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Abstract

We thoroughly analyze the number of independent zero modes and their zero points on
the toroidal orbifold T 2/ZN (N = 2, 3, 4, 6) with magnetic flux background, inspired
by the Atiyah-Singer index theorem. We first show a complete list for the number nη
of orbifold zero modes belonging to ZN eigenvalue η. Since it turns out that nη quite
complicatedly depends on the flux quanta M , the Scherk-Schwarz twist phase (α1, α2),
and the ZN eigenvalue η, it seems hard that nη can be universally explained in a
simple formula. We, however, succeed in finding a single zero-mode counting formula
nη = (M−Vη)/N+1, where Vη denotes the sum of winding numbers at the fixed points
on the orbifold T 2/ZN . The formula is shown to hold for any pattern.
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1 Introduction

Over the long history of physics, the Atiyah-Singer index theorem [1] has played important
roles. After it was proposed in 1963, many applications have been done for physics. The
index theorem claims that the index of a Dirac operator /D

Ind (i /D) ≡ n+ − n− (1.1)

is a topological invariant. Here, n± denotes the number of ± chiral zero modes for the Dirac
operator /D. Indeed, it is quite powerful to clearly extract some essential features.

There are various applications in physics. One is the chiral anomaly in gauge theory. The
computation by use of the path integral [2, 3] can be mathematically justified by considering
it as a special case of the theorem. The second is the Witten index in supersymmetric theory
[4]. The Witten index plays an important role in constructions of supersymmetric models
with spontaneous supersymmetry breaking, because supersymmetry remains unbroken if the
Witten index is non-vanishing. The theorem has been applied to string theory in the context
of flux compactifications [5, 6], where it has been used to count the number of chiral zero
modes appearing in the four-dimensional (4d) effective (field) theory.

For both higher-dimensional field theory and string theory, a crucial difficulty to connect
our world is to obtain chiral spectra. A promising method to realize the chiral spectra has
been known as magnetic flux compactifications in type-I and II string theory [7, 8, 9, 10, 11,
12, 13]. The magnetic compactifications have provided semi-realistic models in the context
of string phenomenology as well as at the field theory level, e.g. three-generation models
[14, 15], flavor structures [16, 17, 18, 19, 20], and some applications to physics beyond the
Standard Model [21, 22, 23].

On the two-dimensional (2d) torus T 2 with magnetic flux background, the Atiyah-Singer
index theorem is known as [5, 24]

n+ − n− =
q

2π

∫
T 2

F = M, (1.2)

where M is the flux quanta in the torus compactification. Thus, the number of chiral zero
modes is given by a simple formula (1.2) on the torus. It is instructive to note that the index
can be alternatively expressed by counting winding numbers at zero points of zero mode
wavefunctions [25, 26].

The number of chiral zero modes on the magnetized orbifold T 2/ZN (N = 2, 3, 4, 6) has
been explored in [27, 28, 29]. However, a list of chiral zero-mode numbers on the orbifolds
has not been completed, due to its complicated dependence on the flux quanta M , the
Scherk-Schwarz (SS) twist phase (α1, α2), and the ZN eigenvalue η under the ZN rotation.
Furthermore, unlike the index theorem on the torus, any simple formula has not been known
for the number of zero modes on the orbifolds.

One of our goals in this paper is to give a complete list of ZN zero-mode numbers on
the orbifold T 2/ZN (N = 2, 3, 4, 6). This is the main subject in Section 3, and the list is
given in Tables 1 – 4. The other is to find a zero-mode counting formula by which all the ZN
zero-mode numbers can be counted universally.
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We actually claim the following zero-mode counting formula1

nη =
M − Vη
N

+ 1, (1.3)

where nη denotes the number of zero modes belonging to the ZN eigenvalue η, and Vη is the
sum of winding numbers associated with zeros at the fixed points on the orbifold T 2/ZN . In
Section 4, we verify that the formula (1.3) really holds for any of the flux quanta, the SS
twist phase, and the ZN eigenvalue. It is the most important result in this paper.

This paper is organized as follows. In Section 2, we briefly review zero modes on the
orbifold T 2/ZN (N = 2, 3, 4, 6). In Section 3, we claim the number of independent orbifold
zero modes for arbitrary M . In Section 4, inspired by the Atiyah-Singer index theorem, we
explore a formula that uniquely tells the number of orbifold zero modes. Section 5 is devoted
to discussion and conclusion. In appendices, we mention our notation and also derive a
formula used in our discussions.

2 Zero modes on orbifolds

In this section, we briefly review zero mode wavefunctions on 2d toroidal orbifold T 2/ZN
(N = 2, 3, 4, 6) with magnetic flux background [27, 28].

2.1 Abelian six-dimensional gauge theory

In this paper, we consider a six-dimensional (6d) gauge theory compactified on T 2 or T 2/ZN .
Using the complex coordinate z ≡ y1 + τy2, the torus T 2 is obtained by the identification
z ∼ z + 1 ∼ z + τ (τ ∈ C, Im τ > 0) under torus lattice shifts.

Following [30], we assume a non-trivial magnetic flux background in the (1-form) vector
potential:

A(z) ≡ f

2 Im τ
Im (z̄dz), (2.1)

where f denotes the homogeneous flux on the torus. Torus lattice shifts on the vector
potential should be accompanied by gauge transformation

A(z + 1) = A(z) + dΛ1(z), (2.2)

A(z + τ) = A(z) + dΛ2(z), (2.3)

where Λ1(z) and Λ2(z) are gauge parameters given by

Λ1(z) =
f

2 Im τ
Im z, Λ2(z) =

f

2 Im τ
Im (τ̄ z). (2.4)

1 In this paper, we will mainly concentrate on the case of M > 0, for which there is no negative chiral
zero mode, i.e. n− = 0.
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It is shown in [27] that Wilson lines can be set to be vanishing without loss of generality,
and we do not treat them in the following. The background vector potential (2.1) leads to a
non-trivial background of the (2-form) field strength F such that

∫
T 2 F = f .

Next, we look at a 6d Weyl fermion in the flux background. The Lagrangian reads

L6d = iΨ̄ΓMDMΨ, Γ7Ψ = Ψ, (2.5)

where M (= 0, 1, 2, 3, 5, 6) is the 6d spacetime index, and Γ0,Γ1, . . . ,Γ6 denote 6d gamma
matrices. Γ7 denotes the 6d chirality operator and DM = ∂M − iqAM is the covariant
derivative. The 6d Weyl fermion Ψ(x, z) can be decomposed into 4d Weyl left/right-handed

fermions ψ
(4)
L/R(x) as

Ψ(x, z) =
∑
n,j

(
ψ

(4)
R,n,j(x)⊗ ψ(2)

+,n,j(z) + ψ
(4)
L,n,j(x)⊗ ψ(2)

−,n,j(z)
)
, (2.6)

where xµ (µ = 0, 1, 2, 3) denotes the 4d Minkowski coordinate. For convenience, we adopt
the following notation for 2d Weyl fermions:

ψ
(2)
+,n,j =

(
ψ+,n,j

0

)
, ψ

(2)
−,n,j =

(
0

ψ−,n,j

)
, (2.7)

where n and j label each of the Landau level and the degeneracy of mode functions on each
level, respectively.

The 2d Weyl fermions are required to satisfy the pseudo-periodic boundary conditions
associated with the gauge transformation:

ψ±,n,j(z + 1) = U1(z)ψ±,n,j(z), ψ±,n,j(z + τ) = U2(z)ψ±,n,j(z) (2.8)

with

Ui(z) = eiqΛi(z)e2πiαi (i = 1, 2), (2.9)

and αi (i = 1, 2) corresponds to the Scherk-Schwarz twist phase.
As claimed in [6, 7], the gauge transformation above is well-defined on the torus if and

only if the homogeneous flux f is quantized as

qf

2π
≡M ∈ Z. (2.10)

When going to toroidal orbifolds, one has to be careful of the localized fluxes at orbifold fixed
points. By computing Wilson loops around the fixed points, one finds that, in general, there
exist the non-zero contributions of the localized fluxes on the orbifolds [31]. Then, taking
into account all the localized fluxes, it can be confirmed that the flux quantization condition
(2.10) is available on T 2/ZN as well [32].
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2.2 Zero modes on T 2

In this subsection, we show zero mode wavefunctions on the torus T 2 [30]. To make our
analysis simple, we restrict ourselves to M > 0, although one can analyze the case of M < 0
in a similar way.

Focusing on the lowest-lying states n = 0, we omit such an index in what follows. Zero
mode equations are found as(

∂̄ +
πM

2 Im τ
z

)
ψ+,j(z) = 0,

(
∂ − πM

2 Im τ
z̄

)
ψ−,j(z) = 0. (2.11)

Imposing the boundary conditions (2.8), we find M -fold normalizable zero mode solutions
only for ψ+,2 i.e.

