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Abstract
We study a singular stochastic control problem faced by the owner of an insurance
company that dynamically pays dividends and raises capital in the presence of the
restriction that the surplus process must be above a given dividend payout barrier in
order for dividend payments to be allowed. Bankruptcy occurs if the surplus process
becomes negative and there are proportional costs for capital injection. We show that
one of the following strategies is optimal: (i) Pay dividends and inject capital in order
to reflect the surplus process at an upper barrier and at 0, implying bankruptcy never
occurs. (ii) Pay dividends in order to reflect the surplus process at an upper barrier and
never inject capital—corresponding to absorption at 0—implying bankruptcy occurs
the first time the surplus reaches zero. We show that if the costs of capital injection are
low, then a sufficiently high dividend payout barrier will change the optimal strategy
from type (i) (without bankruptcy) to type (ii) (with bankruptcy). Moreover, if the
costs are high, then the optimal strategy is of type (ii) regardless of the dividend
payout barrier. We also consider the possibility for the owner to choose a stopping
time at which the insurance company is liquidated and the owner obtains a liquidation
value. The uncontrolled surplus process is a Wiener process with drift.
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1 Introduction

Insurance risk was originally studied in terms of ruin probability. This approach may,
however, underestimate risk since insurance companies are realistically more inter-
ested inmaximizing companyvalue thanminimizing risk and an alternative approach is
therefore to study optimal dividend policies—in the sense of maximizing the expected
value of the sum of discounted future dividend payments—as suggested by De Finetti
in the 1950s; see De Finetti (1957). A vast literature on various versions of the opti-
mal dividend problem has since emerged. Surveys of the topic include Albrecher and
Thonhauser (2009), Avanzi (2009) and Taksar (2000); see also Alvarez (2018) and
Schmidli (2008).

A common type of formulation of the optimal dividend problem corresponds to
assuming that the only cash flow that may occur between the insurance company
and its owner is from the insurance company to its owner, and in this formulation
the insurance company typically goes bankrupt when the surplus process becomes
negative; see e.g. De Finetti (1957), Jeanblanc-Picqué and Shiryaev (1995) and Shreve
et al. (1984). In other words, the owner of the insurance company is not allowed to
inject capital into the insurance company in this formulation of the problem. Another
common type of formulation corresponds to assuming that the owner of the insurance
company is obliged to inject capital so as to keep the surplus process non-negative;
see e.g. Avram et al. (2007), Kulenko and Schmidli (2008) and Shreve et al. (1984).
Hence, bankruptcy can never occur in this formulation of the problem. Further reviews
of these two formulations of the optimal dividend problem can be found in Albrecher
and Thonhauser (2009, Section 4) and Avanzi (2009, Section 5).

Corporations in financial and insurancemarkets in the realworld, however, typically
have the possibility of both going bankrupt and raising equity capital from its owner
(capital injection). One of the first papers to take both of these market characteristics
into account simultaneously is Løkka and Zervos (2008) which studies a singular
stochastic control problem corresponding to the optimal dividend problem with the
possibility of both capital injection and bankruptcy, under the assumption that the
uncontrolled surplus process is a Wiener process with drift. The authors find that
depending on the parameters of the model it is either optimal to pay dividends in
order to reflect the surplus process at an upper barrier and never inject capital, or
to pay dividends and inject capital in order to always reflect the surplus process at
an upper barrier and at 0. The results of Løkka and Zervos (2008) are in Zhu and
Yang (2016) extended to a general Itô diffusion model with a growth restriction for
the drift function. In Gajek and Kuciński (2017) the optimal dividend problem with
proportional costs for capital injection is studied under the assumption that the owner
can at any time choose to liquidate the insurance company and thereby receive a
liquidation value. The uncontrolled surplus process, which is defined as the surplus in
excess of a parameter interpreted as a solvency capital requirement, follows a spectrally
negative Lévy process.

Corporations in financial and insurance markets are also regulated by supervisory
authorities. In order to take this characteristic into account (Paulsen 2003) studies the
optimal dividend problem in a model with solvency constraints, meaning that it is
not allowed to pay dividends unless the surplus process exceeds a given constant—in
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the present paper called dividend payout barrier. Capital injection is not considered.
The author finds that it is optimal to use a reflection strategy with the reflection barrier
being themaximum of the dividend payout barrier and the reflection barrier that would
have been optimal without regulation. The uncontrolled surplus process is a fairly
general Itô diffusion. The results of Paulsen (2003) are in He et al. (2008) extended
by the introduction of the possibility of reinsurance. The optimal dividend problem
has also been studied in the finance literature, where both Décamps et al. (2011) and
Hugonnier andMorellec (2017) studymodels allowing for both bankruptcy and capital
injection. In these papers there are fixed costs for capital injection, implying that the
solutions involve lump sum, i.e. impulse control type, capital injections; Hugonnier
and Morellec (2017) moreover consider a liquidation value and study liquidity and
leverage requirements. The uncontrolled state process in Décamps et al. (2011) is a
Wiener process with drift. The uncontrolled state process in Hugonnier and Morellec
(2017) is a Wiener process with drift and exponentially distributed jumps.

In He and Liang (2009) both fixed and proportional transaction costs for capital
injection, as well as reinsurance and bankruptcy are considered; the underlying model
is a Wiener process with drift and there is no regulation. Other papers studying differ-
ent models with capital injection and bankruptcy without regulation are Avanzi et al.
(2011), Dai et al. (2010) and Zhu and Yang (2016). In Zhou and Yuen (2012) propor-
tional reinsurance and a maximum dividend rate restriction are studied in a particular
diffusion model; capital injection and the possibility of bankruptcy are studied sepa-
rately. In Kulenko and Schmidli (2008) the classical Cramér–Lundbergmodel without
bankruptcy is studied. A similar model with solvency constraints is studied in Zhang
et al. (2010). In Avram et al. (2007) a spectrally negative Lévy process model without
bankruptcy is considered. Other papers studying different models without bankruptcy
are Paulsen (2008), Peng et al. (2012), Schmidli (2017), Sethi and Taksar (2002) and
Yao et al. (2011). In Bai et al. (2012) an Itô diffusionmodel with fixed transaction costs
and solvency constraints without capital injection is studied. In Chen et al. (2016) an
optimal dividend problem with mandatory capital injection under time-inconsistent
preferences is studied using the game-theoretic approach to time-inconsistent stochas-
tic control; general references for this approach includeBjörk et al. (2017), Christensen
and Lindensjö (2018), Christensen and Lindensjö (2020) and Lindensjö (2019). In De
Angelis and Ekström (2017) andGrandits (2013) the dividend problemwithout capital
injection is considered for a Wiener process with drift and a finite time horizon. We
remark that further comparisons of the present paper to some of the references above
are made in the sections below.

