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We thoroughly analyze the number of independent zero modes and their zero points on the
toroidal orbifold T2=ZNðN ¼ 2; 3; 4; 6Þ with magnetic flux background, inspired by the Atiyah-
Singer index theorem. We first show a complete list for the number nη of orbifold zero modes belonging
to ZN eigenvalue η. Since it turns out that nη quite complicatedly depends on the flux quanta M, the
Scherk-Schwarz twist phase ðα1; α2Þ, and the ZN eigenvalue η, it seems hard that nη can be universally
explained in a simple formula. We, however, succeed in finding a single zero-mode counting formula
nη ¼ ðM − VηÞ=N þ 1, where Vη denotes the sum of winding numbers at the fixed points on the orbifold

T2=ZN . The formula is shown to hold for any pattern.
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I. INTRODUCTION

Over the long history of physics, the Atiyah-Singer index
theorem [1] has played important roles. After it was
proposed in 1963, many applications have been done for
physics. The index theorem claims that the index of a Dirac
operator =D

Indði=DÞ≡ nþ − n− ð1:1Þ

is a topological invariant. Here, n� denotes the number
of � chiral zero modes for the Dirac operator =D. Indeed,
it is quite powerful to clearly extract some essential
features.
There are various applications in physics. One is the

chiral anomaly in gauge theory. The computation by use of
the path integral [2,3] can be mathematically justified by
considering it as a special case of the theorem. The second
is the Witten index in supersymmetric theory [4]. The
Witten index plays an important role in constructions of
supersymmetric models with spontaneous supersymmetry
breaking, because supersymmetry remains unbroken if
the Witten index is nonvanishing. The theorem has been
applied to string theory in the context of flux compacti-
fications [5,6], where it has been used to count the number

of chiral zero modes appearing in the four-dimensional (4d)
effective (field) theory.
For both higher-dimensional field theory and string

theory, a crucial difficulty to connect our world is to obtain
chiral spectra. A promising method to realize the chiral
spectra has been known as magnetic flux compactifications
in type-I and II string theory [7–13]. The magnetic
compactifications have provided semirealistic models in
the context of string phenomenology as well as at the field
theory level, e.g., three-generation models [14,15], flavor
structures [16–20], and some applications to physics
beyond the Standard Model [21–23].
On the two-dimensional (2d) torus T2 with magnetic

flux background, the Atiyah-Singer index theorem is
known as [5,24]

nþ − n− ¼ q
2π

Z
T2

F ¼ M; ð1:2Þ

where M denotes the flux quanta in the torus compacti-
fication. Thus, the number of chiral zero modes is given by
a simple formula (1.2) on the torus. It is instructive to note
that the index can be alternatively expressed by counting
winding numbers at zero points of zero mode wave
functions [25,26].
The number of chiral zero modes on the magnetized

orbifold T2=ZN (N ¼ 2, 3, 4, 6) has been explored in
[27–29]. However, a list of chiral zero-mode numbers on
the orbifolds has not been completed, due to its compli-
cated dependence on the flux quanta M, the Scherk-
Schwarz (SS) twist phase ðα1; α2Þ, and the ZN eigenvalue
η under the ZN rotation. Furthermore, unlike the index
theorem on the torus, any simple formula has not been
known for the number of zero modes on the orbifolds.
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One of our goals in this paper is to give a complete list of
ZN zero-mode numbers on the orbifold T2=ZN (N ¼ 2, 3,
4, 6). This is the main subject in Sec. III, and the list is given
in Tables I–IV. The other is to find a zero-mode counting
formula by which all the ZN zero-mode numbers can be
counted universally.
We actually claim the following zero-mode counting

formula1

nη ¼
M − Vη

N
þ 1; ð1:3Þ

where nη denotes the number of zero modes belonging
to the ZN eigenvalue η, and Vη is the sum of winding
numbers associated with zeros at the fixed points on the
orbifold T2=ZN . In Sec. IV, we verify that the formula (1.3)
really holds for any of the flux quanta, the SS twist phase,
and the ZN eigenvalue. It is the most important result in
this paper.
This paper is organized as follows. In Sec. II, we briefly

review zero modes on the orbifold T2=ZNðN ¼ 2; 3; 4; 6Þ.
In Sec. III, we claim the number of independent orbifold
zero modes for arbitrary M. In Sec. IV, inspired by the
Atiyah-Singer index theorem, we explore a formula that

uniquely tells the number of orbifold zero modes.
Section V is devoted to discussion and conclusion. In
Appendices, we mention our notation and also derive a
formula used in our discussions.

TABLE I. The number of independent physical zero modes
on T2=Z2.

M ¼ 2mþ 1 M ¼ 2mþ 2

(a) ðα1; α2Þ ¼ ð0; 0Þ
n1 Mþ1

2
M
2
þ 1

n−1 M−1
2

M
2
− 1

M ¼ 2mþ 1 M ¼ 2mþ 2

(b) ðα1; α2Þ ¼ ð1=2; 0Þ
n1 Mþ1

2
M
2

n−1 M−1
2

M
2

M ¼ 2mþ 1 M ¼ 2mþ 2

(c) ðα1; α2Þ ¼ ð0; 1=2Þ
n1 Mþ1

2
M
2

n−1 M−1
2

M
2

M ¼ 2mþ 1 M ¼ 2mþ 2

(d) ðα1; α2Þ ¼ ð1=2; 1=2Þ
n1 M−1

2
M
2

n−1 Mþ1
2

M
2

TABLE II. The number of independent physical zero modes
on T2=Z3.

M ¼ 6mþ 2 M ¼ 6mþ 4 M ¼ 6mþ 6

(a) M: even, α ¼ 0

n1 Mþ1
3

M−1
3

M
3
þ 1

nω M−2
3

Mþ2
3

M
3

nω2
Mþ1
3

M−1
3

M
3
− 1

M ¼ 6mþ 2 M ¼ 6mþ 4 M ¼ 6mþ 6

(b) M: even, α ¼ 1=3; 2=3
n1 Mþ1

3
Mþ2
3

M
3

nω Mþ1
3

M−1
3

M
3

nω2
M−2
3

M−1
3

M
3

M ¼ 6mþ 1 M ¼ 6mþ 3 M ¼ 6mþ 5

(c) M: odd, α ¼ 1=6; 5=6
n1 Mþ2

3
M
3

Mþ1
3

nω M−1
3

M
3

Mþ1
3

nω2
M−1
3

M
3

M−2
3

M ¼ 6mþ 1 M ¼ 6mþ 3 M ¼ 6mþ 5

(d) M: odd, α ¼ 1=2
n1 M−1

3
M
3
þ 1 Mþ1

3

nω Mþ2
3

M
3

M−2
3

nω2
M−1
3

M
3
− 1 Mþ1

3

TABLE III. The number of independent physical zero modes
on T2=Z4.

M ¼ 4mþ 1 M ¼ 4mþ 2 M ¼ 4mþ 3 M ¼ 4mþ 4

(a) α ¼ 0

n1 Mþ3
4

Mþ2
4

Mþ1
4

M
4
þ 1

nω M−1
4

M−2
4

Mþ1
4

M
4

nω2
M−1
4

Mþ2
4

Mþ1
4

M
4

nω3
M−1
4

M−2
4

M−3
4

M
4
− 1

M ¼ 4mþ 1 M ¼ 4mþ 2 M ¼ 4mþ 3 M ¼ 4mþ 4

(b) α ¼ 1=2
n1 M−1

4
Mþ2
4

Mþ1
4

M
4

nω Mþ3
4

Mþ2
4

Mþ1
4

M
4

nω2
M−1
4

M−2
4

M−3
4

M
4

nω3
M−1
4

M−2
4

Mþ1
4

M
4

1In this paper, we will mainly concentrate on the case of
M > 0, for which there is no negative chiral zero mode, i.e.,
n− ¼ 0.
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II. ZERO MODES ON ORBIFOLDS

In this section, we briefly review zero mode wave
functions on 2d toroidal orbifold T2=ZN (N¼ 2, 3, 4, 6)
with magnetic flux background [27,28].

A. Abelian six-dimensional gauge theory

In this paper, we consider a six-dimensional (6d)
gauge theory compactified on T2 or T2=ZN. Using the
complex coordinate z≡ y1 þ τy2, the torus T2 is obtained
by the identification z ∼ zþ 1 ∼ zþ τ (τ ∈ C; Imτ > 0)
under torus lattice shifts.
Following [30], we assume a nontrivial magnetic flux

background in the (1-form) vector potential:

AðzÞ≡ f
2Imτ

Imðz̄dzÞ; ð2:1Þ

where f denotes the homogeneous flux on the torus. Torus
lattice shifts on the vector potential should be accompanied
by gauge transformation

Aðzþ 1Þ ¼ AðzÞ þ dΛ1ðzÞ; ð2:2Þ

Aðzþ τÞ ¼ AðzÞ þ dΛ2ðzÞ; ð2:3Þ

where Λ1ðzÞ and Λ2ðzÞ are gauge parameters given by

Λ1ðzÞ ¼
f

2Imτ
Imz; Λ2ðzÞ ¼

f
2Imτ

Imðτ̄zÞ: ð2:4Þ

It is shown in [27] that Wilson lines can be set to be
vanishing without loss of generality, and we do not treat
them in the following. The background vector potential
(2.1) leads to a nontrivial background of the (2-form) field
strength F such that

R
T2 F ¼ f.

Next, we look at a 6d Weyl fermion in the flux back-
ground. The Lagrangian reads

L6d ¼ iΨ̄ΓMDMΨ; Γ7Ψ ¼ Ψ; ð2:5Þ

where Mð¼ 0; 1; 2; 3; 5; 6Þ is the 6d spacetime index, and
Γ0;Γ1;…;Γ6 denote 6d gamma matrices. Γ7 denotes the 6d
chirality operator and DM ¼ ∂M − iqAM is the covariant
derivative. The 6d Weyl fermion Ψðx; zÞ can be decom-

posed into 4d Weyl left/right-handed fermions ψ ð4Þ
L=RðxÞ as

Ψðx;zÞ¼
X
n;j

ðψ ð4Þ
R;n;jðxÞ⊗ψ ð2Þ

þ;n;jðzÞþψ ð4Þ
L;n;jðxÞ⊗ψ ð2Þ

−;n;jðzÞÞ;

ð2:6Þ

where xμ (μ ¼ 0, 1, 2, 3) denotes the 4d Minkowski
coordinate. For convenience, we adopt the following
notation for 2d Weyl fermions:

ψ ð2Þ
þ;n;j ¼

�
ψþ;n;j

0

�
; ψ ð2Þ

−;n;j ¼
�

0

ψ−;n;j

�
; ð2:7Þ

where n and j label each of the Landau level and the
degeneracy of mode functions on each level, respectively.
The 2d Weyl fermions are required to satisfy the

pseudoperiodic boundary conditions associated with the
gauge transformation:

ψ�;n;jðzþ 1Þ ¼ U1ðzÞψ�;n;jðzÞ;
ψ�;n;jðzþ τÞ ¼ U2ðzÞψ�;n;jðzÞ ð2:8Þ

with

UiðzÞ ¼ eiqΛiðzÞe2πiαi ði ¼ 1; 2Þ; ð2:9Þ

and αi (i ¼ 1, 2) corresponds to the Scherk-Schwarz
twist phase.
As claimed in [6,7], the gauge transformation above is

well defined on the torus if and only if the homogeneous
flux f is quantized as

qf
2π

≡M ∈ Z: ð2:10Þ

When going to toroidal orbifolds, one has to be careful of
the localized fluxes at orbifold fixed points. By computing
Wilson loops around the fixed points, one finds that, in
general, there exist the nonzero contributions of the
localized fluxes on the orbifolds [31]. Then, taking into

TABLE IV. The number of independent physical zero modes
on T2=Z6.