ψ+,j(z) = N eiπMz Im z/Im τ ϑ

[
j+α1

M

−α2

]
(Mz,Mτ)

≡ ξj(z). (2.12)

Here, j = 0, 1, . . . ,M − 1 stand for the degeneracy of zero mode solutions, and N is a
normalization constant determined by∫

T 2

d2z ξj(z)
(
ξk(z)

)∗
= δj,k. (2.13)

The Jacobi ϑ-function is defined by

ϑ

[
a

b

]
(c, d) =

∞∑
l=−∞

eπi(a+l)2d e2πi(a+l)(c+b). (2.14)

The result (2.12) immediately implies that the flux quanta M lead to M -fold 4d chiral

Weyl fermions ψ
(4)
R,0,j(x) (j = 0, 1, . . . ,M − 1). Notice that the zero mode wavefunctions

ξj(z) are characterized by the flux quanta M and the SS twist phase (α1, α2). For later
convenience, it is useful to schematically express the zero mode wavefunctions as

ξj(z) ≡ 〈z |M, j, α1, α2〉T 2 . (2.15)

Hereafter, we call |M, j, α1, α2〉T 2 torus physical states.

2.3 Zero modes on T 2/ZN
We now move on to the orbifold T 2/ZN (N = 2, 3, 4, 6), which is our main subject in this
paper. The orbifold T 2/ZN is given by the torus identification and an additional ZN one

z ∼ ωz (ω ≡ e2πi/N). (2.16)

2For M < 0, there exist |M |-fold normalizable zero mode solutions only for ψ−.
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As discussed in [33] from the viewpoint of crystallography, we first need to clarify a
relation between ω and a complex modulus τ . For N = 2, τ is arbitrary as long as Im τ > 0.
For N = 3, 4, 6, we must impose τ = ω (= e2πi/N). The orbifold fixed points, which are
invariant under the ZN rotations up to torus lattice shifts, are found as

(y1, y2) =


(0, 0), (1/2, 0), (0, 1/2), (1/2, 1/2) on T 2/Z2,

(0, 0), (2/3, 1/3), (1/3, 2/3) on T 2/Z3,

(0, 0), (1/2, 1/2) on T 2/Z4,

(0, 0) on T 2/Z6.

(2.17)

To be consistent with the orbifold identification, the SS twist phase (α1, α2) turns out to
be quantized as

(α1, α2) = (0, 0), (1/2, 0), (0, 1/2), (1/2, 1/2) on T 2/Z2, (2.18)

α = α1 = α2 =

{
0, 1/3, 2/3 (M = even)

1/6, 3/6, 5/6 (M = odd)
on T 2/Z3, (2.19)

α = α1 = α2 = 0, 1/2 on T 2/Z4, (2.20)

α = α1 = α2 =

{
0 (M = even)

1/2 (M = odd)
on T 2/Z6. (2.21)

Wavefunctions on the orbifold T 2/ZN are classified by ZN eigenvalues under the ZN
rotation z → ωz as

ψ+,n,j(ωz) = η ψ+,n,j(z), ψ−,n,j(ωz) = ωη ψ−,n,j(z), (2.22)

where η = ω` (` = 0, 1, . . . , N − 1) denotes the ZN eigenvalue.
Again, we focus only on M > 0 and the ZN eigenstates for ψ+ satisfying (2.8) and

(2.22). In terms of the zero mode wavefunctions ξj(z) on T 2, formal solutions to (2.22) are
constructed as

ξjη(z) = N j
η

N−1∑
`=0

η̄` ξj(ω`z) (η = 1, ω, . . . , ωN−1), (2.23)

where N j
η is a normalization constant and not relevant for our discussions. A difficulty is that

all the eigen wavefunctions ξjη(z) (j = 0, 1, . . . ,M − 1) are not always linearly independent.
One of our goals in this paper is to find the number of independent ZN eigenstates for

each ZN eigenvalue η. In [27], for some small values of M , the number of independent ZN
eigenstates has been obtained. It is, however, difficult to find the number of them for large
M (except on T 2/Z2).

Another way to obtain the number of independent ZN eigenstates is to use a property of
the torus physical states |M,k, α1, α2〉T 2 under the ZN rotation:

ÛZN |M, j, α1, α2〉T 2 =
M−1∑
k=0

Djk |M,k, α1, α2〉T 2 (j = 0, 1, ...,M − 1), (2.24)
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where ÛZN is the ZN rotation operator. We summarize the results of Djk [28]:3

Djk =



e−2πi(j+α1)
2α2
M δ−2α1−j,k for T 2/Z2,

1√
M

e−i
π
12

+i 3πα
2

M ei
π
M
k(k+6α)+2πi jk

M for T 2/Z3,

1√
M

e2πiα
2

M e2πi jk
M

+2πi 2α
M
k for T 2/Z4,

1√
M

ei
π
12

+iπα
2

M e−i
π
M
k2+2πi α

M
k+2πi jk

M for T 2/Z6.

(2.26)

The number of independent ZN eigenstates can be obtained by analyzing eigenvalues of
the M -by-M matrix Djk. Since (ÛZN )N = 1, the eigenvalues of Djk are 1, ω, . . . , ωN−1 (ω =
e2πi/N), and the degeneracy of each eigenvalue corresponds to the number of independent ZN
eigenstates. Thus, it could be, in principle, obtained by diagonalizing the M -by-M matrix
Djk. In [28], for some small M , the number of independent ZN eigenstates has been obtained
and found to agree with the previous results given in [27]. The authors have not been,
however, succeeded in deriving a general list for the numbers of independent ZN eigenstates.

In the next section, we analyze each eigenvalue of the matrix Djk and give a complete
list for the numbers of the ZN eigenstates for any of the flux quanta M , the SS twist phase
(α1, α2), and the ZN eigenvalue η.

3 Counting independent ZN eigenstates

The numbers of ZN eigen zero modes have been obtained on T 2/Z2 for arbitrary M and on
T 2/ZN (N = 3, 4, 6) for some small M in [27, 28]. There is another way to discuss orbifold
zero modes by use of modular transformations [29]. Nevertheless, unclear is how to introduce
non-zero SS twist phases. In this section, we give a complete list for the numbers of ZN eigen
zero modes on all the orbifolds T 2/ZN (N = 2, 3, 4, 6) for any of the flux quanta M (> 0),
the SS twist phases, and the ZN eigenvalues. It is one of our main results in this paper.

3.1 T 2/Z2

We start by considering the Z2 transformation property,

ÛZ2|M, j, α1, α2〉T 2 =
M−1∑
k=0

Djk(α1, α2)|M,k, α1, α2〉T 2 , (3.1)

3 We understand our definition of the Kronecker delta as

δj,k =

{
1 (j = k mod M),

0 (j 6= k mod M).
(2.25)

7



where Djk(α1, α2) is given in (2.26). For later convenience, we have explicitly written down

the SS-phase dependence (α1, α2) within Djk. Due to (ÛZ2)
2 = 1, the M -by-M matrix

Djk(α1, α2) gives eigenvalues ±1. Then, the number of ±1 eigenvalues corresponds to the
number of orbifold physical states belonging to Z2 eigenvalues η = ±1. We now find

tr
(
D(α1, α2)

)
= n+ − n−, (3.2)

where we define n± as the number of orbifold physical states with Z2 eigenvalues η = ±1.
Moreover, n± must satisfy

n+ + n− = M. (3.3)

(α1, α2) = (0, 0)

Using (3.3) and the relation

n+ − n− = tr
(
D(0, 0)

)
=

{
1 (M = 2m+ 1),

2 (M = 2m+ 2),
(3.4)

with m ∈ N ∪ {0}, we easily obtain

n+ =
M + 1

2
, n− =

M − 1

2
(M = 2m+ 1), (3.5)

n+ =
M

2
+ 1, n− =

M

2
− 1 (M = 2m+ 2). (3.6)

Here, we have used the expression (2.26) in the last equality of (3.4). These results are
summarized in Table 1 (a).

(α1, α2) = (1/2, 0)

Similarly, using

n+ − n− = tr
(
D(1

2
, 0)
)

=

{
1 (M = 2m+ 1),

0 (M = 2m+ 2),
(3.7)

we obtain

n+ =
M + 1

2
, n− =

M − 1

2
(M = 2m+ 1), (3.8)

n+ = n− =
M

2
(M = 2m+ 2). (3.9)

These results are summarized in Table 1 (b).
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(α1, α2) = (0, 1/2)

Similarly, using

n+ − n− = tr
(
D(0, 1

2
)
)

=

{
1 (M = 2m+ 1),

0 (M = 2m+ 2),
(3.10)

we obtain

n+ =
M + 1

2
, n− =

M − 1

2
(M = 2m+ 1), (3.11)

n+ = n− =
M

2
(M = 2m+ 2). (3.12)

These results are summarized in Table 1 (c).

