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While the two-dimensional (2D) spectral peak search suffers from expensive computational burden in direction of arrival (DOA)
estimation, we propose a reduced-dimensional root-MUSIC (RD-Root-MUSIC) algorithm for 2D DOA estimation with coprime
planar array (CPA), which is computationally efficient and ambiguity-free. Different from the conventional 2D DOA estimation
algorithms based on subarray decomposition, we exploit the received data of the two subarrays jointly by mapping CPA to the full
array of the CPA (FCPA), which contributes to the enhanced degrees of freedom (DOFs) and improved estimation performance.
In addition, due to the ambiguity-free characteristic of the FCPA, the extra ambiguity elimination operation can be avoided.
Furthermore, we convert the 2D spectral search process into 1D polynomial rooting via reduced-dimension transformation,
which substantially reduces the computational complexity while preserving the estimation accuracy. Finally, numerical simu-
lations demonstrate the superiority of the proposed algorithm.

aperture, the limited interelement spacing brings a negative
impact on the estimation performance [15, 16].

In recent years, sparse arrays such as coprime arrays
[15, 17, 18], nested arrays [19], and minimum redundancy
arrays [20] have been proposed to tackle this issue. As a
typical sparse array, the coprime arrays have inherent su-
periorities over the conventional compact arrays, including
enlarged array aperture, increased DOFs, and reduced
mutual coupling [21], employed the traditional 2D-MUSIC
algorithm to CPA by exploring the transformation relation
between true and ambiguous estimates, and further pro-
posed a 2D partial spectrum search (2D-PSS) method [22],
which considerably relieves the computational burden of 2D

1. Introduction

Two-dimensional direction of arrival (2D DOA) estimation
has been extensively utilized in radar, sonar, wireless
communication, and other fields [1-3]. Numerous DOA
estimation algorithms, e.g., multiple signal classification
(MUSIC) [4], estimation of signal parameters via rotational
invariance techniques (ESPRIT) [5-7], propagator method
(PM) [8], and PARAIllel FACtor (PARAFAC) technique,
have been applied to various planar arrays, such as uniform
planar arrays (UPAs) [9-11], L-shaped arrays [12, 13],
uniform circular arrays [5], and two parallel linear arrays
[14]. However, the distance between adjacent elements in

these traditional arrays is limited to no larger than half-
wavelength to avoid spatial aliasing, which bring undesired
serious mutual coupling effect. Besides, since the DOA es-
timation accuracy has positive correlation with the array

total spectrum search (TSS). By combining the reduced-
dimensional MUSIC (RD-MUSIC) [23] method with the
PSS method, the reduced-dimension transformation is
performed to further reduce complexity [24]. A generalized


mailto:ycb@nuaa.edu.cn
https://orcid.org/0000-0002-3595-7916
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/2794387

CPA array structure was designed in [25] based on the
mechanism of ambiguity elimination method, which pro-
vides a more flexible array layout and significant increase in
DOFs. The aforementioned methods [22, 24, 25] can be
categorized as decomposition algorithms, which process the
received data of each subarray separately and then the es-
timates are combined to determine the final DOAs, whereas
the mutual information between the two subarrays is un-
fortunately neglected. The root-MUSIC method to CPA with
low complexity is applied [26], while the estimation per-
formance of this cascade approach depends heavily on the
initial estimates, especially at low SNRs. An ambiguity-free
MUSIC (AF-MUSIC) method was proposed in [27], where
the output of two subarrays were stacked and processed
jointly to avoid the ambiguous problem. Although the entire
information of CPA is fully exploited, the 2D spectrum
search leads to heavy computational burden.

In the above research studies for 2D DOA estimation
methods with CPA, they either treat the two subarrays as
individual arrays, which suffers performance degradation
due to the loss of mutual information, or 2D spectrum
search is required leading to expensive computational
cost, or extra ambiguity elimination process is involved.
To address these issues, we propose a computationally
efficient ambiguity-free algorithm via reduced-dimen-
sional polynomial rooting technique. Specifically, we first
map the CPA into full array of the CPA (FCPA) using an
extraction matrix, based on the characteristics of array
configuration, which enables the sufficient utilization of
the entire received data of the CPA. Meanwhile, the
number of achievable DOFs is enhanced benefiting from
the utilization of full information, as compared to the
conventional decomposition algorithms. Furthermore, we
transform the 2D spectrum search into 2D polynomial
root-finding process and further perform reduced-di-
mension transformation to convert the 2D root-finding
operation into two 1D one, which substantially reduces
complementation complexity as well as the computational
burden. In addition, extra ambiguity elimination can be
avoided owing to the inherent ambiguity-free charac-
teristic of the FCPA.