M ¼ 6mþ 2 M ¼ 6mþ 4 M ¼ 6mþ 6

(a) M: even, α ¼ 0

n1 Mþ4
6

Mþ2
6

M
6
þ 1

nω M−2
6

Mþ2
6

M
6

nω2
Mþ4
6

Mþ2
6

M
6

nω3
M−2
6

M−4
6

M
6

nω4
M−2
6

Mþ2
6

M
6

nω5
M−2
6

M−4
6

M
6
− 1

M ¼ 6mþ 1 M ¼ 6mþ 3 M ¼ 6mþ 5

(b) M: odd, α ¼ 1=2
n1 M−1

6
Mþ3
6

Mþ1
6

nω Mþ5
6

Mþ3
6

Mþ1
6

nω2
M−1
6

M−3
6

Mþ1
6

nω3
M−1
6

Mþ3
6

Mþ1
6

nω4
M−1
6

M−3
6

M−5
6

nω5
M−1
6

M−3
6

Mþ1
6
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account all the localized fluxes, it can be confirmed that the
flux quantization condition (2.10) is available on T2=ZN as
well [32].

B. Zero modes on T2

In this subsection, we show zero modewave functions on
the torus T2 [30]. To make our analysis simple, we restrict
ourselves to M > 0, although one can analyze the case of
M < 0 in a similar way.
Focusing on the lowest-lying states n ¼ 0, we omit such

an index in what follows. Zero mode equations are found as�
∂̄þ πM

2Imτ
z

�
ψþ;jðzÞ¼ 0;

�
∂− πM

2Imτ
z̄

�
ψ−;jðzÞ¼ 0:

ð2:11Þ
Imposing the boundary conditions (2.8), we find M-fold
normalizable zero mode solutions only for ψþ,

2 i.e.,

ψþ;jðzÞ¼N eiπMzImz=Imτϑ

� jþα1
M

−α2

�
ðMz;MτÞ≡ξjðzÞ: ð2:12Þ

Here, j ¼ 0; 1;…;M − 1 stand for the degeneracy of zero
mode solutions, and N is a normalization constant deter-
mined by Z

T2

d2zξjðzÞðξkðzÞÞ� ¼ δj;k: ð2:13Þ

The Jacobi ϑ-function is defined by

ϑ

�
a

b

�
ðc; dÞ ¼

X∞
l¼−∞

eπiðaþlÞ2de2πiðaþlÞðcþbÞ: ð2:14Þ

The result (2.12) immediately implies that the
flux quanta M lead to M-fold 4d chiral Weyl fermions

ψ ð4Þ
R;0;jðxÞðj ¼ 0; 1;…;M − 1Þ. Notice that the zero mode

wave functions ξjðzÞ are characterized by the flux quanta
M and the SS twist phase ðα1; α2Þ. For later convenience, it
is useful to schematically express the zero mode wave
functions as

ξjðzÞ≡ hzjM; j; α1; α2iT2 : ð2:15Þ

Hereafter, we call jM; j; α1; α2iT2 torus physical states.

C. Zero modes on T2=ZN

We now move on to the orbifold T2=ZNðN ¼ 2; 3; 4; 6Þ,
which is our main subject in this paper. The orbifold T2=ZN
is given by the torus identification and an additionalZN one

z ∼ ωz ðω≡ e2πi=NÞ: ð2:16Þ

As discussed in [33] from the viewpoint of crystallog-
raphy, we first need to clarify a relation between ω and a
complex modulus τ. For N ¼ 2, τ is arbitrary as long as
Imτ>0. For N ¼ 3, 4, 6, we must impose τ ¼ ωð¼e2πi=NÞ.
The orbifold fixed points, which are invariant under the ZN
rotations up to torus lattice shifts, are found as

ðy1; y2Þ ¼

8>>>>><
>>>>>:

ð0; 0Þ; ð1=2; 0Þ; ð0; 1=2Þ; ð1=2; 1=2Þ on T2=Z2;

ð0; 0Þ; ð2=3; 1=3Þ; ð1=3; 2=3Þ on T2=Z3;

ð0; 0Þ; ð1=2; 1=2Þ on T2=Z4;

ð0; 0Þ on T2=Z6:

ð2:17Þ

To be consistent with the orbifold identification, the SS twist phase (α1, α2) turns out to be quantized as

ðα1; α2Þ ¼ ð0; 0Þ; ð1=2; 0Þ; ð0; 1=2Þ; ð1=2; 1=2Þ onT2=Z2; ð2:18Þ

α ¼ α1 ¼ α2 ¼
(
0; 1=3; 2=3 ðM ¼ evenÞ
1=6; 3=6; 5=6 ðM ¼ oddÞ on T2=Z3; ð2:19Þ

α ¼ α1 ¼ α2 ¼ 0; 1=2 on T2=Z4; ð2:20Þ

α ¼ α1 ¼ α2 ¼
(
0 ðM ¼ evenÞ
1=2 ðM ¼ oddÞ on T2=Z6: ð2:21Þ

Wave functions on the orbifold T2=ZN are classified by ZN eigenvalues under the ZN rotation z → ωz as

ψþ;n;jðωzÞ ¼ ηψþ;n;jðzÞ; ψ−;n;jðωzÞ ¼ ωηψ−;n;jðzÞ; ð2:22Þ

2For M < 0, there exist jMj-fold normalizable zero mode solutions only for ψ−.
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where η ¼ ωℓðℓ ¼ 0; 1;…; N − 1Þ denotes the ZN eigen-
value. Here the possible SS phases (2.18)–(2.21) can be
justified as follows. On the orbifolds T2=ZNðN¼ 2;3;4;6Þ,
the gauge transformations U1ðzÞ and U2ðzÞ in (2.8) and
the ZN rotation η (or ωη) in (2.22) have to make a group in
the wave function space [27]. In order for the group to be
closed, possible patterns of the number of magnetic flux
M and the SS phases α1, α2, and α are restricted as
(2.18)–(2.21). For instance, a combination of M ¼ even
and α ¼ 1=6 cannot give a closed group, and accordingly
the corresponding wave functions are not single-valued on
the orbifolds.
Again, we focus only on M > 0 and the ZN eigenstates

for ψþ satisfying (2.8) and (2.22). In terms of the zero
mode wave functions ξjðzÞ on T2, formal solutions to
(2.22) are constructed as

ξjηðzÞ¼N j
η

XN−1

ℓ¼0

η̄ℓξjðωℓzÞ ðη¼ 1;ω;…;ωN−1Þ; ð2:23Þ

where N j
η is a normalization constant and not relevant for

our discussions. A difficulty is that all the eigen wave
functions ξjηðzÞðj ¼ 0; 1;…;M − 1Þ are not always linearly
independent.
One of our goals in this paper is to find the number of

independent ZN eigenstates for each ZN eigenvalue η. In
[27], for some small values of M, the number of indepen-
dent ZN eigenstates has been obtained. It is, however,
difficult to find the number of them for large M (except
on T2=Z2).
Another way to obtain the number of independent ZN

eigenstates is to use a property of the torus physical states
jM; k; α1; α2iT2 under the ZN rotation:

ÛZN
jM;j;α1;α2iT2

¼
XM−1

k¼0

DjkjM;k;α1;α2iT2 ðj¼ 0;1;…;M−1Þ; ð2:24Þ

where ÛZN
is theZN rotation operator. Using our definition

of the Kronecker delta

δj;k ¼
�

1 ðj ¼ k mod MÞ;
0 ðj ≠ k mod MÞ; ð2:25Þ

we summarize the results of Djk [28]:

Djkðα1;α2Þ¼ e−2πiðjþα1Þ2α2M δ−2α1−j;k for T2=Z2;

DjkðαÞ¼

8>>>>>>>><
>>>>>>>>:

1ffiffiffiffiffi
M

p e−i
π
12
þi3πα

2

M ei
π
Mkðkþ6αÞþ2πijkM for T2=Z3;

1ffiffiffiffiffi
M

p e2πi
α2

Me2πi
jk
Mþ2πi2αMk for T2=Z4;

1ffiffiffiffiffi
M

p ei
π
12
þiπα

2

M e−i
π
Mk

2þ2πi αMkþ2πijkM for T2=Z6:

ð2:26Þ
The number of independent ZN eigenstates can be

obtained by analyzing eigenvalues of the M-by-M matrix
Djk. Since ðÛZN

ÞN¼1, the eigenvalues of Djk are 1;ω;…;
ωN−1ðω ¼ e2πi=NÞ, and the degeneracy of each eigenvalue
corresponds to the number of independent ZN eigenstates.
Thus, it could be, in principle, obtained by diagonalizing
the M-by-M matrix Djk. In [28], for some small M, the
number of independent ZN eigenstates has been obtained
and found to agree with the previous results given in [27].
The authors have not been, however, succeeded in
deriving a general list for the numbers of independent
ZN eigenstates.
In the next section, we analyze each eigenvalue of the

matrix Djk and give a complete list for the numbers of the
ZN eigenstates for any of the flux quanta M, the SS twist
phase ðα1; α2Þ, and the ZN eigenvalue η.

III. COUNTING INDEPENDENT ZN EIGENSTATES

The numbers of ZN eigen zero modes have been
obtained on T2=Z2 for arbitrary M and on T2=ZN
(N ¼ 3, 4, 6) for some small M in [27,28]. There is
another way to discuss orbifold zero modes by use of
modular transformations [29]. Nevertheless, unclear is how
to introduce nonzero SS twist phases. In this section, we
give a complete list for the numbers of ZN eigen zero
modes on all the orbifolds T2=ZNðN ¼ 2; 3; 4; 6Þ for any of
the flux quanta Mð>0Þ, the SS twist phases, and the ZN
eigenvalues. It is one of our main results in this paper.

A. T2=Z2

We start by considering the Z2 transformation property,

ÛZ2
jM; j; α1; α2iT2 ¼

XM−1

k¼0

Djkðα1;α2ÞjM; k; α1; α2iT2 ;

ð3:1Þ
where Djkðα1; α2Þ is given in (2.26). For later convenience,
we have explicitly written down the SS-phase dependence
ðα1;α2Þ within Djk. Due to ðÛZ2

Þ2 ¼ 1, the M-by-M
matrixDjkðα1; α2Þ gives eigenvalues�1. Then, the number
of �1 eigenvalues corresponds to the number of orbifold
physical states belonging to Z2 eigenvalues η ¼ �1. We
now find
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trðDðα1; α2ÞÞ ¼ n1 − n−1; ð3:2Þ

where we define n1;−1 as the number of orbifold physical
states with Z2 eigenvalues η ¼ �1. Moreover, n1;−1 must
satisfy

n1 þ n−1 ¼ M: ð3:3Þ

1. ðα1;α2Þ= ð0;0Þ
Using (3.3) and the relation

n1 − n−1 ¼ trðDð0; 0ÞÞ ¼
�
1 ðM ¼ 2mþ 1Þ;
2 ðM ¼ 2mþ 2Þ; ð3:4Þ

with m ∈ N ∪ f0g, we easily obtain

n1¼
Mþ1

2
; n−1¼

M−1

2
ðM¼ 2mþ1Þ; ð3:5Þ

n1 ¼
M
2
þ1; n−1¼

M
2
−1 ðM¼ 2mþ2Þ: ð3:6Þ

Here, we have used the expression (2.26) in the last equality
of (3.4). These results are summarized in Table I(a).

2. ðα1;α2Þ= ð1=2;0Þ
Similarly, using

n1 − n−1 ¼ trðDð1=2; 0ÞÞ ¼
�
1 ðM ¼ 2mþ 1Þ;
0 ðM ¼ 2mþ 2Þ; ð3:7Þ

we obtain

n1¼
Mþ1

2
; n−1¼

M−1

2
ðM¼ 2mþ1Þ; ð3:8Þ

n1 ¼ n−1 ¼
M
2

ðM ¼ 2mþ 2Þ: ð3:9Þ

These results are summarized in Table I(b).