(α1, α2) = (1/2, 1/2)

Similarly, once more using

n+ − n− = tr
(
D(1

2
, 1

2
)
)

=

{
−1 (M = 2m+ 1),

0 (M = 2m+ 2),
(3.13)

we obtain

n+ =
M − 1

2
, n− =

M + 1

2
(M = 2m+ 1), (3.14)

n+ = n− =
M

2
(M = 2m+ 2). (3.15)

These results are summarized in Table 1 (d).

3.2 T 2/Z3

We now move to T 2/Z3 and start with the Z3 transformation property,

ÛZ3|M, j, α, α〉T 2 =
M−1∑
k=0

Djk(α)|M,k, α, α〉T 2 , (3.16)

where Djk(α) ≡ Djk(α, α) is given in (2.26). For later convenience, we have explicitly written

down the SS-phase dependence α within Djk. Due to (ÛZ3)
3 = 1, the M -by-M matrix Djk

gives eigenvalues 1, ω, ω2 (ω = e2πi/3). In analogy to T 2/Z2, we now find

tr
(
D(α)

)
= n1 + ωnω + ω2nω2

= n1 − nω2 + ω(nω − nω2), (3.17)

9



M = 2m+ 1 M = 2m+ 2

n+
M+1

2
M
2

+ 1

n−
M−1

2
M
2
− 1

M = 2m+ 1 M = 2m+ 2

n+
M+1

2
M
2

n−
M−1

2
M
2

(a) (α1, α2) = (0, 0) (b) (α1, α2) = (1/2, 0)

M = 2m+ 1 M = 2m+2

n+
M+1

2
M
2

n−
M−1

2
M
2

M = 2m+ 1 M = 2m+ 2

n+
M−1

2
M
2

n−
M+1

2
M
2

(c) (α1, α2) = (0, 1/2) (d) (α1, α2) = (1/2, 1/2)

Table 1: The number of independent physical zero modes on T 2/Z2.

where we have used 1 + ω+ ω2 = 0. We again define n1,ω,ω2 as the number of Z3 eigenstates
belonging to Z3 eigenvalue η = 1, ω, ω2, respectively. Moreover, n1,ω,ω2 must satisfy

n1 + nω + nω2 = M. (3.18)

To derive n1,ω,ω2 analytically, we need to evaluate the trace of D(α), i.e.

tr
(
D(α)

)
=
e−iπ/12

√
M

M−1∑
k=0

ei
3π
M

(k+α)2 . (3.19)

To perform the sum over k in the case of the trivial SS twist phase (α = 0), we will use the
formula

1√
p

p−1∑
n=0

exp

(
2πin2q

p

)
=
eiπ/4√

2q

2q−1∑
n=0

exp

(
−πin

2p

2q

)
(3.20)

or its complex conjugation

1√
p

p−1∑
n=0

exp

(
−2πin2q

p

)
=
e−iπ/4√

2q

2q−1∑
n=0

exp

(
πin2p

2q

)
(3.21)

for p, q ∈ N. These formulae are mathematically known as the Landsberg-Schaar relation.
Furthermore, for non-trivial SS twist phases (α 6= 0), we need to use an extension of the
formula

1√
p

p−1∑
n=0

exp

(
πi(n+ ν)2q

p

)
=
eiπ/4√
q

q−1∑
n=0

exp

(
−πin

2p

q
− 2πinν

)
(3.22)
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for p, q ∈ N, ν ∈ Q, and pq+ 2qν ∈ 2Z. Since that seems to be unfamiliar in physics, we give
an elementary proof of the generalized Landsberg-Schaar relation (3.22) in Appendix B. As
we will see below, it is interesting that the necessary condition pq + 2qν ∈ 2Z is consistent
with the allowed SS twist phases (2.18) – (2.21).

α = 0

In this case, M must be an even (positive) integer, as mentioned in Section 2. Utilizing (3.21)
with p = 3 and 2q = M , we find

n1 − nω2 + ω(nω − nω2) = tr
(
D(0)

)
=


−ω (M = 6m+ 2),

ω (M = 6m+ 4),

2 + ω (M = 6m+ 6),

(3.23)

where m ∈ N ∪ {0}. From (3.18) and (3.23), we explicitly obtain

n1 = nω2 =
M + 1

3
, nω =

M − 2

3
, (M = 6m+ 2), (3.24)

n1 = nω2 =
M − 1

3
, nω =

M + 2

3
, (M = 6m+ 4), (3.25)

n1 =
M

3
+ 1, nω =

M

3
, nω2 =

M

3
− 1 (M = 6m+ 6), (3.26)

as summarized in Table 2 (a).

α = 1/3, 2/3

In this case, M must be again an even (positive) integer. To evaluate (3.19), we use the
formula (3.22) for p = M, q = 3, and ν = 1/3, 2/3 (with pq + 2qν ∈ 2Z satisfied). Then, we
find

n1 − nω2 + ω(nω − nω2) = tr
(
D(1/3)

)
= tr

(
D(2/3)

)
=


1 + ω (M = 6m+ 2),

1 (M = 6m+ 4),

0 (M = 6m+ 6),

(3.27)

where m ∈ N ∪ {0}. Similarly, by use of (3.18) and (3.27), we explicitly obtain

n1 = nω =
M + 1

3
, nω2 =

M − 2

3
(M = 6m+ 2), (3.28)

n1 =
M + 2

3
, nω = nω2 =

M − 1

3
(M = 6m+ 4), (3.29)

n1 = nω = nω2 =
M

3
(M = 6m+ 6), (3.30)

as summarized in Table 2 (b).
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α = 1/6, 5/6

In this case, M must be an odd (positive) integer, as mentioned in Section 2. To evaluate
(3.19), we need to use the generalized relation (3.22) for p = M , q = 3, and ν = α (with
pq + 2qν ∈ 2Z satisfied). Thus, it is straightforward to find

n1 − nω2 + ω(nω − nω2) = tr
(
D(1/6)

)
= tr

(
D(5/6)

)
=


1 (M = 6m+ 1),

0 (M = 6m+ 3),

1 + ω (M = 6m+ 5),

(3.31)

where m ∈ N ∪ {0}. These equations immediately lead to

n1 =
M + 2

3
, nω = nω2 =

M − 1

3
(M = 6m+ 1), (3.32)

n1 = nω = nω2 =
M

3
(M = 6m+ 3), (3.33)

n1 = nω =
M + 1

3
, nω2 =

M − 2

3
(M = 6m+ 5), (3.34)

as summarized in Table 2 (c).

α = 1/2

Similarly, using

n1 − nω2 + ω(nω − nω2) = tr
(
D(1/2)

)
=


ω (M = 6m+ 1),

2 + ω (M = 6m+ 3),

−ω (M = 6m+ 5),

(3.35)

where m ∈ N ∪ {0}, we easily reach

n1 = nω2 =
M − 1

3
, nω =

M + 2

3
, (M = 6m+ 1), (3.36)

n1 =
M

3
+ 1, nω =

M

3
, nω2 =

M

3
− 1 (M = 6m+ 3), (3.37)

n1 = nω2 =
M + 1

3
, nω =

M − 2

3
(M = 6m+ 5), (3.38)

as summarized in Table 2 (d).
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M = 6m+ 2 M = 6m+ 4 M = 6m+ 6

n1
M+1

3
M−1

3
M
3

+ 1

nω
M−2

3
M+2

3
M
3

nω2
M+1

3
M−1

3
M
3
− 1

(a) M : even, α = 0

M = 6m+ 2 M = 6m+ 4 M = 6m+ 6

n1
M+1

3
M+2

3
M
3

nω
M+1

3
M−1

3
M
3

nω2
M−2

3
M−1

3
M
3

(b) M : even, α = 1/3, 2/3

M = 6m+ 1 M = 6m+ 3 M = 6m+ 5

n1
M+2

3
M
3

M+1
3

nω
M−1

3
M
3

M+1
3

nω2
M−1

3
M
3

M−2
3

(c) M : odd, α = 1/6, 5/6

M = 6m+ 1 M = 6m+ 3 M = 6m+ 5

n1
M−1

3
M
3

+ 1 M+1
3

nω
M+2

3
M
3

M−2
3

nω2
M−1

3
M
3
− 1 M+1

3

(d) M : odd, α = 1/2

Table 2: The number of independent physical zero modes on T 2/Z3.

3.3 T 2/Z4

Next, we proceed to T 2/Z4, and start by considering the Z4 transformation property for the
torus physical states:

ÛZ4|M, j, α, α〉T 2 =
M−1∑
k=0

Djk(α)|M,k, α, α〉T 2 , (3.39)

13



where Djk(α) ≡ Djk(α, α) is given in (2.26). Because of (ÛZ4)
4 = 1, the transformation

matrix D(α) gives eigenvalues 1, ω, ω2, ω3 (ω = i). By an analogous logic, one can see that
it leads to

tr
(
D(α)

)
= n1 + ωnω + ω2nω2 + ω3nω3

= n1 − nω2 + i(nω − nω3), (3.40)

where we have used ω = i and defined n1,ω,ω2,ω3 as the number of orbifold physical states
belonging to Z4 eigenvalue η = 1, ω, ω2, ω3, respectively.