We summarize the major contributions of our work
below:

(1) We construct the FCPA corresponding to CPA,
which processes ambiguity-free characteristic and
thereby extra ambiguity elimination operation can
be avoided

(2) We exploit the received data of the two subarrays
jointly, where improved DOA estimation perfor-
mance as well as enhanced achievable DOFs can be
achieved

(3) We propose a reduced-dimensional polynomial
root-finding algorithm with CPA for 2D DOA es-
timation, which transforms the 3D spectrum search
into 1D polynomial rooting and hence reduces the
complexity significantly while preserving the esti-
mation accuracy
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We outline this paper as follows. Section 2 introduces the
data model of CPA and its corresponding FCPA. The pro-
posed algorithm is elaborated in Section 3, and we analyze the
complexity and DOFs in Section 4. Section 5 provides sim-
ulation results to corroborate the effectiveness of the proposed
algorithm, and Section 6 concludes this paper.

L1. Notations. Bold uppercase (lowercase) characters rep-
resent matrices (vectors). ()7, (¥, ()7!, and (\)* denote
the transpose, conjugate transpose, inverse, and conjugate
operation, respectively. ® and © are Kronecker product and
Khatri-Rao product, respectively. Rank (-) means the rank
of the matrix. angle (-) represents the phase operator. det(-)
denotes the determinant of the matrix.

2. Preliminaries

2.1. Data Model with CPA. Assume that K far-field narrow-
band uncorrelated signals impinge on the CPA with DOAs
(0, ¢1), k=1,2,...,K, where 0, and ¢, are the elevation
and azimuth angles of the kth signal, respectively. The CPA
consists of two uniform planar arrays with M, x M, and M, x
M, sensors. The spacing between adjacent elements of subarray
1 with M, x M, sensors is d; = M,A/2, and subarray 2 with
M, x M, sensors has the interelement spacing d, = M;1/2,
where M, and M, are coprime integers and A is the wavelength.
The total number of elements is T = M? + M2 — 1 since the
two subarrays share the same element at the origin. Define a
transformation as u;, = sin 8, sin ¢, and v, = sin 0, cos ¢, for
simplification. A CPA configuration is displayed in Figure 1 as
an example, where M, =2, M, =3, and T = 12.

For the ith (i=1, 2) subarray, the received signal can be
expressed by [22]

X, =AS+N, (1)
where S  represents the source matrix and
S=1[s,8...,8¢]" € CKL s, denotes source vector and
S =[5 (1),. .., 8 ()]" € C™, L is the number of snap-

shots, C represents a complex set, A; is the steering matrix of
the ith (i=1, 2) subarr%y, and A; = [ayl-(ul)@axi(vl), ces
a,; (ug)®a,; (vg)] € CMiK a,; (1)) and a,; (vj) represent
the steering vectors along the y-axis and x-axis, respectively,
the  specific  forms can  be  expressed as
ayi (uk) — [1’ e('2nd,-uk//\, . ,ej2n(Mi— l)d,-uk//\]T € CM,-XI and
a,; (vp) = [1,e2 A . s
white Gaussian noise with mean value zero and variance o?
of the ith (i=1, 2) subarray.
The output of the whole CPA can be stacked as [27]

X, A, N,
X=[ ]=[ ]m[ ]:AS+N, )
X5 A, 2

)eerr(Mi—l)divk//\]T € CM,xl) N

where A represents the direction matrix of the whole CPA,
A =[AT, A;]T e CMI+M)XK " and N denotes the white
Gaussian ~ noise  of the whole arrays and
N = [NT, NT]", N, € ML) N, e CML,
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FiGure 1: CPA configuration with M, =2 and M, = 3.

