
Research Article
A Novel Genetic Algorithm-Based Optimization Framework for
the Improvement of Near-Infrared Quantitative
Calibration Models

Quanxi Feng,1,2 Huazhou Chen ,1,2 Hai Xie,1 Ken Cai,3 Bin Lin,1,2 and Lili Xu4

1College of Science, Guilin University of Technology, Guilin 541004, China
2Center for Data Analysis and Algorithm Technology, Guilin University of Technology, Guilin 541004, China
3College of Automation, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
4College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China

Correspondence should be addressed to Huazhou Chen; hzchengut@foxmail.com

Received 24 December 2019; Revised 10 June 2020; Accepted 12 June 2020; Published 10 July 2020

Academic Editor: Mario Versaci

Copyright © 2020 Quanxi Feng et al. ,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

,e global fishmeal production is used for animal feed, and protein is the main component that provides nutrition to animals. In
order to monitor and control the nutrition supply to animal husbandry, near-infrared (NIR) technology was utilized for rapid
detection of protein contents in fishmeal samples. ,e aim of the NIR quantitative calibration is to enhance the model prediction
ability, where the study of chemometric algorithms is inevitably on demand. In this work, a novel optimization framework of
GSMW-LPC-GA was constructed for NIR calibration. In the framework, some informative NIR wavebands were selected by grid
search moving window (GSMW) strategy, and then the variables/wavelengths in the waveband were transformed to latent
principal components (LPCs) as the inputs for genetic algorithm (GA) optimization. GA operates in iterations as implementation
for the secondary optimization of NIR wavebands. In steps of the variable’s population evolution, the parametric scalingmode was
investigated for the optimal determination of the crossover probability and the mutation operator. With the GSMW-LPC-GA
framework, the NIR prediction effect on fishmeal protein was experimentally better than the effect by simply adopting the moving
window calibrationmodel.,e results demonstrate that the proposed framework is suitable for NIR quantitative determination of
fishmeal protein. GA was eventually regarded as an implementable method providing an efficient strategy for improving the
performance of NIR calibration models. ,e framework is expected to provide an efficient strategy for analyzing some unknown
changes and influence of various fertilizers.

1. Introduction

Fishmeal is a kind of popular animal food that provides high
contents of protein and amino and fatty acids, which are
essential nutrients in many formulated diets [1, 2]. Hence,
fishmeal industry is widely spread across the world [3].
Approximately 65% of the annual global fishmeal produc-
tion is used for animal feed, including poultry, swine, and
even human foods [4]. In fishmeal manufacture, the nu-
trition supply is mainly summarized as the variability of
protein, which generally accounts for 52–75% of the dif-
ferent fish species. Uniform protein composition is induced
and produced from raw materials so that the detection of

protein content is essential to guarantee the nutrient quality
of fishmeal [5]. ,e conventional method to determine the
protein content is the Kjeldahl method. However, the
Kjeldahl method requires chemical operation skills, needs
chemical reagents, and is time-consuming [6].,erefore, the
study of rapid detection technologies is inevitable for precise
determination of protein content in the process control of
fishmeal production.

Near-infrared (NIR) spectroscopy is a rapid detection
technology that is able to record the response of the chemical
functional groups such as C-H, O-H, and N-H bands, which
are the primary chemical compositions of fishmeal protein
[7, 8]. NIR spectroscopy shows its advantages in easy and
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fast application with no destruction to samples and minimal
requirement of pretreatment, and thus, it has been devel-
oped to be a prevalent technique for quantitative and
qualitative analysis and well established in fields of agri-
cultural engineering, food safety, environmental assessment,
and medical and pharmaceutical science [9–12]. Conse-
quently, NIR spectrometers are increasingly becoming a
good choice for in situ measurements on the spots. However,
in the quantitative prediction of fishmeal, there are many
components other than protein (e.g., moisture, ash, and
amino acids) which will raise major effects in the process of
protein detection [13]. NIR fast detection is accompanied
with noises from the nontarget components and interfer-
ences from the instable instrument.

