
 

Charting the scaling region of the Ising universality class
in two and three dimensions

Michele Caselle 1 and Marianna Sorba 1,2,*

1Department of Physics, University of Turin and INFN, Turin, Via Pietro Giuria 1, I-10125 Turin, Italy
2SISSA and INFN, Sezione di Trieste, Via Bonomea 265, 34136 Trieste, Italy

(Received 5 June 2020; accepted 18 June 2020; published 10 July 2020)

We study the behavior of a universal combination of susceptibility and correlation length in the Ising
model in two and three dimensions, in presence of both magnetic and thermal perturbations, in the
neighborhood of the critical point. In three dimensions we address the problem using a parametric
representation of the equation of state. In two dimensions we make use of the exact integrability of the
model along the thermal and the magnetic axes. Our results can be used as a sort of “reference frame” to
chart the critical region of the model. While our results can be applied in principle to any possible
realization of the Ising universality class, we address in particular, as specific examples, three instances of
Ising behavior in finite temperature QCD related in various ways to the deconfinement transition. In
particular, in the last of these examples, we study the critical ending point in the finite density, finite
temperature phase diagram of QCD. In this finite density framework, due to the well-known sign problem,
Monte Carlo simulations are not possible and thus a direct comparison of experimental results with
quantum field theory & statistical mechanics predictions like the one we discuss in this paper may be
important. Moreover in this example it is particularly difficult to disentangle “magnetic-like” from
“thermal-like” observables and thus an explicit charting of the neighborhood of the critical point can be
particularly useful.
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I. INTRODUCTION

Despite its apparent simplicity the Ising model is one of
the cornerstones of modern statistical mechanics. Over the
years it has become a theoretical laboratory to test new ideas,
ranging from symmetry breaking to conformal field theories.
Moreover, thanks to its exact solvability in two dimensions
[1,2] and the ease with which it can be simulated in three
dimensions, it has been widely used as a benchmark to test
new numerical approaches and innovative approximations.
The corresponding universality class, in the renormali-

zation group sense [3], is of central importance in theo-
retical physics due to its many experimental realizations in
different physical contexts, ranging from condensed matter
to high energy physics. At the same time it describes the
critical behavior of a lot of different spin models and, in the
limit of high temperatures, also of gauge theories.
From a statistical mechanics point of view it represents

the simplest way to describe systems with short-range

interactions and a scalar order parameter (density or uniaxial
magnetization) which undergo a symmetry breaking phase
transition. From a quantum field theory (QFT) point of
view it is the simplest example of a unitary conformal field
theory (CFT) [4] perturbed by only two relevant operators:
the “spin” operator (which is Z2 odd) and the “energy”
operator (Z2 even) [5].
Thanks to integrability, conformal perturbation, and

bootstrap [6,7] lots of results are known, both in two
and in three dimensions, on the behavior of the model at the
critical point, or when only one of the two perturbing
operators is present. However, typically, the interesting
regime for most of the experimental realizations of the
model is when both the perturbing operators are present and
much less is known in this situation.
The aim of this paper is to partially fill this gap by

studying a suitable universal combination of thermody-
namic quantities (see below for the precise definition) in the
presence of both perturbing operators. In three dimensions
we shall address the problem using a parametric repre-
sentation of the equation of state [8], while in two
dimensions we shall make use of the exact integrability
of the model in presence of a single perturbation [5]. Using
these tools we shall be able to predict the value of this
quantity in the whole phase space of the model in the
neighborhood of the critical point. These values can be used
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as a sort of “reference frame” to chart the critical region of
the model.
The universal combination that we shall study involves

the magnetic susceptibility and thus our proposal is
particularly effective when the model is characterized by
an explicit Z2 symmetry. When this is not the case, like for
the liquid-vapor transition or for the finite density QCD
example that we shall discuss below, the explicit knowl-
edge of our universal combination may help to identify
the exact directions in the phase space of the model with
respect to which the magnetic susceptibility must be
evaluated.
Thanks to universality, our results hold not only for the

standard nearest neighbor Ising model, but also for any
possible realization of the Ising universality class and in
fact we shall use the high precision Monte Carlo estimates
obtained from an improved version of the Ising model to
benchmark and test our results [9–15].
In particular, we shall concentrate in the second part of

the paper on realizations in the context of high energy
physics, suggested by the lattice regularization of QCD.We
shall discuss three instances of Ising behavior in finite
temperature QCD related in various ways to the deconfine-
ment transition. In the last of these examples, we shall
address the critical ending point of finite density QCD. In
this case, due to the well-known sign problem, Monte Carlo
simulations are not possible and thus a direct comparison
of experimental results with QFT/statistical mechanics
predictions like the one we discuss in this paper may be
important.
This paper is organized as follows. Section II is devoted

to a general introduction to the model and to the universal
combination of thermodynamic quantities which is the
main subject of the paper. In Sec. III we shall address the
problem in three dimensions using a suitable parametric
representation of the equation of state of the model. We
shall also show that the same approach cannot be used in
two dimensions. In Sec. IV we shall then address the two-
dimensional case using appropriate expansions around the
exact solutions of the model. Finally Sec. V will be devoted
to the discussion of a set of examples in high temperature
QCD. We collected in the Appendices some additional
material which may be useful to reproduce our numerical
analysis.

II. GENERAL INFORMATION ON THE ISING
UNIVERSALITY CLASS

The Ising model has a global Z2 symmetry and is
characterized by two relevant operators which encode
the Z2 odd (σ) and Z2 even (ϵ) perturbations of the critical
point.
From a QFT point of view, the model in the vicinity of

the critical point can be written as a perturbed conformal
field theory

S ¼ SCFT þ t
Z

ddxϵðxÞ þH
Z

ddxσðxÞ; ð1Þ

where ϵðxÞ and σðxÞ are the energy and spin operators and
represent the continuum limits of the lattice operatorsP

hiji σiσj and
P

i σi respectively. These operators are
conjugated to the reduced temperature t ¼ 1

Tc
ðT − TcÞ

and magnetic field H, which measure the deviation from
the critical point. The action SCFT is the conformal-invariant
action of the model at the critical point. In two dimensions
this is the action of a free massless Majorana fermion with
central charge c ¼ 1=2.
Thanks to the exact integrability of the model for H ¼ 0

(pure thermal perturbation) and for t ¼ 0 (pure magnetic
perturbation) much is known of this QFT in two dimen-
sions. In particular all the critical exponents and the
universal ratios are known exactly and, as we shall see
below, reliable expansions around the integrable lines can
be constructed for several observables.
In three dimensions there are not exact results, but from

the recent progress of the bootstrap approach and the
improvement of Monte Carlo methods several universal
quantities can be evaluated with very high precision.
The most important realization of this QFT is the spin

Ising model on a cubic (in d ¼ 3) or square (in d ¼ 2)
lattice, which we shall use in the following to fix notations.
As it is well known, the model is defined by the following
energy function,

EðfσigÞ ¼ −J
X
hiji

σiσj − Ĥ
XN
i¼1

σi; ð2Þ

where the spins σi can take the values σi ¼ �1, the index i
labels the sites of the lattice, the symbol hiji means that the
sum is performed over pairs of nearest neighbor sites, J is
the coupling strength between spins (we assume a positive
isotropic interaction so that for all pairs of nearest neighbor
spins Jij ¼ J > 0), and Ĥ is the external magnetic field.
The partition function of the model is