3. ðα1;α2Þ= ð0;1=2Þ
Similarly, using

n1 − n−1 ¼ trðDð0; 1=2ÞÞ ¼
�
1 ðM ¼ 2mþ 1Þ;
0 ðM ¼ 2mþ 2Þ; ð3:10Þ

we obtain

n1 ¼
Mþ1

2
; n−1¼

M−1

2
ðM¼ 2mþ1Þ; ð3:11Þ

n1 ¼ n−1 ¼
M
2

ðM ¼ 2mþ 2Þ: ð3:12Þ

These results are summarized in Table I(c).

4. ðα1;α2Þ= ð1=2;1=2Þ
Similarly, once more using

n1 − n−1 ¼ trðDð1=2; 1=2ÞÞ ¼
�−1 ðM ¼ 2mþ 1Þ;
0 ðM ¼ 2mþ 2Þ;

ð3:13Þ

we obtain

n1 ¼
M−1

2
; n−1¼

Mþ1

2
ðM¼ 2mþ1Þ; ð3:14Þ

n1 ¼ n−1 ¼
M
2

ðM ¼ 2mþ 2Þ: ð3:15Þ

These results are summarized in Table I(d).

B. T2=Z3

We now move to T2=Z3 and start with the Z3 trans-
formation property,

ÛZ3
jM; j; α; αiT2 ¼

XM−1

k¼0

DjkðαÞjM; k; α; αiT2 ; ð3:16Þ

where DjkðαÞ is given in (2.26). For later convenience, we
have explicitly written down the SS-phase dependence α
within Djk. Due to ðÛZ3

Þ3 ¼ 1, the M-by-M matrix Djk

gives eigenvalues 1;ω;ω2ðω ¼ e2πi=3Þ. In analogy to
T2=Z2, we now find

trðDðαÞÞ ¼ n1 þ ωnω þ ω2nω2

¼ n1 − nω2 þ ωðnω − nω2Þ; ð3:17Þ

where we have used 1þωþω2¼0. We again define
n1;ω;ω2 as the number of Z3 eigenstates belonging to Z3

eigenvalue η ¼ 1;ω;ω2, respectively. Moreover, n1;ω;ω2

must satisfy

n1 þ nω þ nω2 ¼ M: ð3:18Þ

To derive n1;ω;ω2 analytically, we need to evaluate the
trace of DðαÞ, i.e.,

trðDðαÞÞ ¼ e−iπ=12ffiffiffiffiffi
M

p
XM−1

k¼0

ei
3π
MðkþαÞ2 : ð3:19Þ

To perform the sum over k in the case of the trivial SS twist
phase (α ¼ 0), we will use the formula

1ffiffiffiffi
p

p
Xp−1
n¼0

exp

�
2πin2q

p

�
¼ eiπ=4ffiffiffiffiffiffi

2q
p

X2q−1
n¼0

exp

�
−
πin2p
2q

�
ð3:20Þ
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or its complex conjugation

1ffiffiffiffi
p

p
Xp−1
n¼0

exp

�
−
2πin2q

p

�
¼e−iπ=4ffiffiffiffiffiffi

2q
p

X2q−1
n¼0

exp

�
πin2p
2q

�
ð3:21Þ

for p; q ∈ N. These formulas are mathematically known as
the Landsberg-Schaar relation. Furthermore, for nontrivial
SS twist phases (α ≠ 0), we need to use an extension of the
formula

1ffiffiffiffi
p

p
Xp−1
n¼0

exp

�
πiðnþ νÞ2q

p

�

¼ eiπ=4ffiffiffi
q

p
Xq−1
n¼0

exp

�
−
πin2p
q

− 2πinν

�
ð3:22Þ

for p; q ∈ N, ν ∈ Q, and pqþ 2qν ∈ 2Z. Since that seems
to be unfamiliar in physics, we give an elementary proof
of the generalized Landsberg-Schaar relation (3.22) in
Appendix B. As we will see below, it is interesting that
the necessary condition pqþ 2qν ∈ 2Z is consistent with
the allowed SS twist phases (2.18)–(2.21).

1. α= 0

In this case, M must be an even (positive) integer, as
mentioned in Sec. II. Utilizing (3.21) with p ¼ 3 and
2q ¼ M, we find

n1 − nω2 þ ωðnω − nω2Þ

¼ trðDð0ÞÞ ¼

8>><
>>:

−ω ðM ¼ 6mþ 2Þ;
ω ðM ¼ 6mþ 4Þ;
2þ ω ðM ¼ 6mþ 6Þ;

ð3:23Þ

where m ∈ N ∪ f0g. From (3.18) and (3.23), we explicitly
obtain

n1¼nω2 ¼Mþ1

3
; nω¼

M−2

3
; ðM¼6mþ2Þ; ð3:24Þ

n1¼nω2 ¼M−1

3
; nω¼

Mþ2

3
; ðM¼6mþ4Þ; ð3:25Þ

n1¼
M
3
þ1; nω¼

M
3
; nω2 ¼M

3
−1 ðM¼6mþ6Þ;

ð3:26Þ

as summarized in Table II(a).

2. α= 1=3;2=3

In this case, M must be again an even (positive) integer.
To evaluate (3.19), we use the formula (3.22) for p ¼ M,
q ¼ 3, and ν ¼ 1=3; 2=3 (with pqþ 2qν ∈ 2Z satisfied).
Then, we find

n1 − nω2 þ ωðnω − nω2Þ
¼ trðDð1=3ÞÞ ¼ trðDð2=3ÞÞ

¼

8>><
>>:

1þ ω ðM ¼ 6mþ 2Þ;
1 ðM ¼ 6mþ 4Þ;
0 ðM ¼ 6mþ 6Þ;

ð3:27Þ

wherem ∈ N ∪ f0g. Similarly, by use of (3.18) and (3.27),
we explicitly obtain

n1¼nω¼
Mþ1

3
; nω2 ¼M−2

3
ðM¼6mþ2Þ; ð3:28Þ

n1¼
Mþ2

3
; nω¼nω2 ¼M−1

3
ðM¼6mþ4Þ; ð3:29Þ

n1 ¼ nω ¼ nω2 ¼ M
3

ðM ¼ 6mþ 6Þ; ð3:30Þ

as summarized in Table II(b).

3. α= 1=6;5=6

In this case, M must be an odd (positive) integer, as
mentioned in Sec. II. To evaluate (3.19), we need to use the
generalized relation (3.22) for p ¼ M, q ¼ 3, and ν ¼ α
(with pqþ 2qν ∈ 2Z satisfied). Thus, it is straightforward
to find

n1 − nω2 þ ωðnω − nω2Þ
¼ trðDð1=6ÞÞ ¼ trðDð5=6ÞÞ

¼

8>><
>>:

1 ðM ¼ 6mþ 1Þ;
0 ðM ¼ 6mþ 3Þ;
1þ ω ðM ¼ 6mþ 5Þ;

ð3:31Þ

where m ∈ N ∪ f0g. These equations immediately lead to

n1¼
Mþ2

3
; nω¼nω2 ¼M−1

3
ðM¼6mþ1Þ; ð3:32Þ

n1 ¼ nω ¼ nω2 ¼ M
3

ðM ¼ 6mþ 3Þ; ð3:33Þ

n1¼nω¼
Mþ1

3
; nω2 ¼M−2

3
ðM¼6mþ5Þ; ð3:34Þ

as summarized in Table II(c).
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4. α= 1=2

Similarly, using

n1 − nω2 þ ωðnω − nω2Þ

¼ trðDð1=2ÞÞ ¼
8<
:

ω ðM ¼ 6mþ 1Þ;
2þ ω ðM ¼ 6mþ 3Þ;
−ω ðM ¼ 6mþ 5Þ;

ð3:35Þ

where m ∈ N ∪ f0g, we easily reach

n1¼ nω2 ¼M−1

3
; nω¼

Mþ2

3
; ðM¼ 6mþ1Þ;

ð3:36Þ

n1¼
M
3
þ1; nω¼

M
3
; nω2 ¼M

3
−1 ðM¼ 6mþ3Þ;

ð3:37Þ

n1¼nω2 ¼Mþ1

3
; nω¼

M−2

3
ðM¼6mþ5Þ; ð3:38Þ

as summarized in Table II(d).

C. T2=Z4

Next, we proceed to T2=Z4, and start by considering the
Z4 transformation property for the torus physical states:

ÛZ4
jM; j; α; αiT2 ¼

XM−1

k¼0

DjkðαÞjM; k; α; αiT2 ; ð3:39Þ

where DjkðαÞ is given in (2.26). Because of ðÛZ4
Þ4 ¼ 1,

the transformation matrix DðαÞ gives eigenvalues
1;ω;ω2;ω3ðω ¼ iÞ. By an analogous logic, one can see
that it leads to

trðDðαÞÞ ¼ n1 þ ωnω þ ω2nω2 þ ω3nω3

¼ n1 − nω2 þ iðnω − nω3Þ; ð3:40Þ

where we have used ω ¼ i and defined n1;ω;ω2;ω3 as the
number of orbifold physical states belonging to Z4 eigen-
value η ¼ 1;ω;ω2;ω3, respectively.
Note that ÛZ2

≡ ðÛZ4
Þ2 behaves as a Z2 operator and

gives eigenvalues �1. Let jM; η;α; αiT2=Z4
be a Z4 eigen-

state belonging to Z4 eigenvalue η, i.e.,

ÛZ4
jM; η; α; αiT2=Z4

¼ ηjM; η; α; αiT2=Z4
ðη ¼ 1;ω;ω2;ω3Þ: ð3:41Þ

Then, this immediately gives

ðÛZ4
Þ2jM;ωℓ; α; αiT2=Z4

¼

8>>>>><
>>>>>:

þjM; 1;α;αiT2=Z4
ðℓ ¼ 0Þ;

−jM;ω; α; αiT2=Z4
ðℓ ¼ 1Þ;

þjM;ω2; α; αiT2=Z4
ðℓ ¼ 2Þ;

−jM;ω3; α; αiT2=Z4
ðℓ ¼ 3Þ:

ð3:42Þ

Thus, ðÛZ4
Þ2 can be regarded as the Z2 operator, and the

Z4 orbifold eigenstates for ℓ ¼ 0, 2 (ℓ ¼ 1, 3) are Z2-even
(odd) states, respectively. This is why we can obtain the
following relations in terms of n10;−10 defined in Sec. III A:

n1 þ nω2 ¼ n10 ¼

8>>>>><
>>>>>:

Mþ1
2

ðM ¼ 2mþ 1;α1 ¼ α2 ¼ 0Þ;
M
2
þ 1 ðM ¼ 2mþ 2;α1 ¼ α2 ¼ 0Þ;

M−1
2

ðM ¼ 2mþ 1;α1 ¼ α2 ¼ 1
2
Þ;

M
2

ðM ¼ 2mþ 2;α1 ¼ α2 ¼ 1
2
Þ;

ð3:43Þ

nω þ nω3 ¼ n−10 ¼

8>>>>><
>>>>>:

M−1
2

ðM ¼ 2mþ 1;α1 ¼ α2 ¼ 0Þ;
M
2
− 1 ðM ¼ 2mþ 2;α1 ¼ α2 ¼ 0Þ;

Mþ1
2

ðM ¼ 2mþ 1;α1 ¼ α2 ¼ 1
2
Þ;

M
2

ðM ¼ 2mþ 2;α1 ¼ α2 ¼ 1
2
Þ:

ð3:44Þ

1. α= 0

Using (2.26) and (3.20) for p ¼ M and q ¼ 1, we can
evaluate the trace trðDð0ÞÞ as

n1 − nω2 þ iðnω − nω3Þ

¼ trðDð0ÞÞ ¼

8>>><
>>>:

1 ðM ¼ 4mþ 1Þ;
0 ðM ¼ 4mþ 2Þ;
i ðM ¼ 4mþ 3Þ;
1þ i ðM ¼ 4mþ 4Þ:

ð3:45Þ

From (3.43)–(3.45), it is straightforward to find

n1¼
Mþ3

4
; nω¼ nω2 ¼ nω3 ¼M−1

4
ðM¼ 4mþ1Þ;

ð3:46Þ

n1¼ nω2 ¼Mþ2

4
; nω ¼ nω3 ¼M−2

4
ðM¼ 4mþ2Þ;

ð3:47Þ

n1¼ nω¼ nω2 ¼Mþ1

4
; nω3 ¼M−3

4
ðM¼ 4mþ3Þ;

ð3:48Þ
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n1 ¼
M
4
þ 1; nω ¼ nω2 ¼ M

4
;

nω3 ¼ M
4
− 1 ðM ¼ 4mþ 4Þ; ð3:49Þ

as summarized in Table III(a).