NIR spectral response is detected at each resolvable
wavelength to describe a sample to be tested. When hun-
dreds of samples are tested, the NIR data are recorded as a
spectral matrix as the incident NIR light that is preset in a
certain frequency range is split into a bunch of wavelengths.
But noting that not all of the wavelengths have a high signal-
to-noise ratio, spectral features should be extracted to
identify the informative wavelengths, and a calibration
model should be established and optimized. In recent years,
both theoretical evidence and experimental evidence show
that variable selection is on critical demand to find out the
spectral features corresponding to the target analyte com-
ponent (e.g., the protein), so that the performance of the
calibration model can be significantly improved [14, 15].

Many calibration methods are effectively applied to NIR
quantitative analysis. Partial least squares (PLS) is a standard
linear regression method commonly applied to NIR quan-
titative calibration in areas of agriculture, food, and bio-
medicine [16, 17]. ,e original form of PLS is to extract
principal components both for the independent variables
(i.e., the spectral wavelengths) and for the dependent var-
iables (i.e., the contents of target components). It does not
include any procedure of variable selection, and all variables
are included in the original algorithm. Even though a linear
subspace is built to suppress the influence of noise and the
key factor of the latent variable is tunable for model opti-
mization, the instinct noise interference of all variables is
introduced into the regression procedure along with the
target information [18, 19], and thus, the model predictive
performance is limited and can hardly be improved.

Some refined methods related to variable selection were
proposed, such as equivalent division of waveband [20],
combined use of different subwavebands [21], moving
window search of waveband [22], and competitive adaptive
reweighted sampling of variables [23]. ,ey are experi-
mentally proved to be effective. Nevertheless, these methods
mainly emphasize the selection of variables at their initial
state (i.e., the wavelengths), or the extraction of principal
component variables from the initial wavelengths. Seldom
studies concern on a secondary implementable variable
optimization, which is much necessary for the enhancement
of variable selection and further for the improvement of
model performance.

Iterative optimization algorithms can be considered for
the secondary optimization of variable selection. Genetic

algorithm (GA) is a kind of iterative optimization method
that simulates the biological evolution in the sense of sur-
vival fitness [24]. It is on the basis of random global search
with iterations for preset times. Selection, crossover, and
mutation will be carried out in the process of iteration, so
that the initial population of variables will evolve as new
generations [25]. ,e genetic algorithm is well known and
widely used for variable selection for spectroscopic analysis,
embedded with the PLS or MLR regressions for quantitative
calibration [26, 27].

In this paper, genetic algorithmic iteration was designed
as the core process of the implementable optimization for
variable selection in NIR quantitative analysis of fishmeal
protein content. Firstly, the so-called informative wavebands
were identified using the refined method grid search moving
window (GSMW), where the calibration models were
established by the classic PLS regression. Considering that
protein is the only target analyte representing the variation
of fishmeal nutrition supply, the search for latent variables in
the PLS algorithm is preferable to be simplified as the
analysis of latent principal component (LPC). ,en, we are
tending to launch a variable selection operation based on the
principal component extraction combined with moving
window technique (GSMW-LPC), where the genetic algo-
rithm iteration is applied. ,e available LPCs extracted from
each subwaveband will be further optimized by GA iteration,
and parametric scaling mode is introduced for GA opti-
mization. Consequently, the NIR calibration models were
reestablished based on the GSMW-LPC-GA extracted var-
iables, and the models were experimentally examined to
improve the quantitative determination of protein contents
in fishmeal samples. Hence, genetic iteration is regarded as
an implementable optimization strategy for variable selec-
tion in NIR quantitative calibrations [28]. As different from
previous studies, the design of GSMW-LPC-GA framework
undertakes a hypercombined optimization of GSMW, LPC,
and GA. ,en, the calibration model can be optimized in
joint optimal selection of MW parameters and the number
of LPC and GA iterations. Especially in the GA process, the
crossover rate, mutation rate, and the iteration times were
designed for tuning, and a new subjection for stopping the
GA iterations is identified. ,is strategy has the potential
applicable prospectiveness for the nondestructive rapid
detection of other analytes in fields of agriculture, envi-
ronment, and animal husbandry.