In practice, the covariance matrix of X can be calculated
using L snapshots by

~ 1
R=—xx". 3)
L
Perform eigenvalue decomposition (EVD) and R can be
decomposed by

R=EAE" +EAE], (4)
where A, is a diagonal matrix whose diagonal elements are
the K largest eigenvalues, A, is a diagonal matrix composed
of the rest eigenvalues, E; represents the signal subspace
spanned of the eigenvectors corresponding to the K largest
eigenvalues, and E, is the noise subspace composed of the
remaining eigenvectors.

2.2. Full Array of CPA and Extraction. The CPA can be
extracted from a large nonuniform planar array, which can
be denoted by the full array of CPA (FCPA). The sensor
location of the FCPA can be expressed as

Qpcpp = {QXFCPA> QyFCPA}’ (5)

where Q,pcpy and Qupcpy represent the location sets of x-
axis and y-axis, respectively. Qpcpa = myd, Um,d,,
Qupcpa =myd Umyd,, 0<my <M, -1, 0<m, <M, -1,
and m,, m, € Z. Accordingly, the number of elements in
FCPA is T = (M, + M, — 1)*.

Figure 2 illustrates the FCPA corresponding to the CPA
shown in Figure 1, where Qgcps =1{0,2,3,4}d and
Qupcpa = {0,2,3,4}d, d = A/2. It can be observed that the
FCPA contains all elements of the CPA and has four ad-
ditional elements with sensor number 7, 10, 12, and 13,
respectively, which demonstrates that the CPA can be
regarded as an extraction from FCPA.

7 A

F1cure 2: The FCPA configuration corresponding to CPA.

According to the correspondence of the CPA and FCPA,
we introduce an extraction matrix G € {0, 1} to characterize
the mapping relation as

A=GAy, (6)

where G € Z MM (M, +M=1)° represents the extraction
matrix, Z denotes a set of integers, Ay, is the steering matrix
of the FCPA, Ay = [ap), (u))®ap,
(V1) - - ap, (ug)@ag, (vi)] € CM MK 2g 06y and
ap, (v) represent the steering vector of the FCPA along the

y-axis and  x-axis, the specific forms are
ag (uk) = [1, ej2”dﬁyz”k/l) e ejZHdFy(Mlh\/lz—])uk//\]T
ap, (v) = [1,e2deandd el exon 0T regpectively,

and dpy; € Qupcpas dpyi € Qupepa (1<i<M; + M, - 1) de-
note the location sets of elements on the y-axis and x-axis,
respectively.

To demonstrate the extraction more specifically, each
element in the CPA and FCPA is labeled according to their
order in the steering vectors, i.e., 1 ~ M % for the subarray 1
and M?+1~M?+M? for the subarray 2 in CPA,
1~ (M, + M, —1)* for the FCPA. If the ith sensor in the
CPA and the jth sensor in the FCPA overlap; then, g;; = 1,
otherwise g;; = 0, where g;; denotes the (i, j)th element of G.
For the FCPA given in Figure 2, G is a 13 x 16 matrix with 3
columns of all zeros.

Definition 1 (extraction efficiency). The extraction efficiency
is the proportion of nonzero elements in the extraction
matrix.

The sensor location of CPA can be given by

Qcpa ={Qcpas O}U{O’ QyCPA}’ (7)

where Qucpa = mdumyd,, Qucpa = mydUmyd,,
0<m; <M, -1,0<m, <M, —1,and m,,m, € Z. Then, we
construct a uniform planar array that has the same array
aperture as the CPA with the location set:

Qupa ={Qupas O}U{O’ QyUPA}’ (8)



where Quupa = md, Quupa = md, d =12,
0<m<M;(M,-1), and m € Z.
The locations of the sensors in the FCPA corresponding

to the CPA can be expressed as
Qgcpp = {‘QXFCPA’ QyFCPA}’ (9)

where Qycpp € Qupepa € Qyupa and Quepa € Qupcpa € Qyupa
represent the location set of FCPA on the x- and y-axes,
respectively.

For the CPA study in this paper, the corresponding
FCPA can be constructed by the following four forms:

Qyrcpa =10,2, 3,414,
Qupcpa =10,2,3,4}d,
Qurcpa1 =10,2,3,4}d,
Qupcpa_1 =10,1,2,3,4}d, 10
Qurcpa 2 =10,1,2,3,4}4d,
Qupcpa 2 =10,2,3,4}d,
Qupepa 3 =10,1,2,3,4}d,
Oypepa 3 ={0,1,2,3,4}d.
According to Definition 1, the extraction efficiency of the
above schemes is 0.0625, 0.05, 0.05, and 0.04, respectively. It

is clearly seen that the FCPA we designed in (5) has the
highest extraction efliciency.

