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Abstract: Density peak clustering (DPC) is a density-based clustering method that has attracted
much attention in the academic community. DPC works by first searching density peaks in the
dataset, and then assigning each data point to the same cluster as its nearest higher-density point.
One problem with DPC is the determination of the density peaks, where poor selection of the density
peaks could yield poor clustering results. Another problem with DPC is its cluster assignment
strategy, which often makes incorrect cluster assignments for data points that are far from their
nearest higher-density points. This study modifies DPC and proposes a new clustering algorithm
to resolve the above problems. The proposed algorithm uses the radius of the neighborhood to
automatically select a set of the likely density peaks, which are far from their nearest higher-density
points. Using the potential density peaks as the density peaks, it then applies DPC to yield the
preliminary clustering results. Finally, it uses single-linkage clustering on the preliminary clustering
results to reduce the number of clusters, if necessary. The proposed algorithm avoids the cluster
assignment problem in DPC because the cluster assignments for the potential density peaks are based
on single-linkage clustering, not based on DPC. Our performance study shows that the proposed
algorithm outperforms DPC for datasets with irregularly shaped clusters.
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1. Introduction

Clustering is the process of grouping data points such that each group contains similar data
points, and the data points in different groups are dissimilar. It is the main task in data mining and
has applications in many fields, such as marketing [1,2], image processing [3,4], bioinformatics [5]
and finance [6]. For different applications, the notation of “similarity” or “dissimilarity” varies.
For example, in customer segmentation, two customers are similar if they exhibit a similar spending
profile, and thus the “distance” between their spending profiles is a good measure of dissimilarity.
However, this distance may not be a good measure of dissimilarity for the application of identifying
communities in a social network of people, where two persons in the same community are deemed
similar. Notably, two persons far apart could be in the same community as long as there is a group of
near-by persons between them. That is, a community is a densely populated region of people. For
this type of application, the notion of similarity is related to the distance between the data points and
the densities of the data points. Distance may also be defined differently for different applications.
For example, symmetric distance is used for clustering analysis in [7].

Various clustering applications motivate the research community to develop many clustering
methods to meet different clustering needs. Major clustering methods can be classified into the
following categories: partitioning methods, hierarchical methods, density-based methods, grid-based
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methods, and model-based methods [8]. Partitioning methods aim to divide the data points in a dataset
into k groups such that a specific objective function is minimized. The most commonly used partitioning
method is k-means [9], representing each group by the centroid of the data points in the group, and
tries to minimize the sum of the squared distance of each object to its group’s centroid. Hierarchical
methods yield a dendrogram of data points showing how smaller groups are gradually combined
to form larger groups (the agglomerative approach) or how larger groups are gradually divided
into smaller groups (the divisive approach). Density-based methods form clusters by identifying
those regions where the data points are densely populated. DBSCAN [10] and OPTICS [11] are two
commonly used density-based methods. Grid-based methods place data points in a grid structure to
accelerate the clustering process [12]. Model-based methods assume a mathematical model for each
cluster and attempt to optimize the fit between the models and the clusters in the dataset. Please refer
to [8,13,14] for a comprehensive survey of the clustering methods.