2. Methods

2.1. +e Parametric Scaling Genetic Algorithm for Variable
Selection. In genetic algorithm, the trial individuals in each
generation are encoded the gene according to its chromo-
somes using a specific language that guarantees a unique
mapping from genotype to phenotype [29]. ,e phenotype
results of the spectral calibration experiment are coded as
genotype results so that its properties, components, and
characteristic responses can be predicted. A loss function
(also called fitness function or objectivity function) is de-
fined to transform the genotype of an individual into a single
quantitative value that represents the evolutionary
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performance of the individuals. ,e genetic algorithm is
expressed as the following steps [30]:

Step 1: a population is initially generated by randomly
selecting a subset of variables (i.e., spectral wave-
lengths). ,e size of this population is preset. A flag is
set for each wavelength in the full-scanning region.
Each variable is successively marked with flags, where
the flag is a binary marker equaling to 1 or 0. Flag 1
represents the corresponding variable is selected into
the subset while Flag 0 represents the variable is not
selected.
Step 2: calibration models are established based on each
variable subset, and thus, the model performance is
validated and evaluated by computing the value of the
loss function for the individuals (i.e., the variables) in
the current population, in the way of cross-validation.
Step 3: the calibration models are compared, and the
next generation is produced by selecting a suitable
variable subset that leads to improved performance
with high prediction accuracy. ,e selected variable
subsets are further modified by crossover or by
mutation.
Step 4: a modified variable subset is produced in one
way by the crossover of the available variables between
the selected variable subsets or in the other way by
mutating the flags for each variable by small
probability.
Step 5: the selected variable subsets and the modified
variable subsets are used to form a new variable
population that should be taken as the inputs and
return to step 2.

,e steps 2–5 are repeated for iteration calculation, thus
to generate several new populations. According to the
modeling performance of cross-validation, the iteration will
be stopped in one way when the model prediction error
becomes stable or in the other way meeting the preset it-
eration times. ,e last generated population is regarded as
the optimal informative variable subset.

,e implementation of genetic algorithm depends on
internal parameters such as population size, the proba-
bility of crossover (commonly set as 50%) and mutation
operators (commonly set as 1.2%), and the stopping
condition of iteration (commonly set as 500) [31]. ,e
parametric scaling strategy should be applied to achieve
the optimization of genetic evolution. ,e exploration of
parametric optimization refers to the enhancement of the
model prediction accuracy originated from the full-
scanning variables regarding suitable genotype-phenotype
coding and aiming to find the minimal value of the loss
function.

2.2.+eGrid SearchMode forMovingWindowOptimization.
Moving window (MW) is a simple and effective way to find
the spectral informative features in a grid search optimi-
zation manner [32, 33]. Combined with the classical PLS
regression, MW manages to extract spectral features in the

study of chemometric algorithmic optimization for NIR
rapid analysis, leading to appreciate prediction effects [34].

A window is initially defined by its size and its position.
In particular, the size is annotated by the number of variables
(N, i.e., spectral wavelengths) in the window, and a starting
wavelength (S) represents the position of the window. When
either N or S changes, the window moves through the full-
scanning spectral range, with adjustable size. ,us, N and S
are regarded as two parameters to determine a window (i.e.,
a subset of continuous wavelengths). A fix value of the
combination of (N, S) precisely identifies a window, in which
the variables will be utilized for establishing calibration
models with some suitable quantitative regression
algorithm.

With a grid search manner, the window parameters N
and S are, respectively, set tunable in designated changing
ranges. For any fixed value of N, S is set tunable from 1 to
P − N + 1 (here P represents the number of wavelengths in
the full-scanning range); the calibration models are estab-
lished, optimized, and evaluated. By comparing the model
prediction results, the most optimal model corresponding to
the fixed N can be determined, and simultaneously, the
pairing value of S can also be found. On the counterpart, for
any fixed value of S, N is set tunable from 1 to P − S + 1; the
calibration models are also compared to determine the most
optimal model corresponding to the prevalued S, and the
paring value of N is simultaneously observed. In this way, all
possible windows are tested, and the most informative
spectral waveband is identified.