3. The Proposed Algorithm

3.1. 2D-MUSIC Algorithm. Derive from the orthogonal
relationship between the noise subspace and the steering
vector, and the spectral function of CPA can be represented
by [26, 27]

1
P(u,v) = ,
(w.v) al (u, v)E,Efa(u,v)

(11)

where a(u,v) denotes the steering vector of CPA,

a(u,v) = [alT(u, V), ag(u, T e C(M%J'M%)Xl, a;(u,v) =
a,(uea,(v), a,u)= [1>e]2ndiu/A’T' ., @i M= Ddu T
a,;(v) = [1,e2dA e M= DdvMT (=1, 2), and E, is

the noise subspace of CPA.
According to (6), we have a (1, v) = Gag (1, v). Then, (11)
can be rewritten as [26, 27]
1 1

P(u,v) = =
(w.v) all (u,v)G"E,EXGay (u, v)

all (u, v)Ep,ER ap (u,v)
(12)

where ap(u,v) is the steering vector of the FCPA,
2

ap (u, 1/) = aFy (u)@an (V) IS C(M1+M2’ 1) ><1’ aFy (u) —

[1’ ejZHdFyzu/)l’ ..e j27rdl_vy(Ml+M2,1)u//1]T € C(M1+M2— 1)><1,

ap, (v) = [1,e/2 eV
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eJZHde(Mlﬂwrl)V/)‘]T € C(M‘+M2_ 1)><1‘ EFn

space of the FCPA, and Ep, = GE,.

Although the autopaired 2D DOA estimates can be
obtained via performing spectral search on (12), it suffers
from tremendously expensive computational cost. To tackle
this issue, we first performed reduced-dimension transfor-
mation and then exploited 1D polynomial root-finding
technique to estimate u and v.

denotes the noise

3.2. Reduced-Dimensional Polynomial Root-Finding Process.
Construct the polynomial based on (12) as

V(u,v) = [apy (u)®ag, (v)]HEF,,E?n [EFy (u)®ag, (v)]
= a?x (V) [aFy (u)®IM1+M27 1]H
EFnE?n [aFy (u)®IM1+MZ—1]an )

= aI;x (v)Q(u)ag, (v),

(13)

V(u,v) = [aFy (u)®ag, (v)]HEFnEI;n [aFy (u)®ap, (v)]
= a?y (u) [IM1+M2— 1®ap, (V)]H
EFnE?n [IM1+M2—1 ®ag, (V)]aFy (u)
= az, (1)Q(V)ag, (u),

(14)

Q(u) = [aFy (u)®1M1+M2_1]HEan§n [aFy (u)
®IM1+M2—1] and Q) = [IM1+M2—1®an (V)]HEFHEIF_In

(Lat, 101, -1®aE, (V)]
According to the relation of rank of the matrix product,
the following constraint

0 < Rank(Ej,Ey, ) < Rank (E,) (15)

where

has to be satisfied, and then we have

det{Ep,Ef, | #0. (16)

We can conclude that det {Q(u)} is nonzero polynomial
from (16); thus, Q (u) is a factor of V (1, v). As Q (1) depends
only on the variable u, the roots of det{Q ()} = 0 can make
the following equation hold:

V(u,v) = ali (V)Q(u)ag, (v) = 0. (17)

It is noteworthy that only 1D polynomial is involved to
achieve the estimates of u. Similarly, we can get the estimates
of v. Consequently, the problem of obtaining paired esti-
mates of # and v from the 2D polynomial is transformed into
two 1D root-finding process. Then, we reconstruct (13) and
(14) as
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H H
det{Q(w)} = det{ [ar, @@Ly a1 ] ErEl [a, (u)®IM1+M2_1]} —o0, (18)
H H
det{Q(v)} = det{ [IM1+M2—1®an (V)] Ep.Eg, [IM1+M2—1 ®ag, (V)]} =0. (19)
Define correspondence between FCPA and UPA with same array
7. = pi2mduid aperture, we have
1~ >
2. = G2V (20) ap, (v) = Gyag, (v), (21)
2 >
where G, € ZM DXL LD o be specific, g,;; = 1
where d = A/2.