Note that ÛZ2 ≡ (ÛZ4)
2 behaves as a Z2 operator and gives eigenvalues±1. Let |M, η, α, α〉T 2/Z4

be a Z4 eigenstate belonging to Z4 eigenvalue η, i.e.

ÛZ4|M, η, α, α〉T 2/Z4
= η|M, η, α, α〉T 2/Z4

(η = 1, ω, ω2, ω3) . (3.41)

Then, this immediately gives

(ÛZ4)
2|M,ω`, α, α〉T 2/Z4

=


+|M, 1, α, α〉T 2/Z4

(` = 0),

−|M,ω, α, α〉T 2/Z4
(` = 1),

+|M,ω2, α, α〉T 2/Z4
(` = 2),

−|M,ω3, α, α〉T 2/Z4
(` = 3).

(3.42)

Thus, (ÛZ4)
2 can be regarded as the Z2 operator, and the Z4 orbifold eigenstates for ` = 0, 2

(` = 1, 3) are Z2-even (odd) states, respectively. This is why we can obtain the following
relations in terms of n± defined in Subsection 3.1:

n1 + nω2 = n+ =



M+1
2

(M = 2m+ 1, α1 = α2 = 0),

M
2

+ 1 (M = 2m+ 2, α1 = α2 = 0),

M−1
2

(M = 2m+ 1, α1 = α2 = 1
2
),

M
2

(M = 2m+ 2, α1 = α2 = 1
2
),

(3.43)

nω + nω3 = n− =



M−1
2

(M = 2m+ 1, α1 = α2 = 0),

M
2
− 1 (M = 2m+ 2, α1 = α2 = 0),

M+1
2

(M = 2m+ 1, α1 = α2 = 1
2
),

M
2

(M = 2m+ 2, α1 = α2 = 1
2
).

(3.44)

α = 0

Using (2.26) and (3.20) for p = M and q = 1, we can evaluate the trace tr
(
D(0)

)
as

n1 − nω2 + i(nω − nω3) = tr
(
D(0)

)
=


1 (M = 4m+ 1),

0 (M = 4m+ 2),

i (M = 4m+ 3),

1 + i (M = 4m+ 4).

(3.45)

14



From (3.43) – (3.45), it is straightforward to find

n1 =
M + 3

4
, nω = nω2 = nω3 =

M − 1

4
(M = 4m+ 1), (3.46)

n1 = nω2 =
M + 2

4
, nω = nω3 =

M − 2

4
(M = 4m+ 2), (3.47)

n1 = nω = nω2 =
M + 1

4
, nω3 =

M − 3

4
(M = 4m+ 3), (3.48)

n1 =
M

4
+ 1, nω = nω2 =

M

4
, nω3 =

M

4
− 1 (M = 4m+ 4), (3.49)

as summarized in Table 3 (a).

α = 1/2

Similarly, using (2.26) and (3.22) for p = M, q = 2, and ν = 1/2 (with pq + 2qν ∈ 2Z
satisfied), we evaluate the trace tr

(
D(1

2
)
)

as

n1 − nω2 + i(nω − nω3) = tr
(
D(1

2
)
)

=


i (M = 4m+ 1),

1 + i (M = 4m+ 2),

1 (M = 4m+ 3),

0 (M = 4m+ 4).

(3.50)

From (3.43), (3.44), and (3.50), it is straightforward to find

n1 = nω2 = nω3 =
M − 1

4
, nω =

M + 3

4
(M = 4m+ 1), (3.51)

n1 = nω =
M + 2

4
, nω2 = nω3 =

M − 2

4
(M = 4m+ 2), (3.52)

n1 = nω = nω3 =
M + 1

4
, nω2 =

M − 3

4
(M = 4m+ 3), (3.53)

n1 = nω = nω2 = nω3 =
M

4
(M = 4m+ 4), (3.54)

as summarized in Table 3 (b).

3.4 T 2/Z6

Finally, we step into T 2/Z6. Although T 2/Z6 is slightly complicated, the logic here is es-
sentially the same as that in the previous analyses. Let us start with the Z6 transformation
property of the torus physical states |M, j, α, α〉T 2 , i.e.

ÛZ6|M, j, α, α〉T 2 =
M−1∑
k=0

Djk(α)|M,k, α, α〉T 2 , (3.55)
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M = 4m+ 1 M = 4m+ 2 M = 4m+ 3 M = 4m+ 4

n1
M+3

4
M+2

4
M+1

4
M
4

+ 1

nω
M−1

4
M−2

4
M+1

4
M
4

nω2
M−1

4
M+2

4
M+1

4
M
4

nω3
M−1

4
M−2

4
M−3

4
M
4
− 1

(a) α = 0

M = 4m+ 1 M = 4m+ 2 M = 4m+ 3 M = 4m+ 4

n1
M−1

4
M+2

4
M+1

4
M
4

nω
M+3

4
M+2

4
M+1

4
M
4

nω2
M−1

4
M−2

4
M−3

4
M
4

nω3
M−1

4
M−2

4
M+1

4
M
4

(b) α = 1/2

Table 3: The number of independent physical zero modes on T 2/Z4.

where Djk(α) ≡ Djk(α, α) is given in (2.26). Because of (ÛZ6)
6 = 1, the transformation

matrix Djk gives eigenvalues 1, ω, ω2, ω3, ω4, ω5 (ω = e2πi/6). One can again find that this
leads to

tr
(
D(α)

)
= n1 + ωnω + ω2nω2 + ω3nω3 + ω4nω4 + ω5nω5

= n1 − nω2 − nω3 + nω5 + ω(nω + nω2 − nω4 − nω5), (3.56)

where we have used ω2 = ω − 1, and defined n1,ω,ω2,ω3,ω4,ω5 as the number of orbifold Z6

eigenstates belonging to Z6 eigenvalue η = 1, ω, ω2, ω3, ω4, ω5, respectively.
In the following, we first show that ÛZ2 ≡ (ÛZ6)

3 (ÛZ3 ≡ (ÛZ6)
2) behaves as a Z2 (Z3)

operator and gives eigenvalues ±1 (1, e2πi/3, e4πi/3), as introduced in Subsections 3.1 and 3.2.
Let |M, η, α, α〉T 2/Z6

be a Z6 eigenstate belonging to Z6 eigenvalue η = ω` (` = 0, 1, . . . , 5),
i.e.

ÛZ6|M, η, α, α〉T 2/Z6
= η|M, η, α, α〉T 2/Z6

. (3.57)
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Then, it implies

(UZ6)
3|M,ω`, α, α〉T 2/Z6

=



+|M, 1, α, α〉T 2/Z6
(` = 0),

−|M,ω, α, α〉T 2/Z6
(` = 1),

+|M,ω2, α, α〉T 2/Z6
(` = 2),

−|M,ω3, α, α〉T 2/Z6
(` = 3),

+|M,ω4, α, α〉T 2/Z6
(` = 4),

−|M,ω5, α, α〉T 2/Z6
(` = 5).

(3.58)

It is confirmed that (ÛZ6)
3 practically behaves as the Z2 operator, and the Z6 orbifold eigen-

states belonging to Z6 eigenvalue η = ω` for ` = 0, 2, 4 (` = 1, 3, 5) correspond to Z2-even
(odd) states, respectively. Now, in terms of n± in Subsection 3.1, we reach

n1 + nω2 + nω4 = n+ =

{
M−1

2
(M = 2m+ 1, α1 = α2 = 1

2
),

M
2

+ 1 (M = 2m+ 2, α1 = α2 = 0),
(3.59)

nω + nω3 + nω5 = n− =

{
M+1

2
(M = 2m+ 1, α1 = α2 = 1

2
),

M
2
− 1 (M = 2m+ 2, α1 = α2 = 0).