Z ¼
X
fσig

e−
1

kBTEðfσigÞ: ð3Þ

Let us define β ¼ J=kBT and H ¼ Ĥ=kBT. For H ¼ 0 the
model is explicitly Z2 symmetric and is characterized by
two phases, a low temperature phase in which the Z2

symmetry is spontaneously broken and a spontaneous
magnetization is present and a high temperature phase in
which the Z2 symmetry is restored. The two phases are
separated by a critical point. If one switches on the
magnetic field it becomes apparent that the low T phase
is actually a line of first order phase transitions which ends
with the critical point. In the following we shall be
interested in the scaling region in the vicinity of this
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critical point. Standard renormalization group arguments
tell us that in this limit the irrelevant operators of the model
can be neglected and the behavior is completely described
only by the two relevant operators ϵ, σ and one can perform
a continuum limit of the model which leads exactly to the
QFT described by Eq. (1).
From the partition function defined above it is easy to

obtain all the thermodynamic observables. In particular,
following the standard notation we have for the magneti-
zation and the magnetic susceptibility

M ¼ −
∂ logðZÞ

∂H ; χ ¼ −
∂2 logðZÞ

∂H2
¼ ∂M

∂H : ð4Þ

The exponential correlation length can be extracted from
the large distance decay of the spin-spin connected corre-
lator as

hσðxÞσð0Þic ∼ e−jxj=ξ jxj → þ∞; ð5Þ

where hσðxÞσð0Þic ≡ hσðxÞσð0Þi − hσð0Þi2.
In several practical applications also useful is the

so-called second-moment correlation length which is
defined through the second moment of the spin-spin
correlation function as

ξ2 ≡
�
1

2d

R
ddxjxj2hσðxÞσð0ÞicR
ddxhσðxÞσð0Þic

�
1=2

; ð6Þ

and it is simpler to evaluate than ξ both in numerical
simulations and in experiments.
In the scaling limit the critical behavior of all thermo-

dynamic quantities is controlled by the two “scaling
exponents” xϵ and xσ which are universal and are shared
by all physical realizations of the Ising universality class.
The corresponding amplitudes are not universal, but one
can construct suitable combinations in which the nonuni-
versal features of the model cancel out (see Appendix A)
and represent testable predictions of the Ising QFT to
be compared with any possible realization of the Ising
universality class.
While this is a well studied subject when only a single

perturbation is present, its extension to the whole scaling
region of the model, where both the H and t perturbations
are present, is not straightforward.
The main goal of this paper is to show that such an

extension can be easily obtained making use of a para-
metric representation of the model and that the resulting
universal quantities can be used as a natural reference frame
to chart the scaling region of the Ising universality class.
While the parametric approach is completely general and

could be applied in principle to any universal combination
of thermodynamic quantities, in this paper we shall study in
particular the following ratio,

Ω ¼
�
χðt; HÞ
Γ−

��
ξ−

ξðt; HÞ
�

γ=ν
; ð7Þ

and its natural extension to the second moment correlation
length

Ω2 ¼
�
χðt; HÞ
Γ−

��
ξ2;−

ξ2ðt; HÞ
�

γ=ν
; ð8Þ

where Γ−, ξ−, and ξ2;− denote the amplitudes of χ, ξ, and ξ2
along the t < 0, H ¼ 0 axis (see Appendix A for detailed
definitions and normalizations).
This choice is motivated by the fact that the two

observables which appear in the ratio are rather easy to
evaluate, both in numerical simulations and in experiments,
since they only involve derivatives or correlations of the
order parameter and are normalized with respect to the
values they have along the critical line of first order phase
transitions, which is easy to identify (again, both numeri-
cally and experimentally).
The main drawback of this choice is that it assumes an

explicit realization of the Z2 symmetry. While in many
interesting applications, like for the liquid-vapor transition
in which the role of the perturbing parameter is played by
the density, this is not the case and the Z2 symmetry is just
an “emergent” symmetry. The typical approach in these
cases, following Rehr and Mermin [16], is to realize the t,
H perturbations as suitable linear combinations of the
actual variables of the model.
In the scaling region, when both the relevant perturba-

tions are present, all the thermodynamic observables
depend on the scaling combination1

η≡ t

jHjd−xϵd−xσ

¼ t

jHj 1βδ
: ð9Þ

The three limits in which only one of the two perturba-
tions is present (H ¼ 0, t < 0), (H ≠ 0, t ¼ 0), and
(H ¼ 0; t > 0) correspond respectively to η ¼ −∞,
η ¼ 0, and η ¼ þ∞. In these limits Ω can be written in
terms of the standard universal amplitude ratiosQ2, Γþ=Γ−,
and ξ−=ξþ (see Appendix A) as follows:

ΩðηÞ ¼ 1; η ¼ −∞;

ΩðηÞ ¼ 1

Q2

�
Γþ
Γ−

��
ξ−
ξþ

�
γ=ν

; η ¼ 0;

ΩðηÞ ¼
�
Γþ
Γ−

��
ξ−
ξþ

�
γ=ν

; η ¼ þ∞: ð10Þ

1Notice that our definition of η differs from that of Ref. [5] by a
factor 2π.
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These values can be used as benchmarks to test the
reliability of our estimates and as “anchors” of the reference
frame we are constructing.

III. PARAMETRIC REPRESENTATION

It is useful to introduce a parametric representation of the
critical equation of state that not only satisfies the scaling
hypothesis but additionally allows a simpler implementa-
tion of the analytic properties of the equation of state itself.
Following [17], we express the thermodynamic variables t,
H in terms of a couple of parameters R, θ both positive.
Intuitively, the first measures the distance form the critical
point in the ðt; HÞ plane while the latter corresponds to the
angular displacement along lines of constant R around the
critical point. The parametrization of t and H results in a
parametric expression of M as well, explicitly

8<
:

M ¼ m0Rβθ;

t ¼ Rð1 − θ2Þ;
H ¼ h0RβδhðθÞ:

ð11Þ

Calling θ0 > 1 the smallest positive zero of the function
hðθÞ, we see from the system [Eq. (11)] that the domain of
interest in the ðR; θÞ plane is 0 ≤ θ ≤ θ0 for everyR ≥ 0 and
that θ ¼ θ0 corresponds to the H ¼ 0, t < 0 axis, θ ¼ 1 to
the H ≠ 0, t ¼ 0 axis, and θ ¼ 0 to the H ¼ 0, t > 0 one.
The key point of the whole analysis is the determination

of the function hðθÞ. There are some general properties
which hðθÞ must satisfy. It must be analytic in this physical
domain in order to satisfy the regularity properties of the
critical equation of state, i.e., the so-called Griffiths
analyticity [18]. Moreover, it must be an odd function of
θ because of the Z2 symmetry of the system. The most
general choice is thus a polynomial of the type

hðθÞ ¼ θ þ
Xk
n¼1

h2nþ1θ
2nþ1: ð12Þ

Using standard QFT methods [8,19–21] one can extract the
coefficients h2nþ1 from a high temperature expansion of the
free energy of the model. Using a variational method it is
possible to obtain reliable and stable estimates of the
coefficients up to h7 in three dimensions and to h11 in
two dimensions. We can use the known amplitude ratios as
benchmarks to evaluate the reliability of these parametric
representations. As we will see h7 will be enough to obtain
estimates which in three dimensions agree within the errors
with the amplitude ratios. The situation is worse in two
dimensions, and this will prompt us to address the 2D case
with a different approach.
A similar parametric representation can be introduced

also for the correlation length. Following [22] we para-
metrize the square mass of the underlying QFT, i.e., ξ−2 as
follows,