2. α= 1=2

Similarly, using (2.26) and (3.22) for p ¼ M, q ¼ 2, and
ν ¼ 1=2 (with pqþ 2qν ∈ 2Z satisfied), we evaluate the
trace trðDð1=2ÞÞ as

n1 − nω2 þ iðnω − nω3Þ

¼ trðDð1=2ÞÞ ¼

8>>><
>>>:

i ðM ¼ 4mþ 1Þ;
1þ i ðM ¼ 4mþ 2Þ;
1 ðM ¼ 4mþ 3Þ;
0 ðM ¼ 4mþ 4Þ:

ð3:50Þ

From (3.43), (3.44), and (3.50), it is straightforward to find

n1¼ nω2 ¼ nω3 ¼M−1

4
; nω¼

Mþ3

4
ðM¼ 4mþ1Þ;

ð3:51Þ

n1¼ nω¼
Mþ2

4
; nω2 ¼ nω3 ¼M−2

4
ðM¼ 4mþ2Þ;

ð3:52Þ

n1¼ nω¼ nω3 ¼Mþ1

4
; nω2 ¼M−3

4
ðM¼ 4mþ3Þ;

ð3:53Þ

n1 ¼ nω ¼ nω2 ¼ nω3 ¼ M
4

ðM ¼ 4mþ 4Þ; ð3:54Þ

as summarized in Table III (b).

D. T2=Z6

Finally, we step into T2=Z6. Although T2=Z6 is
slightly complicated, the logic here is essentially the
same as that in the previous analyses. Let us start with
the Z6 transformation property of the torus physical states
jM; j; α; αiT2 , i.e.,

ÛZ6
jM; j; α; αiT2 ¼

XM−1

k¼0

DjkðαÞjM; k; α; αiT2 ; ð3:55Þ

where DjkðαÞ is given in (2.26). Because of ðÛZ6
Þ6 ¼ 1,

the transformation matrix Djk gives eigenvalues
1;ω;ω2;ω3;ω4;ω5ðω ¼ e2πi=6Þ. One can again find that
this leads to

trðDðαÞÞ¼ n1þωnωþω2nω2 þω3nω3 þω4nω4 þω5nω5

¼ n1−nω2 −nω3 þnω5 þωðnωþnω2 −nω4 −nω5Þ;
ð3:56Þ

wherewe have usedω2 ¼ ω − 1, and defined n1;ω;ω2;ω3;ω4;ω5

as the number of orbifold Z6 eigenstates belonging to Z6

eigenvalue η ¼ 1;ω;ω2;ω3;ω4;ω5, respectively.
In the following, we first show that ÛZ2

≡ ðÛZ6
Þ3

(ÛZ3
≡ ðÛZ6

Þ2) behaves as a Z2 (Z3) operator and
gives eigenvalues �1 (1; e2πi=3; e4πi=3), as introduced in
Secs. III A and III B. Let jM; η; α; αiT2=Z6

be a Z6 eigen-
state belonging to Z6 eigenvalue η¼ωℓðℓ¼0;1;…;5Þ, i.e.,

ÛZ6
jM; η; α; αiT2=Z6

¼ ηjM; η; α; αiT2=Z6
: ð3:57Þ

Then, it implies

ðUZ6
Þ3jM;ωℓ; α; αiT2=Z6

¼

8>>>>>>>>>>><
>>>>>>>>>>>:

þjM; 1;α;αiT2=Z6
ðℓ ¼ 0Þ;

−jM;ω; α; αiT2=Z6
ðℓ ¼ 1Þ;

þjM;ω2; α; αiT2=Z6
ðℓ ¼ 2Þ;

−jM;ω3; α; αiT2=Z6
ðℓ ¼ 3Þ;

þjM;ω4; α; αiT2=Z6
ðℓ ¼ 4Þ;

−jM;ω5; α; αiT2=Z6
ðℓ ¼ 5Þ:

ð3:58Þ

It is confirmed that ðÛZ6
Þ3 practically behaves as the Z2

operator, and the Z6 orbifold eigenstates belonging to Z6

eigenvalue η ¼ ωℓ for ℓ ¼ 0, 2, 4 (ℓ ¼ 1, 3, 5) correspond
to Z2-even (odd) states, respectively. Now, in terms of
n10;−10 in Sec. III A, we reach

n1 þ nω2 þ nω4 ¼ n10

¼
(

M−1
2

ðM ¼ 2mþ 1; α1 ¼ α2 ¼ 1
2
Þ;

M
2
þ 1 ðM ¼ 2mþ 2; α1 ¼ α2 ¼ 0Þ; ð3:59Þ

nωþnω3 þnω5 ¼ n−10

¼
(

Mþ1
2

ðM¼ 2mþ1;α1¼ α2¼ 1
2
Þ;

M
2
−1 ðM¼ 2mþ2;α1¼ α2¼ 0Þ: ð3:60Þ

On the other hand, one can show

ðÛZ6
Þ2jM;ωℓ;α;αiT2=Z6

¼

8>>>>>>>>>>><
>>>>>>>>>>>:

þjM;1;α;αiT2=Z6
ðℓ¼0Þ;

ω0jM;ω;α;αiT2=Z6
ðℓ¼1Þ;

ω02jM;ω2;α;αiT2=Z6
ðℓ¼2Þ;

þjM;ω3;α;αiT2=Z6
ðℓ¼3Þ;

ω0jM;ω4;α;αiT2=Z6
ðℓ¼4Þ;

ω02jM;ω5;α;αiT2=Z6
ðℓ¼5Þ;
ð3:61Þ
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with ω0 ≡ e2πi=3ð¼ ω2Þ and then find out that ðÛZ6
Þ2

behaves as the Z3 operator, and the Z6 orbifold eigenstates
belonging to Z6 eigenvalue η ¼ ωℓ for ℓ ¼ 0, 3 (ℓ ¼ 1, 4
and ℓ ¼ 2, 5) correspond to Z3 eigestates belonging to Z3

eigenvalue þ1 (ω0 and ω02), respectively. In terms of
n10;ω0;ω02 in Sec. III B, we reach

n1þnω3 ¼ n10 ¼

8>><
>>:

Mþ1
3

ðM¼ 6mþ 2;α¼ 0Þ;
M−1
3

ðM¼ 6mþ 4;α¼ 0Þ;
M
3
þ 1 ðM¼ 6mþ 6;α¼ 0Þ;

ð3:62Þ

nωþnω4 ¼ nω0 ¼

8>><
>>:

M−2
3

ðM¼ 6mþ2;α¼ 0Þ;
Mþ2
3

ðM¼ 6mþ4;α¼ 0Þ;
M
3

ðM¼ 6mþ6;α¼ 0Þ;
ð3:63Þ

nω2 þnω5 ¼ nω02 ¼

8>><
>>:

Mþ1
3

ðM¼ 6mþ2;α¼ 0Þ;
M−1
3

ðM¼ 6mþ4;α¼ 0Þ;
M
3
−1 ðM¼ 6mþ6;α¼ 0Þ;

ð3:64Þ

and

n1þnω3 ¼ n10 ¼

8>><
>>:

M−1
3

ðM¼ 6mþ1;α¼ 1
2
Þ;

M
3
þ1 ðM¼ 6mþ3;α¼ 1

2
Þ;

Mþ1
3

ðM¼ 6mþ5;α¼ 1
2
Þ;

ð3:65Þ

nω þ nω4 ¼ nω0 ¼

8>><
>>:

Mþ2
3

ðM ¼ 6mþ 1; α ¼ 1
2
Þ;

M
3

ðM ¼ 6mþ 3; α ¼ 1
2
Þ;

M−2
3

ðM ¼ 6mþ 5; α ¼ 1
2
Þ;

ð3:66Þ

nω2 þnω5 ¼ nω02 ¼

8>><
>>:

M−1
3

ðM¼ 6mþ1;α¼ 1
2
Þ;

M
3
−1 ðM¼ 6mþ3;α¼ 1

2
Þ;

Mþ1
3

ðM¼ 6mþ5;α¼ 1
2
Þ:

ð3:67Þ

1. α= 0

To evaluate the trace trðDð0ÞÞ, we need to use (2.26) and
(3.21) for p ¼ 1 and 2q ¼ M ¼ even. Then, we find

n1 − nω2 − nω3 þ nω5 þ ωðnω þ nω2 − nω4 − nω5Þ
¼ trðDð0ÞÞ ¼ ω: ð3:68Þ

Comparing this relation with (3.59), (3.60), and (3.62)–
(3.64), we obtain

n1 ¼ nω2 ¼Mþ4

6
;

nω ¼ nω3 ¼ nω4 ¼ nω5 ¼M−2

6
ðM¼ 6mþ2Þ; ð3:69Þ

n1 ¼ nω ¼ nω2 ¼ nω4 ¼ M þ 2

6
;

nω3 ¼ nω5 ¼ M − 4

6
ðM ¼ 6mþ 4Þ; ð3:70Þ

n1 ¼
M
6
þ 1; nω ¼ nω2 ¼ nω3 ¼ nω4 ¼ M

6
;

nω5 ¼ M
6
− 1 ðM ¼ 6mþ 6Þ; ð3:71Þ

which are summarized in Table IV(a).

2. α= 1=2

Using (2.26) and (3.22) for p ¼ M ¼ odd, q ¼ 1,
and ν ¼ 1=2 (with pqþ 2qν ∈ 2Z satisfied), one can
claim

n1 − nω2 − nω3 þ nω5 þ ωðnω þ nω2 − nω4 − nω5Þ
¼ trðDð1=2ÞÞ ¼ ω: ð3:72Þ

By comparing this equation with (3.59), (3.60), and (3.65)–
(3.67), the number ofZ6 eigenstates for eachZ6 eigenvalue
is given as

n1 ¼ nω2 ¼ nω3 ¼ nω4 ¼ nω5 ¼ M − 1

6
;

nω ¼ M þ 5

6
ðM ¼ 6mþ 1Þ; ð3:73Þ

n1 ¼ nω ¼ nω3 ¼ M þ 3

6
;

nω2 ¼ nω4 ¼ nω5 ¼ M − 3

6
ðM ¼ 6mþ 3Þ; ð3:74Þ

n1 ¼ nω ¼ nω2 ¼ nω3 ¼ nω5 ¼ M þ 1

6
;

nω4 ¼ M − 5

6
ðM ¼ 6mþ 5Þ; ð3:75Þ

which are summarized in Table IV(b).
We should mention that the results given in Tables I–IV

are consistent with those in [27,28], but the results for the
nonvanishing SS twist phases on T2=ZN (N ¼ 3; 4; 6) are
newly obtained in this paper. Tables I–IV give a complete
list for the number of the ZN eigen zero modes on the
orbifold T2=ZN (N ¼ 2; 3; 4; 6), as announced before.
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IV. ANALYSIS OF ZERO POINTS

We are ready to move on to our main subject. In the
previous section, we have succeeded in obtaining a
complete list for the number of the ZN eigenstates. It
seems hard that all the numbers of the ZN eigenstates given
in Tables I–IV can be universally explained in a simple
formula. That is because those numbers in Tables I–IV
quite complicatedly depend on the flux quanta M, the SS
twist phase ðα1; α2Þ, and the ZN eigenvalue η ¼ ωℓ

(ℓ ¼ 0; 1;…; N − 1), as well as the ZN twist N.
Surprisingly, it turns out that all the numbers in