The present paper is organized as follows. In Sect. 2 we formulate the main prob-
lem which is a singular stochastic control problem allowing capital injection as well
as bankruptcy under regulation of the dividend payout barrier type with proportional
costs of capital injection. In Sect. 3 we formulate and solve two problems which are
intimately connected to the main problem. In Sect. 4 we use the results of Sect. 3 to
solve the main problem; the main result is Theorem 4.1. Section4.1 contains graph-
ical illustrations. In Sect. 5 we study an extension of our model by introducing the
possibility for the owner to choose a stopping time at which the insurance company is
liquidated and the owner obtains a liquidation value. Section6 contains conclusions.
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2 Problem formulation and preliminaries

Consider a filtered probability space (�,F ,P,F) satisfying the usual conditions and
supporting a Wiener process W . The controlled surplus process X of an insurance
company is given by

Xt = x + μt + σWt + Ct − Dt ,

where the process D corresponds to accumulated dividends paid to the owner of the
insurance company and the process C corresponds to accumulated capital injection
from the owner. The initial surplus satisfies x ≥ 0 and the parameters satisfy μ > 0
and σ > 0. We suppose that for a given financing strategy (C, D) the value of the
insurance company is the expected value of the sum of the discounted future cash flow
to the owner and that the owner wants tomaximize the value of the insurance company.
In mathematical terms we thus consider the singular stochastic control problem

V (x; br ) := sup
(C,D)∈A(x,br )

Ex

(
lim sup
t→∞

(∫ τ∧t

0
e−αsdDs − k

∫ τ∧t

0
e−αsdCs

))
,

(2.1)

τ := inf{t ≥ 0 : Xt < 0}, (2.2)

where we interpret k > 1 as a proportional cost of injecting capital (equity issuance
costs), α > 0 as a discount rate, τ as the random bankruptcy time and whereA(x, br )
is the set of admissible strategies:

Definition 2.1 For a given initial surplus x ≥ 0 and dividend payout barrier br ≥ 0, a
pair (C, D) is said to be an admissible strategy if C and D are non-decreasing LCRL
F-adapted processes with C0 = D0 = 0 satisfying the dividend payout condition

∫ τ

0
I{Xt<br }dDt = 0 a.s. (2.3)

The main objective of the present paper is to study problem (2.1). This problem
has according to the authors’ knowledge not been studied before.

Obviously the parameters of the model are such that either condition (2.4) below
holds, or (2.4) holds with reversed inequality, which is interpreted as proportional
costs of capital injection k being low or high, respectively. In Theorem 4.1 we will see
that which is the case determines the kind of solution problem (2.1) has.

k ≤ r1 − r2

r1

(
r22
r21

) r1
r1−r2 − r2

(
r22
r21

) r2
r1−r2

, (2.4)

where r1 := − μ

σ 2 +
√

μ2

σ 4 + 2α

σ 2 , r2 := − μ

σ 2 −
√

μ2

σ 4 + 2α

σ 2 . (2.5)
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Note that r2 < 0 < r1 and r
2
2 > r21 . (2.6)

Remark 2.2 Formally we write dDt = dDc
t + �Dt where Dc denotes the continuous

part of D while �Dt := Dt+ − Dt , for Dt+ := limh↘0 Dt+h , denotes jumps in D.
The processes C and X are treated analogously.

Remark 2.3 Condition (2.3) implies that if the surplus at time t is smaller than the
dividend payout barrier br then dividends are not allowed, i.e. dDt = 0. Thus, if
Xt+ < br then a potential jump �Xt cannot have been caused by D and must have
been caused by C and hence Xt ≤ Xt+ < br , implying that dDt = 0 also in this case;
in mathematical terms this means that (2.3) implies that

∫ τ

0
I{Xt+<br }dDt = 0 a.s.

In other words, the surplus directly after a dividend payment cannot be lower than the
dividend payout barrier br either.

Remark 2.4 An inequality analogous to that of (2.4) is used inLøkka andZervos (2008)
when studying problem (2.1) without the presence of a dividend payout barrier, i.e.
with br = 0. Regulation of the type (2.3) was first studied in Paulsen (2003).

2.1 Preliminaries

Here we informally recall well-known results that are used throughout the present
paper; cf. e.g. Karatzas and Shreve (1991), Pilipenko (2014) and Shreve et al. (1984).
For any b > 0 and x ∈ [0, b] there exists an F-adapted non-decreasing continuous
process D̄b with D̄b

0 = 0 such that the process X defined by

Xt = x + μt + σWt − D̄b
t , (2.7)

is reflected at b and satisfies dXt = μdt+σdWt when Xt < b, with D̄b being constant
on any interval where Xt < b. There also exists a pair of F-adapted non-decreasing
continuous processes (C0, Db) with C0

0 = Db
0 = 0 such that the process X defined

by

Xt = x + μt + σWt + C0
t − Db

t , (2.8)

is reflected at b and 0, and satisfies dXt = μdt + σdWt when 0 < Xt < b, with Db

being constant on any interval where Xt < b and C0 being constant on any interval
where Xt > 0. In the case x > b, D̄b and D0 are defined so that the corresponding
processes in (2.7) and (2.8) jump from x to b at t = 0.

The pair (C0, Db) is in the present paper said to be a double barrier strategy, while
(0, D̄b), or simply D̄b, is said to be an upper barrier strategy. For an upper barrier
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strategy D̄b and τ defined in (2.2), the value function x 	→ Ex
(∫ τ

0 e−αt d D̄b
t

)
is the

unique solution to

α f (x) = μ f ′(x) + 1

2
σ 2 f ′′(x), 0 ≤ x < b, (2.9)

f (x) = x − b + f (b), x ≥ b, (2.10)

f (0) = 0, f ′(b) = 1, (2.11)

cf. (Shreve et al. 1984, Lem. 2.1, Cor. 2.2 and Ex. 1). The general solution to the ODE
(2.9) is, for r1 and r2 defined in (2.5) and constants c1 and c2,

f (x) = c1e
r1x + c2e

r2x . (2.12)

The general solution together with (2.10) and the boundary conditions (2.11), and
simple calculations, yield, for any b > 0,

Ex

(∫ τ

0
e−αt d D̄b

t

)
=

{ er1x−er2x

r1er1b−r2er2b
, 0 ≤ x ≤ b,

x − b + er1b−er2b

r1er1b−r2er2b
, x > b.

(2.13)

For a double barrier strategy (C0, Db) the stopping time in (2.2) trivially satisfies
τ = ∞ a.s. The value function x 	→ Ex

(∫ ∞
0 e−αt dDb

t − k
∫ ∞
0 e−αt dC0

t

)
with k > 1

iswell-defined and is the unique solution to (2.9) togetherwith (2.10) and the boundary
conditions

f ′(0) = k, f ′(b) = 1, (2.14)

cf. (Shreve et al. 1984, Lem. 2.1, Cor. 2.2 and Ex. 1). The general solution (2.12)
together with (2.10) and (2.14) yield, for any b > 0,

Ex

(∫ ∞

0
e−αt dDb

t − k
∫ ∞

0
e−αt dC0

t

)

=
⎧⎨
⎩

1
er1b−er2b

(
1−ker2b

r1
er1x − 1−ker1b

r2
er2x

)
, 0 ≤ x ≤ b,

x − b + 1
er1b−er2b

(
1−ker2b

r1
er1b − 1−ker1b

r2
er2b

)
, x > b.

(2.15)

Remark 2.5 The process D̄b can be pathwise defined as D̄b
t = max0≤s≤t (x + μs +

σWs − b)+ which can be seen using the corresponding Skorokhod equation, cf.
Asmussen and Taksar (1997) and (Karatzas and Shreve 1991, Section 3.6 C). The
pair (C0, Db) can be constructed pathwise in a procedure involving iteratively using
the solutions to the Skorokhod equations for reflection at b and at 0 in turn, as noted
in Løkka and Zervos (2008, p. 960).
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3 Two restricted problems

In order to solve problem (2.1) it is useful to first study two related problems for which
the set of admissible strategies is further restricted.

3.1 Capital injection not allowed

Here we consider problem (2.1) under the additional restriction that capital injection is
not allowed—this problem has been studied in the literature, see Paulsen (2003), and
we here only recall the solution. That is, we consider admissible strategies (C, D) ∈
A(x, br ) for which

Ct = 0 for all t ≥ 0 a.s.