,emethod of grid searchmoving window (GSMW) can
be expressed in statistical formulae to identify the paring
value of N (or S) for a fixed value of S (or N):

Modelopt Nfixed( 􏼁 · window � Nfix, arg min ERR Stunable( 􏼁 Nfixed
􏼌􏼌􏼌􏼌􏼐 􏼑􏼐 􏼑,

Modelopt Sfixed( 􏼁 · window � arg min ERR Ntunable( 􏼁 Sfix
􏼌􏼌􏼌􏼌􏼐 􏼑, Sfixed􏼐 􏼑,

(1)

where the term on the left of the equal sign represents the
optimally found window (i.e., the most informative wave-
band), the term on the right is the optimally selected window
size and position expressed in the form of (N, S), and ERR(·)

is the loss function of the calibration model, which is usually
defined as the model prediction error.

2.3. +e Optimization Framework of GSMW-LPC-GA.
NIR calibration models were established and optimized,
where the informative wavebands were selected by using the
grid search moving window operation. As the parameters of
(N, S) were tunable, all possible applicable subwavebands
were tested, and thus, several wavebands were identified
with outputting appreciable modeling results. On this basis,
a secondary optimization was carried out using the para-
metric scaling of GA as an implementable manner, and
beforehand, the latent principal variable components are
generated by the method of principal component analysis.

Figure 1 shows the flowchart of the GSMW-LPC-GA
framework, and the algorithmic steps are expressed as
follows:
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Framework Step 1. Wavelengths in the full-scanning
range of NIR spectroscopy were resolved as continu-
ously changing variables. ,e spectral data are nor-
malized and pretreated by the method of standard
normal variate (SNV) [35].
Framework Step 2. ,e grid search moving window
(GSMW) technique was applied to the full-length
spectral range. In the way of screening all possible
windows with applicable size and position, the optimal
subwaveband can be identified, and some quasioptimal
subwavebands (several appreciable parameter combi-
nations of N and S) were found as well.
Framework Step 3. ,e wavelengths in the selected
optimal and quasioptimal subwavebands were trans-
formed to the principal variables using the principal
component algorithm. Each new generated compre-
hensive variable of latent principal component (LPC) is
expressed by a linear function of the initial wavelengths
in the target subwaveband. ,e LPCs are sorted in a
sequence with their descending information contri-
bution, and significant LPCs can be obtained in front of
the sequence. ,e LPCs should have been the optimal
output variables for NIR predictions, but GA is
designed in this framework as the implementable
method for secondary optimization.
Framework Step 4. As for GA implementation, the
designated significant LPCs are taken as the candidate
individuals for GA inputs. ,e initial population is
generated by randomly selecting a subset of the
available LPCs and then goes through the steps of the

parametric scaling GA iteration. ,e loss function is
reasonably defined obeying the rule of minimizing the
NIR prediction errors. Accompanied with the selection,
crossover, and mutation processes, new generations of
the population are repeatedly produced and cyclically
refreshed. ,us, the secondary optimized informative
variables are updated in loops until the iteration stops.

3. Data and Applications

3.1. Data Acquisition. Fishmeal samples were prepared as
animal feeds. A total of 194 samples were collected for our
experiment. 113 of them were acquired from Guangxi (an
autonomous province in South China) and 81 were acquired
from Vietnam. ,e samples were physically pretreated by
air-drying, crushing, and sifting to particles with diameters
no larger than 0.2mm. ,e contents of protein were pre-
viously detected for each sample, using the conventional
Kjeldahl method (Chinese National Standard: GB/T 6432-
2018). ,e maximum and minimum values as well as the
statistical average value and the standard deviation were
recorded as 67.03, 53.17, 60.670, and 4.362 (wt.%),
respectively.