ξ−2 ¼ R2νa0ð1þ cθ2Þ; ð13Þ

and similarly, for the second moment correlation length

ξ−22 ¼ R2νða0Þ2ndð1þ c2θ2Þ: ð14Þ

The constants c and c2 can be fixed using the universal
ratios ξþ=ξ− and ξ2;þ=ξ2;− respectively and we use then the
Q2 and ðQ2Þ2nd ratios to test the parametric representation.
Truncating at the quadratic order Eqs. (13) and (14)

could seem a too drastic approximation, but we will see
below that in d ¼ 3 it gives quite good results. The same is
not true in d ¼ 2 where, however, as we anticipated above,
we shall use a different approach to evaluate ΩðηÞ.
Using the above results we may construct a parametric

representation of Ω as a function of θ

ΩðθÞ ¼ Ω0

ð1 − θ2 þ 2βθ2Þð1þ cθ2Þ γ
2ν

2βδθhðθÞ þ ð1 − θ2Þh0ðθÞ ð15Þ

with

Ω0 ¼
ð1 − θ20Þh0ðθ0Þ

ð1 − θ20 þ 2βθ20Þð1þ cθ20Þ
γ
2ν

ð16Þ

and a similar expression for Ω2ðθÞ with c → c2.
There are a few universal features of Ω that we may

deduce from this expression and hold for any possible
realization of the Ising universality class:
(a) Ω is a monotonic decreasing function of θ [see Fig. 1

for a plot of ΩðθÞ in d ¼ 3], and therefore it can be
inverted. From any given experimental estimate of Ω a
precise value of θ may be extracted.

(b) Using Ω we may identify the critical isothermal
line, which corresponds to Ωiso≡Ωðθ¼1Þ (Ωiso¼
1.08376… in d ¼ 3).

(c) There is a maximum value of Ω which corresponds to
Ωmax ¼ Ωðθ ¼ 0Þ ¼ Ω0 (Ωmax¼1.35502… in d ¼ 3).

0 0.2 0.4 0.6 0.8 1.0 0

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

FIG. 1. Result for ΩðθÞ according to Eq. (15) with 0 ≤ θ ≤ θ0
in d ¼ 3.
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In practical applications one may be interested in the
expression of Ω as a function of η ¼ t=jHj 1βδ. It is useful
to introduce a universal version of the scaling variable
defined as

η̃ ¼ ðh0Þ
1
βδη: ð17Þ

Using the parametric representation of Eq. (11) it is
possible to write the expansion of θ as a function of η̃ in
the neighborhood of the three singular points η̃ ¼ ð�∞; 0Þ
and then Ω as a function of η̃, which we plot in Fig. 2 in the
d ¼ 3 case (see Appendix B for more details on this
expansion).

A. Results in d = 3

In three dimensions we have [8,20]

hðθÞ ¼ θ þ h3θ3 þ h5θ5 þ h7θ7 þOðθ9Þ
¼ θ − 0.736743θ3 þ 0.008904θ5 − 0.000472θ7

þOðθ9Þ; ð18Þ
and the resulting value for the smallest positive root is
θ20 ¼ 1.37861.
Inserting these values into Eq. (B4) we find Γþ=Γ− ∼

4.76, which is in good agreement (with a difference of the
order of 1%) with the Monte Carlo estimate Γþ=Γ− ¼
4.714ð4Þ reported in [11,13].
Using the known values of ξþ=ξ− and ξ2;þ=ξ2;− we then

obtain c ¼ 0.0416 and c2 ¼ 0.0776. To check the reliabil-
ity of this parametric representation we may use them to
predict Q2 and ðQ2Þ2nd: we end up with Q2 ∼ 1.250 and
ðQ2Þ2nd ∼ 1.209, which, again, are in agreement (with a
difference of the order of 3%) with the best numerical
estimates reported in Eqs. (A8) and (A9).
This tells us that we can trust the parametric representa-

tion of ΩðθÞ discussed above. We plot the result in Fig. 1.
We find in particular Ωiso ¼ 1.08376… and Ωmax ¼

1.35502…. In Fig. 2 we plot the expression of Ω as a
function of η̃.

B. Results in d = 2

In two dimensions the situation is not as good as in
d ¼ 3. We have [21]

hðθÞ ¼ θ þ h3θ3 þ h5θ5 þ h7θ7 þ h9θ9 þ h11θ11 þOðθ13Þ
¼ θ − 1.07745θ3 þ 0.146609θ5 þ 0.0224263θ7

þ 0.00549457θ9 þ 0.00612906θ11 þOðθ13Þ;
ð19Þ

and the smallest positive zero is θ20 ¼ 1.16951.
From thiswe findΓþ=Γ− ∼ 39.63, which is 5%away from

the exact value: Γþ=Γ− ¼ 37.6936520… [23]. For the
correlation length we get, from the exact values of ξþ=ξ−
and ξ2;þ=ξ2;−, the following estimates: c ¼ −0.75678… and
c2 ¼ −0.60933…. Plugging these values into the expression
forQ2 and ðQ2Þ2nd we find for instanceQ2 ¼ 5.3342… and
ðQ2Þ2nd ¼ 3.52360, which are rather far from the exact
values Q2 ¼ 3.23513834… and ðQ2Þ2nd ¼ 2.8355305…
reported in [23]. This prompted us to address the study of
the behavior of ΩðηÞ in d ¼ 2 with a different approach.

IV. EXACT EXPRESSION FOR ΩðηÞ IN
THE d = 2 CASE

In d ¼ 2, one can obtain much more precise results
performing a perturbative expansion around the exact
solutions along the two axes H ¼ 0 and t ¼ 0. A powerful
tool to study the free energy of a perturbed CFT is the well-
known truncated conformal space approach (TCSA)
[24,25]. In our case, thanks to the exact mapping of the
H ¼ 0 model to the QFT of a free Majorana fermion it is
possible to construct a more effective version of the TCSA
which uses the free fermions as a basis, the “truncated free-
fermion space approach” [5]. With this approach it is
possible to evaluate the free energy for almost all values of
η [5,26–28] and from that of the susceptibility. With similar
methods it is also possible to study the perturbed mass

4 2 2 4

1.0

1.1

1.2

1.3

1.4

FIG. 2. Result for Ωðη̃Þ in the three limits of η̃ given in
Eqs. (B8), (B9), and (B10) in d ¼ 3.

3 2 1 1 2 3

2

4

6

8

10

12

FIG. 3. Result for ΩðηÞ in the three limits of η given in Eq. (20)
in d ¼ 2.
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spectrum of the theory [26–28] and hence the correlation
length ξ which is the inverse of the lowest mass of the
spectrumM1. The resulting expansions for χ andM1, in the
three singular limits, are reported in Appendix C.
Combining these quantities we obtain a precise estimate

for Ω, which we plot in Fig. 3. The resulting polynomial
expansions in the three regions of interest are

ΩðηÞ ¼
X
n

Ω−
n

ð−ηÞ58n ; η → −∞;

ΩðηÞ ¼
X
n

Ω0
nη

n; η ∼ 0;

ΩðηÞ ¼
X
n

Ωþ
n

η
5
8
n
; η → þ∞: ð20Þ

The coefficients are reported in Table I.
As expected, the three limiting cases Ωð�∞Þ;Ωð0Þ

(which correspond to the n ¼ 0 values in the table) agree
with the universal values obtained plugging into Eq. (10)
the universal ratios quoted in Eq. (A5).

V. THREE EXAMPLES OF ISING BEHAVIOR
IN FINITE TEMPERATURE QCD

Among the many physical realizations of the Ising
universality class in this paper we decided to focus on
three examples taken from high energy physics and in
particular from the lattice regularization of QCD at finite
temperature.