A density peak clustering (DPC) algorithm is a density-based clustering method proposed by
Rodriguez and Laio [15] in 2014. Since its inception, DPC has received much attention in the research
community [16–30]. Similar to other density-based methods, DPC calculates the density of each data
point in the dataset. Unlike other density-based methods, DPC selects some data points in the dataset
as the density peaks, forms a new cluster for each density peak, and assigns each non-peak data
point to the same cluster as its nearest higher-density point in the dataset. However, DPC has two
drawbacks. First, it is not trivial to select density peaks. Recall that each density peak forms a new
cluster. If two data points that are supposed to be in the same cluster are both selected as the density
peaks, they will be placed into two different clusters, yielding incorrect clustering results. Notably,
DPC always selects the data point with the highest density as a density peak. Rodriguez and Laio [15]
suggested selecting the remaining density peaks from those data points with high densities and are far
from their nearest higher-density points. However, such a peak selection criterion is imprecise and
prone to error. Figure 1 shows a directed graph where each vertex represents a data point in the Flame
dataset [31], and each directed link connects a data point to its nearest higher-density point. Four of the
directed links are highlighted in red to indicate those links whose starting points have high densities
and are far from their nearest higher-density points. Selecting the data point with the highest density
and the starting point of any of these four directed links as the density peaks, DPC will break the lower
portion of the Flame dataset into more than one group, yielding poor clustering results.
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point. The links whose starting points have high densities and are far from their nearest points
are shown in red. Exponential kernel and p = 2 are adopted for density calculation (see Section 2.1
for details).
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Another drawback with DPC is its cluster assignment strategy, which assigns a non-peak data
point and its nearest higher-density point into the same cluster. This strategy works fine for those data
points that are not far from their nearest higher-density point. However, for those data points that
are far from their nearest higher-density point, this strategy often yields a poor cluster assignment.
For example, consider the three longest red directed links in Figure 1. If the starting point and the
ending point of any of the three directed links are placed into the same cluster, DPC will incorrectly
place the entire upper portion and part of the lower portion of the Flame dataset into one cluster.

The objective of this study is to eliminate the above two drawbacks of DPC. We propose a
new clustering method that integrates DPC and single linkage clustering [8]. The proposed method
automatically determines a set of potential density peaks by choosing those data points far from their
nearest higher-density points. Notably, we use the term “potential” density peaks because this set may
also contain the outliers of the dataset. The proposed method adopts the cluster assignment strategy
of DPC only for those data points not far from their nearest higher-density points. Consequently,
the proposed method will not yield the four red directed links in Figure 1. For those data points
far away from their nearest higher-density points, single linkage clustering is adopted to reduce the
number of clusters further.

The rest of this paper is organized as follows. Section 2 describes DPC and reviews related work.
Section 3 proposes our method, and Section 4 presents the experimental results. Finally, Section 5
concludes this study.

2. Related Work

2.1. Density Peak Clustering (DPC)

The DPC algorithm contains several major steps: calculating density and searching the nearest
higher-density point for each point in the dataset, selecting density peaks, and assigning clusters.
This section describes these steps in detail.

The density of a point is based on a user-specified parameter dc representing the radius of a point’s
neighborhood. Given a data set X, the local density ρ(xi) of a point xi ∈ X can be calculated as the
number of points within the neighborhood of xi, as shown below.

ρ(xi) =
∑

x j∈X\{xi}
χ
(
d
(
xi, x j

)
− dc

)
(1)

where d
(
xi, x j

)
is the Euclidean distance between points xi and x j, and χ(t) = 1 if t < 0 and otherwise

χ(t) = 0. For small data sets, Rodriguez and Laio [15] suggested using an exponential kernel for
calculating density, as shown below.

ρ(xi) =
∑

x j∈X\{xi}
exp

−
(
d
(
xi, x j

))2

(dc)
2

 (2)

The value of dc can be set to the lower p% of all distances between any two points in X. Consequently,
the average number of neighbors of a point is about p% of the total number of points in X. Notably,
point x j is a neighbor of point xi if d

(
xi, x j

)
< dc. Rodriguez and Laio [15] suggested using 1 ≤ p ≤ 2.

Let δ(xi) denote the distance between point xi and the nearest higher-density point of xi. Then, δ(xi)

can be calculated as follows.

δ(xi) =


min

x j∈X ∧ ρ(x j)>ρ(xi)
d
(
xi, x j

)
, if ρ(xi) < max

x j∈X
ρ
(
x j

)
max
x j∈X

d
(
xi, x j

)
, otherwise.

(3)
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Notably, for the point with the highest density in X, δ(xi) is set to the largest distance between any
two points in X, as shown in the second case of (3). For ease of illustration, σ(xi) is used to denote the
nearest higher-density point of xi. That is:

σ(xi) =


argmin

x j∈X ∧ ρ(x j)>ρ(xi)

d
(
xi, x j

)
, if ρ(xi) < max

x j∈X
ρ
(
x j

)
xi, otherwise.

(4)

The data point with the highest density does not have any higher-density point, so for this data point,
we set σ(xi) to xi, as shown in the second case of (4).