For this restricted problem we can write, using also that D is non-decreasing, the
optimal value function (2.1) as

sup
(0,D)∈A(x,br )

Ex

(∫ τ

0
e−αt dDt

)
. (3.1)

The solution to this problem is given by:

Theorem 3.1 The upper barrier strategy D̄b with b = br ∨ b∗ is optimal in (3.1),
where

b∗ := log
(
r22/r21

)
r1 − r2

> 0. (3.2)

Proof The result can be proved using arguments similar to those in the proof of The-
orem 4.1. The constant in (3.2) is also found in Shreve et al. (1984, Eq. (5.6)) and
Løkka and Zervos (2008, Eq. (3.6)) see also Remark 3.3. Note that b∗ > 0 by (2.6).
The result also follows from Paulsen (2003, Theorem 2.2). 
�

The value function corresponding to the strategy in Theorem 3.1 can, using the
results of Sect. 2.1, be written as

G(x; br ) :=
{ er1x−er2x

r1er1b−r2er2b
, 0 ≤ x ≤ b,

x − b + er1b−er2b

r1er1b−r2er2b
, x > b, where b = br ∨ b∗.

(3.3)

Wewill typically writeG(x) instead ofG(x; br ) for convenience. Lemma 3.2 presents
properties of the function G that are used when solving problem (2.1) in Sect. 4.

Lemma 3.2 For G defined in (3.3) it holds that:

(I) G ′(x) > 0 for all x ≥ 0.
(II) If condition (2.4) holds with reversed inequality, then G ′(0) ≤ k.
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Proof We use (2.6) repeatedly. Item (I) is directly verified. Let us prove (II). We find

G ′(0) = r1 − r2
r1er1b − r2er2b

.

From (3.2) it follows that eb
∗ =

(
r22
r21

) 1
r1−r2

. In the case b = b∗ (i.e. br ≤ b∗)

G ′(0) = r1 − r2
r1er1b

∗ − r2er2b
∗

= r1 − r2

r1

(
r22
r21

) r1
r1−r2 − r2

(
r22
r21

) r2
r1−r2

. (3.4)

Thus, G ′(0) ≤ k if and only if (2.4) holds with reversed inequality in the case b = b∗.
Let us view G ′(0) as a function of b which we denote by h, i.e. let

h(b) := r1 − r2
r1er1b − r2er2b

. (3.5)

From the definition of b∗ it follows that the derivative of the denominator in (3.5), i.e.
r21e

r1b −r22 e
r2b, is (strictly) positive when b > b∗ and (strictly) negative when b < b∗.

It follows that h(b) is (strictly) decreasing in b for b > b∗ and (strictly) increasing in
b for b < b∗. Hence, h(b) is maximal at b∗. These facts imply that G ′(0) ≤ k for all
b. We remark that these facts and the function h will be used below. 
�
Remark 3.3 Problem (3.1) was for a fairly general Itô diffusion solved in Paulsen
(2003). In the casewithout a dividend payout barrier, i.e.withbr = 0, the problem (3.1)
is the well-known absorption problem first studied, for a fairly general Itô diffusion,
in Shreve et al. (1984). In particular, in Shreve et al. (1984, Theorem 4.3) it was under
appropriate assumptions—notably that the derivative of the drift function is dominated
by the discount rate—shown that an upper barrier strategy D̄b∗

is optimal, where the
barrier b∗ is determined by the additional boundary condition

f ′′(b∗) = 0. (3.6)

(If no such b∗ exists, then no optimal strategy exists and the optimal value function is
limb→∞ Ex

(∫ τ

0 e−αt d D̄b
t

)
.) In particular, b∗ in Theorem 3.1 is found using condition

(3.6) for the value function (2.13).

3.2 Bankruptcy not allowed

Herewe consider the problem (2.1) under the restriction that bankruptcy is not allowed.
That is, we consider admissible strategies (C, D) ∈ A(x, br ) for which
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Xt ≥ 0 for all t ≥ 0 a.s.

We denote the set of such strategies byAR(x, br ). For this restricted problem it holds
that τ = ∞ a.s. and the optimal value function (2.1) can be written as

sup
(C,D)∈AR(x,br )

Ex

(
lim sup
t→∞

(∫ t

0
e−αsdDs − k

∫ t

0
e−αsdCs

))
. (3.7)

Problem (3.7) has according to the authors’ knowledge not been considered before.
The solution is given by:

Theorem 3.4 The double barrier strategy (C0, Db) with b = br ∨ b∗∗ is optimal in
(3.7), where b∗∗ > 0 is the unique positive solution to the equation

r1e
−r2b∗∗ − r2e

−r1b∗∗ = k(r1 − r2). (3.8)

Proof The result can proved using arguments analogous to those in the proof of The-
orem 4.1. The uniqueness of b∗∗ is verified by noting that r1e−r2b − r2e−r1b is strictly
increasing in b; to see this use differentiation and (2.6). It is easy to see that b∗∗ must
be positive. A proof in the case br = 0 is found in Løkka and Zervos (2008, Sec. 4
and 5). 
�

The value function corresponding to the strategy in Theorem 3.4 can, using the
results of Sect. 2.1, be written as

H(x; br ) :=
⎧⎨
⎩

1
er1b−er2b

(
1−ker2b

r1
er1x − 1−ker1b

r2
er2x

)
, 0 ≤ x ≤ b,

x − b + 1
er1b−er2b

(
1−ker2b

r1
er1b − 1−ker1b

r2
er2b

)
, x > b, b = br ∨ b∗∗.

(3.9)
We will typically write H(x) instead of H(x; br ). Lemma 3.5 presents properties of
the function H that are used when solving the main problem (2.1) in Sect. 4. The proof
of Lemma 3.5 relies on the same type of arguments as the proof of Lemma 3.2 and is
found in the “Appendix”.

Lemma 3.5 For H defined in (3.9) it holds that:

(I) H ′(x) > 0 for all x ≥ 0.
(II) H(0) ≥ 0 is equivalent to

r1e
r1b − r2e

r2b ≤ r1 − r2
k

. (3.10)

Moreover, H(0) ≤ 0 is equivalent to (3.10) with reversed inequality.
(III) Condition (2.4) is equivalent to b∗∗ ≤ b∗ which is equivalent to

r1e
r1b∗∗ − r2e

r2b∗∗ ≤ r1 − r2
k

. (3.11)
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Moreover, (2.4) with reversed inequality is equivalent to b∗∗ ≥ b∗, which is
equivalent to (3.11) with reversed inequality.

(IV) Suppose br ≤ b∗∗. Then, H(0) ≥ 0 is equivalent to (2.4), and H(0) ≤ 0 is
equivalent to (2.4) with reversed inequality.

(V) Suppose (2.4) holds with reversed inequality. Then, for any br , H(0) ≤ 0.
(VI) Suppose (2.4) holds. Then, H(0) ≥ 0 if and only if br ≤ b̂, where b̂ is the unique

solution, on the domain [b∗∗,∞), to the equation

r1e
r1b̂ − r2e

r2b̂ = r1 − r2
k

. (3.12)

Remark 3.6 In the case br = 0 the problem (3.7) is the well-known reflection problem
first studied, for a general Itô diffusion, in Shreve et al. (1984); see also Shreve et
al. (1984, Sec. 5) where the problem is studied for a Wiener process with drift. In
particular, in Shreve et al. (1984,Theorem4.5) itwas for the casebr = 0 shown—under
appropriate assumptions cf. Remark 3.3—that the double barrier strategy (C0, Db∗∗

)

is optimal, where the barrier b∗∗ is given by the additional boundary condition

f ′′(b∗∗) = 0. (3.13)

(If no such b∗∗ exists, then no optimal strategy exists and the optimal value function
is limb→∞ Ex

(∫ ∞
0 e−αt dDb

t − k
∫ ∞
0 e−αt dC0

t

)
.) In particular, b∗∗ in Theorem 3.4 is

found using condition (3.13) for the value function (2.15).