A. The deconfinement transition in the
SUð2Þ pure gauge theory

The most direct realization of the Ising universality class
in lattice gauge theories (LGTs) is given by the deconfine-
ment transition of pure gauge theories with a symmetry
group G which has Z2 as center. This result is based on the
Svetitsky-Yaffe approach [29] to the study of finite temper-
ature (dþ 1)-dimensional pure gauge theories. The main
idea of [29] is to construct a d-dimensional effective theory
from the original one by integrating out the spacelike links

and keeping as only remaining degrees of freedom the
Polyakov loops. These loops are then treated as spins of an
effective d-dimensional model whose global symmetry
must coincide with the center of the original gauge group.
If both the phase transitions of the original gauge theory
and that of the effective spin model are continuous, they
must belong to the same universality class, and one can use
the effective model (which is usually much simpler than the
original gauge theory) to extract informations on the
deconfinement transition of the original model. These
results are very general: if in particular we focus on gauge
theories with a gauge group G whose center is Z2 [like for
instance, Z2 itself, SUð2Þ, or Spð2NÞ], the deconfinement
transition will belong to the Ising universality class. Awell
studied example of this correspondence is the SUð2Þmodel
[30–32]. Even if the gauge group is not SUð3Þ and the
model only contains gluonic degrees of freedom this
simplified model shares a lot of properties with QCD:
the presence of a confining flux tube at low temperatures, a
deconfined phase at high temperature, a rich glueball
spectrum, asymptotic freedom. For these reasons it has been
studied a lot in the past both in (2þ 1) [33–35] and in (3þ 1)
[36] dimensions. Thanks to the Svetitsky-Yaffe construction,
several gauge-invariant observables of the SUð2Þmodel can
be mapped to equivalent Ising observables:
(a) The Polyakov loop is mapped to the spin (Z2 odd)

operator and thus the Polyakov loop susceptibility is
mapped to the magnetic susceptibility χ of the Ising
model.

(b) The deconfining transition of the gauge model corre-
sponds to the magnetization transition of the Ising
model. In particular, the confining phase (low temper-
ature of the gauge model) is mapped to the Z2

symmetric phase (high temperature phase) of the Ising
model, while the deconfined phase is mapped to the
broken symmetry phase of the Ising model.

(c) The Wilson action (i.e., the trace of the ordered product
of the gauge field along the links of a plaquette) is
mapped to the energy operator2 of the Ising model.

(d) The screening mass of the gauge model in the
deconfined phase is mapped to the mass of the Ising
model in the low temperature phase, while Ntσ, where
σ is the string tension andNt is the inverse temperature
of the gauge model (i.e., the size Nt of the lattice in the
compactified direction which defines the finite temper-
ature setting in LGTs) is mapped to the inverse of the
high temperature correlation length of the Ising model.

This mapping has been widely used in the past years to
predict the behavior of various physical observables of
the gauge model near the deconfinement transition, like
for instance the short distance behavior of the Polyakov loop

TABLE I. Expansion coefficients of ΩðηÞ in the three regimes
of interest, according to Eq. (20).

n Ω−
n Ω0

n Ωþ
n

0 1 3.463 96 11.2064
1 � � � 9.078 � � �
2 0.400 31 21.23 � � �
3 −0.075 963 � � � � � �
4 0.025 182 � � � � � �
5 −0.030 408 9 � � � � � �
6 0.006 086 � � � −0.094 33
7 −0.001 91 � � � � � �
8 0.004 10 � � � � � �
9 −0.001 035 � � � � � �

2Actually it is mapped to the most general Z2 even Ising
observable, which is a mixture of the identity and energy
operators, but the identity operator plays no role in this context.
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correlator [37], thewidth of the flux tube [38], theHagedorn-
like behavior of the glueball spectrum [39] or the behavior of
the universal ξ=ξ2 ratio [40]. More generally the mapping
allows one to relate all the thermodynamic observables of the
two models and in particular also ΩðηÞ, which can thus be
evaluated in the SUð2Þ LGT and then compared with the
QFT prediction discussed in the previous section.

B. QCD with dynamical quarks
and the Columbia plot

The situation is different if we study full QCD, i.e., if we
include dynamical quarks in the model. In this case the
center symmetry is explicitly broken by the Dirac operator
and all the above considerations do not hold anymore.
For physical values of the quark masses there is no phase
transition between the high temperature quark-gluon
plasma phase and the low temperature confined phase
which are only separated by a smooth crossover [41,42].
However, in the phase diagram of the model one finds a rich
structure of phase transitions as the values of the masses of
the quarks are varied [43]. This pattern of phase transitions
is summarized in the well-known Columbia plot, which we
report here in Fig. 4. The plot describes the nature of the
phase transitions as a function of the quark masses. On the
two axes are respectively the masses of up-down quarks
(x axis) and the mass of the strange quark (y axis). We see
in the central part of the plot a wide region, where the
physical point lies, in which there is no phase transition but
only a crossover between the two phases. In the top-right
and in the bottom left corners there are two regions where
the transition is of the first order. These regions end with
two lines of second order transitions which are expected to
both be of the Ising type.
The phase diagram reported in the Columbia plot can be

studied with standard Monte Carlo simulations, and in the

vicinity of the critical lines the results of these simulations
could be mapped using our tools to the Ising phase diagram
and then compared with the Ising predictions as we
discussed above for the simpler case of the pure gauge
SUð2Þ model.
It is important to notice that the two critical regions are of

a different nature. The one in the top-right corner is a
deconfinement transition similar to the one discussed in
the previous section. In fact in the limit of infinite mass
quarks the model becomes a pure gauge theory. In this limit
the SUð3Þ gauge model has a first order deconfinement
transition [differently from the SUð2Þ one discussed above
which is of second order]. As the mass of the quarks
decreases the gap in the order parameter decreases and the
first order region ends into a critical line of Ising-like phase
transitions.
The critical region in the bottom left portion of the

Columbia plot has a completely different origin. It
describes the restoration of the chiral symmetry in QCD
at finite temperature and small quark masses. In QCD with
three massless quark flavors the chiral phase transition is
expected to be first order and to remain of first order even
for small but nonzero values of the quark masses. As the
quark masses increase, the gap in the order parameter
decreases and the first order region terminates in a critical
line of the Ising type. Above this line chiral symmetry is
restored through a smooth crossover. In this case, the Z2

symmetry is an emergent symmetry and the identification
of the H and t axes of the equivalent 3D Ising model is not
trivial (see a discussion on this issue in [44,45] and in
Sec. V C) and thus a universal charting of the scaling region
could indeed be useful.
Even if the precise location of the critical line is still

debated, it seems that the physical point is not too far from
this bottom left Ising line. If this is the case, then our
analysis could be applied, maybe with some degree of
approximation, also to the physical point.