,e NIR spectral measurement was performed by using
FOSS NIR Systems 5000 grating spectrometer (Foss NIR-
Systems Inc., Denmark) equipped with its diffuse reflectance
accessory and a round sample cell. To reduce the systematic
error, each sample was repeatedly detected for 5 times and
the average spectrum was output as the spectrum of the
sample. ,e temperature in the laboratory was controlled at
25± 1°C and the humidity was controlled at 70± 1% RH
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Figure 1: ,e flowchart of the optimization framework of GSMW-LPC-GA.
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throughout the spectral scanning process.,eNIR spectrum
was measured over the wavenumber range of 1100–2500 nm
with a resolution of 2 nm, so that 700 distincable wave-
lengths were identified as variables recording the spectral
data. ,e spectra of 194 fishmeal samples are shown in
Figure 2.

3.2. Sample Sets and Model Indicators. ,e proposed algo-
rithmic framework of GSMW-LPC-GA was applied to
variable selection for NIR calibration of fishmeal for the
quantitative determination of protein content. For NIR
calibrations, the fishmeal samples should be split into the
modeling set and the testing set. As for modeling repre-
sentativeness, the testing set was randomly picked in ad-
vance as including 54 samples, and the remaining samples
were for modeling. Because the NIR calibration models need
establishment and optimization, the modeling samples were
further divided into the calibration part (90 samples) and the
validation part (50 samples), where the method of sample set
partitioning based on joint x-y distance [36] was applied.,e
maximum, minimum, and average values and the standard
deviation for the calibration part, validation part, and testing
set are listed in Table 1. ,e statistical data of all samples
were also listed.

Quantitative indicators are needed to evaluate the cal-
ibration model. Root mean square error (RMSE) and cor-
relation coefficients (R) are commonly used, which are
defined as follows:

RMSE �

����������

􏽐 yi − yi
′( 􏼁
2

n

􏽳

,

R �
􏽐 yi − ym( 􏼁 yi

′ − ym
′( 􏼁

����������������������

􏽐 yi − ym( 􏼁
2

􏽐 yi
′ − ym
′( 􏼁

2
􏽱 ,

(2)

where yi and yi
′ are the Kjeldahl-measured protein content

and the NIR predictive value of the i-th fishmeal sample, ym

and ym
′ are the mean value of yi | i � 1, 2, . . . , n􏼈 􏼉 and

yi
′ | i � 1, 2, . . . , n􏼈 􏼉, respectively, and n represents the

number of target samples. Consequently, we denoted
RMSEC/RC, RMSEV/RV, and RMSET/RT as the corre-
sponding signs of RMSE/R for the calibration samples,
validation samples, and testing samples, respectively.

4. Results and Discussion

,e optimization framework of GSMW-LPC-GA was ap-
plied to the quantitative analysis of fishmeal protein based
on the NIR spectral matrix. In the framework, GSMW
modeling method was used to select wavebands with high
signal-to-noise ratio, which were regarded as the informative
continuous wavelengths for further optimization. Next, la-
tent variables were extracted from the initial continuous
wavelengths, by using the latent principal component
technique, so as to hold more information of the target with
less designated variables.,en genetic algorithmwas applied
to promote the variable population evolution with steps of
selection, crossover, and mutation. In the end, we managed

to obtain some informative variables for the calibration of
fishmeal protein, aiming to have a prospective improvement
for the quality of NIR analysis.

4.1. Waveband Selection for the Partition of GSMW.
GSMW is designed to use the grid search mode to optimize
the way of parameter identification for the moving window
algorithm flow. As is known that a specific window is de-
termined by the position and its width (i.e., the number of
variables in the window), the task of moving window op-
timization is to find the target parameter combinations of
(N, S) that point to a solid window leading to optimal NIR
prediction effect. In this work, we set N and S tunable,
targeting 700 discrete initial scanning wavelengths. Con-
sidering that a model established on a large number of
variables will increase the computational complexity, thus
we design N valuing continuously when it is not over 100,
and changing with a jumping step of 10 points when it is
smaller than 300 and with a step of 20 when larger than 300
(i.e., N ∈ [1 :1 :100]∪ [110 :10 :300]∪ [320 :20 :700]). In
this way, the value of N roughly went through some rep-
resentative cases from 1 to 700 and also guaranteed a less
computing load for acceptable operation with currently
prevalent computers. On the other hand, the parametric
value of S was set changing from 1 consecutively to 700 (i.e.,
S ∈ [1 :1 :700]). All applicable combinations of (N, S)
should subject to the rule of N + S − 1≤P, where P is equal
to 700. Consequently, we totally tested 78, 790 possible
windows.