Remark 3.7 The equivalences in (III) in Lemma 3.5 were in the context of studying
problem (2.1) without a dividend payout barrier, i.e. with br = 0, derived in Løkka
and Zervos (2008).

4 Solution to themain problem

Since our model is Markovian it is reasonable to conjecture that the optimal strategy
for problem (2.1) involves either that the owner always saves the insurance company
from bankruptcy by injecting capital when the surplus process hits zero, or that the
owner never does so. Indeed this is what we find in Theorem 4.1. The results in this
section are illustrated in Sect. 4.1 and interpreted in Sect. 6.

Theorem 4.1 (Main result) Consider b∗ defined in (3.2), b∗∗ defined in (3.8) and b̂
defined in (3.12). For problem (2.1) it holds that:

(I) Suppose (2.4) holds.

(I.a) If the dividend payout barrier satisfies br ≤ b̂, then the double barrier
strategy (C0, Db)with b = br ∨b∗∗ is optimal. Moreover, the corresponding
bankruptcy time, cf. (2.2), satisfies τ = ∞ a.s.

(I.b) If br ≥ b̂, then the upper barrier strategy D̄b with b = br ∨ b∗ is optimal.
Moreover, the moments of the corresponding bankruptcy time are finite, i.e.
Ex (τ n) < ∞ for all x ≥ 0 and n.

123



Optimal dividends and capital injection under dividend… 471

(II) Suppose (2.4) holds with reversed inequality. Then the upper barrier strategy
D̄b with b = br ∨ b∗ is optimal for any given br . Moreover, the corresponding
bankruptcy time satisfies the same condition as in (I.b).

The interpretation is that b∗ is the optimal dividend barrier in case capital injection
is not allowed, b∗∗ is the optimal dividend barrier in case capital injection ismandatory,
and b̂ is the regulation level which is such that if the dividend payout barrier satisfies
br ≤ b̂, then it is optimal to inject capital when the insurance company needs it as
long as (2.4) is satisfied.

Remark 4.2 A recursive formula for the moments of the bankruptcy times in (I.b) and
(II) in Theorem 4.1 can be found in Wang and Yin (2008).

Using Theorem 4.1, (3.3) and (3.9) we immediately find:

Corollary 4.3 The optimal value function for problem (2.1) has the representation

V (x; br ) =
{
H(x; br ), if (2.4) holds and br ≤ b̂,
G(x; br ), if (2.4) holds with reversed inequality or br ≥ b̂,

= H(x; br ) ∨ G(x; br ).

Note that Corollary 4.3, (3.3) and (3.9) give an explicit expression for the optimal
value function of problem (2.1).

The following properties of the solution of problem (2.1) are proved in the
“Appendix”:

Corollary 4.4 Suppose (2.4) holds with strict inequality. If br < b̂, then V (0; br ) =
H(0; br ) > G(0; br ) = 0. If br > b̂, then H(0; br ) < V (0; br ) = G(0; br ) = 0.

Remark 4.5 The interpretation of Corollary 4.4 is that in the case capital injection costs
are low (in the sense that (2.4) holds with strict inequality) the following holds. If the
dividend payout barrier satisfies br < b̂, then it is not optimal to allow bankruptcy. If
the dividend payout barrier satisfies br > b̂, then it is not optimal to save the insurance
company from bankruptcy.

Corollary 4.6 For any fixed x > 0 it holds that:

(I) V (x; br ) is decreasing in br . In particular:

(I.a) If (2.4) holds, then V (x; br ) is independent of br for br ≤ b∗∗ and strictly
decreasing in br for br > b∗∗.

(I.b) If (2.4) holds with reversed inequality, then V (x; br ) is independent of br
for br ≤ b∗ and strictly decreasing in br for br > b∗.

(II) limbr→∞ V (x; br ) = 0.

Remark 4.7 It is easy to show that the results in Corollary 4.6 hold also in the case
x = 0, with the modification that V (0; br ) is only strictly decreasing in the case
V (0; br ) > 0, i.e. when (2.4) holds with strict inequality and br < b̂.
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Proof of Theorem 4.1 We remark that this proof relies neither on Theorem 3.1 nor on
Theorem 3.4.

Let us first deal with the results about the bankruptcy time τ . The result for (I.a) is
trivial since X is reflecting at both b and 0 in this case. The result for (I.b) and (II) is
contained in Wang and Yin (2008).

Now consider a function g ∈ C1([0,∞)) ∩ C2([0, b) ∪ (b,∞)) for some b > 0,
an arbitrary strategy (C, D) ∈ A(x, br ) and an arbitrary time t > 0. Similarly to
e.g. Shreve et al. (1984, p. 60) and Løkka and Zervos (2008, p. 959) we note that for
the right-continous process (X(τ∧t)+)t≥0 (cf. Remark 2.2) it holds, by the Itô-Tanaka
formula, that

e−α(τ∧t)g(X(τ∧t)+)

= g(x) +
∫ τ∧t

0
e−αs

(
μg′(Xs) + 1

2
σ 2g′′(Xs) − αg(Xs)

)
I{Xs �=b}ds

+
∫ τ∧t

0
e−αsσ g′(Xs)dWs +

∫ τ∧t

0
e−αsg′(Xs)dC

c
s −

∫ τ∧t

0
e−αsg′(Xs)dD

c
s

+
∑

0≤s≤τ∧t
e−αs(g(Xs + �Cs) − g(Xs)) +

∑
0≤s≤τ∧t

e−αs(g(Xs − �Ds) − g(Xs)).

The fundamental theorem of calculus gives

g(Xs + �Cs) − g(Xs) =
∫ �Cs

0
g′(Xs + z)dz,

g(Xs − �Ds) − g(Xs) = −
∫ �Ds

0
g′(Xs − z)dz.

Now suppose g is either the value function of the upper barrier strategy D̄b with
b = br ∨ b∗, given by G in (3.3), or the value function of the double barrier strategy
(C0, Db) with b = br ∨b∗∗, given by H in (3.9)—the differentiability condition used
above is directly verified in both cases. Then g satisfies (2.9) and (2.10) which implies
that g′(x) = 1 for x ≥ b and g′′(x) = 0 for x > b.

These observations imply that

g(x) = e−α(τ∧t)g(X(τ∧t)+) −
∫ τ∧t

0
e−αs (μ − αg(Xs)) I{Xs>b}ds

−
∫ τ∧t

0
e−αsσ g′(Xs)dWs −

∫ τ∧t

0
e−αsg′(Xs)dC

c
s +

∫ τ∧t

0
e−αsg′(Xs)dD

c
s

−
∑

0≤s≤τ∧t
e−αs

∫ �Cs

0
g′(Xs + z)dz +

∑
0≤s≤τ∧t

e−αs
∫ �Ds

0
g′(Xs − z)dz.

Lemma 7.2 gives (μ − αg(Xs)) I{Xs>b} ≤ 0 and therefore
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g(x) ≥ e−α(τ∧t)g(X(τ∧t)+) −
∫ τ∧t

0
e−αsσ g′(Xs)dWs

+
∫ τ∧t

0
e−αsg′(Xs)dD

c
s +

∑
0≤s≤τ∧t

e−αs
∫ �Ds

0
g′(Xs − z)dz

−
∫ τ∧t

0
e−αsg′(Xs)dC

c
s −

∑
0≤s≤τ∧t

e−αs
∫ �Cs

0
g′(Xs + z)dz.