C. The critical ending point of the QCD phase
diagram at finite chemical potential

The most interesting application of our results is for
QCD at finite baryon density, which is realized by adding a
finite chemical potential μ to the QCD Lagrangian. This
regime is particularly interesting since it can be explored
experimentally in heavy-ion collisions [46–53], and at the
same time it cannot be studied using Monte Carlo simu-
lations due to the well-known sign problem (see for
instance [54,55] for a discussion of the sign problem in
this context).
In this regime the QCD phase diagram is expected to

reveal interesting novel phases [56,57]. In particular it is
widely expected that the hadronic phase (low T, low μ)
should be separated from the quark-gluon plasma phase
(high T, high μ) by a line of first order transitions with a
critical end point at finite critical values of T and μFIG. 4. Columbia plot.
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(see Fig. 5) which should again belong to the Ising
universality class [58–65].
Also for this model, as for the liquid-vapor transition

(or the chiral transition discussed above), the Z2 symmetry
is not realized explicitly but it is just an emergent
symmetry. This class of models is typically addressed with
the “mixing-of-coordinates" scheme proposed in [16]. The
approach was pursued for the finite density QCD case in
[61,63], leading to very interesting results. In both cases
the mapping between Ising and QCD coordinates was
performed via the parametric representation of the equation
of state. In this respect, the explicit expression ofΩ in terms
of θ that we discussed in this paper could be used as a
shortcut in the process and could facilitate the identification
of Ising-like behaviors in the experimental data.
As more and more experimental results are obtained, it

will become possible to directly test them with universal
predictions from the Ising model and it will be important to
have a precise charting of the Ising phase diagram to
organize results and drive our understanding of strongly
coupled QCD in this regime. Our paper is a first step in this
direction. We proposed and studied one particular combi-
nation, chosen for its simplicity from a theoretical point of
view and its accessibility from an experimental and
numerical point of view, but other combinations are
possible and could be studied using, as we suggest here,
parametric representations in d ¼ 3 and/or expansion
around the exactly integrable solutions in d ¼ 2.
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APPENDIX A: CRITICAL AMPLITUDES AND
UNIVERSAL AMPLITUDE RATIOS

We list below the scaling behavior of the observables
used in the main text:

ξ ≈ ξþt−ν; ξ2 ≈ ξ2;þt−ν; t > 0; H ¼ 0;

ξ ≈ ξ−ð−tÞ−ν; ξ2 ≈ ξ2;−ð−tÞ−ν; t < 0; H ¼ 0;

ξ ≈ ξcjHj−νc ; ξ2 ≈ ξ2;cjHj−νc ; t ¼ 0; H ≠ 0;

χ ≈ Γþt−γ; t > 0; H ¼ 0;

χ ≈ Γ−ð−tÞ−γ; M ≈ Bð−tÞβ; t < 0; H ¼ 0;

χ ≈ ΓcjHj−γc ; M ≈ BcjHj1δ; t ¼ 0; H ≠ 0;

where the critical indices are defined in terms of the scaling
exponents as follows:

β ¼ xσ
ðd − xϵÞ

; δ ¼ ðd − xσÞ
xσ

;

γ ¼ ðd − 2xσÞ
d − xϵ

; ν ¼ 1

d − xϵ
;

γc ¼
ðd − 2xσÞ
ðd − xσÞ

; νc ¼
1

ðd − xσÞ
: ðA1Þ

From these definitions it is possible to construct the
following universal amplitude ratios:

Γþ
Γ−

;
ξþ
ξ−

; Q2 ¼
�
Γþ
Γc

��
ξc
ξþ

�
γ=ν

; ðA2Þ

ξ2;þ
ξ2;−

; ðQ2Þ2nd ¼
�
Γþ
Γc

��
ξ2;c
ξ2;þ

�
γ=ν

: ðA3Þ

1. Exact results for the amplitude ratios in d = 2

In d ¼ 2, thanks to the exact integrability of the two
relevant perturbations all the above universal quantities are
known exactly [23]:

xϵ ¼ 1; xσ ¼
1

8
; ðA4Þ

Γþ
Γ−

¼ 37.6936520…;
ξþ
ξ−

¼ 2;

Q2 ¼ 3.23513834…; ðA5Þ
ξ2;þ
ξ2;−

¼ 3.16249504…; ðQ2Þ2nd ¼ 2.8355305…:

ðA6Þ

2. Numerical estimates of the amplitude
ratios in d = 3

In three dimensions there are no exact results but, thanks
to the recent improvement of the bootstrap approach
[6,7,66] and to the remarkable precision of recent
Monte Carlo simulations [11,13,15], reliable numerical
estimates for all these quantities exist:

xϵ ¼ 1.412625ð10Þ; xσ ¼ 0.5181489ð10Þ; ðA7Þ
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FIG. 5. QCD phase diagram at finite chemical potential.
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Γþ
Γ−

¼ 4.714ð4Þ; ξþ
ξ−

¼ 1.896ð3Þ; Q2 ¼ 1.207ð2Þ;

ðA8Þ
ξ2;þ
ξ2;−

¼ 1.940ð2Þ; ðQ2Þ2nd ¼ 1.179ð2Þ: ðA9Þ

It is also possible to choose realizations of the model in
which the amplitude of the first irrelevant operator is tuned
toward zero, thus allowing a more efficient approach to the
fixed point. This is for instance the idea followed in [9–15]
to improve the numerical estimates of universal quantities
using Monte Carlo simulations.

APPENDIX B: USEFUL RESULTS IN THE
PARAMETRIC REPRESENTATION

1. Fixing the nonuniversal constant h0
The scaling parameter η is defined modulo a nonuniversal

constant h0 which sets its scale and depends on the specific
model at hand, i.e., on the specific realization of the Ising
universality class in which one is interested. However, given
such a realization, it is rather easy to fix h0. The simplest
option is to measure (numerically or experimentally) the
magnetizationM and the susceptibility χ along two directions
(or in the same direction) in the ðt; HÞ plane, for instance
along the critical line of first order phase transitions. Then
from the ratio of the two amplitudes one can easily extract h0.
We report here for completeness the corresponding expres-
sions in the case inwhichonemeasures, besides the amplitude
B of the magnetization, the value of Γþ, or that of Γ−,

h0 ¼
B
Γþ

ðθ20 − 1Þβ
θ0

ðB1Þ

or

h0 ¼ −
B
Γ−

ðθ20 − 1Þγþβ−1ð1 − θ20 þ 2βθ20Þ
θ0h0ðθ0Þ

: ðB2Þ

For instance, in the case of the 3D Ising model defined
by Eqs. (2) and (3) we have [67] B ¼ 1.6920ð5Þ and Γ− ¼
0.2394ð5Þ to which corresponds h0 ∼ 0.923, while in the
case of the model tuned so as to eliminate the first irrelevant
operator discussed above we find [13] B ¼ 1.9875ð3Þ and
Γþ ¼ 0.14300ð5Þ, to which corresponds h0 ∼ 8.62.

2. Parametric representation of the
magnetic susceptibility

From the parametric representation of the critical equa-
tion of state [Eq. (11)] we may obtain the magnetic
susceptibility as follows:

χðR; θÞ ¼
�
m0

h0

�
R−γ 1 − θ2 þ 2βθ2

2βδθhðθÞ þ ð1 − θ2Þh0ðθÞ ; ðB3Þ

and from this expression it is easy to extract the amplitude
ratio

Γþ
Γ−

¼ −
ðθ20 − 1Þ1−γh0ðθ0Þ
ð1 − θ20 þ 2βθ20Þ

: ðB4Þ

3. Expansion of θ as a function of η̃ in the neighborhood
of the three singular points η̃= ð�∞;0Þ

We report here the first few terms: in the θ → θ0 limit

θðη̃Þ ¼ θ0 þ
ðθ20 − 1Þβδ
h0ðθ0Þ

�
1

−η̃

�
βδ

þ
�
2βδθ0ðθ20 − 1Þ2βδ
ðθ20 − 1Þðh0ðθ0ÞÞ2

−
ðθ20 − 1Þ2βδh00ðθ0Þ

2ðh0ðθ0ÞÞ3
�

1

−η̃

�
2βδ

þO

��
1

−η̃

�
3βδ

�
;