Once ρ(xi) and δ(xi) are available for each point xi ∈ X, Rodriguez and Laio [15] suggested
selecting those points with high ρ(xi) and high δ(xi) as density peaks. One way to achieve this is to
select those points with γ(xi) greater than a specified threshold where γ(xi) = ρ(xi)δ(xi). One problem
with this method is that ρ(xi) and δ(xi) are on different scales, and one of them may dominate the
ordering of γ(xi), resulting in a poor selection of density peaks. Another way is to select the density
peaks manually with the assistance of the decision graph [15], a two-dimensional graph with ρ(xi)

and δ(xi) as the horizontal and vertical coordinates, respectively. However, it remains a difficult and
ineffective way to select the density peaks.

After the density peaks have been determined, the cluster assignment can proceed
straightforwardly. Suppose that k points are selected as the density peaks. First, each density
peak forms a new cluster, with a cluster label from one to k. Let η(xi) denote the cluster label of the
cluster containing point xi. Because each non-peak point xi is assigned to the same cluster as its nearest
higher-density point σ(xi), η(xi) can be determined as follows:

η(xi) = η(σ(xi)) (5)

Notably, because (5) is recursive, we must ensure that η(σ(xi)) is calculated before η(xi). This can be
achieved by performing the cluster assignment for the non-peak points by the descending order of
their densities. Figure 2 shows the DPC algorithm.
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Figure 3 illustrates the clustering process of DPC using a directed tree with a sink vertex. Each 
vertex represents a point in the dataset, each directed link connects a point to its nearest higher-
density point, and the sink vertex is the point with the highest density in the dataset. After selecting 
the density peaks (i.e., the red vertices in Figure 3), DPC decomposes the directed tree into the same 
number of directed sub-trees. Each of the subtrees has its sink vertex at a density peak. All points in 
a subtree form a cluster (shown as a gray ellipse region in Figure 3). 

Figure 2. Density peak clustering (DPC) algorithm.

Figure 3 illustrates the clustering process of DPC using a directed tree with a sink vertex. Each vertex
represents a point in the dataset, each directed link connects a point to its nearest higher-density point,
and the sink vertex is the point with the highest density in the dataset. After selecting the density
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peaks (i.e., the red vertices in Figure 3), DPC decomposes the directed tree into the same number of
directed sub-trees. Each of the subtrees has its sink vertex at a density peak. All points in a subtree
form a cluster (shown as a gray ellipse region in Figure 3).
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2.2. Variants of DPC

DPC has received much attention in the research community, and many variants of DPC have
been proposed. This section reviews them from three perspectives: parameter setting, density peak
selection, and computation acceleration.

Because DPC’s parameters can affect the clustering performance, many studies focused on setting
these parameters properly. For example, ref. [16] applied the concept of heat diffusion and [17]
employed the potential entropy of the data field to assist in setting the radius dc. Also, many
studies suggested using k nearest neighbors to define density, instead of using the radius dc [18–21].
Furthermore, ref. [22] suggested calculating two kinds of densities, one based on k nearest neighbors
and one based on local spatial position deviation, to handle datasets with mixed density clusters.

As described in Section 1, selecting the density peaks in DPC can be difficult and ineffective.
To resolve this problem, ref. [23] proposed a comparative technique to choose the density peaks,
ref. [24] estimated density dips between points to determine the number of clusters, and [25] applied
data detection to determine density peaks automatically. In [21], the optimal number of clusters was
extracted from the results of hierarchical clustering. Furthermore, it may be more suitable for some
datasets to locate a cluster by more than one density peak [26,27]. Overall speaking, making the
clustering process more adaptive to the datasets with less human intervention is the goal.

Several studies focused on accelerating DPC [28–30]. Recall that DPC needs to search the nearest
higher-density point σ(xi) for each point xi (see Equation (4)). For each point xi whose density is not the
highest within its neighborhood, ref. [28] suggested that we can omit this step by simply setting σ(xi)

to the point with the highest density within the neighborhood of xi. Because most points are not the
point with the highest density in their respective neighborhoods, this method accelerates calculating
σ(xi) in DPC. Alternatively, ref. [29] accelerates calculating the density ρ(xi) by integrating k-means
with DPC. Also, ref. [30] used k nearest neighbors to accelerate the calculation of both ρ(xi) and δ(xi).