Hence,

g(x) ≥
(∫ τ∧t

0
e−αsdDs − k

∫ τ∧t

0
e−αsdCs

)
(4.1)

+ e−α(τ∧t)g(X(τ∧t)+) −
∫ τ∧t

0
e−αsσ g′(Xs)dWs (4.2)

+
∫ τ∧t

0
e−αs(g′(Xs) − 1)dDc

s +
∑

0≤s≤τ∧t
e−αs

∫ �Ds

0
(g′(Xs − z) − 1)dz

(4.3)

+
∫ τ∧t

0
e−αs(k − g′(Xs))dC

c
s +

∑
0≤s≤τ∧t

e−αs
∫ �Cs

0
(k − g′(Xs + z))dz.

(4.4)

We conclude the proof by considering different cases. We rely on G in (3.3) solving
(2.9) on [0, b), (2.10) and (2.11) with b = br ∨ b∗ and H in (3.9) solving (2.9) on
[0, b), (2.10) and (2.14) with b = br ∨ b∗∗, cf. Sect. 2.1.

Case A: Consider the conditions of (I.a). Suppose g in inequality (4.1)–(4.4) is
defined as H in (3.9). Suppose br ≤ b∗∗ (i.e. b = b∗∗). Observe:

• H ′(x) = 1 for x ≥ b∗∗ and H ′(0) = k. Since H ′(x) > 0 for x ≥ 0 (Lemma 3.5)
and H ′′(b∗∗) = 0 (easily verified) it follows from Lemma 7.1 that H ′′(x) < 0 for
x < b∗∗. Hence, H ′ is non-increasing on [0, b∗∗]. It follows that 1 ≤ H ′(x) ≤ k
for x ≥ 0. We conclude that the expressions (4.3) and (4.4) are non-negative.

• UseLemma 3.5 and br ≤ b̂ to find that H(0) ≥ 0 and H ′(x) > 0 for x ≥ 0. Hence,
H(x) ≥ 0 for x ≥ 0. We conclude that the first term in (4.2) is non-negative.

• If we send t to infinity, then the second term in (4.2) converges a.s. to a random
variable with zero expectation (use that H ′(x) is a bounded function).

Thus, sending t to infinity (lim sup) in (4.1)–(4.4) and taking expectation give

H(x) ≥ Ex

(
lim sup
t→∞

(∫ τ∧t

0
e−αsdDs − k

∫ τ∧t

0
e−αsdCs

))
.

Since (C, D) ∈ A(x, br ) was arbitrarily chosen it follows that (I.a) holds in the case
b = b∗∗ (recalling that H(x) is the value function attained by the strategy in (I.a)).

Now suppose br > b∗∗ (i.e. b = br ). Observe:
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• H ′(x) = 1 for x ≥ br . The dividend payout condition (2.3) (see also Remark
2.3) therefore implies that the expressions in (4.3) vanish (either the derivatives
are equal to one or there are no dividends).

• H ′(0) = k, H ′(x) > 0 and limx↗br H
′′(x) > 0 (Lemma7.2) for x ≥ 0.Using also

Lemma 7.1 (and regularity of H ) we thus have that: H ′(0) = k and H ′(br ) = 1
with H ′ decreasing on an interval [0, c) and increasing on (c, br ] (with c deter-
mined by H ′′(c) = 0). Hence, H ′(x) ≤ k for x ≥ 0 and the terms in (4.4) are
non-negative.

The terms in (4.2) are dealt with in the same way as above. Using the same limiting
arguments as above we find that (I.a) holds also in the case b = br .

Case B: Consider the conditions of (II). Suppose g in (4.1)–(4.4) is defined as G
in (3.3). Suppose br ≤ b∗. Observe:
• G ′(0) ≤ k, G ′(x) > 0 (Lemma 3.2) and G ′(x) = 1 for x ≥ b∗. From G ′′(b∗) = 0
(easily verified) and Lemma 7.1 it follows that G ′′(x) < 0 for x < b∗. Hence, G ′
is non-increasing on [0, b∗]. We conclude that 1 ≤ G ′(x) ≤ k for x ≥ 0.

• G(0) = 0 (directly verified) and G(x) ≥ 0 (by the item above).

Using arguments analogous to those above we find that (II) holds in the case b = b∗.
Now suppose br > b∗. Observe:
• G ′(x) = 1 for x ≥ br and condition (2.3) imply that the expressions in (4.3)
vanish (as above).

• G ′(0) ≤ k, G ′(x) > 0 and limx↗br G
′′(x) > 0 (Lemma 7.2) for x ≥ 0. Using

arguments similar to those in the second part of Case A we find that G ′(x) ≤ k.
• As above we find that G(x) ≥ 0.

The usual arguments now imply that (II) holds also in the case b = br .
Case C: We have left to prove (I.b). If G ′(0) ≤ k holds also in this case, then the

result follows by the exact same arguments as in Case B. Thus, it is enough to show
that G ′(0) ≤ k for b ≥ b̂ when (2.4) holds. In (3.5) we defined the function h by

h(b) = r1 − r2
r1er1b − r2er1b

= G ′(0).

Hence, G ′(0) = k when b = b̂, by definition of b̂ in (3.12). Thus, in order to prove
that G ′(0) ≤ k for any b ≥ b̂ it is enough to show that h(b) is non-increasing in b
for b ≥ b̂. But h(b) is non-increasing exactly when b ≥ b∗, as we saw in the proof
of Lemma 3.2. Hence, it is enough to prove that b̂ ≥ b∗. The right side of (2.4) is
equal to h(b∗), cf. (3.4). Use this, the definition of b̂ in (3.12), and Lemma 3.5 to find
k ≤ h(b∗), k = h(b̂), k ≤ h(b∗∗). But since h is maximal at b∗, see the proof of
Lemma 3.2, it follows that

k = h(b̂) ≤ h(b∗∗) ≤ h(b∗). (4.5)

But since b̂ ∈ [b∗∗,∞) by definition it follows that the only possibility is b̂ ≥ b∗; to
see this use b∗∗ ≤ b∗ (Lemma 3.5), (4.5), the fact that h(b) is non-decreasing when
b ≤ b∗ and non-increasing when b ≥ b∗. 
�
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0 0.5 1 1.5 2 2.5

0

1

2

3

For br = 2.4

Fig. 1 x 	→ H(x; br ) (solid) and x 	→ G(x; br ) (dashed) for different values of the dividend payout barrier
br . (Recall that the optimal value function is given by V (x; br ) = H(x; br ) ∨ G(x; br ))

4.1 Graphical illustrations

Recall that H(x; br ) is the optimal value function without the possibility of bank-
ruptcy, G(x; br ) is the optimal value function without the possibility of capital injec-
tion and that the optimal value function when both bankruptcy and capital injection is
allowed, i.e. V (x; br ), is for any fixed br given by either H(x; br ) or G(x; br ) accord-
ing towhich is dominating the other, seeCorollary 4.3. Figure1 illustrates Theorem4.1
and Corollary 4.3 by showing how increasing the dividend payout barrier br changes
which of H(x; br ) and G(x; br ) is dominating. Figure1 also illustrates Corollary 4.4.
Figure2 illustrates Corollary 4.6 by showing how V (x; br ) = H(x; br ) ∨ G(x; br )
(cf. Corollary 4.3) decreases in br . Both figures illustrate that H(x; br ) and G(x; br )
coincide when br = b̂, cf. Theorem 4.1. In Figs. 1 and 2 we use the parameters
μ = 0.04, σ 2 = 0.15, α = 0.05 and k = 1.01 for which condition (2.4) holds with
strict inequality, b∗∗ ≈ 0.17, b∗ ≈ 0.75 and b̂ ≈ 1.58.