(3.60)

On the other hand, one can show

(ÛZ6)
2|M,ω`, α, α〉T 2/Z6

=



+|M, 1, α, α〉T 2/Z6
(` = 0),

ω′|M,ω, α, α〉T 2/Z6
(` = 1),

ω′2|M,ω2, α, α〉T 2/Z6
(` = 2),

+|M,ω3, α, α〉T 2/Z6
(` = 3),

ω′|M,ω4, α, α〉T 2/Z6
(` = 4),

ω′2|M,ω5, α, α〉T 2/Z6
(` = 5),

(3.61)

with ω′ ≡ e2πi/3 (= ω2) and then find out that (ÛZ6)
2 behaves as the Z3 operator, and the

Z6 orbifold eigenstates belonging to Z6 eigenvalue η = ω` for ` = 0, 3 (` = 1, 4 and ` = 2, 5)
correspond to Z3 eigestates belonging to Z3 eigenvalue +1 (ω′ and ω′2), respectively. In terms
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of n1′,ω′,ω′2 in Subsection 3.2, we reach

n1 + nω3 = n1′ =


M+1

3
(M = 6m+ 2, α = 0),

M−1
3

(M = 6m+ 4, α = 0),

M
3

+ 1 (M = 6m+ 6, α = 0),

(3.62)

nω + nω4 = nω′ =


M−2

3
(M = 6m+ 2, α = 0),

M+2
3

(M = 6m+ 4, α = 0),

M
3

(M = 6m+ 6, α = 0),

(3.63)

nω2 + nω5 = nω′2 =


M+1

3
(M = 6m+ 2, α = 0),

M−1
3

(M = 6m+ 4, α = 0),

M
3
− 1 (M = 6m+ 6, α = 0),

(3.64)

and

n1 + nω3 = n1′ =


M−1

3
(M = 6m+ 1, α = 1

2
),

M
3

+ 1 (M = 6m+ 3, α = 1
2
),

M+1
3

(M = 6m+ 5, α = 1
2
),

(3.65)

nω + nω4 = nω′ =


M+2

3
(M = 6m+ 1, α = 1

2
),

M
3

(M = 6m+ 3, α = 1
2
),

M−2
3

(M = 6m+ 5, α = 1
2
),

(3.66)

nω2 + nω5 = nω′2 =


M−1

3
(M = 6m+ 1, α = 1

2
),

M
3
− 1 (M = 6m+ 3, α = 1

2
),

M+1
3

(M = 6m+ 5, α = 1
2
).

(3.67)

α = 0

To evaluate the trace tr
(
D(0)

)
, we need to use (2.26) and (3.21) for p = 1 and 2q = M =

even. Then, we find

n1 − nω2 − nω3 + nω5 + ω(nω + nω2 − nω4 − nω5) = tr
(
D(0)

)
= ω. (3.68)

Comparing this relation with (3.59), (3.60), and (3.62) – (3.64), we obtain

n1 = nω2 =
M + 4

6
, nω = nω3 = nω4 = nω5 =

M − 2

6
(M = 6m+ 2), (3.69)

n1 = nω = nω2 = nω4 =
M + 2

6
, nω3 = nω5 =

M − 4

6
(M = 6m+ 4), (3.70)

n1 =
M

6
+ 1, nω = nω2 = nω3 = nω4 =

M

6
, nω5 =

M

6
− 1 (M = 6m+ 6) , (3.71)

which are summarized in Table 4 (a).
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Figure 1: Winding number or vortex number that the zero mode wavefunctions yield. In
this example, the winding number is +2. A black dot in the left figure denotes a zero point
of ξj(z).

α = 1/2

Using (2.26) and (3.22) for p = M = odd, q = 1, and ν = 1/2 (with pq+ 2qν ∈ 2Z satisfied),
one can claim

n1 − nω2 − nω3 + nω5 + ω(nω + nω2 − nω4 − nω5) = tr
(
D(1

2
)
)

= ω. (3.72)

By comparing this equation with (3.59), (3.60), and (3.65) – (3.67), the number of Z6 eigen-
states for each Z6 eigenvalue is given as

n1 = nω2 = nω3 = nω4 = nω5 =
M − 1

6
, nω =

M + 5

6
(M = 6m+ 1), (3.73)

n1 = nω = nω3 =
M + 3

6
, nω2 = nω4 = nω5 =

M − 3

6
(M = 6m+ 3), (3.74)

n1 = nω = nω2 = nω3 = nω5 =
M + 1

6
, nω4 =

M − 5

6
(M = 6m+ 5) , (3.75)

which are summarized in Table 4 (b).
We should mention that the results given in Tables 1 – 4 are consistent with those in

[27, 28], but the results for the non-vanishing SS twist phases on T 2/ZN (N = 3, 4, 6) are
newly obtained in this paper. Tables 1 – 4 give a complete list for the number of the ZN eigen
zero modes on the orbifold T 2/ZN (N = 2, 3, 4, 6), as announced before.

4 Analysis of zero points

We are ready to move on to our main subject. In the previous section, we have succeeded
in obtaining a complete list for the number of the ZN eigenstates. It seems hard that all the
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M = 6m+ 2 M = 6m+ 4 M = 6m+ 6

n1
M+4

6
M+2

6
M
6

+ 1

nω
M−2

6
M+2

6
M
6

nω2
M+4

6
M+2

6
M
6

nω3
M−2

6
M−4

6
M
6

nω4
M−2

6
M+2

6
M
6

nω5
M−2

6
M−4

6
M
6
− 1

(a) M : even, α = 0

M = 6m+ 1 M = 6m+ 3 M = 6m+ 5

n1
M−1

6
M+3

6
M+1

6

nω
M+5

6
M+3

6
M+1

6

nω2
M−1

6
M−3

6
M+1

6

nω3
M−1

6
M+3

6
M+1

6

nω4
M−1

6
M−3

6
M−5

6

nω5
M−1

6
M−3

6
M+1

6

(b) M : odd, α = 1/2

Table 4: The number of independent physical zero modes on T 2/Z6.

numbers of the ZN eigenstates given in Tables 1 – 4 can be universally explained in a simple
formula. That is because those numbers in Tables 1 – 4 quite complicatedly depend on the flux
quanta M , the SS twist phase (α1, α2), and the ZN eigenvalue η = ω` (` = 0, 1, . . . , N − 1),
as well as the ZN twist N .

Surprisingly, it turns out that all the numbers in Tables 1 – 4 can be described by a single
zero-mode counting formula

nη =
M − Vη
N

+ 1, (4.1)

where nη is the number of the ZN eigenstates belonging to the ZN eigenvalue η, and Vη is
the sum of winding numbers at the fixed points of the orbifold T 2/ZN . The formula (4.1) is
the most important result in this paper. The details will be given in the following.

Our starting point is the Atiyah-Singer index theorem on the torus T 2 with magnetic flux
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background [5, 24, 34],

Ind (i /D) = n+ − n−
=

q

2π

∫
T 2

F = M. (4.2)

Here n± denotes the number of zero modes ψ±,0 (2.7) on the torus base. As we have seen,
for M > 0 (M < 0), only ψ+,0 (ψ−,0) possesses |M |-fold normalizable zero modes. That is
why we easily see that the index theorem actually holds on the magnetized torus.

There exists another expression of the index theorem, the notion of which is that the
index Ind (i /D) is exactly equal to the total winding number (or occasionally called vortex
number) [25, 34]:

Ind (i /D) =
∑
i

1

2πi

∮
Ci

∇(log ξj(z)) · d`

≡
∑
i

χi. (4.3)

This theorem is known as the index theorem for the Fredholm operator (see, for example,
[26]). Here Ci shows an anti-clockwise contour around the zero point pi of the torus zero
mode ξj(z), i.e.

ξj(z = pi) = 0. (4.4)

The contour integral χi along a contour Ci defines a winding number, i.e. how many times
ξj wraps around the origin, as illustrated in Figure 1. According to the “residue theorem”
in ξ space, the quantity χi is always an integer (see, for example, [35]). Note that if there is
no zero point inside the contour Ci, or pi is not a zero point of ξj, then χi obviously takes
zero due to the “Cauchy integral formula” in ξ space.

In the following, we will define the winding number χi on the fundamental domain of
T 2 even for the orbifold T 2/ZN and basically evaluate χi at the fixed point z = pi on the
orbifold. (See (2.17) for the fixed points on T 2/ZN .) If one defines the winding number on
the fundamental domain of the orbifold T 2/ZN , instead of T 2, the sum of the winging number
χi should be divided by N , i.e.

∑
i χi/N due to the 1/N reduced area and the deficit angles

around the fixed points in comparison with those of the torus.
Before we tackle the orbifold case, it is instructive to examine (4.3) on the torus. We

start with the zero modes (2.12):

ξj(z) = N eiπMz Im z/Im τ ϑ

[
j+α1

M

−α2

]
(Mz,Mτ). (4.5)

Zero points of these zero mode wavefunctions can be obtained as follows. Setting now j = 0
and α1 = α2 = 0, we solve an equation

ϑ

[
0

0

]
(M(y1 + τy2),Mτ) = 0. (4.6)
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Figure 2: Left: a contour with radius ε = 0.1 and θ : 0→ 2π around a zero point (y1, y2) =
(1/2, 1/2) depicted by a bullet. Right: its image in zero-mode space.