3. The Proposed Method

This section describes the proposed method that avoids DPC’s drawbacks described in Section 1.
Specifically, the proposed method does not need to manually select the density peaks and does
not place a point and its nearest higher-density point in the same cluster if the two points are far
apart. The proposed method contains five stages: build a directed tree, remove long links, generate
preliminary clustering, apply hierarchical clustering to the forest, and generate flat clustering results.
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The proposed method, referred to as density peak single linkage clustering (DPSLC), is shown in
Figure 4.Symmetry 2018, 10, x FOR PEER REVIEW  6 of 25 
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Figure 4. Density peak single linkage clustering (DPSLC) algorithm.

Recall from Section 2.1 and Figure 3 that DPC constructs a directed tree with a sink vertex. As with
DPC, Stage 1 of DPSLC also constructs a directed tree. Figure 5 shows an example where each filled
circle and the integer next to it represent a point and the point’s density (based on Equation (1)),
respectively, and each red dashed circle shows the neighborhood of a point. Each link connects a point
to its nearest higher-density point; the red filled circle is the point with the highest density, which is
also the sink vertex of the directed tree.
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Stage 2 of DPSLC decomposes the directed tree into a forest of directed subtrees by removing
those links that are too long. Specifically, DPSLC removes the link xi → x j if d

(
xi, x j

)
≥ 2.1dc. Stage 2

of DPSLC will delete the three non-black links in Figure 5. The green link illustrates the case of linking
from an outlier; the purple link illustrates the case of linking from a high-density point to its nearest
higher-density point that is far away. Removing these two types of links allows DPSLC to break the
connection between two regions that are not densely connected. The blue link connects the blue point
to its nearest higher-density point, making the blue point connect to the gray region on the right in
Figure 5. However, the two neighbors (within the red-dashed circle centered at the blue point) of the
blue point are connecting to the gray region on the left in Figure 5. Thus, removing this blue link allows
DPSLC to break the connection between the blue point and the right gray region, and yield a new
region containing only the blue point. This new region will be combined with other regions later in
Stage 4. After Stage 2, DPSLC yields a forest of four directed trees (shown in gray regions) in Figure 5.

Stage 3 of DPSLC constructs a preliminary clustering result by forming a cluster for each directed
tree in the forest. The four gray regions in Figure 5 show the four clusters generated in this stage.

Let Ci and C j be two clusters in the preliminary clustering result of Stage 3. The single-linkage
distance ∆S

(
Ci, C j

)
between Ci and C j is the distance between two points (one in each cluster) that are

closest to each other. The overlapping distance ∆O
(
Ci, C j

)
between Ci and C j is the reciprocal of one

plus the number of point pairs
(
xi, x j

)
satisfying d

(
xi, x j

)
< 2dc for xi ∈ Ci and x j ∈ C j.

∆S
(
Ci, C j

)
= min

{
d
(
xi, x j

)∣∣∣∣xi ∈ Ci ∧ x j ∈ C j
}

(6)

∆O
(
Ci, C j

)
=

(
1 +

∣∣∣∣{(xi, x j
)∣∣∣∣d(xi, x j

)
< 2dc ∧ xi ∈ Ci ∧ x j ∈ C j

}∣∣∣∣)−1
(7)

Stage 4 of DPSLC performs agglomerative clustering on the preliminary clustering result of
Stage 3 based on the single-linkage distance or the overlapping distance defined in (6) and (7).
Here, overlapping distance is suitable for most datasets. However, for highly unbalanced datasets,
single-linkage distance is preferred. The two nearest clusters are repeatedly combined into one until
there is only one cluster left, and a dendrogram is generated to show the hierarchical relationship
among clusters.