Tables I–IV can be described by a single zero-mode
counting formula

nη ¼
M − Vη

N
þ 1; ð4:1Þ

where nη is the number of the ZN eigenstates belonging to
theZN eigenvalue η, and Vη is the sum of winding numbers
at the fixed points of the orbifold T2=ZN . The formula (4.1)
is the most important result in this paper. The details will be
given in the following.
Our starting point is the Atiyah-Singer index theorem on

the torus T2 with magnetic flux background [5,24,34],

Indði=DÞ ¼ nþ − n−

¼ q
2π

Z
T2

F ¼ M: ð4:2Þ

Here n� denotes the number of zero modes ψ�;0 (2.7) on
the torus base. As we have seen, for M > 0 (M < 0), only
ψþ;0 (ψ−;0) possesses jMj-fold normalizable zero modes.
That is why we easily see that the index theorem actually
holds on the magnetized torus.
There exists another expression of the index theorem, the

notion of which is that the index Indði=DÞ is exactly equal to
the total winding number (or occasionally called vortex
number) [25,34]:

Indði=DÞ ¼
X
i

1

2πi

I
Ci

∇ðlog ξjðzÞÞ · dℓ ≡X
i

χi: ð4:3Þ

This theorem is known as the index theorem for the
Fredholm operator (see, for example, [26]). Here Ci shows
an anticlockwise contour around the zero point pi of the
torus zero mode ξjðzÞ, i.e.,

ξjðz ¼ piÞ ¼ 0: ð4:4Þ

The contour integral χi along a contour Ci defines a
winding number, i.e., how many times ξj wraps around
the origin, as illustrated in Figure 1. According to the
“residue theorem” in ξ space, the quantity χi is always an
integer (see, for example, [35]). Note that if there is no zero

point inside the contour Ci, or pi is not a zero point of ξj,
then χi obviously takes zero due to the “Cauchy integral
formula” in ξ space.
In the following, we will define the winding number χi

on the fundamental domain of T2 even for the orbifold
T2=ZN and basically evaluate χi at the fixed point z ¼ pi

on the orbifold. (See (2.17) for the fixed points on T2=ZN .)
If one defines the winding number on the fundamental
domain of the orbifold T2=ZN , instead of T2, the sum of the
winging number χi should be divided by N, i.e.,

P
i χi=N

due to the 1=N reduced area and the deficit angles around
the fixed points in comparison with those of the torus.
Before we tackle the orbifold case, it is instructive

to examine (4.3) on the torus. We start with the zero
modes (2.12):

ξjðzÞ ¼ N eiπMzImz=Imτϑ

� jþα1
M

−α2

�
ðMz;MτÞ: ð4:5Þ

Zero points of these zero mode wave functions can be
obtained as follows. Setting now j ¼ 0 and α1 ¼ α2 ¼ 0,
we solve an equation

ϑ

�
0

0

�
ðMðy1 þ τy2Þ;MτÞ ¼ 0: ð4:6Þ

The solutions are given by

ðy1; y2Þ ¼
�

1

2M
;
1

2

�
;

�
3

2M
;
1

2

�
;…;

�
2M − 1

2M
;
1

2

�
: ð4:7Þ

Let us look at what is happening in ξ space ðReξ; ImξÞ.
Figure 2 shows an example of the zero mode given by
M ¼ 1 (i.e., j ¼ 0) and α1 ¼ α2 ¼ 0, where an anticlock-
wise contour is a circle with radius ϵ ¼ 0.1 on the T2

fundamental domain (y1; y2 ∈ ½0; 1Þ) and it gives its image
in ξ space. Then, there is a unique zero point at
ðy1; y2Þ ¼ ð1=2; 1=2Þ, i.e., z ¼ ð1þ τÞ=2. We define a
contour z ¼ ð1þ τÞ=2þ ϵeiθ around the zero point. As
the contour runs anticlockwise from blue (θ ¼ 0) to red
(θ ¼ 2π) gradually, the image varies in the same color

FIG. 1. Winding number or vortex number that the zero mode
wave functions yield. In this example, the winding number isþ2.
A black dot in the left figure denotes a zero point of ξjðzÞ.
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correspondence in ξ space (see Fig. 2). In this example, it is
easy to evaluate

1

2πi

I
jz−ð1þτÞ=2j¼ϵ

∇ðlog ξjðzÞÞ · dℓ ¼ þ1: ð4:8Þ

For this observation, we understand that the winding
number χi (4.3) counts the order of zero at each zero
point pi, based on the “residue theorem” in ξ space.
Since one can easily confirm that the order of zero is

always one, in general, for all M and j ¼ 0; 1;…;M − 1,
we see

1

2πi

I
Ci

∇ðlog ξjðzÞÞ · dℓ ¼ þ1 ði ¼ 1; 2;…;MÞ; ð4:9Þ

⇒
XM
i¼1

χi ¼
XM
i¼1

1

2πi

I
Ci

∇ðlog ξjðzÞÞ · dℓ ¼ þM: ð4:10Þ

Thus, the winding number χi gives a consistent result with
the Atiyah-Singer index theorem (4.2).
It is instructive to show another way to derive (4.9).

Along a parallelogram contour C∶z¼0→1→1þτ→τ→0,
we compute

X
pi∈T2

χi ¼
1

2πi

I
C
∇ðlogξjðzÞÞ ·dℓ

¼ 1

2πi

�Z
1

0

dy1

�
1

ξjðy1Þ
∂ξjðy1Þ
∂y1 −

1

ξjðy1þ τÞ
∂ξjðy1þ τÞ

∂y1
�
þ
Z

1

0

dy2

�
1

ξjð1þ τy2Þ
∂ξjð1þ τy2Þ

∂y2 −
1

ξjðτy2Þ
∂ξjðτy2Þ
∂y2

��
¼þM; ð4:11Þ

where we have used the boundary conditions (2.8) and

∂ξjðzþ 1Þ
∂y2 ¼ eiqΛ1ðzÞþ2πiα1

�
iqf
2

þ ∂
∂y2

�
ξjðzÞ; ð4:12Þ

∂ξjðzþ τÞ
∂y1 ¼ eiqΛ2ðzÞþ2πiα2

�
−
iqf
2

þ ∂
∂y1

�
ξjðzÞ: ð4:13Þ

Note that the sum of the winding numbers χi along C is
determined only by the boundary conditions (2.8).
The result (4.11) directly claims that the sum of χi,

namely the index Indði=DÞ, gives the same outcome even if
we take any linear combination of the torus zero modes
ξjðzÞðj ¼ 0; 1;…;M − 1Þ. It can be rephrased as

ξ̃jðzÞ≡XM−1

k¼0

cjkξkðzÞ ðcjk ∈ CÞ

⇒
1

2πi

I
C
∇ðlog ξ̃jðzÞÞ · dℓ ¼ þM ð4:14Þ

which follows the fact that ξ̃jðzÞ satisfies the same
boundary conditions (2.8) as those of ξjðzÞ. One has to
be careful that the positions of the zeros of ξ̃jðzÞ are now
different from the original ones pi, in general.

For j ≠ 0, it is known that j shifts the peak of
Gaussian(-like) zero mode wave functions along y2-
direction [30]. Also, nonzero phases α1 and α2 shift it
along y2- and y1-directions, respectively.

3 Thus, we find the
generic zero points for ξjðzÞ (2.12) as

ðy1;y2Þ¼
�
1=2þα2

M
;
1

2
−
jþα1
M

�
;

�
3=2þα2

M
;
1

2
−
jþα1
M

�
;

…;
�ð2M−1Þ=2þα2

M
;
1

2
−
jþα1
M

�
: ð4:15Þ

The expression (4.3) strongly inspires us to analyze the
zero points of orbifold eigen zero modes. It is fair to say
that it is hard to derive the index theorem on the orbifolds,
due to the singular property of orbifold fixed points. Then,
a primary interest in the past researches has been the
number of independent ZN eigen zero modes, which
depends on the flux quanta M, the SS twist phase
ðα1;α2Þ, and the ZN eigenvalue η. However, it has been
of less interest to obtain a simple formula counting it in a
universal way. Our primary interest in this paper is to find a

FIG. 2. Left: a contour with radius ϵ ¼ 0.1 and θ∶ 0 → 2π
around a zero point ðy1; y2Þ ¼ ð1=2; 1=2Þ depicted by a bullet.
Right: its image in zero-mode space.

3See, for example, [27].
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single zero-mode counting formula applicable to any
pattern.

A. T2=Z2

Hereafter, we omit the degeneracy label j on the torus
and orbifolds, unless otherwise stated. The following
discussion basically holds for arbitrary j.
In [31,32], connecting Wilson loops with localized

fluxes at T2=Z2 fixed points, the zero points of zero modes
at the fixed points have been classified systematically. In
this subsection, we briefly review the zeros on T2=Z2.
The starting point here is the Z2 eigen zero modes in

terms of the torus zero modes ξðzÞ:

ξ�ðzÞ≡ ξðzÞ � ξð−zÞ: ð4:16Þ

Here, theZ2 orbifold eigenstates ξη are distinguished by the
Z2 eigenvalue or the Z2 parity η ¼ �, i.e.,

ξηð−zÞ ¼ ηξηðzÞ: ð4:17Þ

It follows from (2.8) that the eigenfunctions ξη satisfy

ξ�ðzÞ ¼ �ξ�ð−zÞ; ð4:18Þ

ξ�

�
zþ 1

2

�
¼ �eiqΛ1ðzÞþ2πiα1ξ�

�
−zþ 1

2

�
; ð4:19Þ

ξ�

�
zþ τ

2

�
¼ �eiqΛ2ðzÞþ2πiα2ξ�

�
−zþ τ

2

�
; ð4:20Þ

ξ�

�
zþ1

2
þ τ

2

�

¼�eiqΛ1ðzÞþiqΛ2ðzÞþ2πiðM=2þα1þα2Þξ�

�
−zþ1

2
þ τ

2

�
:

ð4:21Þ

By plugging z ¼ 0 into these four relations, we find that
the Z2 eigenfunctions ξ�ðzÞ take zeros at the following
fixed points:

ξ−ð0Þ ¼ 0; ð4:22Þ
8>>><
>>>:

ξ−

�
1

2

�
¼ 0 for α1 ¼ 0;

ξþ

�
1

2

�
¼ 0 for α1 ¼ 1

2
;

ð4:23Þ

8>>><
>>>:

ξ−

�
τ

2

�
¼ 0 for α2 ¼ 0;

ξþ

�
τ

2

�
¼ 0 for α2 ¼ 1

2
;

ð4:24Þ

8>>><
>>>:

ξ−

�
1

2
þ τ

2

�
¼ 0 for M ¼ 2m; α1 þ α2 ¼ 0; 1 or M ¼ 2mþ 1; α1 þ α2 ¼ 1

2
;

ξþ

�
1

2
þ τ

2

�
¼ 0 for M ¼ 2m; α1 þ α2 ¼ 1

2
or M ¼ 2mþ 1; α1 þ α2 ¼ 0; 1.