The solutions are given by

(y1, y2) =

(
1

2M
,

1

2

)
,

(
3

2M
,

1

2

)
, ...,

(
2M − 1

2M
,

1

2

)
. (4.7)

Let us look at what is happening in ξ space (Re ξ, Im ξ). Figure 2 shows an example
of the zero mode given by M = 1 (i.e. j = 0) and α1 = α2 = 0, where an anti-clockwise
contour is a circle with radius ε = 0.1 on the T 2 fundamental domain (y1, y2 ∈ [0, 1)) and
it gives its image in ξ space. Then, there is a unique zero point at (y1, y2) = (1/2, 1/2), i.e.
z = (1+τ)/2. We define a contour z = (1+τ)/2+ε eiθ around the zero point. As the contour
runs anti-clockwise from blue (θ = 0) to red (θ = 2π) gradually, the image varies in the same
color correspondence in ξ space (see Figure 2). In this example, it is easy to evaluate

1

2πi

∮
|z−(1+τ)/2|=ε

∇(log ξj(z)) · d` = +1. (4.8)

For this observation, we understand that the winding number χi (4.3) counts the order of
zero at each zero point pi, based on the “residue theorem” in ξ space.

Since one can easily confirm that the order of zero is always one, in general, for all M
and j = 0, 1, ...,M − 1, we see

1

2πi

∮
Ci

∇(log ξj(z)) · d` = +1 (i = 1, 2, ...,M), (4.9)

⇒
M∑
i=1

χi =
M∑
i=1

1

2πi

∮
Ci

∇(log ξj(z)) · d` = +M. (4.10)

Thus, the winding number χi gives a consistent result with the Atiyah-Singer index theorem
(4.2).
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It is instructive to show another way to derive (4.10). Along a parallelogram contour
C : z = 0→ 1→ 1 + τ → τ → 0, we compute∑

pi∈T 2

χi =
1

2πi

∮
C

∇(log ξj(z)) · d`

=
1

2πi

{∫ 1

0

dy1

(
1

ξj(y1)

∂ξj(y1)

∂y1

− 1

ξj(y1 + τ)

∂ξj(y1 + τ)

∂y1

)
+

∫ 1

0

dy2

(
1

ξj(1 + τy2)

∂ξj(1 + τy2)

∂y2

− 1

ξj(τy2)

∂ξj(τy2)

∂y2

)}
= +M, (4.11)

where we have used the boundary conditions (2.8) and

∂ξj(z + 1)

∂y2

= eiqΛ1(z)+2πiα1

(
iqf

2
+

∂

∂y2

)
ξj(z), (4.12)

∂ξj(z + τ)

∂y1

= eiqΛ2(z)+2πiα2

(
−iqf

2
+

∂

∂y1

)
ξj(z). (4.13)

Note that the sum of the winding numbers χi along C is determined only by the boundary
conditions (2.8).

The result (4.11) directly claims that the sum of χi, namely the index Ind (i /D), gives
the same outcome even if we take any linear combination of the torus zero modes ξj(z) (j =
0, 1, ...,M − 1). It can be rephrased as

ξ̃j(z) ≡
M−1∑
k=0

cjk ξ
k(z) (cjk ∈ C)

⇒ 1

2πi

∮
C

∇(log ξ̃j(z)) · d` = +M (4.14)

which follows the fact that ξ̃j(z) satisfies the same boundary conditions (2.8) as those of
ξj(z). One has to be careful that the positions of the zeros of ξ̃j(z) are now different from
the original ones pi, in general.

For j 6= 0, it is known that j shifts the peak of Gaussian(-like) zero mode wavefunctions
along y2-direction [30]. Also, non-zero phases α1 and α2 shift it along y2- and y1-directions,
respectively.4 Thus, we find the generic zero points for ξj(z) (2.12) as

(y1, y2) =

(
1/2 + α2

M
,

1

2
− j + α1

M

)
,

(
3/2 + α2

M
,

1

2
− j + α1

M

)
,

...,

(
(2M − 1)/2 + α2

M
,

1

2
− j + α1

M

)
. (4.15)

4See, for example, [27].
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The expression (4.3) strongly inspires us to analyze the zero points of orbifold eigen zero
modes. It is fair to say that it is hard to derive the index theorem on the orbifolds, due to the
singular property of orbifold fixed points. Then, a primary interest in the past researches has
been the number of independent ZN eigen zero modes, which depends on the flux quanta M ,
the SS twist phase (α1, α2), and the ZN eigenvalue η. However, it has been of less interest to
obtain a simple formula counting it in a universal way. Our primary interest in this paper is
to find a single zero-mode counting formula applicable to any pattern.

4.1 T 2/Z2

Hereafter, we omit the degeneracy label j on the torus and orbifolds, unless otherwise stated.
The following discussion basically holds for arbitrary j.

In [31, 32], connecting Wilson loops with localized fluxes at T 2/Z2 fixed points, the zero
points of zero modes at the fixed points have been classified systematically. In this subsection,
we briefly review the zeros on T 2/Z2.

The starting point here is the Z2 eigen zero modes in terms of the torus zero modes ξ(z):

ξ±(z) ≡ ξ(z)± ξ(−z). (4.16)

Here, the Z2 orbifold eigenstates ξη are distinguished by the Z2 eigenvalue or the Z2 parity
η = ±, i.e.

ξη(−z) = η ξη(z). (4.17)

It follows from (2.8) that the eigenfunctions ξη satisfy

ξ±(z) = ± ξ±(−z), (4.18)

ξ±(z + 1
2
) = ± eiqΛ1(z)+2πiα1 ξ±(−z + 1

2
), (4.19)

ξ±(z + τ
2
) = ± eiqΛ2(z)+2πiα2 ξ±(−z + τ

2
), (4.20)

ξ±(z + 1
2

+ τ
2
) = ± eiqΛ1(z)+iqΛ2(z)+2πi(M/2+α1+α2) ξ±(−z + 1

2
+ τ

2
). (4.21)

By plugging z = 0 into these four relations, we find that the Z2 eigenfunctions ξ±(z) take
zeros at the following fixed points:

ξ−(0) = 0, (4.22){
ξ−(1

2
) = 0 for α1 = 0,

ξ+(1
2
) = 0 for α1 = 1

2
,

(4.23){
ξ−( τ

2
) = 0 for α2 = 0,

ξ+( τ
2
) = 0 for α2 = 1

2
,

(4.24){
ξ−(1

2
+ τ

2
) = 0 for M = 2m,α1 + α2 = 0, 1 or M = 2m+ 1, α1 + α2 = 1

2
,

ξ+(1
2

+ τ
2
) = 0 for M = 2m,α1 + α2 = 1

2
or M = 2m+ 1, α1 + α2 = 0, 1.

(4.25)
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flux parity twist winding number total nη

M η (α1, α2) χ1 χ2 χ3 χ4 Vη =
∑

i χi (M − Vη)/2 + 1

2m+ 1 +1 (0, 0) 0 0 0 +1 +1 (M + 1)/2

(1
2
, 0) 0 +1 0 0 +1 (M + 1)/2

(0, 1
2
) 0 0 +1 0 +1 (M + 1)/2

(1
2
, 1

2
) 0 +1 +1 +1 +3 (M − 1)/2

−1 (0, 0) +1 +1 +1 0 +3 (M − 1)/2

(1
2
, 0) +1 0 +1 +1 +3 (M − 1)/2

(0, 1
2
) +1 +1 0 +1 +3 (M − 1)/2

(1
2
, 1

2
) +1 0 0 0 +1 (M + 1)/2

2m+ 2 +1 (0, 0) 0 0 0 0 0 M/2 + 1

(1
2
, 0) 0 +1 0 +1 +2 M/2

(0, 1
2
) 0 0 +1 +1 +2 M/2

(1
2
, 1

2
) 0 +1 +1 0 +2 M/2

−1 (0, 0) +1 +1 +1 +1 +4 M/2− 1

(1
2
, 0) +1 0 +1 0 +2 M/2

(0, 1
2
) +1 +1 0 0 +2 M/2

(1
2
, 1

2
) +1 0 0 +1 +2 M/2

Table 5: The winding number χi at the fixed point pi (i = 1, 2, 3, 4) (see also [32]). All the
values of (M − Vη)/2 + 1 exactly agree with the numbers nη of the Z2 physical zero modes
given in Table 1.

It follows from (4.18) – (4.21) that we can compute the winding numbers χi (i = 1, 2, 3, 4)
around the fixed points

p1 = 0, p2 = 1/2, p3 = τ/2, p4 = (1 + τ)/2 (4.26)

with a sufficiently small contour Ci around pi for each i. These results are summarized in
Table 5.

One should notice the difference between zeros at the fixed points and those on the bulk.
To this end, let us consider an example of three flux quanta M = 3 and a trivial twist phase
α1 = α2 = 0. Then, we have two η = +1 eigen zero modes on T 2/Z2, say ξ0

+(z) and ξ1
+(z)

(see Table 1 (a)). From (4.25), they are vanishing at the fixed point z = p4, i.e.