Figure 6 shows the dendrogram for the example in Figure 5. The red, green, and purple links in
Figure 6 are the three shortest single-linkage distances adopted in the dendrogram. Notably, the number
of clusters in the preliminary clustering result generated in Stage 3 is usually small, so the hierarchical
clustering in Stage 4 will not consume too much time.
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Stage 5 of DPSLC retrieves a flat clustering result from the hierarchical clustering result of Stage 4.
Given the desired number of clusters k, this can be done by a horizontal cut on the dendrogram
generated in Stage 4. For example, in Figure 6, setting the distance between clusters to a and b results
in two and three clusters, respectively.

Additional parameter min_pts can be used to enforce that the clustering result contains k large
clusters, each with no fewer than min_pts points, and possibly, some small clusters for outliers in
the dataset.

4. Performance Study

4.1. Test Datasets

In this study, we used 12 well-known two-dimensional synthetic datasets to demonstrate the
performance of the proposed algorithm. Table 1 describes the number of clusters and the number of
points in these datasets. See Appendix A for the data distribution of these datasets.

Table 1. Number of points and number of clusters in the 12 datasets.

Dataset Number of Clusters Number of Points

Spiral 3 312
R15 15 600
D31 31 3100
A1 20 3000

T2000 2 2000
T1000 2 1000
T300 2 300

Flame 2 240
Aggregation 7 788

Jain 2 373
SMS02 3 1000

Unbalance 8 6500

Dataset Spiral [32] consists of three spiral-shaped clusters. Dataset R15 [33] consists of 15 similar
Gaussian clusters positioned on concentric circles. Dataset D31 [33] consists of 31 similar Gaussian
clusters positioned along random curves. Dataset A1 [34] contains 20 circular clusters, where each
cluster has 150 points. Datasets T300, T1000, and T2000 contain two half-ring-shaped clusters each,
where the density is T300 < T1000 < T2000. Dataset Flame [31] consists of two non-Gaussian clusters
of points, where both clusters are of different sizes and shapes. Dataset Aggregation [35] consists
of seven perceptually distinct (non-Gaussian) clusters of points. Dataset Jain [36] consists of two
crescent-shaped clusters with different densities. Dataset SMS02 consists of three rectangular-shaped
clusters with different sizes. Dataset Unbalance consists of eight clusters, where three of them are
dense, and the other five are sparse.

4.2. Experiment Setup

Table 2 shows the parameter setting of DPSLC. Parameter p = 2 is adopted to determine the
radius dc of the neighborhood, as described in Section 2.1. The number of clusters k is set to the exact
number of clusters in the dataset, as specified in Table 1. Parameter min_pts is set to two, so the
final clustering result contains k large clusters (each with no fewer than min_pts points) and possibly,
some small clusters of outliers. For all datasets except the dataset Unbalance, overlapping distance
(see Equation (7)) is adopted to calculate the distance between two clusters in the preliminary clustering
results generated at Stage 3 of DPSLC. Because Database Unbalance contains clusters of extremely
different densities, single-linkage distance is adopted instead.

The experiment compares the performance of DPSLC and DPC. Table 3 shows the parameter
setting of DPC. Parameter p is set to two, the same as in DPSLC. The top k data points with the highest
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γ(xi) are selected as the density peaks, where γ(xi) = ρ(xi)δ(xi) and k is set to the exact number of
clusters in the dataset, as specified in Table 1.

Table 2. Parameter setting of DPSLC.

Parameter Value Description

p 2 p is used to determine the radius dc of the neighborhood
k See Table 1 The number of clusters in a dataset

min_pts 2 The minimum number of points in a cluster

cluster_distance overlapping distance or single-linkage
distance

Use overlapping distance for all datasets except the
dataset Unbalance, which uses single-linkage distance.

Table 3. Parameter setting of DPC.

Parameter Value Description

p 2 p is used to determine the radius dc of the neighborhood
k See Table 1 The number of clusters in a dataset

For each dataset, the clustering result C of DPSLC or DPC is compared against the ground truth T.
The following four measures are collected:

• Homogeneity score measures the data points in the same cluster according to C are indeed in
the same cluster according to the ground truth T. Homogeneity score is between 0 and 1, and 1
represents that C is perfectly homogeneous labeling.