In Figs. 3 and 4 we consider the parametrization cμ := μ

σ 2 and cα := α
σ 2 and illus-

trate how b∗ (the optimal dividend barrier in case capital injection is not allowed), b∗∗
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For x = 0.1
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For x = 1

Fig. 2 br 	→ H(x; br ) (solid) and br 	→ G(x; br ) (dashed) for different values of initial surplus x . The
dashed vertical lines in each picture indicate b∗∗, b∗ and b̂, in that order. (Recall that the optimal value
function is given by V (x; br ) = H(x; br ) ∨ G(x; br ))

0 2 4 6 8
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1.5
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1

1.2
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1.6

Fig. 3 b∗ (solid), b∗∗ (dashed), b̂ (dotted), and the right hand side of (2.4) (dash-dotted) as functions of
cμ := μ

σ2 . Here we fix cα := α

σ2 = 1
3 and k = 1.04

(the optimal dividend barrier in case capital injection is mandatory), b̂ (the regulation
level which is such that if the dividend payout barrier satisfies br ≤ b̂, then it is optimal
to inject capital when the insurance company needs it as long as (2.4) is satisfied), and
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Fig. 4 b∗ (solid), b∗∗ (dashed), b̂ (dotted), and the right hand side of (2.4) (dash-dotted) as functions of
cα := α

σ2 . Here we fix cμ := μ

σ2 = 4
15 and k = 1.04

the right hand side of (2.4) (the level for the proportional cost k which is such that if k
is larger than this level then it can never be optimal to inject capital), depend on these
parameters.

5 Adding the possibility of liquidation to themodel

In this section we consider a version of the problem studied in the previous sections by
supposing that the owner can at any time choose to liquidate the insurance company
and receive a non-zero liquidation value. For ease of expositionwedonot in this section
consider the possibility of capital injection. In particular, we consider the combined
singular stochastic control and stopping problem

sup
(D,ρ)∈B(x,br )

Ex

(∫ ρ∧τ

0
e−αt dDt + e−α(ρ∧τ)L

(
X(ρ∧τ)+

))
, (5.1)

where (i) L : [0,∞) → [0,∞) is non-decreasing, concave and twice continuously
differentiable with a bounded derivative and L(0) = 0, and (ii) B(x, br ) denotes the
set of pairs (D, ρ) where D is a non-decreasing LCRL F-adapted processes with
D0 = 0 satisfying (2.3) for a dividend payout barrier br ≥ 0 and ρ is a stopping time
with respect to F .

The interpretation of problem (5.1) is that the owner of the insurance company not
only chooses a dividend process D but also a stopping time ρ at which the insurance
company will be liquidated—in case it has not already gone bankrupt—and the owner
will receive a liquidation value L

(
X(ρ∧τ)+

)
. The condition L(0) = 0 ensures that

there is no liquidation value in case the insurance company goes bankrupt. Note that if
L(x) < x for all x , then it cannever beoptimal to liquidate the insurance company since
it would always be better to distribute the remaining surplus x and go bankrupt instead.

The main findings of this section are the two verification results Theorem 5.1 and
Theorem 5.3 which say that the optimal strategy for problem (5.1) is, under certain
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conditions, a barrier strategy in the sense that it is optimal to (i) pay dividends in
order to reflect the surplus process at an upper barrier, and (ii) liquidate the insurance
company at a lower barrier; where these barriers are given by smooth fit conditions.
These results are then used in Example 5.5.

Consider any two constants ā > a > 0 and let the function U be given by

U (x; a, ā) :=

⎧⎪⎨
⎪⎩
L(x), 0 ≤ x ≤ a,

C1er1x + C2er2x , a < x ≤ ā,

x − ā + C1er1ā + C2er2ā, x > ā,

(5.2)

where C1 and C2 are defined so that x 	→ U (x; a, ā) is continous and continuously
differentiable except at a, i.e.

C1 := (
L(a) − C2e

r2a
)
e−r1a and C2 := 1 − r1L(a)er1(ā−a)

r2er2ā − r1er1(ā−a)+r2a
. (5.3)

Theorem 5.1 Suppose there exists two constants 0 < a∗ < ā∗ with ā∗ ≥ br such that:

(i) x 	→ U (x; a∗, ā∗), cf. (5.2), satisfies smooth fit in the sense that this function
is continuously differentiable and twice continuously differentiable except at a∗,
i.e. such that U ′(a∗; a∗, ā∗) = L ′(a∗) and U ′′(ā∗; a∗, ā∗) = 0.

(ii) U (x; a∗, ā∗) ≥ L(x) for all x ≥ 0.
(iii) μL ′(x) + 1

2σ
2L ′′(x) − αL(x) ≤ 0 for all 0 ≤ x ≤ a∗.

Then the optimal strategy in (5.1) is given by

Dā∗
and ρa∗ := inf{t ≥ 0 : Xt < a∗}. (5.4)

Moreover, the optimal value function in (5.1) is given by x 	→ U (x; a∗, ā∗).

Remark 5.2 It can be directly verified that the definitions of C1 and C2 in (5.3) ensure
that the function x 	→ U (x; a, ā) in (5.2) is continous and that its derivative is con-
tinous except at a; and that smooth fit (cf. Theorem 5.1(i)) holds when a = a∗ and
ā = ā∗ where a∗ and ā∗ solve the non-linear equation system

{
r1C1er1a

∗ + r2C2er2a
∗ = L ′(a∗)

r21C1er1ā
∗ + r22C2er2ā

∗ = 0.

The interpretation of the condition ā∗ ≥ br in Theorem 5.1 is that the dividend
payout barrier br is not binding. We now consider a binding dividend payout barrier.

Theorem 5.3 Suppose br > ā∗ and that there exists a constant 0 < abr < br such
that:

(i) x 	→ U (x; abr , br ) satisfies smooth fit in the sense that this function is continu-
ously differentiable, i.e.U ′(abr ; abr , br ) = L ′(abr ). Also, limx↗br U

′′(x; abr , br )≥ 0.
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(ii) U (x; abr , br ) ≥ L(x) for all x ≥ 0.

(iii) μL ′(x) + 1
2σ

2L ′′(x) − αL(x) ≤ 0 for all 0 ≤ x ≤ abr .

Then the optimal strategy in (5.1) is given by

Dbr and ρabr := inf{t ≥ 0 : Xt < abr }.

Moreover, the optimal value function in (5.1) is given by x 	→ U (x; abr , br ).
Remark 5.4 The problem in (5.1) is a combined optimal stopping and singular stochas-
tic control problem. We remark that it is likely possible to prove more general
verification results than Theorems 5.1 and 5.3 and to further investigate this problem
from different perspectives. However, a more complete investigation of problem (5.1)
is outside the scope of the present paper.

Proof of Theorem 5.1 Using the same line of arguments as in Sect. 2 we find that if
we the use the strategy in (5.4) in the expected value in the right hand side of (5.1),
then this expected value is equal to U (x; a∗, ā∗), cf. (5.2), for each x ≥ 0. (Note that
using also (5.2) and (2.6) it is easy to see that C1 > 0.) Hence, we now only have to
prove that U (x; a∗, ā∗) dominates the expected value in the right hand side of (5.1)
for any admissible strategy (D, ρ). In the rest of this the proof we write U (x) instead
of U (x; a∗, ā∗). Observe:

• C1er1x + C2er2x solves the ODE (2.9).
• For x ≥ ā∗, it holds that

μ − αU (x) = μ − α(x − ā∗ +U (ā∗)) ≤ μ − αU (ā∗) = 0.

To see that the last equality holds observe that μU ′(x) + 1
2σ

2U ′′(x) − αU (x) =
0, a∗ < x < ā∗, send x ↗ ā∗ and use the smooth fit condition (i). The first
equality follows directly from (5.2).