ð4:25Þ

It follows from (4.18) –(4.21) that we can compute the
winding numbers χi (i ¼ 1, 2, 3, 4) around the fixed points

p1¼0; p2¼1=2; p3¼ τ=2; p4¼ð1þτÞ=2 ð4:26Þ

with a sufficiently small contour Ci around pi for each i.
These results are summarized in Table V.
One should notice the difference between zeros at the

fixed points and those on the bulk. To this end, let us
consider an example of three flux quanta M ¼ 3 and a
trivial twist phase α1 ¼ α2 ¼ 0. Then, we have two η ¼ þ1

eigen zero modes on T2=Z2, say ξ0þðzÞ and ξ1þðzÞ [see
Table I(a)]. From (4.25), they are vanishing at the fixed
point z ¼ p4, i.e.,

ξ0þðp4Þ ¼ ξ1þðp4Þ ¼ 0: ð4:27Þ

Note that ξ0þðzÞ and ξ1þðzÞ take nonzero values at the other
fixed points z ¼ p1; p2; p3 [see (4.22)–(4.24)].
There are additional two zero points on the bulk of T2 for

each ξ0þ and ξ1þ, because each of ξ0þ and ξ1þ should possess
three zero points. In general, once we take their linear
combination, we need to search for new zero points. In
other words, even if we find two zeros p0 (p1) on the bulk
such that ξ0þðp0Þ ¼ 0 (ξ1þðp1Þ ¼ 0), a linear combination
cξ0þ þ c0ξ1þ (c; c0 ∈ C) does not always vanish at both p0

and p1. Thus, such an observation inspires us to call them
removable zeros, because their positions of zeros are
changeable by taking some linear combination of ξ0þ
and ξ1þ.
On the other hand, because of (4.27), we easily see

cξ0þðp4Þ þ c0ξ1þðp4Þ ¼ 0 for arbitrary c, c0. The zero at p4

cannot be removed by taking any linear combination.
Hence, it is reasonable that zeros at the orbifold fixed
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points are called unremovable zeros.4 It also implies that
there is no need to take removable zeros seriously, since the
positions of removable zeros are no longer important.

B. T2=Z3

For τ ¼ ω ¼ e2πi=3, we begin with Z3 eigen zero modes,

ξηðzÞ ¼
X2
ℓ¼0

η̄ℓξðωℓzÞ ðη ¼ 1;ω;ω2Þ ð4:28Þ

which belong to the Z3 eigenvalue η ¼ ωk:

ξωkðωzÞ ¼ ωkξωkðzÞ ðk ¼ 0; 1; 2Þ: ð4:29Þ

In analogy to the previous subsection, we can straightfor-
wardly show

ξωk

�
ωzþ 2

3
þ τ

3

�

¼ e−iqΛ1ðzÞ−iqΛ2ðzÞ−2πiðM=3þ2α−k=3Þξωk

�
zþ 2

3
þ τ

3

�
;

ð4:30Þ

ξωk

�
ωzþ 1

3
þ 2τ

3

�

¼ eiqΛ1ðωzÞþiqΛ2ðωzÞþ2πið2M=3þ2αþk=3Þξωk

�
zþ 1

3
þ 2τ

3

�
:

ð4:31Þ

Ignoring the terms related to Λ1ðzÞ and Λ2ðzÞ for infini-
tesimally small jzj, the relations (4.29)–(4.31) reduce to

ξωkðωzÞ ¼ ωkξωkðzÞ; ð4:32Þ

ξωk

�
ωzþ 2

3
þ τ

3

�
¼ e−2πiðM=3þ2α−k=3Þξωk

�
zþ 2

3
þ τ

3

�
;

ð4:33Þ

ξωk

�
ωzþ1

3
þ2τ

3

�

¼e2πið2M=3þ2αþk=3Þξωk

�
zþ1

3
þ2τ

3

�
ðk¼0;1;2Þ; ð4:34Þ

The above relations tell the phase shifts to the Z3 eigen
zero modes ξωk when rotated by 2π=3 around the fixed
points. To evaluate the winding numbers χi at the fixed
points pi (i ¼ 1, 2, 3), all we should do is to utilize the
above relations three times repeatedly. Then, taking Ci to
be a sufficiently small contour around pi for each i, we
obtain

TABLE V. The winding number χi at the fixed point pi (i ¼ 1, 2, 3, 4) (see also [32]). All the values of ðM − VηÞ=2þ 1 exactly agree
with the numbers nη of the Z2 physical zero modes given in Table I.

Flux Parity Twist Winding number Total nη

M η ðα1; α2Þ χ1 χ2 χ3 χ4 Vη ¼
P

i χi ðM − VηÞ=2þ 1

2mþ 1 þ1 (0,0) 0 0 0 þ1 þ1 ðM þ 1Þ=2
ð1
2
; 0Þ 0 þ1 0 0 þ1 ðM þ 1Þ=2

ð0; 1
2
Þ 0 0 þ1 0 þ1 ðM þ 1Þ=2

ð1
2
; 1
2
Þ 0 þ1 þ1 þ1 þ3 ðM − 1Þ=2

−1 (0,0) þ1 þ1 þ1 0 þ3 ðM − 1Þ=2
ð1
2
; 0Þ þ1 0 þ1 þ1 þ3 ðM − 1Þ=2

ð0; 1
2
Þ þ1 þ1 0 þ1 þ3 ðM − 1Þ=2

ð1
2
; 1
2
Þ þ1 0 0 0 þ1 ðM þ 1Þ=2

2mþ 2 þ1 (0,0) 0 0 0 0 0 M=2þ 1

ð1
2
; 0Þ 0 þ1 0 þ1 þ2 M=2

ð0; 1
2
Þ 0 0 þ1 þ1 þ2 M=2

ð1
2
; 1
2
Þ 0 þ1 þ1 0 þ2 M=2

−1 (0,0) þ1 þ1 þ1 þ1 þ4 M=2 − 1

ð1
2
; 0Þ þ1 0 þ1 0 þ2 M=2

ð0; 1
2
Þ þ1 þ1 0 0 þ2 M=2

ð1
2
; 1
2
Þ þ1 0 0 þ1 þ2 M=2

4In the context of string theory on orbifolds [24], unremovable
zeros correspond to twisted strings, which cannot escape from
fixed points.
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χ1 ¼ k mod 3; ð4:35Þ

χ2 ¼ −M − 6αþ k mod 3; ð4:36Þ

χ3 ¼ 2M þ 6αþ k mod 3; ð4:37Þ

for ξωk (k ¼ 0, 1, 2). Here, χi (i ¼ 1, 2, 3) has been defined
around the three Z3 orbifold fixed points:

p1¼ 0; p2¼ð2þ τÞ=3; p3¼ð1þ2τÞ=3: ð4:38Þ

The results in this subsection are summarized in Table VI.
We shouldmake two comments on thewinding number χi

(i ¼ 1, 2, 3). As one can see from (4.35)–(4.37), χi at the
fixed point pi is less than three, i.e., χi ¼ 0, 1, 2. If an
orbifold zero mode wave function gives a winding number
larger than or equal to three, it accidentally contains some
contribution from removable zeros. In other words, some

TABLE VI. The winding number χi at the fixed point pi (i ¼ 1, 2, 3). All the values of ðM − VηÞ=3þ 1 exactly agree with the
numbers nη of the Z3 physical zero modes given in Table II.

Flux Parity Twist Winding number Total nη

M η α χ1 χ2 χ3 Vη ¼
P

i χi ðM − VηÞ=3þ 1

6mþ 1 1 1=6 0 þ1 0 þ1 ðM þ 2Þ=3
1=2 0 þ2 þ2 þ4 ðM − 1Þ=3
5=6 0 0 þ1 þ1 ðM þ 2Þ=3

ω 1=6 þ1 þ2 þ1 þ4 ðM − 1Þ=3
1=2 þ1 0 0 þ1 ðM þ 2Þ=3
5=6 þ1 þ1 þ2 þ4 ðM − 1Þ=3

ω2 1=6 þ2 0 þ2 þ4 ðM − 1Þ=3
1=2 þ2 þ1 þ1 þ4 ðM − 1Þ=3
5=6 þ2 þ2 0 þ4 ðM − 1Þ=3

6mþ 2 1 0 0 þ1 þ1 þ2 ðM þ 1Þ=3
1=3 0 þ2 0 þ2 ðM þ 1Þ=3
2=3 0 0 þ2 þ2 ðM þ 1Þ=3

ω 0 þ1 þ2 þ2 þ5 ðM − 2Þ=3
1=3 þ1 0 þ1 þ2 ðM þ 1Þ=3
2=3 þ1 þ1 0 þ2 ðM þ 1Þ=3

ω2 0 þ2 0 0 þ2 ðM þ 1Þ=3
1=3 þ2 þ1 þ2 þ5 ðM − 2Þ=3
2=3 þ2 þ2 þ1 þ5 ðM − 2Þ=3

6mþ 3 1 1=6 0 þ2 þ1 þ3 M=3
1=2 0 0 0 0 M=3þ 1

5=6 0 þ1 þ2 þ3 M=3
ω 1=6 þ1 0 þ2 þ3 M=3

1=2 þ1 þ1 þ1 þ3 M=3
5=6 þ1 þ2 0 þ3 M=3

ω2 1=6 þ2 þ1 0 þ3 M=3

1=2 þ2 þ2 þ2 þ6 M=3 − 1

5=6 þ2 0 þ1 þ3 M=3

6mþ 4 1 0 0 þ2 þ2 þ4 ðM − 1Þ=3
1=3 0 0 þ1 þ1 ðM þ 2Þ=3
2=3 0 þ1 0 þ1 ðM þ 2Þ=3

ω 0 þ1 0 0 þ1 ðM þ 2Þ=3
1=3 þ1 þ1 þ2 þ4 ðM − 1Þ=3
2=3 þ1 þ2 þ1 þ4 ðM − 1Þ=3

ω2 0 þ2 þ1 þ1 þ4 ðM − 1Þ=3
1=3 þ2 þ2 0 þ4 ðM − 1Þ=3
2=3 þ2 0 þ2 þ4 ðM − 1Þ=3

(Table continued)
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removable zeros accidentally coincide unremovable zeros at
the fixed points and then enhance the value of χi. By taking
an appropriate linear combination of orbifold zero modes,
we can find that the winding number is less than three.
The second comment is that we here consider the

fundamental domain of T2 but not that of T2=Z3 in order
to define the winding number χi. We have defined the
winding number χi in (4.3), where the contourCi is taken to
be a circle encircling the fixed point pi. If the winding
number χi is defined on the fundamental domain of the
T2=Z3 orbifold, it should be divided by N ¼ 3 due to
deficit angles around the fixed points.

C. T2=Z4

As previously noted, there are two fixed points under the
Z4 identification z ∼ iz, i.e.,

z ¼ 0ð≡p1Þ; ð1þ iÞ=2ð≡p2Þ: ð4:39Þ

Since the Z4 group includes Z2 as its subgroup, there are
additionally two “Z2 fixed points” that are not invariant
under the Z4 rotation, but invariant under such a partial Z2

transformation (z → −z) up to torus lattice shifts. The two
Z2 fixed points are given by

z ¼ 1=2ð≡p3Þ; i=2ð≡p4Þ: ð4:40Þ

As we shall see later, the winding numbers not only at the
Z4 fixed points (4.39) but also at the Z2 fixed points (4.40)
contribute to the zero-mode counting formula (4.1) as
unremovable zeros.