PLS, the commonly used calibration method, was ap-
plied for each determinant window to estimate the func-
tional contributions of the window wavelengths to the
results of NIR calibrations. ,e calibration samples were
used for model training and the validation samples for
selecting the optimal model with a minimum value of
RMSEV. ,e predictive RMSEV matrix is shown as a
contour plot in Figure 3, corresponding to each fixed value
of (N, S).,en, the most optimal window can be identified in
Figure 3. Additionally, some well-performing models are
expected to have further improvement in the next steps of
the GSMW-LPC-GA framework. ,us, we finally determine
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Figure 2: NIR reflectance spectra of 193 fishmeal samples.

Computational Intelligence and Neuroscience 5



to choose 5 optimal windows for further analysis (marked as
(1), (2), (3), (4), and (5) in Figure 3).,e prediction results as
well as their operating parameters of the PLS models in these
5 windows are presented in Table 2, respectively. We found
that the most optimal waveband was 1446–1520 nm, which
includes 38 wavelengths/variables. Also we spotlight the
selected 5 optimal wavebands in the full range (see Figure 4).

4.2.GeneticOptimization for LPCs in the SelectedWavebands.
,e selected 5 optimal wavebands were available for further
optimization. ,e parameter scaling genetic algorithm was
applied, with principal component analysis plugged in. ,e
variables in each waveband were transformed to principal
components (LPC) as latent variables for analysis. ,e
number of LPCs is determined by the number of the original
variables in the waveband. ,ese latent components were
sorted in descending contribution to its original data, which
means that the latent variables in front of the queue contain
more information than the variables in the back. ,us, the

LPC transform projected the raw data into a reasonably
refined variable space in which the target information is
easier to observe. ,e original variables in windows (1), (2),
(3), (4), and (5) were transformed into 24, 23, 38, 36, and 18
LPCs, respectively. All of the LPCs were used as the inputs
for genetic optimization.

Genetic optimization is the vital implementation for
variable selection embedded in the GSMW-LPC-GA
framework. To make the GA procedure suitable for the
selected input data, the population size was set fitting the
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Figure 3: Contour plot of the validating results by the GSMW model.

Table 1: ,e statistical data of fishmeal protein contents for the calibration part, validation part, and testing set.

No. of samples Maximum Minimum Average Standard deviation
Calibration part 90 67.03 53.17 60.593 4.347
Validation part 50 66.19 53.86 59.174 4.412
Testing set 54 66.93 53.84 60.437 4.308
All samples 194 67.03 53.17 60.670 4.360

Table 2:,e optimal model validating results corresponding to the
5 selected wavebands.

S N Waveband (nm) RMSEV (wt.%) RV

(1) 18 24 1134–1180 5.146 0.874
(2) 77 23 1252–1296 5.071 0.884
(3) 174 38 1446–1520 4.944 0.905
(4) 441 36 1980–2050 5.190 0.892
(5) 486 18 2070–2104 5.312 0.908
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inputs, and then the selection, crossover, and mutation were
carried out. For parametric scaling tuning, the probability of
crossover was set as 40%, 50%, and 60% for testing. ,e
mutation operator was set testing the probabilities of 0.8%,
1.2%, and 1.5%. ,en, the population automatically evolved
in a loop iteration, and the loop was stopped in case of
meeting each of the following two conditions, and the
framework-optimized model was determined.

Condition 1. When reaching 500 times iteration, the loop
was mandatorily stopped.

Condition 2. When there was no further change appearing
in the loss function (i.e., the RMSEV) for consecutively 20
times iteration, the loop was adaptively stopped.