ξ0
+(p4) = ξ1

+(p4) = 0. (4.27)

Note that ξ0
+(z) and ξ1

+(z) take non-zero values at the other fixed points z = p1, p2, p3 (see
(4.22) – (4.24)).

There are additional two zero points on the bulk of T 2 for each ξ0
+ and ξ1

+, because each of
ξ0

+ and ξ1
+ should possess three zero points. In general, once we take their linear combination,

we need to search for new zero points. In other words, even if we find two zeros p0 (p1) on the
bulk such that ξ0

+(p0) = 0 (ξ1
+(p1) = 0), a linear combination c ξ0

+ + c′ ξ1
+ (c, c′ ∈ C) does not

always vanish at both p0 and p1. Thus, such an observation inspires us to call them removable
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zeros, because their positions of zeros are changeable by taking some linear combination of
ξ0

+ and ξ1
+.

On the other hand, because of (4.27), we easily see c ξ0
+(p4) + c′ ξ1

+(p4) = 0 for arbitrary
c, c′. The zero at p4 cannot be removed by taking any linear combination. Hence, it is
reasonable that zeros at the orbifold fixed points are called unremovable zeros.5 It also implies
that there is no need to take removable zeros seriously, since the positions of removable zeros
are no longer important.

4.2 T 2/Z3

For τ = ω = e2πi/3, we begin with Z3 eigen zero modes,

ξη(z) =
2∑
`=0

η̄` ξ(ω`z) (η = 1, ω, ω2) (4.28)

which belong to the Z3 eigenvalue η = ωk:

ξωk(ωz) = ωk ξωk(z) (k = 0, 1, 2). (4.29)

In analogy to the previous subsection, we can straightforwardly show

ξωk(ωz + 2
3

+ τ
3
) = e−iqΛ1(z)−iqΛ2(z)−2πi(M/3+2α−k/3) ξωk(z + 2

3
+ τ

3
), (4.30)

ξωk(ωz + 1
3

+ 2τ
3

) = eiqΛ1(ωz)+iqΛ2(ωz)+2πi(2M/3+2α+k/3) ξωk(z + 1
3

+ 2τ
3

). (4.31)

Ignoring the terms related to Λ1(z) and Λ2(z) for infinitesimally small |z|, the relations
(4.29) – (4.31) reduce to

ξωk(ωz) = ωk ξωk(z), (4.32)

ξωk(ωz + 2
3

+ τ
3
) = e−2πi(M/3+2α−k/3) ξωk(z + 2

3
+ τ

3
), (4.33)

ξωk(ωz + 1
3

+ 2τ
3

) = e2πi(2M/3+2α+k/3) ξωk(z + 1
3

+ 2τ
3

) (k = 0, 1, 2), (4.34)

The above relations tell the phase shifts to the Z3 eigen zero modes ξωk when rotated
by 2π/3 around the fixed points. To evaluate the winding numbers χi at the fixed points
pi (i = 1, 2, 3), all we should do is to utilize the above relations three times repeatedly. Then,
taking Ci to be a sufficiently small contour around pi for each i, we obtain

χ1 = k mod 3, (4.35)

χ2 = −M − 6α + k mod 3, (4.36)

χ3 = 2M + 6α + k mod 3, (4.37)

5 In the context of string theory on orbifolds [24], unremovable zeros correspond to twisted strings, which
cannot escape from fixed points.
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for ξωk (k = 0, 1, 2). Here, χi (i = 1, 2, 3) has been defined around the three Z3 orbifold fixed
points:

p1 = 0, p2 = (2 + τ)/3, p3 = (1 + 2τ)/3. (4.38)

The results in this subsection are summarized in Table 6.
We should make two comments on the winding number χi (i = 1, 2, 3). As one can see

from (4.35) – (4.37), χi at the fixed point pi is less than three, i.e. χi = 0, 1, 2. If an orbifold
zero mode wavefunction gives a winding number larger than or equal to three, it accidentally
contains some contribution from removable zeros. In other words, some removable zeros
accidentally coincide unremovable zeros at the fixed points and then enhance the value of
χi. By taking an appropriate linear combination of orbifold zero modes, we can find that the
winding number is less than three.

The second comment is that we here consider the fundamental domain of T 2 but not that
of T 2/Z3 in order to define the winding number χi. We have defined the winding number
χi in (4.3), where the contour Ci is taken to be a circle encircling the fixed point pi. If the
winding number χi is defined on the fundamental domain of the T 2/Z3 orbifold, it should be
divided by N = 3 due to deficit angles around the fixed points.

4.3 T 2/Z4

As previously noted, there are two fixed points under the Z4 identification z ∼ iz, i.e.

z = 0 (≡ p1), (1 + i)/2 (≡ p2). (4.39)

Since the Z4 group includes Z2 as its subgroup, there are additionally two “Z2 fixed points”
that are not invariant under the Z4 rotation, but invariant under such a partial Z2 transfor-
mation (z → −z) up to torus lattice shifts. The two Z2 fixed points are given by

z = 1/2 (≡ p3), i/2 (≡ p4). (4.40)

As we shall see later, the winding numbers not only at the Z4 fixed points (4.39) but also at
the Z2 fixed points (4.40) contribute to the zero-mode counting formula (4.1) as unremovable
zeros.

For τ = ω = i, we start with Z4 eigen zero modes, given as

ξη(z) =
3∑
`=0

η̄`ξ(ω`z) (η = 1, ω, ω2, ω3) (4.41)

which belong to the Z4 eigenvalue η = ωk:

ξωk(ωz) = ωkξωk(z) (k = 0, 1, 2, 3). (4.42)
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flux parity twist winding number total nη

M η α χ1 χ2 χ3 Vη =
∑

i χi (M − Vη)/3 + 1

6m+ 1 1 1/6 0 +1 0 +1 (M + 2)/3

1/2 0 +2 +2 +4 (M − 1)/3

5/6 0 0 +1 +1 (M + 2)/3

ω 1/6 +1 +2 +1 +4 (M − 1)/3

1/2 +1 0 0 +1 (M + 2)/3

5/6 +1 +1 +2 +4 (M − 1)/3

ω2 1/6 +2 0 +2 +4 (M − 1)/3

1/2 +2 +1 +1 +4 (M − 1)/3

5/6 +2 +2 0 +4 (M − 1)/3

6m+ 2 1 0 0 +1 +1 +2 (M + 1)/3

1/3 0 +2 0 +2 (M + 1)/3

2/3 0 0 +2 +2 (M + 1)/3

ω 0 +1 +2 +2 +5 (M − 2)/3

1/3 +1 0 +1 +2 (M + 1)/3

2/3 +1 +1 0 +2 (M + 1)/3

ω2 0 +2 0 0 +2 (M + 1)/3

1/3 +2 +1 +2 +5 (M − 2)/3

2/3 +2 +2 +1 +5 (M − 2)/3

6m+ 3 1 1/6 0 +2 +1 +3 M/3

1/2 0 0 0 0 M/3 + 1

5/6 0 +1 +2 +3 M/3

ω 1/6 +1 0 +2 +3 M/3

1/2 +1 +1 +1 +3 M/3

5/6 +1 +2 0 +3 M/3

ω2 1/6 +2 +1 0 +3 M/3

1/2 +2 +2 +2 +6 M/3− 1

5/6 +2 0 +1 +3 M/3

Table 6: The winding number χi at the fixed point pi (i = 1, 2, 3). All the values of (M −
Vη)/3 + 1 exactly agree with the numbers nη of the Z3 physical zero modes given in Table 2.

Around the Z4 fixed point p2 and the Z2 ones p3,4, we can derive the relations

ξωk(ωz + 1
2

+ τ
2
) = e−iqΛ2(z)−2πi(−M/4+α−k/4) ξωk(z + 1

2
+ τ

2
), (4.43)

ξωk(ω
2z + 1

2
) = e−iqΛ1(z)−2πi(α−k/2) ξωk(z + 1

2
), (4.44)

ξωk(ω
2z + τ

2
) = e−iqΛ2(z)−2πi(α−k/2) ξωk(z + τ

2
) (k = 0, 1, 2, 3). (4.45)
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flux parity twist winding number total nη

M η α χ1 χ2 χ3 Vη =
∑

i χi (M − Vη)/3 + 1

6m+ 4 1 0 0 +2 +2 +4 (M − 1)/3

1/3 0 0 +1 +1 (M + 2)/3

2/3 0 +1 0 +1 (M + 2)/3

ω 0 +1 0 0 +1 (M + 2)/3

1/3 +1 +1 +2 +4 (M − 1)/3

2/3 +1 +2 +1 +4 (M − 1)/3

ω2 0 +2 +1 +1 +4 (M − 1)/3

1/3 +2 +2 0 +4 (M − 1)/3

2/3 +2 0 +2 +4 (M − 1)/3

6m+ 5 1 1/6 0 0 +2 +2 (M + 1)/3

1/2 0 +1 +1 +2 (M + 1)/3

5/6 0 +2 0 +2 (M + 1)/3

ω 1/6 +1 +1 0 +2 (M + 1)/3

1/2 +1 +2 +2 +5 (M − 2)/3

5/6 +1 0 +1 +2 (M + 1)/3

ω2 1/6 +2 +2 +1 +5 (M − 2)/3

1/2 +2 0 0 +2 (M + 1)/3

5/6 +2 +1 +2 +5 (M − 2)/3

6m+ 6 1 0 0 0 0 0 M/3 + 1

1/3 0 +1 +2 +3 M/3

2/3 0 +2 +1 +3 M/3

ω 0 +1 +1 +1 +3 M/3

1/3 +1 +2 0 +3 M/3

2/3 +1 0 +2 +3 M/3

ω2 0 +2 +2 +2 +6 M/3− 1

1/3 +2 0 +1 +3 M/3

2/3 +2 +1 0 +3 M/3

Table 6: (Continued.) The winding number χi at the fixed point pi (i = 1, 2, 3). All the
values of (M − Vη)/3 + 1 exactly agree with the numbers nη of the Z3 physical zero modes
given in Table 2.