Define the steering vector of UPA that has the same array
aperture as FCPA along the x-axis as ag, (v) = [1, ef2mdvil,
e]anln{M Mz} max{Ml Mz}_ 1)
dv/)t] e C(min{MMomax{MpMo}=D+Dx1 e agsume  that
M, < M, for simplification and then ag, (v) can be expressed
as ag, (V) — [1) e]27rdv/)t’
_’ejanl (szl)dv/)\]T € q:(M1 (M,—-1)+1)x1 Based on the

ap, (u) = Gjag, (u) = G, [I,ejznd“/’l, ceo

ap, (v) = Gyag, (v) = G, [1,e12”‘””‘, .

Without loss of

M, (M,-1
zy' )[ (zll)®IM+M2 g7

generality, substituting
for [ag, ()®1y 4, - J7

. T
e (-] 1z,

2My (M= 1)dviA ] T _

holds when the ith sensor in the aj, (v) and the jth sensor in
the ag, (v) overlap, otherwise g;; = 0, where g;; is the (i, j)th
element of G,. For the FCPA displayed in Figure 2, G, is a
4 x 5 matrix with one columns of all zeros. Similarly, we can
obtain the relation ag, (u) = Gag, (u).

Correspondingly, the steering vectors can be rewritten as

. ,zllw1 (Mz_l)]T = 00p, (21), (22)
00, [l,zz, L (Mz_l)]T =ap, (z,). (23)
M, (M-

and  substituting 2 1)[IMlJer_l®a}€x(z;1)]H for

(Lpr n,-1 @ gy M1, ie,

det{Q(z,)} = det{ P 1)[ Fy(zl )@, 1] E.E[ap,(2,") ® L, 00,1 ]} =0, (24)

M, (M,-

det{Q(2,)} = det{

Considering that det{Q(z,)} and det{Q(z,)} are poly-
nomials of even degree, #i; and V; can be obtained from the K
roots distributed closest to the unit circle correspondlng to (24)

and (25), and the roots are denoted by Z,;,...,Z1j>--->Z1x
and Z,,..., 2. .., 2,k respectively, ie.,
_ angle (Z ;)\
=|—————), k=1,...,K, 26
( 2nd (26)
_ [angle(z,)A ,
=l — ) =1,...,K. 27
K ( 2nd : (27)

For the conventional DOA estimation methods with
CPA, the ambiguity elimination operation is required since
the interelement spacing in the two subarrays is larger than
half-wavelength. The FCPA is an unambiguous array which
has at least one sensor pair with separation no larger than
half-wavelength according to (5), and we can obtain the true

g [IM1+M2— 1® a;x(zgl)]HEnEf [IM1+M2—1 ® an(Z;l)]}

0. (25)

DOA estimates directly after the parameter pairing without
extra ambiguity elimination process.

3.3. Parameter Pairing and DOA Estimation. In this part, we
determine the pairing of #i; and ¥; since the two root-finding
procedures are conducted separately. Construct the cost
function for pairing as

) (k=1,...,K),

Vii= arg min||aH(ﬁk,$i)En "a (@, 7,

i=1,...,

(28)

where a (i, ;) represents the steering vector reconstructed
i, and ¥;, which can be obtained according to (1).

For each #i;, we can obtain the value of i and k that
minimize V; (1 <i <K), and we define the paired index as i’
and k. Finally, the 2D DOAs can be calculated by



@k = arcsin(xlﬁi + 9,1.2 ), 1<k<K, (29)

b = arctan(#), 1<k<K, (30)

vy

where 7, is reconstructed by i’ (1<i' <K).

3.4. The Procedure of the Proposed Algorithm. We summarize
the major steps of the proposed algorithm as follows:

Stepl: calculate R of the received data X and perform
EVD to obtain the noise space E,

Step 2: reconstruct the spectral function P (u,v)
according to (6)

Step 3: construct the polynomial V (1, v) and conduct
reduced-dimension transformation according to (12)

Step 4: calculate 77, and ¥; according to (26) and (27)

Step 5: perform parameter matching to obtain @k and @k
according to (28)-(30)