ðB5Þ

in the θ → 1 limit

θðη̃Þ ¼ 1 −
1

2
ðhð1ÞÞ 1

βδη̃þ 2h0ð1Þ − βδhð1Þ
8βδhð1Þ ðhð1ÞÞ 2

βδη̃2

þOðη̃3Þ; ðB6Þ

and finally in the θ → 0 limit

θðη̃Þ ¼ 0þ
�
1

η̃

�
βδ

−
h00ð0Þ
2

�
1

η̃

�
2βδ

þO

��
1

η̃

�
3βδ

�
: ðB7Þ

4. Expansions of Ω as a function of η̃

Plugging the above expansions into the expression for
ΩðθÞ we find3 for Ωðη̃Þ: in the η̃ → −∞ limit

Ωðη̃Þ ¼ 1þ θ0ðθ20 − 1Þβδ
h0ðθ0Þ

×

�
cγ

νð1þ cθ20Þ
−

4β

½1þ θ20ð2β − 1Þ�ðθ20 − 1Þ

þ 2βδ

ðθ20 − 1Þ −
h00ðθ0Þ
θ0h0ðθ0Þ

��
1

−η̃

�
βδ

þO

��
1

−η̃

�
2βδ

�
;

ðB8Þ
in the η̃ → 0 limit

Ωðη̃Þ ¼ Ω0ð1þ cÞ γ
2ν

δhð1Þ þΩ0ð1þ cÞ γ
2ν

2δhð1Þ

×

�
h0ð1Þðβδ − 1Þ − δhð1Þðβ − 1Þ

βδhð1Þ

−
cγ

νð1þ cÞ
�
ðhð1ÞÞ 1

βδη̃þOðη̃2Þ; ðB9Þ

and finally in the η̃ → þ∞ limit

3We report here only the first term for the three expansions to
avoid too complex formulas; it is straightforward to obtain the
next orders.
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Ωðη̃Þ ¼ Ω0 −Ω0h00ð0Þ
�
1

η̃

�
βδ

þO

��
1

η̃

�
2βδ

�
: ðB10Þ

Upon substitution c → c2 the same results are valid
for Ω2ðη̃Þ.

APPENDIX C: EXACT RESULTS IN d = 2

We report here the expansions, in the three regimes of
interest, for χ and for M1 ≡ 1=ξ, obtained using the results
reported in [5,26–28]:

χðηÞ ¼ ð−tÞ−7
4

X
n

χ−n
ð−ηÞ158 n ; η → −∞;

χðηÞ ¼ jHj−14
15

X
n

χ0nη
n; η ∼ 0;

χðηÞ ¼ t−
7
4

X
n

χþn
η
15
8
n
; η → þ∞; ðC1Þ

1

ξðηÞ ¼ ð−tÞ
X
n

m−
n

ð−ηÞ54n ; η → −∞;

1

ξðηÞ ¼ jHj 815
X
n

m0
nη

n; η ∼ 0;

1

ξðηÞ ¼ t
X
n

mþ
n

η
5
4
n
; η → þ∞; ðC2Þ

where we have already substituted the known values of the
critical indices of the model. The coefficients are reported
in Tables II and III.

[1] L. Onsager, Crystal statistics. I. A two-dimensional model
with an order-disorder transition, Phys. Rev. 65, 117 (1944).

[2] B. McCoy and T. Wu, The Two-Dimensional Ising Model
(Harvard University Press, Cambridge, MA, 1973), https://
doi.org/10.4159/harvard.9780674180758.

[3] A. Pelissetto and E. Vicari, Critical phenomena and
renormalization-group theory, Phys. Rep. 368, 549 (2002).

[4] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov,
Infinite conformal symmetry in two-dimensional quantum
field theory, Nucl. Phys. B241, 333 (1984).

[5] P. Fonseca and A. Zamolodchikov, Ising field theory in
a magnetic field: Analytic properties of the free energy,
J. Stat. Phys. 110, 527 (2003).

[6] F. Kos, D. Poland, D. Simmons-Duffin, and A. Vichi,
Precision islands in the Ising and OðNÞ models, J. High
Energy Phys. 08 (2016) 036.

[7] B. Berg, M. Karowski, and P. Weisz, Construction of
Green’s functions from an exact S matrix, Phys. Rev. D
19, 2477 (1979).

[8] M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari,
Improved high-temperature expansion and critical equa-
tion of state of three-dimensional Ising-like systems,
Phys. Rev. E 60, 3526 (1999).

[9] M. Hasenbusch, K. Pinn, and S. Vinti, Critical exponents
of the three-dimensional Ising universality class from
finite-size scaling with standard and improved actions,
Phys. Rev. B 59, 11471 (1999).

[10] M. Hasenbusch, A Monte Carlo study of leading order
scaling corrections of ϕ4 theory on a three-dimensional
lattice, J. Phys. A 32, 4851 (1999).

[11] M. Hasenbusch, Universal amplitude ratios in the three-
dimensional Ising universality class, Nucl. Phys. B82,
174434 (2010).

[12] M. Hasenbusch, Finite size scaling study of lattice models in
the three-dimensional Ising universality class, Phys. Rev. B
82, 174433 (2010).

[13] M. Hasenbusch, Variance-reduced estimator of the con-
nected two-point function in the presence of a broken
Z2-symmetry, Phys. Rev. E 93, 032140 (2016).

TABLE III. Expansion coefficients of the correlation length in
the three regimes of interest, according to Eq. (C2).

n m−
n m0

n mþ
n

0 4π 4.404 909 2π
1 2.8746 −8.137 008 � � �
2 −0.06 576 7.908 � � �
3 −0.001 56 � � � 0.0686
4 0.004 38 � � � � � �

TABLE II. Expansion coefficients of the magnetic susceptibil-
ity in the three regimes of interest, according to Eq. (C1).

n χ−n χ0n χþn
0 0.003 926 87 0.085 172 1 0.148 001 23
1 −2.982 96 × 10−4 0.498 574 � � �
2 3.349 04 × 10−5 1.675 52 −0.004 074 28
3 −4.7920 × 10−6 3.331 85 � � �
4 8.2208 × 10−7 0.907 03 1.1818 × 10−4

5 −1.635 × 10−7 −20.939 � � �
6 3.694 × 10−8 −85.959 −3.4330 × 10−6

7 −9.335 × 10−9 −169.4 � � �
8 2.610 × 10−9 −10.32 9.951 × 10−8

9 −7.995 × 10−10 1162 � � �
10 2.67 × 10−10 4288 −2.87 × 10−9

11 −9.62 × 10−11 � � � � � �
12 3.74 × 10−11 � � � 8.34 × 10−11

MICHELE CASELLE and MARIANNA SORBA PHYS. REV. D 102, 014505 (2020)

014505-10

https://doi.org/10.1103/PhysRev.65.117
https://doi.org/10.4159/harvard.9780674180758
https://doi.org/10.4159/harvard.9780674180758
https://doi.org/10.1016/S0370-1573(02)00219-3
https://doi.org/10.1016/0550-3213(84)90052-X
https://doi.org/10.1023/A:1022147532606
https://doi.org/10.1007/JHEP08(2016)036
https://doi.org/10.1007/JHEP08(2016)036
https://doi.org/10.1103/PhysRevD.19.2477
https://doi.org/10.1103/PhysRevD.19.2477
https://doi.org/10.1103/PhysRevE.60.3526
https://doi.org/10.1103/PhysRevB.59.11471
https://doi.org/10.1088/0305-4470/32/26/304
https://doi.org/10.1103/PhysRevB.82.174434
https://doi.org/10.1103/PhysRevB.82.174434
https://doi.org/10.1103/PhysRevB.82.174433
https://doi.org/10.1103/PhysRevB.82.174433
https://doi.org/10.1103/PhysRevE.93.032140


[14] M. Hasenbusch, Two- and three-point functions at
criticality: Monte Carlo simulations of the improved
three-dimensional Blume-Capel model, Phys. Rev. E 97,
012119 (2018).