For τ ¼ ω ¼ i, we start with Z4 eigen zero modes,
given as

ξηðzÞ ¼
X3
ℓ¼0

η̄ℓξðωℓzÞ ðη ¼ 1;ω;ω2;ω3Þ ð4:41Þ

which belong to the Z4 eigenvalue η ¼ ωk:

ξωkðωzÞ ¼ ωkξωkðzÞ ðk ¼ 0; 1; 2; 3Þ: ð4:42Þ

Around the Z4 fixed point p2 and the Z2 ones p3;4, we can
derive the relations

ξωk

�
ωzþ 1

2
þ τ

2

�

¼ e−iqΛ2ðzÞ−2πið−M=4þα−k=4Þξωk

�
zþ 1

2
þ τ

2

�
; ð4:43Þ

ξωk

�
ω2zþ 1

2

�
¼ e−iqΛ1ðzÞ−2πiðα−k=2Þξωk

�
zþ 1

2

�
; ð4:44Þ

ξωk

�
ω2zþ τ

2

�

¼ e−iqΛ2ðzÞ−2πiðα−k=2Þξωk

�
zþ τ

2

�
ðk¼ 0;1;2;3Þ: ð4:45Þ

Ignoring the terms related to Λ1ðzÞ and Λ2ðzÞ for infini-
tesimally small jzj, we find

ξωkðωzÞ ¼ ωkξωkðzÞ; ð4:46Þ

TABLE VI. (Continued)

Flux Parity Twist Winding number Total nη

M η α χ1 χ2 χ3 Vη ¼
P

i χi ðM − VηÞ=3þ 1

6mþ 5 1 1=6 0 0 þ2 þ2 ðM þ 1Þ=3
1=2 0 þ1 þ1 þ2 ðM þ 1Þ=3
5=6 0 þ2 0 þ2 ðM þ 1Þ=3

ω 1=6 þ1 þ1 0 þ2 ðM þ 1Þ=3
1=2 þ1 þ2 þ2 þ5 ðM − 2Þ=3
5=6 þ1 0 þ1 þ2 ðM þ 1Þ=3

ω2 1=6 þ2 þ2 þ1 þ5 ðM − 2Þ=3
1=2 þ2 0 0 þ2 ðM þ 1Þ=3
5=6 þ2 þ1 þ2 þ5 ðM − 2Þ=3

6mþ 6 1 0 0 0 0 0 M=3þ 1
1=3 0 þ1 þ2 þ3 M=3
2=3 0 þ2 þ1 þ3 M=3

ω 0 þ1 þ1 þ1 þ3 M=3
1=3 þ1 þ2 0 þ3 M=3
2=3 þ1 0 þ2 þ3 M=3

ω2 0 þ2 þ2 þ2 þ6 M=3 − 1

1=3 þ2 0 þ1 þ3 M=3
2=3 þ2 þ1 0 þ3 M=3
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ξωk

�
ωzþ1

2
þ τ

2

�
¼ e−2πið−M=4þα−k=4Þξωk

�
zþ1

2
þ τ

2

�
;

ð4:47Þ

ξωk

�
ω2zþ 1

2

�
¼ e−2πiðα−k=2Þξωk

�
zþ 1

2

�
; ð4:48Þ

ξωk

�
ω2zþ τ

2

�
¼ e−2πiðα−k=2Þξωk

�
zþ τ

2

�
ðk¼ 0;1;2;3Þ:

ð4:49Þ

Suppose that Ci is a sufficiently small contour around the
fixed point pi for each i. Our results of interest are given as

χ1 ¼ k mod 4; ð4:50Þ

χ2 ¼ M − 4αþ k mod 4; ð4:51Þ

χ3 ¼ χ4 ¼ −2αþ k mod 2; ð4:52Þ

for ξωk (k ¼ 0, 1, 2, 3). Here, the winding number χi (i ¼ 1,
2, 3, 4) for ξωk has been defined around the fixed point pi
(i ¼ 1, 2, 3, 4), respectively. The results in this subsection
are summarized in Table VII. An interesting observation is
that although the “Z2 fixed points” are not invariant under
the Z4 identification, zero points at the “Z2 fixed points”

TABLE VII. The winding number χi at the fixed point pi (i ¼ 1, 2, 3, 4). All the values of ðM − VηÞ=4þ 1 exactly agree with the
numbers nη of the Z4 physical zero modes given in Table III.

Flux Parity Twist Winding number Total nη

M η α χ1 χ2 χ3 χ4 Vη ¼
P

i χi ðM − VηÞ=4þ 1

4mþ 1 1 0 0 þ1 0 0 þ1 ðM þ 3Þ=4
1=2 0 þ3 þ1 þ1 þ5 ðM − 1Þ=4

i 0 þ1 þ2 þ1 þ1 þ5 ðM − 1Þ=4
1=2 þ1 0 0 0 þ1 ðM þ 3Þ=4

−1 0 þ2 þ3 0 0 þ5 ðM − 1Þ=4
1=2 þ2 þ1 þ1 þ1 þ5 ðM − 1Þ=4

−i 0 þ3 0 þ1 þ1 þ5 ðM − 1Þ=4
1=2 þ3 þ2 0 0 þ5 ðM − 1Þ=4

4mþ 2 1 0 0 þ2 0 0 þ2 ðM þ 2Þ=4
1=2 0 0 þ1 þ1 þ2 ðM þ 2Þ=4

i 0 þ1 þ3 þ1 þ1 þ6 ðM − 2Þ=4
1=2 þ1 þ1 0 0 þ2 ðM þ 2Þ=4

−1 0 þ2 0 0 0 þ2 ðM þ 2Þ=4
1=2 þ2 þ2 þ1 þ1 þ6 ðM − 2Þ=4

−i 0 þ3 þ1 þ1 þ1 þ6 ðM − 2Þ=4
1=2 þ3 þ3 0 0 þ6 ðM − 2Þ=4

4mþ 3 1 0 0 þ3 0 0 þ3 ðM þ 1Þ=4
1=2 0 þ1 þ1 þ1 þ3 ðM þ 1Þ=4

i 0 þ1 0 þ1 þ1 þ3 ðM þ 1Þ=4
1=2 þ1 þ2 0 0 þ3 ðM þ 1Þ=4

−1 0 þ2 þ1 0 0 þ3 ðM þ 1Þ=4
1=2 þ2 þ3 þ1 þ1 þ7 ðM − 3Þ=4

−i 0 þ3 þ2 þ1 þ1 þ7 ðM − 3Þ=4
1=2 þ3 0 0 0 þ3 ðM þ 1Þ=4

4mþ 4 1 0 0 0 0 0 0 M=4þ 1

1=2 0 þ2 þ1 þ1 þ4 M=4
i 0 þ1 þ1 þ1 þ1 þ4 M=4

1=2 þ1 þ3 0 0 þ4 M=4
−1 0 þ2 þ2 0 0 þ4 M=4

1=2 þ2 0 þ1 þ1 þ4 M=4
−i 0 þ3 þ3 þ1 þ1 þ8 M=4 − 1

1=2 þ3 þ1 0 0 þ4 M=4
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appear as unremovable zeros, and their contribution is
indispensable to guarantee the counting formula (4.1).
We comment on the winding number χi (i ¼ 1, 2, 3, 4).

As one can see from (4.50)–(4.52), χ1;2 (χ3;4) at the fixed
point p1;2 (p3;4) are less than four (two), i.e., χ1;2 ¼ 0, 1, 2,
3 (χ3;4 ¼ 0, 1). If an orbifold zero mode wave function
gives a winding number at p1;2 (p3;4) larger than or equal to
four (two), it accidentally contains some contribution from
removable zeros. In other words, some removable zeros
accidentally coincide unremovable zeros at the fixed points
and then enhance the value of χi. By taking an appropriate
linear combination of orbifold zero modes, we can find that
the winding number is less than four or two.

D. T2=Z6

As previously mentioned, there is only a single fixed
point under the Z6 identification z ∼ ωz (ω ¼ e2πi=6), i.e.,

z ¼ 0 ð≡p1Þ: ð4:53Þ

Since the Z6 group includes its subgroups Z3 and Z2, there
are additionally two “Z3 fixed points” and three “Z2 fixed
points” that are not invariant under the Z6 rotation, but
invariant under such partial Z3 and Z2 rotations up to torus
lattice shifts, respectively. The two Z3 and three Z2 fixed
points are given by

Z3 fixed points : z¼ð1þ τÞ=3ð≡p2Þ; 2ð1þ τÞ=3ð≡p3Þ;
ð4:54Þ

Z2 fixed points : z ¼ 1=2ð≡p4Þ; τ=2ð≡p5Þ;
ð1þ τÞ=2ð≡p6Þ: ð4:55Þ

We should mention that two Z3 fixed points are exchanged
by the Z6 rotation up to torus lattice shifts, and also that
three Z2 fixed points are connected by the Z6 rotation.
In a similar way to the previous analyses, we start by

considering Z6 eigenstates

ξηðzÞ¼
X5
ℓ¼0

η̄ℓξðωℓzÞ ðη¼ 1;ω;ω2;ω3;ω4;ω5Þ; ð4:56Þ

which belong to the Z6 eigenvalue η ¼ ωk:

ξωkðωzÞ ¼ ωkξωkðzÞ ðk ¼ 0; 1;…; 5Þ: ð4:57Þ

We can straightforwardly show the following relations:

ξωk

�
ω2zþ 1

3
þ τ

3

�

¼ e−iqΛ2ðzÞ−2πið−M=6þαþ2k=3Þξωk

�
zþ 1

3
þ τ

3

�
; ð4:58Þ

ξωk

�
ω3zþ1

2

�

¼e−iqΛ1ðzÞ−2πiðαþk=2Þξωk

�
zþ1

2

�
ðk¼0;1;…;5Þ: ð4:59Þ

Ignoring the terms related to Λ1ðzÞ and Λ2ðzÞ for infini-
tesimally small jzj, we obtain

ξωkðωzÞ ¼ ωkξωkðzÞ; ð4:60Þ

ξωk

�
ω2zþ 1

3
þ τ

3

�
¼ e−2πið−M=6þαþ2k=3Þξωk

�
zþ 1

3
þ τ

3

�
;

ð4:61Þ

ξωk

�
ω3zþ1

2

�
¼ e−2πiðαþk=2Þξωk

�
zþ1

2

�
ðk¼ 0;1;…;5Þ:

ð4:62Þ

Suppose that Ci is a sufficiently small contour
around the fixed point pi for each i. Our results of interest
are given by using these relations three or two times
repeatedly,

χ1 ¼ k mod 6; ð4:63Þ

χ2 ¼ χ3 ¼
M
2
− 3α − 2k mod 3; ð4:64Þ

χ4 ¼ χ5 ¼ χ6 ¼ −2α − k mod 2; ð4:65Þ

where we have used χ2 ¼ χ3 and χ4 ¼ χ5 ¼ χ6. Here, the
winding number χi (i ¼ 1; 2;…; 6) for ξωk has been defined
around the fixed point pi (i ¼ 1; 2;…; 6), respectively.
The results in this subsection are summarized in

Table VIII. We should notice again that although the
“Z3 and Z2 fixed points” are not invariant under the Z6

rotation, zeros at those fixed points have to be regarded as
unremovable ones, and their contribution is indispensable
to guarantee the counting formula (4.1).
We comment on the winding number χi (i ¼ 1, 2, 3, 4, 5,

6). As one can see from (4.63)–(4.65), χ1 (χ2;3 and χ4;5;6) at
the fixed point p1 (p2;3 and p4;5;6) are less than six (three
and two), i.e., χ1 ¼ 0; 1;…; 5 (χ2;3 ¼ 0, 1, 2 and χ4;5;6 ¼ 0,
1). If an orbifold zero mode wave function gives a winding
number at p1 (p2;3 or p4;5;6) larger than or equal to six
(three or two), it accidentally contains some contribution
from removable zeros. In other words, some removable
zeros accidentally coincide unremovable zeros at the fixed
points and then enhance the value of χi. By taking an
appropriate linear combination of orbifold zero modes, we
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can find that the winding number is less than six, three,
or two.

E. Generic counting formula

We now turn to a generic zero-mode counting formula on
all the orbifolds T2=ZN (N ¼ 2, 3, 4, 6). Before claiming it,
it is convenient to review our ingredients in hand. The
important quantities on the orbifolds T2=ZN are given as
follows:

(i) the flux quantaM, where the homogeneous flux f is
given as qf ¼ 2πM

(ii) the discretized Scherk-Schwarz twist phase ðα1;α2Þ
(iii) the ZN eigenvalue η ¼ 1;ω;…;ωN−1 (ω ¼ e2πi=N),

where the ZN eigen zero modes satisfy ξηðωzÞ ¼
ηξηðzÞ

These quantities above characterize the orbifold eigen-
states, and in fact the numbers of the ZN eigen zero modes
turn out to depend on M; ðα1;α2Þ, η, and N in a consi-
derably complicated way, as shown in Tables I–IV.

TABLE VIII. The winding number χi at the fixed point pi (i ¼ 1, 2, 3, 4, 5, 6). All the values of ðM − VηÞ=6þ 1 exactly agree with
the numbers nη of the Z6 physical zero modes given in Table IV.