4. Performance Analysis

4.1. Complexity Analysis. Herein, we compare the compu-
tational complexity of the proposed algorithm, 2D-PSS [22],
RD-MUSIC [23], AF-MUSIC [27], and 2D-ROOT [26]
methods in this section. For the proposed algorithm, cal-
culating the covariance matrix requires O{T?L} and the
complexity of eigenvalue decomposition is O{T>}. The root-
finding operation costs O~{2(2M1 (M, - 1))3} and param-
eter matching process requires O{K*(T —K)(T +1)}.
Consequently, the total complexity is
OT2L +T* +2(2(M, (M, - 1)))’ + K*(T - K)(T + 1)}

Table 1 lists the total complexity of above algorithms,
where A = 0.0001 is the spectral search interval. In addition,
Figure 3 displays the complexity comparison versus number
of sensors, where K = 2and L = 500, while the complexity
comparison with different number of snapshots is shown in
Figure 4, where K = 2, M, = 2, and M, = 3. Itis clearly seen
that the proposed algorithm owns the approximate low
complexity to the 2D-ROOT method, which is significantly
lower than that of the 2D-PSS, RD-MUSIC, and AF-MUSIC
methods, as the spectral search process with heavy com-
putational burden is transformed into computationally ef-
ficient polynomial root-finding.

4.2. Cramer-Rao Bound. In this part, the derivation of
Cramer-Rao Bound (CRB) of the 2D DOA estimation with
CPA is given as the performance comparison metric.

Define A = [2; , where A; = [a, (0,,¢;) ®a, (6,
¢1)s-- 2, (Ok ) @2, (O, ¢x)] and A, = [a), (6, ¢,)

®a, (01, 81),..., ay, (O, ¢x) ®a,, (Ok, ¢x)]. According to
[28], the CRB of CPA can be given by
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CRB = i{Re[D I, DeP H , (31)
where D = [0a,/00,,...,0ax/00k, 0a,/0¢,,...,0a/0¢k],
I} = Lys,pe o — A[APA]AM, P = gs Pl b, = ssHiL,

S N
a;. denotes the kth column of A, and a2 is the variance of the
received noise.

4.3. Achievable DOFs. As for the conventional decompo-
sition-based 2D DOA estimation methods, such as RD-
MUSIC, 2D-PSS, and other algorithms, the number of
achievable DOFs is min{M? — 1, M3 — 1}. According [26],
M? + M3 -2 signals at most can be resolved by utilizing
AF-MUSIC algorithm which processes the received data of
the two subarrays jointly, whereas extremely high com-
putational complexity is involved due to the 2D spectral
peak search. RD root-finding technique is employed in the
proposed algorithm to deal with the complexity and the
achievable DOFs can be obtained from (15). If u or v does
not match any of the incident signals, we have the
constraint

max{M, M,} < Rank(EFnE;In) <Rank (Ep,), (32)

where

Rank (Ep,) = min{ (M, + M, - 1), M3 + M3 - 1 - Kll.
Consequently, the maximum number of signals which can
be identified by the proposed algorithm is

K <M +M; - 1-max{M,, M,}. (33)

It is clear that the proposed algorithm can greatly im-
prove the DOFs compared with the traditional 2D DOA
estimation methods.

4.4. Advantages. Based on the above discussion, the ad-
vantages of the proposed algorithm can be listed as follows:

(1) It can achieve superior estimation performance and
higher achievable DOFs than the decomposition
methods, owing to the utilization of entire received
data. Moreover, additional ambiguity elimination is
no longer required due to the ambiguity-free char-
acteristic of the FCPA.

(2) It outperforms the AF-MUSIC algorithm, RD-
MUSIC algorithm, 2D-PSS algorithm, and 2D-
ROOT algorithm in estimation performance.

(3) The proposed algorithm owns much lower compu-
tational complexity than the RD-MUSIC, 2D-PSS,
and AF-MUSIC methods, which is approximately as
low as 2D-ROOT algorithm.

5. Simulations

In this section, we perform 500 Monte Carlo simulations to
validate the performance of the proposed algorithm. Assume
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TaBLE 1: Complexity of different algorithms.