We tested the specific scaling parameter valuing of
crossover andmutation in genetic algorithm for each of the 5
designated wavebands. ,e framework optimization results
in the genetic evolution process are shown in Figure 5. It can
be seen in Figure 5 that the evolution loop did not stop in
some cases until 500 times iteration, and in other cases, the
loop stopped before iteration reached 500 times. Finally, we
were able to find the best results for each of the 5 selected
wavebands by the genetic optimizational process. ,e sec-
ondary optimized RMSEV and the corresponding RV are
shown in Table 3, as well as their preferable GA parameters.
We concluded from Table 3 that all of the data in the 5
selected wavebands were further optimized by GA and the

most optimal result was observed in the waveband of
1980–2050 nm, whose evolution loop stopped at the 434
times iteration.

4.3. +e Testing Results Based on the Optimal GSMW-LPC-GA
Model. As discussed above, the predictive performance of
the GSMW-LPC-GA framework on the calibration and
validation sample sets was satisfactory. ,e optimal model
selected by the GSMW-LPC-GA framework was established
on the waveband 1980–2050 nm (36 variables included),
with genetic optimization at 40% crossover and 0.8% mu-
tation. ,e evolution loop stopped at 434 times iteration.
,is framework optimal model outputs the prediction error
RMSEV as 4.215 and the correlation RV as 0.926. To evaluate
the practical modeling effect of the framework, we took the
waveband 1980–2050 nm as the target spectral data in the
testing part, performed the principal component extraction,
and applied the same GA parameters to estimate the
modeling effect for the 53 testing samples, which were in-
dependent of the training part. ,e PLS regression plot is
shown in Figure 6(a) demonstrating the testing results,
where the RMSET and RT were 5.341 and 0.883, respectively.
As for comparison, the typical GA evolution method was
used for establishing and optimizing the PLS calibration,
validation, and testing processes. With common algorithmic
settings, GA runs with 50% crossover, 1.2% mutation, and
500 times of iteration [31]. ,e GA-PLS testing results are

Table 3: ,e optimal model validating results corresponding to the 5 selected wavebands.

Waveband (nm)
,e optimal parameters for genetic evolution

RMSEV (wt.%) RVCrossover (%) Mutation (%) Iteration times#

1134–1180 50 1.5 500 4.755 0.906
1252–1296 40 0.8 437 4.546 0.897
1446–1520 50 0.8 469 4.353 0.918
1980–2050 40 0.8 434 4.215 0.926
2070–2104 50 0.8 484 4.649 0.912
#,e iteration times represent when the optimal RMSEV was kept as a constant value for a cycle of 20 times iteration, or less than 20 in case the iteration had
reached 500 times.

40 45 50 55 60 65 70 75 80
40

45

50

55

60

65

70

75

80 GSMW-LPC-GA optimization
waveband: 1980–2050nm

Measured content

RMSEV = 5.341
RT = 0.883

N
IR

 p
re

di
ct

ed
 v

al
ue

(a)

40 45 50 55 60 65 70 75 80
40

45

50

55

60

65

70

75

80

RMSEV = 6.372
RT = 0.864

Typical GA optimization
waveband: 1100–2500nm

N
IR

 p
re

di
ct

ed
 v

al
ue

Measured content

(b)

Figure 6: ,e PLS regression plot for test samples ((a) the proposed GSMW-LPC-GA framework and (b) the typical GA evolution).
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shown as the regression plot in Figure 6(b). ,e comparative
experiments show that the proposed GSMW-LPC-GA
framework performs better than the typical GA evolution in
the rapid NIR quantitative prediction of fishmeal protein.

5. Conclusions

NIR calibration model was established for the quantitative
determination of protein content in fishmeal samples. A
novel optimization framework of GSMW-LPC-GA was
constructed for model optimization. Possible wavebands
were tested for model enhancement by grid searching
moving window parameters, in which the starting point was
set continuously changing from 1 to the total number of
wavelengths in the scanning range, and the window size was
set in a specific design to balance the model representa-
tiveness and the computational complexity. Successively 5
optimal window wavebands were selected for further op-
timization by LPC feature extraction and GA iteration.
Genetic algorithmic iteration was designed as the core
process of implementable optimization. ,e variables/
wavelengths in each of the 5 selected wavebands were
transformed to LPCs as the input variables for GA iteration.
In GA optimization, the population size was set obeying the
dimensions of the input variable set. ,e probability of
crossover and mutation was designed for parameter tuning.
,e control of iteration enlarged the extension of parametric
scaling for generation evolutions. Finally, the model was
secondarily optimized by the selection, crossover, and
mutation operators in a refined interaction within the
GSMW-LPC-GA framework.