[15] J. Engels, L. Fromme, and M. Seniuch, Numerical equation
of state and other scaling functions from an improved three-
dimensional Ising model, Nucl. Phys. B655, 277 (2003).

[16] J. J. Rehr and N. D. Mermin, Revised scaling equation of
state at the liquid-vapor critical point, Phys. Rev. A 8, 472
(1973).

[17] P. Schofield, Parametric Representation of the Equation of
State near a Critical Point, Phys. Rev. Lett. 22, 606 (1969).

[18] R. B. Griffiths, Thermodynamic functions for fluids and
ferromagnets near the critical point, Phys. Rev. 158, 176
(1967).

[19] R. Guida and J. Zinn-Justin, 3D Ising model: The scaling
equation of state, Nucl. Phys. B489, 626 (1997).

[20] M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari,
25th-order high-temperature expansion results for three-
dimensional Ising-like systems on the simple-cubic lattice,
Phys. Rev. E 65, 066127 (2002).

[21] M. Caselle, M. Hasenbusch, A. Pelissetto, and E. Vicari,
The critical equation of state of the two-dimensional Ising
model, J. Phys. A 34, 2923 (2001).

[22] H. B. Tarko and M. E. Fisher, Theory of critical point
scattering and correlations. III. The Ising model below Tc

and in a field, Phys. Rev. B 11, 1217 (1975).
[23] G. Delfino, Universal amplitude ratios in the two-

dimensional Ising model, Phys. Lett. B 419, 291 (1998).
[24] V. P. Yurov and A. B. Zamolodchikov, Truncated conformal

space approach to scaling Lee-Yang model, Int. J. Mod.
Phys. A 05, 3221 (1990).

[25] V. P. Yurov and A. B. Zamolodchikov, Truncated fermionic
space approach to the critical 2D Ising model with magnetic
field, Int. J. Mod. Phys. A 06, 4557 (1991).

[26] P. Fonseca and A. Zamolodchikov, Ward identities and
integrable differential equations in the Ising field theory,
arXiv:hep-th/0309228.

[27] P. Fonseca and A. Zamolodchikov, Ising spectroscopy. I.
Mesons at T < Tc, arXiv:hep-th/0612304.

[28] A. Zamolodchikov, Ising spectroscopy II: Particles and
poles at T > Tc, arXiv:1310.4821.

[29] B. Svetitsky and L. G. Yaffe, Critical behavior at finite
temperature confinement transitions, Nucl. Phys. B210, 423
(1982).

[30] J. Engels, J. Fingberg, F. Karsch, D. Miller, and M. Weber,
Nonperturbative thermodynamics of SU(N) gauge theories,
Phys. Lett. B 252, 625 (1990).

[31] J. Fingberg, U. M. Heller, and F. Karsch, Scaling and
asymptotic scaling in the SU(2) gauge theory, Nucl. Phys.
B392, 493 (1993).

[32] J. Engels, F. Karsch, and K. Redlich, Scaling properties
of the energy density in SU(2) lattice gauge theory, Nucl.
Phys. B435, 295 (1995).

[33] C. Korthals Altes, A. Michels, M. A. Stephanov, and M.
Teper, Domain walls and perturbation theory in high
temperature gauge theory: SU(2) in 2þ 1 dimensions,
Phys. Rev. D 55, 1047 (1997).

[34] J. Liddle and M. Teper, The deconfining phase transition in
D ¼ 2þ 1 SU(N) gauge theories, Proc. Sci., LAT2005
(2005) 188.

[35] A. Athenodorou, B. Bringoltz, and M. Teper, Closed flux
tubes and their string description inD ¼ 2þ 1 SU(N) gauge
theories, J. High Energy Phys. 05 (2011) 042.

[36] A. Athenodorou, B. Bringoltz, and M. Teper, Closed flux
tubes and their string description inD ¼ 3þ 1 SU(N) gauge
theories, J. High Energy Phys. 02 (2011) 030.

[37] M. Caselle, N. Magnoli, A. Nada, M. Panero, and M.
Scanavino, Conformal perturbation theory confronts lattice
results in the vicinity of a critical point, Phys. Rev. D 100,
034512 (2019).

[38] M. Caselle and P. Grinza, On the intrinsic width of the
chromoelectric flux tube in finite temperature LGTs, J. High
Energy Phys. 11 (2012) 174.

[39] M. Caselle, A. Nada, and M. Panero, Hagedorn spectrum
and thermodynamics of SU(2) and SU(3) Yang-Mills
theories, J. High Energy Phys. 07 (2015) 143; Erratum,
J. High Energy Phys. 11 (2017) 016(E).

[40] M. Caselle and A. Nada, ξ=ξ2nd ratio as a tool to refine
effective Polyakov loop models, Phys. Rev. D 96, 074503
(2017).

[41] Y. Aoki, Z. Fodor, S. D. Katz, and K. K. Szabó, The QCD
transition temperature: Results with physical masses in the
continuum limit, Phys. Lett. B 643, 46 (2006).

[42] A. Bazavov, T. Bhattacharya, M. Cheng, C. DeTar, H. Ding
et al., The chiral and deconfinement aspects of the QCD
transition, Phys. Rev. D 85, 054503 (2012).

[43] R. D. Pisarski and F. Wilczek, Remarks on the chiral
phase transition in chromodynamics, Phys. Rev. D 29,
338 (1984).

[44] F. Karsch, E. Laermann, and C. Schmidt, The chiral
critical point in three-flavor QCD, Phys. Lett. B 520, 41
(2001).

[45] A. Bazavov, H. T. Ding, P. Hegde, F. Karsch, E. Laermann,
S. Mukherjee, P. Petreczky, and C. Schmidt, Chiral phase
structure of three flavor QCD at vanishing baryon number
density, Phys. Rev. D 95, 074505 (2017).

[46] R. A. Lacey, N. N. Ajitanand, J. M. Alexander, P. Chung,
W. G. Holzmann, M. Issah, A. Taranenko, P. Danielewicz,
and H. Stöcker, Has the QCD Critical Point Been Signaled
by Observations at RHIC?, Phys. Rev. Lett. 98, 092301
(2007).

[47] M. A. Stephanov, K. Rajagopal, and E. V. Shuryak, Sig-
natures of the Tricritical Point in QCD, Phys. Rev. Lett. 81,
4816 (1998).

[48] L. Adamczyk et al. (STAR Collaboration), Energy Depend-
ence of Moments of Net-Proton Multiplicity Distributions at
RHIC, Phys. Rev. Lett. 112, 032302 (2014).

[49] R. A. Lacey, Indications for a Critical End Point in the Phase
Diagram for Hot and Dense Nuclear Matter, Phys. Rev. Lett.
114, 142301 (2015).

[50] M. Gazdzicki and P. Seyboth, Search for critical behaviour
of strongly interacting matter at the CERN super proton
synchrotron, Acta Phys. Pol. B 47, 1201 (2016).

[51] A. Adare et al. (PHENIX Collaboration), Measurement of
higher cumulants of net-charge multiplicity distributions in
Auþ Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 7.7–200 GeV, Phys. Rev. C
93, 011901 (2016).