Algorithm Complexity
Proposed O{T?L+T* +2(2(M, (M, - 1))’ + K*(T = K) (T + 1)}
2D-PSS O{(M?% + ML + MS + MS + 4M? (M3 — K)/ (M3A?) + 4M3% (M3 - K)/ (M3A%)}
4 4 6 6 3 3 _ 4 3
RD-MUSIC 0 (M7} + M3)L + M$ +3M23+2(2M1(1§1/I1 I§)+M1+M1)/A
+2(2M; (M35 - K) + M3 + M;/A)
2D-ROOT O(T*L + T3 + 8(M® + KM3 + M§ + KM3))
AF-MUSIC O(T?L +T? + 8T (T - K)/A?)
101 . : : :
1012 : : : : : :
102 1 - M .
S M | 10
£ 2 1010
£ E
‘g 107 b g
= o108t
= s =
E 10° - R E
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F1Gure 3: Complexity comparison versus number of elements.

that K uncorrelated far-field narrowband signals impinge on
the CPA. Define root mean square error (RMSE) by

1K 1500

—~ 2 -~ 2
RMSE = - k; =0 ;(¢k,i ~¢) +(0 -0, (4

where gTSk’i and ’ék,i are the estimates of the kth signal in the ith
trial corresponding to the true azimuth ¢, and elevation 0,
respectively.

5.1. Scatter Figures. The scatter figures of the proposed algo-
rithm under K sources are as follows, where
K =6, SNR = 30dB, L =1000, (6,,6,,6;,0,,0,6) = (5,
15°,25°,35°,45°,55°), and  (¢y, by, s, b4» bs» B) = (5°,15°,
25°,35°,45°,55°). The CPA is composed of two UPAs with
M;xM;=2x2 and M, x M, =3x3. As illustrated in
Figure 5, the proposed algorithm can effectively distinguish all
sources incident on the CPA.

FIGURE 4: Complexity comparison versus snapshots.

5.2. RMSE Results Versus Snapshots. In this part, we present
the DOA estimation performance of the proposed algorithm
with different number of snapshots in Figure 6, where
(0, ¢,) = (20°,30°), (65, ¢,) = (40°,50°), M, x M, = 2% 2,
and M, x M, =3 x 3. The result demonstrates that the
estimation accuracy improves as the number of snapshots
increases, owing to the more accurate covariance.

5.3. RMSE Results Versus Number of Sensors. Herein, we
provide the RMSE results of the proposed algorithm versus
number of sensors in Figure 7, where (8, ¢,) = (20°,30°),
(8,,¢,) = (40°,50°), and L = 200. As the number of array
elements increases, the diversity gain of the receiving an-
tenna increases. It is illustrated clearly that the increased
number of sensors leads to improved DOA estimation
performance.

5.4. RMSE Comparison of Different Algorithms. Figure 8
exhibits the RMSE comparison of the proposed
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FIGURE 6: RMSE performance of the proposed algorithm versus snapshots.

algorithm, 2D-ROOT algorithm, 2D-PSS algorithm, RD-
MUSIC, and AF-MUSIC algorithm, where M; x M; =2 x 2
and M, x M, =3 x 3. It is indicated explicitly in Figure 8
that the proposed algorithm and AF-MUSIC algorithm,
benefiting from the utilization of the received data of the
entire CPA, outperform the decomposition-based RD-
MUSIC, 2D-PSS, and 2D-ROOT algorithms. Furthermore,
the proposed algorithm yields superior estimation perfor-
mance to the AF-MUSIC algorithm, as the proposed al-
gorithm directly performs two root-finding operations based
on the spectral function (11), while the cascading process in
the AF-MUSIC algorithm may result in performance
degradation.

6. Conclusion

In this paper, we propose a computationally efficient 2D
DOA estimation algorithm for CPA by exploiting the RD
polynomial root-finding technique. The proposed algo-
rithm first maps CPA into FCPA and exploits the received
data of two subarrays jointly, where the mutual infor-
mation loss is avoided and simultaneously the improved
estimation performance as well as enhanced DOFs can be
achieved. In particular, the FCPA we constructed is an
ambiguity-free array with high extraction efficiency.
Furthermore, we convert the 2D total spectral search into
one 1D polynomial root-finding process via reduced-
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FIGURE 8: (a) RMSE comparison of different algorithms versus snapshots. (b) RMSE comparison of different algorithms versus SNR.

dimension transformation, which significantly reduces
the computational cost and simultaneously preserves the
estimation accuracy. Simulations demonstrates the su-
periority of the proposed approach in regard to com-
plexity, achievable DOFs and DOA estimation
performance.
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