• Completeness score measures the data points in the same cluster according to the ground truth
T are placed in the same cluster according to C. Completeness score is between 0 and 1, and 1
represents that C is perfectly complete labeling.

• Adjusted Rand index (ARI) = (RI – Expected _Value(RI))/(max(RI) – Expected _Value(RI)), where RI
(short for Rand index) is a similarity measure between two clustering results of the same dataset
by considering all pairs of data points that are assigned in the same or different clusters in the
two clustering results. ARI adjusts RI for chance such that random clustering results have an ARI
close to 0. ARI can yield negative values if RI is less than the expected value of RI. When two
clustering results are identical, ARI = 1.

• Adjusted mutual information (AMI) adjusts mutual information (MI) to correct the agreement’s
effect due to chance. Similar to ARI, random clustering results have an AMI close to 0. When two
clustering results are identical, AMI = 1.

4.3. Experiment Results

Table 4 shows the performance results. DPSLC and DPC yield the same clustering results for the
first six datasets in Table 4. The common characteristics of these six datasets are that they contain
clusters that are nicely separated and with similar densities. Both approaches achieve excellent
performance on these six datasets.

DPSLC outperforms DPC on the bottom six datasets in Table 4. The clusters in each of these six
datasets are either not well separated or with very different densities. DPC performs poorly on these
datasets, but DPSLC can still achieve excellent clustering results. The rest of this section inspects the
process of DPSLC for these datasets. The DPC’s clustering results are presented in Appendix B.
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Table 4. Performance results of the 12 datasets. ARI: adjusted Rand index; AMI: adjusted
mutual information.

Dataset
DPSLC DPC

Homogeneity Completeness ARI AMI Homogeneity Completeness ARI AMI

Spiral 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
R15 0.994 0.994 0.993 0.994 0.994 0.994 0.993 0.994
D31 0.957 0.957 0.935 0.955 0.957 0.957 0.935 0.955
A1 0.970 0.970 0.959 0.970 0.970 0.970 0.959 0.970

T2000 0.930 0.930 0.966 0.930 0.930 0.930 0.966 0.930
T1000 0.941 0.941 0.972 0.941 0.941 0.941 0.972 0.941
T300 1.000 1.000 1.000 1.000 0.439 0.484 0.416 0.438

Flame 1.0 0.943 0.988 0.942 0.422 0.405 0.327 0.403
Aggregation 0.993 0.992 0.996 0.992 0.982 0.861 0.755 0.860

Jain 1.000 1.000 1.000 1.000 0.637 0.560 0.644 0.559
SMS02 0.975 0.978 0.991 0.975 0.727 1.000 0.822 0.727

Unbalance 1.000 0.999 1.000 0.999 0.970 0.824 0.853 0.823

4.3.1. Applying DPSLC on Dataset T300

Figure 7 shows the process of applying DPSLC on dataset T300. The directed tree generated
in Stage 1 contains several long links (see Figure 7a), which are subsequently removed in Stage 2
(see Figure 7b). The preliminary clustering result contains eight clusters where the star symbols indicate
the positions of the density peaks (see Figure 7c). The final clustering result contains two clusters.
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4.3.2. Applying DPSLC on Dataset Flame

Figure 8 shows the process of applying DPSLC on dataset Flame. Notice that the preliminary
clustering result contains six clusters, including a cluster of two outliers in the top left corner
(see Figure 8c). The final clustering result includes two large clusters and a small cluster of outliers
(shown in the gray region in Figure 8d).
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4.3.3. Applying DPSLC on Dataset Aggregation

Figure 9 shows the process of applying DPSLC on dataset Aggregation. According to the ground
truth in Figure A1i, the two data points placed in the wrong clusters by DPSLC are shown in the gray
region in Figure 9d.
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4.3.4. Applying DPSLC on Dataset Jain

Figure 10 shows the process of applying DPSLC on dataset Jain. Dataset Jain contains one dense
region and one sparse region. DPSLC breaks the dataset into 15 small groups in the preliminary
clustering result (see Figure 10c) and coalesces them into two clusters in the final result (see Figure 10d).
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4.3.5. Applying DPSLC on Dataset SMS02