CHARTING THE SCALING REGION OF THE ISING … PHYS. REV. D 102, 014505 (2020)

014505-11

https://doi.org/10.1103/PhysRevE.97.012119
https://doi.org/10.1103/PhysRevE.97.012119
https://doi.org/10.1016/S0550-3213(03)00085-3
https://doi.org/10.1103/PhysRevA.8.472
https://doi.org/10.1103/PhysRevA.8.472
https://doi.org/10.1103/PhysRevLett.22.606
https://doi.org/10.1103/PhysRev.158.176
https://doi.org/10.1103/PhysRev.158.176
https://doi.org/10.1016/S0550-3213(96)00704-3
https://doi.org/10.1103/PhysRevE.65.066127
https://doi.org/10.1088/0305-4470/34/14/302
https://doi.org/10.1103/PhysRevB.11.1217
https://doi.org/10.1016/S0370-2693(97)01457-3
https://doi.org/10.1142/S0217751X9000218X
https://doi.org/10.1142/S0217751X9000218X
https://doi.org/10.1142/S0217751X91002161
https://arXiv.org/abs/hep-th/0309228
https://arXiv.org/abs/hep-th/0612304
https://arXiv.org/abs/1310.4821
https://doi.org/10.1016/0550-3213(82)90172-9
https://doi.org/10.1016/0550-3213(82)90172-9
https://doi.org/10.1016/0370-2693(90)90496-S
https://doi.org/10.1016/0550-3213(93)90682-F
https://doi.org/10.1016/0550-3213(93)90682-F
https://doi.org/10.1016/0550-3213(94)00491-V
https://doi.org/10.1016/0550-3213(94)00491-V
https://doi.org/10.1103/PhysRevD.55.1047
https://doi.org/10.22323/1.020.0188
https://doi.org/10.22323/1.020.0188
https://doi.org/10.1007/JHEP05(2011)042
https://doi.org/10.1007/JHEP02(2011)030
https://doi.org/10.1103/PhysRevD.100.034512
https://doi.org/10.1103/PhysRevD.100.034512
https://doi.org/10.1007/JHEP11(2012)174
https://doi.org/10.1007/JHEP11(2012)174
https://doi.org/10.1007/JHEP07(2015)143
https://doi.org/10.1007/JHEP11(2017)016
https://doi.org/10.1103/PhysRevD.96.074503
https://doi.org/10.1103/PhysRevD.96.074503
https://doi.org/10.1016/j.physletb.2006.10.021
https://doi.org/10.1103/PhysRevD.85.054503
https://doi.org/10.1103/PhysRevD.29.338
https://doi.org/10.1103/PhysRevD.29.338
https://doi.org/10.1016/S0370-2693(01)01114-5
https://doi.org/10.1016/S0370-2693(01)01114-5
https://doi.org/10.1103/PhysRevD.95.074505
https://doi.org/10.1103/PhysRevLett.98.092301
https://doi.org/10.1103/PhysRevLett.98.092301
https://doi.org/10.1103/PhysRevLett.81.4816
https://doi.org/10.1103/PhysRevLett.81.4816
https://doi.org/10.1103/PhysRevLett.112.032302
https://doi.org/10.1103/PhysRevLett.114.142301
https://doi.org/10.1103/PhysRevLett.114.142301
https://doi.org/10.5506/APhysPolB.47.1201
https://doi.org/10.1103/PhysRevC.93.011901
https://doi.org/10.1103/PhysRevC.93.011901


[52] L. Adamczyk et al. (STAR Collaboration), Collision energy
dependence of moments of net-kaon multiplicity distribu-
tions at RHIC, Phys. Lett. B 785, 551 (2018).

[53] Y. Yin, The QCD critical point hunt: Emergent new ideas
and new dynamics, arXiv:1811.06519.

[54] P. de Forcrand, Simulating QCD at finite density, Proc. Sci.
LAT2009 (2009) 010.

[55] C. Gattringer and K. Langfeld, Approaches to the sign
problem in lattice field theory, Int. J. Mod. Phys. A 31,
1643007 (2016).

[56] M. G. Alford, K. Rajagopal, and F. Wilczek, Color-flavor
locking and chiral symmetry breaking in high density QCD,
Nucl. Phys. B537, 443 (1999).

[57] M. A. Stephanov, QCD phase diagram: An overview,
Proc. Sci. LAT2006 (2006) 024.

[58] A.M. Halasz, A. D. Jackson, R. E. Shrock, M. A. Stephanov,
and J. J. M. Verbaarschot, Phase diagram of QCD, Phys.
Rev. D 58, 096007 (1998).

[59] J. Berges and K. Rajagopal, Color superconductivity and
chiral symmetry restoration at non-zero baryon density and
temperature, Nucl. Phys. B538, 215 (1999).

[60] Y. Hatta and T. Ikeda, Universality, the QCD critical/
tricritical point and the quark number susceptibility, Phys.
Rev. D 67, 014028 (2003).

[61] C. Nonaka and M. Asakawa, Hydrodynamical evolution
near the QCD critical end point, Phys. Rev. C 71, 044904
(2005).

[62] N. G. Antoniou and F. K. Diakonos, Ising-QCD phenom-
enology close to the critical point, J. Phys. G 46, 035101
(2019).

[63] P. Parotto, M. Bluhm, D. Mroczek, M. Nahrgang, J.
Noronha-Hostler, K. Rajagopal, C. Ratti, T. Schäfer, and
M. Stephanov, QCD equation of state matched to lattice data
and exhibiting a critical point singularity, Phys. Rev. C 101,
034901 (2020).

[64] M. S. Pradeep and M. Stephanov, Universality of the critical
point mapping between Ising model and QCD at small
quark mass, Phys. Rev. D 100, 056003 (2019).

[65] M. Martinez, T. Schäfer, and V. Skokov, Critical behavior
of the bulk viscosity in QCD, Phys. Rev. D 100, 074017
(2019).

[66] Z. Komargodski and D. Simmons-Duffin, The random-bond
Ising model in 2.01 and 3 dimensions, J. Phys. A 50, 154001
(2017).

[67] M. Caselle and M. Hasenbusch, Universal amplitude ratios
in the three-dimensional Ising model, J. Phys. A 30, 4963
(1997).

MICHELE CASELLE and MARIANNA SORBA PHYS. REV. D 102, 014505 (2020)

014505-12

https://doi.org/10.1016/j.physletb.2018.07.066
https://arXiv.org/abs/1811.06519
https://doi.org/10.22323/1.091.0010
https://doi.org/10.22323/1.091.0010
https://doi.org/10.1142/S0217751X16430077
https://doi.org/10.1142/S0217751X16430077
https://doi.org/10.1016/S0550-3213(98)00668-3
https://doi.org/10.22323/1.032.0024
https://doi.org/10.1103/PhysRevD.58.096007
https://doi.org/10.1103/PhysRevD.58.096007
https://doi.org/10.1016/S0550-3213(98)00620-8
https://doi.org/10.1103/PhysRevD.67.014028
https://doi.org/10.1103/PhysRevD.67.014028
https://doi.org/10.1103/PhysRevC.71.044904
https://doi.org/10.1103/PhysRevC.71.044904
https://doi.org/10.1088/1361-6471/aafead
https://doi.org/10.1088/1361-6471/aafead
https://doi.org/10.1103/PhysRevC.101.034901
https://doi.org/10.1103/PhysRevC.101.034901
https://doi.org/10.1103/PhysRevD.100.056003
https://doi.org/10.1103/PhysRevD.100.074017
https://doi.org/10.1103/PhysRevD.100.074017
https://doi.org/10.1088/1751-8121/aa6087
https://doi.org/10.1088/1751-8121/aa6087
https://doi.org/10.1088/0305-4470/30/14/010
https://doi.org/10.1088/0305-4470/30/14/010