From these observations, (5.2) and (iii) it follows that

μU ′(x) + 1

2
σ 2U ′′(x) − αU (x) =

⎧⎪⎨
⎪⎩

μL ′(x) + 1
2σ 2L ′′(x) − αL(x), 0 < x < a∗

0, a∗ < x ≤ ā∗
μ − αU (x), x > ā∗

≤ 0. (5.5)

Using (5.5) and arguments similar to those in the proof of Theorem 4.1 we now find
that for any admissible strategy (D, ρ) and t > 0 it holds that

U (x) ≥
∫ ρ∧τ∧t

0
e−αsdDs + e−α(ρ∧τ∧t)U (X(ρ∧τ∧t)+) (5.6)

−
∫ ρ∧τ∧t

0
e−αsσU ′(Xs)dWs (5.7)
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+
∫ ρ∧τ∧t

0
e−αs (

U ′(Xs) − 1
)
dDc

s

+
∑

0≤s≤ρ∧τ∧t
e−αs

∫ �Ds

0

(
U ′(Xs − z) − 1

)
dz. (5.8)

Now observe:

• Since C1 > 0 (see the beginning of the proof) it follows from U ′′(ā∗) =
r21C1er1ā

∗ + r22C2er2ā
∗ = 0 (cf. (i) and Remark 5.2) that C2 < 0, which implies,

see also (2.6), that r21C1er1x + r22C2er2x is a strictly increasing function. Hence,
U ′′(x) < 0, a∗ < x < ā∗, which implies thatU ′(x) is non-increasing on (a∗, ā∗).
Moreover, since U (x) = L(x), 0 ≤ x ≤ a∗ and L is concave it also holds that
U ′(x) is non-increasing on [0, a∗). Hence, since U ′(x) is continuous, it follows
that U ′(x) is non-increasing on [0, ā∗). Using also that U ′(x) = 1, x ≥ ā∗, we
thus conclude that

U ′(x) − 1 ≥ 0, for all x > 0.

• Using that L(x) has a bounded derivative it is easy to see that also U (x) has
a bounded derivative. Hence, using arguments similar to those in the proof of
Theorem 4.1, we find that the Itô integral in (5.7) converges a.s. to a random
variable with zero expectation as t → ∞.

From the items above it follows that sending t → ∞ in the expression (5.6)–(5.8)
and taking expectation yield

U (x) ≥ Ex

(∫ ρ∧τ

0
e−αt dDt + e−αρ∧τU (X(ρ∧τ)+)

)
,

which, using also (ii), concludes the proof. 
�
Proof of Theorem 5.3 In this proof we write U (x) instead of U (x; abr , br ). A proof
of the present result can easily be found by making a few alterations to the proof of
Theorem 5.1 according to the following:

• A statement analogous to that of (5.6)–(5.8) holds also in the present case. To
arrive at this version of (5.6)–(5.8) use arguments analogous to those in the proof
of Theorem 5.1; in this case the analogue of (5.5) is found for abr instead of a∗
and br instead of ā∗ and relying on μ − αU (br ) ≤ 0 (to see that this inequality
holds use arguments similar to those in the proof of Theorem 5.1 but relying on
the condition limx↗br U

′′(x) ≥ 0, see Theorem 5.3(i)).
• Similarly to the proof of Theorem 4.1 note that U ′(x) = 1, x ≥ br and that from
this and the condition (2.3) it follows that the last two terms in present version of
(5.6)–(5.8) vanish (since (2.3) implies that for any admissible strategy (D, ρ) it
holds that either there are no dividends or Xt ≥ br ). 
�
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Fig. 5 The liquidation value
(dotted) and optimal value
function in the case without
regulations i.e. with br = 0
(upper solid) and in the case
br = 4.5 (lower solid) from
Example5.5. The vertical lines
indicate a∗ and abr (the
liquidation barriers), and ā∗ and
br (the dividend barriers), in that
order

0 1 2 3 4 5
0

2

4

6

Example 5.5 Suppose the liquidation value is given by L(x) = c log(x + 1) and that
the parameters of the model are c = 1.8, μ = 0.08, σ 2 = 0.4 and α = 0.03. Let
us consider the dividend payout barriers br = 0 and br = 4.5. In the unregulated
case br = 0 the conditions (i)–(iii) in Theorem 5.1 are satisfied for a∗ ≈ 0.2762
and ā∗ ≈ 2.2566; meaning that it is optimal to pay dividends in order to reflect the
surplus process at the upper barrier ā∗ ≈ 2.2566 and liquidate the insurance company
at a lower barrier a∗ ≈ 0.2762. In the case br = 4.5 conditions (i)–(iii) in Theorem
5.3 are satisfied for abr ≈ 1.5434; meaning that it is optimal to pay dividends in
order to reflect the surplus process at the dividend payout barrier br and liquidate the
insurance company at a lower barrier abr ≈ 1.5434.We conclude that the introduction
of a binding dividend payout barrier (br > ā∗) implies a higher liquidation barrier
(abr > a∗), i.e. earlier liquidation, in this example. The corresponding value functions
are depicted in Fig. 5.

6 Conclusions

The main interpretation of the results in this paper, in particular of items (I.a) and
(I.b) in Theorem 4.1, see also Figs. 1 and 2, is that if the proportional cost of injecting
capital k is low, i.e. if (2.4) holds, then it is optimal to use a double barrier financing
strategy and never allow the insurance company to go bankrupt as long as the dividend
payout barrier br is lower than the level b̂, i.e. the optimal value function is given by
V (x; br ) = H(x; br ); see Corollary 4.3 and (3.9). However, if the dividend payout
barrier br is set higher than b̂, then the optimal behavior switches to an upper barrier
strategy that lets the insurance company go bankrupt the first time the surplus reaches
zero, i.e. the optimal value function is given by V (x; br ) = G(x; br ); see Corollary
4.3 and (3.3). Moreover, the interpretation of Corollary4.6, see also Fig. 2, is that an
increase in the dividend payout barrier decreases the optimal value function (i.e. the
value of the insurance company), with the corresponding limit being zero.

The main economic conclusion of this paper is that restrictive regulations may have
a negative effect on the longevity of the regulated company. In particular, if a profitable
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insurance company (corresponding toμ > 0) has access to awell-functioningfinancial
market (corresponding to the proportional costs for capital injection k satisfying (2.4)),
then its owners will inject capital when needed in case the market is unregulated or at
least not too heavily regulated (br ≤ b̂). However, if the regulation is sufficiently heavy
(br > b̂), then the owners of the same insurance company will change their behavior;
specifically, they will never inject capital and instead let the insurance company go
bankrupt in the case of financial distress, i.e. in the case of zero surplus.

In Sect. 5 we study a version of our problem under the assumption that the owner
can at any time liquidate the insurance company and thereby receive a liquidation
value depending on the current surplus, but not inject capital. The main results are
Theorems 5.1 and 5.3, which say that, under certain conditions, the optimal strategy
is to pay dividends so that the surplus is reflected at an upper barrier and liquidate the
insurance company at a lower barrier.
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7 Appendix

Lemma 7.1 Suppose a function g ∈ C2 solves (2.9) on an interval [a, b], with g′(x) >

0 for x ∈ [a, b].
(I) If g′′(x0) = 0 for some x0 ∈ (a, b) then g′′(x) < 0 for x ∈ [a, x0) and g′′(x) > 0

for x ∈ (x0, b].
(II) If g′′(b) = 0, then g′′(x) < 0 for x ∈ [a, b).