,e model prediction effects resulting from the GSMW-
LPC-GA framework were experimentally proved better than
the effect by simply adopting the moving window PLS
model. In calibration-validation model training, the optimal
GA probabilities for crossover and mutation were 40% and
0.8%, respectively, and the predictive RMSEV and RV were
best as 4.215 and 0.926, respectively, at the waveband
1980–2050 nm. ,is is significantly better than the moving
window output at the waveband 1446–1520 nm. For model
evaluation, the best model generated from the GSMW-LPC-
GA framework was further estimated by the testing sample
set, which is previously chosen outside of the training
samples. ,e testing results were not so good as the training
results, but it was practically acceptable for some industrial
rapid detection cases, with the RMSET and RT equaling to
5.341 and 0.883, respectively.

,e experimental results demonstrate that the proposed
GSMW-LPC-GA framework is suitable for NIR quantitative
determination of fishmeal protein. It was able to produce
better models, in relation to the full-spectrum model, with
the advantage of selecting informative wavebands for target
chemical analytes. In the framework, GA optimization
eventually plays an important role in the improvement of the
calibration model. Further studies include using the NIR
technology to perform rapid detections on other targets in
fields of animal husbandry, agriculture, and food science,
and genetic optimization iteration is expected to be an
implementable method providing an efficient strategy for

analyzing some unknown changes and influence of various
fertilizers.
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J. A. Lopes, “A review on the applications of portable near-

Computational Intelligence and Neuroscience 9



infrared spectrometers in the agro-food industry,” Applied
Spectroscopy, vol. 67, no. 11, pp. 1215–1233, 2013.

[11] A. Sakudo, “Near-infrared spectroscopy for medical appli-
cations: Current status and future perspectives,” Clinica
Chimica Acta, vol. 455, pp. 181–188, 2016.

[12] S. Hong, H. Chen, J. Gu, K. Cai, Z. Liu, and J. Wen,
“Comparative assessment on smart pre-processing methods
for extracting information in ft-nir measured data,” Mea-
surement, vol. 157, Article ID 107663, 2020.

[13] T. N. Kok and J. W. Park, “Extending the shelf life of set fish
ball,” Journal of Food Quality, vol. 30, no. 1, pp. 1–27, 2007.

[14] G. Foca, C. Ferrari, A. Ulrici, M. C. Ielo, G. Minelli, and
D. P. Lo Fiego, “Iodine value and fatty acids determination on
pig fat samples by FT-NIR spectroscopy: benefits of variable
selection in the perspective of industrial applications,” Food
Analytical Methods, vol. 9, no. 10, pp. 2791–2806, 2016.

[15] F. Westad and H. Martens, “Variable selection in near in-
frared spectroscopy based on significance testing in partial
least squares regression,” Journal of Near Infrared Spectros-
copy, vol. 8, no. 2, pp. 117–124, 2000.

[16] T. Mehmood, K. H. Liland, L. Snipen, and S. Sæbø, “A review
of variable selection methods in partial least squares regres-
sion,” Chemometrics and Intelligent Laboratory Systems,
vol. 118, pp. 62–69, 2012.

[17] S. Kuriakose and H. Joe, “Qualitative and quantitative analysis
in sandalwood oils using near infrared spectroscopy com-
bined with chemometric techniques,” Food Chemistry,
vol. 135, no. 1, pp. 213–218, 2012.

[18] M. Versaci, S. Calcagno, M. Cacciola, F. C. Morabito,
I. Palamara, and D. Pellicanò, “Standard soft computing
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