate has a
greater effect on the spread and extent of vascular
growth compared to the migration rate [52]. The simula-
tions from our model are in line with their results, as
pERK is more responsive to changing the ligand concen-
tration (from 0.01 nM to the saturation concentration)
compared to pAkt. And our model provides a detailed
mechanistic explanation regarding their model predic-
tions. Thus, the model can be utilized in combination
with other modeling frameworks that predict cellular be-
haviors but do not yet take intracellular signaling into
account [53, 54].
This model can also be used to study the efficiency of

pro- or anti-angiogenic therapies. Currently, there are
inhibitors targeting the ERK and Akt signaling networks,
such as LY294002 and wortmannin (PI3K inhibitors),
and PD98059 (MEK inhibitor) [55]. These inhibitors re-
duce pAkt and pERK levels [55] and further inhibit
endothelial migration [56, 57] and proliferation [58], re-
spectively. These inhibitors also reduce overall tube for-
mation [55]. Interestingly, Hoeflich and coworkers
showed that the MEK inhibitor PD0325901 upregulates
the PI3K pathway signaling [59]. Our model is consistent
with this observation and shows that inhibiting MEK sig-
nificantly reduces pERK induced by FGF or the combin-
ation of FGF and VEGF, but actually increases the pAkt

response (Fig. 7). The model predicts other instances
where targeting certain parameters leads to opposing ef-
fects on pERK and pAkt. For example, decreasing the
PI3K level and the rate of VEGFR2-induced PI3K phos-
phorylation or increasing Ras-GDP level can inhibit
VEGF-induced pAkt, but promote VEGF-induced pERK
(Fig. 7c, d). Overall, our model can predict the important
variables that influence pERK and pAkt and how the
concentrations of these signaling species are affected.
These predictions can supplement experimental studies
and provide insight into investigating the efficiency of
targeting particular variables as pro- or anti-angiogenic
strategies.
We acknowledge some limitations in our model.

Firstly, some assumptions were made during model con-
struction. We simplified certain reactions that occur up-
stream of activating MEK/ERK and PI3K/Akt pathways
in order to focus on the effects of FGF and VEGF and
their interactions. It has been reported that the PLC γ
activation via VEGFR2 and FGFR further leads to PKC
activation [9, 60]. However, the molecular detail relating
PKC to ERK signaling is not clear. For example, some
studies show that PKC may activate Ras and trigger Raf-
MEK-ERK signaling [61–63], while PKC has been
showed to activate ERK via Raf [64–66]. Another study
reported that PKCα may activate MEK, independently of
Raf and Ras, to further activate ERK signaling [67].
Therefore, we simplified certain reactions, and we can
incorporate this detail when the protein-protein interac-
tions in this pathway becomes available. Also, we ex-
cluded VEGFR1 and neuropilin-1 (NRP1) since VEGFR2
is thought to be the main receptor on endothelial cells
[68]. While it has been shown that VEGFR1 promotes
signal transduction [69], it is largely considered to be a
decoy receptor [70]. In addition, NPR1 primarily acts as
a coreceptor for VEGFR1 and VEGFR2 [68]. We can in-
corporate the contributions of VEGFR1 and NRP1 into
the model in future studies. If these VEGF binding mole-
cules were included, the effective concentration of VEGF
would be lower and thus the magnitude of VEGF-
induced certain responses may change. Moreover, we
modeled FGF-mediated activation of Akt via FRS2 in the
same way that VEGF promotes Akt activation through
VEGFR2, and we used the VEGF kinetic parameters as a
starting guess for the parameter fitting. This is because
the FRS2-mediated protein-protein interactions that pro-
mote Akt signaling are not fully known, and there is a
scarcity of quantitative data for the kinetics rates of
FGF-induced PI3K activation. It has been reported that
phosphorylated Akt deactivates Raf [71, 72]; however,
experimental and computational studies have shown that
MAPK and PI3K/Akt pathways act independently for a
number of different cell types [73, 74]. Since there is lack
of quantitative data for the kinetic parameters for Akt-
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mediated deactivation of Raf, and those parameters were
not shown to influence the main model outputs (their
Sti values are less than 0.22, see detail in Sensitivity ana-
lysis section in Methods), we did not include this feed-
back in our model. In the future, we can implement this
interaction as more detailed mechanistic information be-
comes available. Finally, we only studied the pERK and
pAkt responses over 2 hours in order to understand the
initial effects of FGF and VEGF stimulation. Future work
can expand our model to predict the downstream effects
of this initial signaling, which occur on a longer time-
scale. However, despite these limitations, our model pro-
vides novel insights into angiogenic signaling,
complements experimental studies, and is a platform for
a range of future investigations.

Conclusion
In conclusion, we developed a mathematical model to
characterize the dynamics of pERK and pAkt following
stimulation with two main pro-angiogenic factors, FGF
and VEGF. The model quantitatively studies particular
aspects of FGF and VEGF interactions network in ERK
and Akt phosphorylation, provides mechanistic insight
into their signaling network, and identifies specific po-
tential angiogenic targets that can be altered to modulate
ERK and Akt activation. The model provides a molecu-
larly detailed understanding of the regulation of endo-
thelial cell angiogenesis signaling in terms of ERK and
Akt activation upon stimulation with FGF and VEGF.
Thus, our work can aid in the development of pro- and
anti-angiogenic strategies that particularly target ERK
and/or Akt responses induced by FGF and VEGF.
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