Figure 11 shows the process of applying DPSLC on dataset SMS02. According to the ground
truth in Figure A1k, the four data points placed in the wrong clusters by DPSLC are shown in the gray
region in Figure 11d.
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4.3.6. Applying DPSLC on Dataset Unbalance

Figure 12 shows the process of applying DPSLC on dataset Unbalance, which contains three
dense regions and five sparse regions. The densities of the density regions and the sparse regions
differ significantly. Consequently, setting parameter p = 2 results in a small value for dc, which yields
many clusters with just one point in the sparse regions at Stage 3 of DPSLC, as shown in Figure 12c.
However, most of these clusters correctly coalesce at Stage 5 of DPSLC. However, there are still two
data points misidentified as outliers by DPSLC, shown in the gray region in Figure 12d.
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4.3.7. Applying DPSLC on Datasets Spiral, R15, D31, A1, T2000, and T1000

Figures 13–18 show the process of applying DPSLC on datasets Spiral, R15, D31, A1, T2000,
and T1000, respectively. For datasets Spiral, R15, D31, and A1, DPSLC ends at Stage 3 because the
number of clusters has reached the desired k value.
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The two gray regions in Figure 17d and two gray regions in Figure 18d indicate data points
where the results of DPSLC and the ground truth disagree. We manually inspect those data points in
Figures 17d and 18d against their ground truth in Figure A1e,f. It appears that the DPSLC makes a
better cluster assignment than the ground truth does for those data points.Symmetry 2018, 10, x FOR PEER REVIEW  18 of 25 
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dataset Unbalance, many small clusters appear on the right half of Figure 12c. DPSLC conquers this 
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5. Conclusions

This paper proposes DPSLC to improve DPC. DPSLC effectively avoids assigning a data point
to the same cluster as its nearest higher-density point if both points are far apart. However, such a
strategy could also yield many small clusters. For example, in the preliminary clustering result of
dataset Unbalance, many small clusters appear on the right half of Figure 12c. DPSLC conquers this
problem by applying single-linkage agglomerative clustering on the preliminary clustering result.
The performance results in Table 4 show that DPSLC can still perform well on those datasets that DPC
fails short.

Density-based clustering approaches are based on the idea of searching dense regions in a dataset.
However, there is no de facto standard for what constitutes a dense region. In this study, we use a
radius dc to define the neighborhood, and subsequently, calculate the density of a data point [10,15].
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Some other studies calculate the density of a data point using the distance to the data point’s k nearest
neighbor [18–21]. However, the proper value for either dc or k depends on the characteristic of the
dataset. Thus, clustering approaches whose value for dc or k is adaptive to the dataset are worthy of
investigation. In this study, we set the value of dc so that each data point has about 2% of all data
points within its neighborhood, on average. Thus, the value of dc is adaptive to the dataset to a small
extent. However, more sophisticated strategies are needed.

Finally, using a single dc or k may be insufficient for those datasets containing clusters with a wide
range of densities. Using multiple dc or k may be a better way to capture the patterns of these clusters.
For example, persistent homology detects persistent topological features by inspecting data points
over a wide range of scales [37]. Similarly, DPC can experiment with a wide range of dc or k to detect
the persistent clustering among data points. Alternatively, future research directions can also consider
the integration use of dc and k.
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Validation, J.-L.L.; Methodology, Software, J.-L.L., J.-C.K., and H.-W.C. Overall contribution: J.-L.L. (75%), J.-C.K.
(15%), and H.-W.C. (10%). All authors have read and agreed to the published version of the manuscript.
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Appendix A. Datasets

Figure A1 shows the data distribution and the ground truth of the clustering of the 12
two-dimensional synthetic datasets used in Section 4.
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Appendix B. DPC’s Clustering Results

Figure A2 shows the clustering results of using DPC on the 12 datasets described in Section 4.
The parameter p is set to two. The density peak selection criterion is based on γ(xi) = ρ(xi)δ(xi),
as described in Section 2.1, and the number of density peaks selected is set to the exact number of
clusters in each dataset specified in Table 1. The star symbols in Figure A2 indicate the positions of the
density peaks.
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