Proof If g solves (2.9) then so does g′. Thus, if g′′(x0) = 0 for some x0 ∈ [a, b],
then (x − x0)g′(x)g′′(x) > 0 for x ∈ [a, b], x �= x0, by Shreve et al. (1984, Lemma
4.2(b)). The assertions follow. 
�
Lemma 7.2 For G defined in (3.3) and b = br ∨ b∗, holds

(μ − αG(x)) I{x>b} ≤ 0, for x ≥ 0. (7.1)

Moreover,

if br > b∗, then lim
x↗b

G ′′(x) > 0. (7.2)

The results also hold for H in (3.9) when b∗ is replaced with b∗∗.
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Proof We directly find that

lim
x↗b

G ′′(x) = r21e
r1b − r22e

r2b

r1er1b − r2er2b
. (7.3)

The numerator in (7.3) is (as we have seen) strictly positive when b > b∗, by definition
of b∗, see (3.2). This proves (7.2). We also find

lim
x↗b

H ′′(x) = 1

er1b − er2b

(
r1(1 − ker2b)er1b − r2(1 − ker1b)er2b

)
.

Hence, if

r1(1 − ker2b)er1b − r2(1 − ker1b)er2b > 0, (7.4)

for b > b∗∗, then (7.2) holds also for H when replacing b∗ with b∗∗. The inequality
(7.4) is equivalent to

r1(1 − ker2b)er1b − r2(1 − ker1b)er2b > 0 ⇔ r1e
r1b − r2e

r2b > k(r1 − r2)e
(r1+r2)b

⇔ r1e
−r2b − r2e

−r1b > k(r1 − r2).

Now, the definition of b∗∗ is that the last inequality is an equality when b = b∗∗.
Hence, if we can show that r1e−r2b − r2e−r1b is (strictly) increasing in b for b > b∗∗,
then (7.4) is satisfied for b > b∗∗; but this is easily verified using the derivative and
(2.6). We have thus proved (7.2) also for H and b∗∗.

Let us prove (7.1), the same arguments also work for H and b∗∗. Since G satisfies
(2.10) it follows that

(μ − αG(x)) I{x>b} = (μ − α(x − b + G(b))) I{x>b}
≤ (μ − αG(b)) I{x>b}. (7.5)

G also satisfies (2.9) and G ′(b) = 1. Thus, by continuity 1
2σ

2 limx↗b G ′′(x) =
αG(b) − μ. If b = b∗ then limx↗b G ′′(x) = 0 (to see this use the definition b∗
and (7.3)) and hence μ − αG(b) = 0. Moreover, if b > b∗ it follows from (7.2) that
μ − αG(b) ≤ 0. Using this in (7.5) implies that (7.1) holds. 
�
Proof of Lemma 3.5 We use (2.6) repeatedly. (I) is directly verified.

Proof of (II). Evaluating (3.9) at x = 0 and requiring non-negativity gives

1

er1b − er2b

(
1 − ker2b

r1
− 1 − ker1b

r2

)
≥ 0.

Now simplify. The other case is analogous.
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Proof of (III). We only prove the first statement (the proof of the second is analogous).
The definition of b∗∗ in (3.8) is equivalent to

r1
r2

= 1 − ker1b
∗∗

1 − ker2b∗∗ e
b∗∗(r2−r1) ⇔ 1 − ker2b

∗∗

1 − ker1b∗∗ = eb
∗∗(r2−r1) r2

r1
.

Now, (3.11) is equivalent to

r1
r2

≥ 1 − ker2b
∗∗

1 − ker1b∗∗ .

Thus, (3.11) is equivalent to r1
r2

≥ eb
∗∗(r2−r1) r2

r1
which is equivalent to

r21
r22

≤ eb
∗∗(r2−r1).

Solving for b∗∗ gives b∗∗ ≤ log(r22/r21 )/(r1 − r2) = b∗ (cf. (3.2)) and the second
equivalence is thus proved.

To see that (2.4) is equivalent to b∗∗ ≤ b∗ first note that (2.4) holds with equality
exactly when b∗ = b∗∗; to see this note that k = r1−r2

r1er1b
∗−r2er2b

∗ (i.e. (2.4) holds with

equality) if and only if r1e−r2b∗ − r2e−r1b∗ = k(r1 − r2) (i.e. b∗ = b∗∗, cf. (3.8)),
which with some effort can be verified by solving for k and using the definition in
(3.2). Second, if k decreases then b∗∗ decreases; to see this note that the derivative of
the left side of (3.8) with respect to b∗∗ is positive. It follows that (2.4) is equivalent
to b∗∗ ≤ b∗.
Proof of (IV). Again we only prove the first statement. In the case br ≤ b∗∗ (i.e. with
b = b∗∗) it holds that H(0) ≥ 0 is equivalent to (3.11), by item (II). Hence, the result
follows from (III).
Proof of (V). By (III) it holds that

r1e
r1b∗∗ − r2e

r2b∗∗ ≥ r1 − r2
k

.

Thus, in the case b = b∗∗ (i.e. br ≤ b∗∗) it follows, from (II), that H(0) ≤ 0.
Now, if we can prove that r1er1b − r2er2b is non-decreasing in b, for b ≥ b∗∗, then it
follows, from (II) that H(0) ≤ 0 also in the case br > b∗∗ and we are done. Hence,
it is enough to show that its derivative, r21e

r1b − r22e
r2b, is non-negative for b ≥ b∗∗.

But r21e
r1b − r22 e

r2b ≥ 0 is equivalent to b ≥ b∗(as we have seen) and since b∗∗ ≥ b∗
(by (III)) it follows therefore that r1er1b − r2er2b is non-decreasing in b, for b ≥ b∗∗.
Proof of (VI). (III) gives

r1e
r1b − r2e

r2b ≤ r1 − r2
k

for b = b∗∗. (7.6)

From the proof of Lemma 3.2 we know that r1er1b − r2er2b is (strictly) increasing in
b for b > b∗ and (strictly) decreasing in b for b < b∗; moreover, the left side of (7.6)
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clearly converges to∞ as b → ∞. Hence, there exists a unique constant b̂ ∈ [b∗∗,∞)

such that

r1e
r1b − r2e

r2b ≤ r1 − r2
k

for b ≤ b̂, and r1e
r1b − r2e

r2b ≥ r1 − r2
k

for b ≥ b̂.

The result follows from (II).

Proof of Corollary 4.4 The result is easy to show using the following observations:

(i) H(0; b̂) = G(0; b̂) = 0 under condition (2.4) (cf. Corollary 4.3),
(ii) G(0; br ) = 0 for all br (cf. (3.3)),
(iii) b̂ > b∗∗ when (2.4) holds with strict inequality (this follows from a direct

modification of Lemma 3.5 based on strict inequalities),
(iv) H(0; br ) is strictly decreasing in br when br > b∗∗ (use differentiation, (2.6),

the definition of b∗ and arguments from the proof of Theorem 3.4).
(v) Corollary 4.3.

Proof of Corollary 4.6 From Corollary 4.3 it follows that V (x; br ) = G(x; br ) for
br ≥ b̂. Using (3.3) and (2.6) we directly obtain (II).

Let us prove (I), (I.a) and (I.b). By Corollary 4.3 and the fact that b∗∗ ≤ b∗ ≤ b̂
when condition (2.4) holds (which follows from (III) in Lemma 3.5 and Case C in the
proof of Theorem 4.1) it suffices to show that for each fixed x > 0 it holds that:

(i) G(x; br ) is independent of br for br ≤ b∗ and strictly decreasing in br for
br > b∗, and

(ii) H(x; br ) is independent of br for br ≤ b∗∗ and strictly decreasing in br for
br > b∗∗.

From (3.3) we directly see that G(x; br ) does not depend on br for br < b∗. For
br > b∗ and 0 < x < br it is easy to show that G(x; br ) is strictly decreasing in br
(use differentiation and (2.6)). This also holds for br > b∗ and x > br . Hence, (i)
follows from the continuity of G(x; br ). Item (ii) is proved analogously.
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