Flux Parity Twist Winding number Total nη

M η α χ1 χ2 χ3 χ4 χ5 χ6 Vη ¼
P

i χi ðM − VηÞ=6þ 1

6mþ 1 1 1=2 0 þ2 þ2 þ1 þ1 þ1 þ7 ðM − 1Þ=6
ω 1=2 þ1 0 0 0 0 0 þ1 ðM þ 5Þ=6
ω2 1=2 þ2 þ1 þ1 þ1 þ1 þ1 þ7 ðM − 1Þ=6
ω3 1=2 þ3 þ2 þ2 0 0 0 þ7 ðM − 1Þ=6
ω4 1=2 þ4 0 0 þ1 þ1 þ1 þ7 ðM − 1Þ=6
ω5 1=2 þ5 þ1 þ1 0 0 0 þ7 ðM − 1Þ=6

6mþ 2 1 0 0 þ1 þ1 0 0 0 þ2 ðM þ 4Þ=6
ω 0 þ1 þ2 þ2 þ1 þ1 þ1 þ8 ðM − 2Þ=6
ω2 0 þ2 0 0 0 0 0 þ2 ðM þ 4Þ=6
ω3 0 þ3 þ1 þ1 þ1 þ1 þ1 þ8 ðM − 2Þ=6
ω4 0 þ4 þ2 þ2 0 0 0 þ8 ðM − 2Þ=6
ω5 0 þ5 0 0 þ1 þ1 þ1 þ8 ðM − 2Þ=6

6mþ 3 1 1=2 0 0 0 þ1 þ1 þ1 þ3 ðM þ 3Þ=6
ω 1=2 þ1 þ1 þ1 0 0 0 þ3 ðM þ 3Þ=6
ω2 1=2 þ2 þ2 þ2 þ1 þ1 þ1 þ9 ðM − 3Þ=6
ω3 1=2 þ3 0 0 0 0 0 þ3 ðM þ 3Þ=6
ω4 1=2 þ4 þ1 þ1 þ1 þ1 þ1 þ9 ðM − 3Þ=6
ω5 1=2 þ5 þ2 þ2 0 0 0 þ9 ðM − 3Þ=6

6mþ 4 1 0 0 þ2 þ2 0 0 0 þ4 ðM þ 2Þ=6
ω 0 þ1 0 0 þ1 þ1 þ1 þ4 ðM þ 2Þ=6
ω2 0 þ2 þ1 þ1 0 0 0 þ4 ðM þ 2Þ=6
ω3 0 þ3 þ2 þ2 þ1 þ1 þ1 þ10 ðM − 4Þ=6
ω4 0 þ4 0 0 0 0 0 þ4 ðM þ 2Þ=6
ω5 0 þ5 þ1 þ1 þ1 þ1 þ1 þ10 ðM − 4Þ=6

6mþ 5 1 1=2 0 þ1 þ1 þ1 þ1 þ1 þ5 ðM þ 1Þ=6
ω 1=2 þ1 þ2 þ2 0 0 0 þ5 ðM þ 1Þ=6
ω2 1=2 þ2 0 0 þ1 þ1 þ1 þ5 ðM þ 1Þ=6
ω3 1=2 þ3 þ1 þ1 þ0 þ0 þ0 þ5 ðM þ 1Þ=6
ω4 1=2 þ4 þ2 þ2 þ1 þ1 þ1 þ11 ðM − 5Þ=6
ω5 1=2 þ5 0 0 0 0 0 þ5 ðM þ 1Þ=6

6mþ 6 1 0 0 0 0 0 0 0 0 M=6þ 1
ω 0 þ1 þ1 þ1 þ1 þ1 þ1 þ6 M=6
ω2 0 þ2 þ2 þ2 0 0 0 þ6 M=6
ω3 0 þ3 0 0 þ1 þ1 þ1 þ6 M=6
ω4 0 þ4 þ1 þ1 0 0 0 þ6 M=6
ω5 0 þ5 þ2 þ2 þ1 þ1 þ1 þ12 M=6 − 1
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An important quantity here is
(i) the sum of the winding numbers χi at the fixed points

pi for the ZN eigenstates belonging to the ZN
eigenvalue η, i.e., Vη ≡P

i χi.
A complete list of Vη ¼

P
i χi is ready in Table V–VIII.

Interesting features that can be read off from the tables are

M − Vη ¼ 0 mod N ð4:66Þ

and

X
η

Vη ¼
XN−1

k¼0

Vωk ¼ N2: ð4:67Þ

An important observation is that the quantity

M − Vη

N
þ 1 ð4:68Þ

always takes an integer value even thoughM=N and Vη=N
do not necessarily become integers. Furthermore, from
(4.67), the quality (4.68) turns out to satisfy

XN−1

k¼0

�
M − Vωk

N
þ 1

�
¼ M: ð4:69Þ

Since the number nωk of theZN eigen zeromodes belonging
to ZN eigenvalue ωk (k ¼ 0; 1;…; N − 1) satisfies5

XN−1

k¼0

nωk ¼ M; ð4:70Þ

the relations (4.69) and (4.70) suggest that the following
equality should hold:

nη ¼
M − Vη

N
þ 1: ð4:71Þ

In fact, we can explicitly verify (4.71) by directly comparing
nη in Tables I–IV with ðM − VηÞ=N þ 1 in Tables V–VIII.
We call (4.71) a zero-mode counting formula on the
magnetized orbifolds T2=ZN , and it is the most important
result in this paper.

V. DISCUSSION AND CONCLUSION

In this paper, we have considered the toroidal orbifolds
T2=ZN (N ¼ 2, 3, 4, 6) with magnetic flux background as
2d extra dimensions. We have focused on the numbers of
the ZN eigen zero modes on T2=ZN , which depend on the

flux quanta M, the SS twist phase ðα1;α2Þ, and the ZN
eigenvalue η. In the previous researches, only a part of
such numbers has been obtained, and neither a generic
zero-mode counting formula nor an index theorem on the
orbifolds has been investigated.
In Sec. III, we have succeeded in deriving a complete

list for the numbers of the ZN eigen zero modes on T2=ZN .
Because of quite complicated dependence on the flux
quanta, the SS twist phase, and the ZN eigenvalue, it
seems hard that all the numbers of the ZN eigen zero
modes can be universally explained by a simple formula.
Surprisingly, we have found in Sec. IV that all the numbers
of the ZN eigen zero modes can be described by a single
zero-mode counting formula (4.71). A crucial ingredient
for the zero-mode counting formula is the sum of the
winding numbers at the fixed points on T2=ZN , i.e., Vη.
Although the origin of the last term in (4.71) is unclear,

the first two terms ofM=N and −Vη=N may be understood
from an index theorem point of view, as follows. From the
Atiyah-Singer index theorem, the number of the zero
modes on T2 is given by

q
2π

Z
T2

F ¼ M: ð5:1Þ

On the other hand, on the orbifold T2=ZN , a naive
extension of (5.1) would be of the form

q
2π

Z
T2=ZN

F ¼ M
N
; ð5:2Þ

which may explain the first termM=N in (4.71). The reason
whyM is divided byN in (5.2) is that the area of the T2=ZN

fundamental domain is given by ðthe area of T2Þ × ð1=NÞ.
An important feature of orbifolds is that they possess

fixed points, which are singularities on manifolds. Hence,
they should be removed from the orbifold fundamental
domain. This observation may explain the second term
−Vη=N in (4.71). If the winding number χi is nonvanishing
at the fixed point pi, it implies the presence of localized
flux at the fixed point [31,32]. That would lead to the
second term −Vη=N, because the removal of all the fixed
points means the subtraction of the localized fluxes at the
fixed points from (5.2).
We have proved the zero-mode counting formula (4.71)

by examining the numbers nη and ðM − VηÞ=N þ 1,
separately. It would be of great interest to derive the
counting formula (4.71) directly from an index theorem
on the orbifolds. We will pursuit the derivation of our
formulas somewhere.
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APPENDIX A: GAMMA MATRICES

The notation in this paper is basically the same as that
in [27,28]. The 6d gamma matrices are taken as

fΓM;ΓNg ¼ 2ηMN ðM;N ¼ 0; 1; 2; 3; 5; 6Þ; ðA1Þ

ηMN ¼ diagðþ1;−1;−1;−1;−1;−1Þ; ðA2Þ

Γμ ¼
�
γμ 0

0 γμ

�
ðμ ¼ 0; 1; 2; 3Þ; ðA3Þ

Γ5¼
�
0 iγ5
γ5 0

�
; Γ6¼

�
0 γ5

−γ5 0

�
; Γ7 ¼

�
γ5 0

0 −γ5

�
:

ðA4Þ

Also, we define

∂i ¼
∂
∂yi ði ¼ 1; 2Þ; ðA5Þ

∂ ¼ i
2Imτ

ðτ̄∂1 − ∂2Þ; ∂̄ ¼ −
i

2Imτ
ðτ∂1 − ∂2Þ: ðA6Þ

APPENDIX B: PROOF OF THE GENERALIZED
LANDSBERG-SCHAAR RELATION

In this Appendix, we give a proof of the generalized
Landsberg-Schaar relation

1ffiffiffiffi
p

p
Xp−1
n¼0

exp

�
πiðnþνÞ2q

p

�

¼ eiπ=4ffiffiffi
q

p
Xq−1
n¼0

exp

�
−
πin2p
q

−2πinν

�
ðB1Þ

with p; q ∈ N, ν ∈ Q, and pqþ 2qν ∈ 2Z. Note that
(3.20) and (3.21) are just special cases of (B1), because
we can realize them by plugging ν ¼ 0 into the general-
ized one.
First of all, let us define

GðzÞ ¼ eiπqðzþνÞ2=p

e2πiz − 1
ðB2Þ

and adopt the contour in Fig. 3. Now, as easily seen, the
paths C2 and C4 for 0 < θ < π=4 do not contribute to the
integral Z

C2;C4

dzGðzÞ⟶Λ→∞
0 ðB3Þ

in the limit of Λ → ∞.
Defining

I ¼ lim
Λ→∞

�Z
C1

dzGðzÞ þ
Z
C3

dzGðzÞ
�
; ðB4Þ

we express the integral I in terms of the new coordinates,
C1∶ z≡ aþ pþ reiθ and C3∶z≡aþreiθ (−1<a< 0), as

I¼ lim
Λ→∞

Z
Λ

−Λ
dreiθ½GðaþpþreiθÞ−GðaþreiθÞ�

¼ lim
Λ→∞

Z
Λ

−Λ
dreiθ

�Xq−1
k¼0

e2πiðaþreiθÞk
�
eiπqðaþreiθþνÞ2=p: ðB5Þ

Now, by using x≡ ðreiθ þ aÞe−iπ=4, we reach

I ¼ lim
Λ→∞

Z ðΛeiθþaÞe−iπ=4

ð−ΛeiθþaÞe−iπ=4
dxeiπ=4

Xq−1
k¼0

e−πðq=pÞX
2
k−iπð2νkþpk2=qÞ;

¼
Z

∞

−∞
dxeiπ=4

Xq−1
k¼0

e−πðq=pÞX
2
k−iπð2νkþpk2=qÞ; ðB6Þ

where Xk ≡ x þ ðν þ pk=qÞe−iπ=4ðk ¼ 0; 1;…; q − 1Þ.
Performing the Gaussian integrals with respect to x
leads to

I ¼ eiπ=4
ffiffiffiffi
p
q

r Xq−1
k¼0

e−iπð2νkþpk2=qÞ: ðB7Þ

On the other hand, the residue theorem for the function
GðzÞ gives

FIG. 3. A contour that we have adopted.
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I
dzGðzÞ¼ 2πi

X½a�þp

k¼½a�þ1

ResGðzÞ¼
X½a�þp

k¼½a�þ1

eiπqðkþνÞ2=p;

ðB8Þ
where ½x� ¼ maxfn ∈ Zjn ≤ xg denotes the floor function.
By imposing −1 < a < 0, we finally obtain

I
dzGðzÞ ¼

Xp−1
k¼0

eiπqðkþνÞ2=p: ðB9Þ

Equating (B9) with (B7) yields (B1). This completes
the proof.
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