Ignoring the terms related to Λ1(z) and Λ2(z) for infinitesimally small |z|, we find

ξωk(ωz) = ωkξωk(z), (4.46)

ξωk(ωz + 1
2

+ τ
2
) = e−2πi(−M/4+α−k/4) ξωk(z + 1

2
+ τ

2
), (4.47)

ξωk(ω
2z + 1

2
) = e−2πi(α−k/2) ξωk(z + 1

2
), (4.48)

ξωk(ω
2z + τ

2
) = e−2πi(α−k/2) ξωk(z + τ

2
) (k = 0, 1, 2, 3). (4.49)

Suppose that Ci is a sufficiently small contour around the fixed point pi for each i. Our
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results of interest are given as

χ1 = k mod 4, (4.50)

χ2 = M − 4α + k mod 4, (4.51)

χ3 = χ4 = −2α + k mod 2, (4.52)

for ξωk (k = 0, 1, 2, 3). Here, the winding number χi (i = 1, 2, 3, 4) for ξωk has been defined
around the fixed point pi (i = 1, 2, 3, 4), respectively. The results in this subsection are
summarized in Table 7. An interesting observation is that although the “Z2 fixed points”
are not invariant under the Z4 identification, zero points at the “Z2 fixed points” appear as
unremovable zeros, and their contribution is indispensable to guarantee the counting formula
(4.1).

We comment on the winding number χi (i = 1, 2, 3, 4). As one can see from (4.50) –
(4.52), χ1,2 (χ3,4) at the fixed point p1,2 (p3,4) are less than four (two), i.e. χ1,2 = 0, 1, 2, 3
(χ3,4 = 0, 1). If an orbifold zero mode wavefunction gives a winding number at p1,2 (p3,4)
larger than or equal to four (two), it accidentally contains some contribution from removable
zeros. In other words, some removable zeros accidentally coincide unremovable zeros at the
fixed points and then enhance the value of χi. By taking an appropriate linear combination
of orbifold zero modes, we can find that the winding number is less than four or two.

4.4 T 2/Z6

As previously mentioned, there is only a single fixed point under the Z6 identification z ∼ ωz
(ω = e2πi/6), i.e.

z = 0 (≡ p1). (4.53)

Since the Z6 group includes its subgroups Z3 and Z2, there are additionally two “Z3 fixed
points” and three “Z2 fixed points” that are not invariant under the Z6 rotation, but invariant
under such partial Z3 and Z2 rotations up to torus lattice shifts, respectively. The two Z3

and three Z2 fixed points are given by

Z3 fixed points: z = (1 + τ)/3 (≡ p2), 2(1 + τ)/3 (≡ p3), (4.54)

Z2 fixed points: z = 1/2 (≡ p4), τ/2 (≡ p5), (1 + τ)/2 (≡ p6). (4.55)

We should mention that two Z3 fixed points are exchanged by the Z6 rotation up to torus
lattice shifts, and also that three Z2 fixed points are connected by the Z6 rotation.

In a similar way to the previous analyses, we start by considering Z6 eigenstates

ξη(z) =
5∑
`=0

η̄`ξ(ω`z) (η = 1, ω, ω2, ω3, ω4, ω5) , (4.56)

which belong to the Z6 eigenvalue η = ωk:

ξωk(ωz) = ωkξωk(z) (k = 0, 1, . . . , 5). (4.57)
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flux parity twist winding number total nη

M η α χ1 χ2 χ3 χ4 Vη =
∑

i χi (M − Vη)/4 + 1

4m+ 1 1 0 0 +1 0 0 +1 (M + 3)/4

1/2 0 +3 +1 +1 +5 (M − 1)/4

i 0 +1 +2 +1 +1 +5 (M − 1)/4

1/2 +1 0 0 0 +1 (M + 3)/4

−1 0 +2 +3 0 0 +5 (M − 1)/4

1/2 +2 +1 +1 +1 +5 (M − 1)/4

−i 0 +3 0 +1 +1 +5 (M − 1)/4

1/2 +3 +2 0 0 +5 (M − 1)/4

4m+ 2 1 0 0 +2 0 0 +2 (M + 2)/4

1/2 0 0 +1 +1 +2 (M + 2)/4

i 0 +1 +3 +1 +1 +6 (M − 2)/4

1/2 +1 +1 0 0 +2 (M + 2)/4

−1 0 +2 0 0 0 +2 (M + 2)/4

1/2 +2 +2 +1 +1 +6 (M − 2)/4

−i 0 +3 +1 +1 +1 +6 (M − 2)/4

1/2 +3 +3 0 0 +6 (M − 2)/4

4m+ 3 1 0 0 +3 0 0 +3 (M + 1)/4

1/2 0 +1 +1 +1 +3 (M + 1)/4

i 0 +1 0 +1 +1 +3 (M + 1)/4

1/2 +1 +2 0 0 +3 (M + 1)/4

−1 0 +2 +1 0 0 +3 (M + 1)/4

1/2 +2 +3 +1 +1 +7 (M − 3)/4

−i 0 +3 +2 +1 +1 +7 (M − 3)/4

1/2 +3 0 0 0 +3 (M + 1)/4

4m+ 4 1 0 0 0 0 0 0 M/4 + 1

1/2 0 +2 +1 +1 +4 M/4

i 0 +1 +1 +1 +1 +4 M/4

1/2 +1 +3 0 0 +4 M/4

−1 0 +2 +2 0 0 +4 M/4

1/2 +2 0 +1 +1 +4 M/4

−i 0 +3 +3 +1 +1 +8 M/4− 1

1/2 +3 +1 0 0 +4 M/4

Table 7: The winding number χi at the fixed point pi (i = 1, 2, 3, 4). All the values of
(M − Vη)/4 + 1 exactly agree with the numbers nη of the Z4 physical zero modes given in
Table 3.

We can straightforwardly show the following relations:

ξωk(ω
2z + 1

3
+ τ

3
) = e−iqΛ2(z)−2πi(−M/6+α+2k/3) ξωk(z + 1

3
+ τ

3
), (4.58)

ξωk(ω
3z + 1

2
) = e−iqΛ1(z)−2πi(α+k/2) ξωk(z + 1

2
) (k = 0, 1, . . . , 5). (4.59)
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Ignoring the terms related to Λ1(z) and Λ2(z) for infinitesimally small |z|, we obtain

ξωk(ωz) = ωkξωk(z), (4.60)

ξωk(ω
2z + 1

3
+ τ

3
) = e−2πi(−M/6+α+2k/3) ξωk(z + 1

3
+ τ

3
), (4.61)

ξωk(ω
3z + 1

2
) = e−2πi(α+k/2) ξωk(z + 1

2
) (k = 0, 1, . . . , 5). (4.62)

Suppose that Ci is a sufficiently small contour around the fixed point pi for each i. Our
results of interest are given by using these relations three or two times repeatedly,

χ1 = k mod 6, (4.63)

χ2 = χ3 = M
2
− 3α− 2k mod 3, (4.64)

χ4 = χ5 = χ6 = −2α− k mod 2, (4.65)

where we have used χ2 = χ3 and χ4 = χ5 = χ6. Here, the winding number χi (i = 1, 2, . . . , 6)
for ξωk has been defined around the fixed point pi (i = 1, 2, . . . , 6), respectively.

The results in this subsection are summarized in Table 8. We should notice again that
although the “Z3 and Z2 fixed points” are not invariant under the Z6 rotation, zeros at those
fixed points have to be regarded as unremovable ones, and their contribution is indispensable
to guarantee the counting formula (4.1).

We comment on the winding number χi (i = 1, 2, 3, 4, 5, 6). As one can see from (4.63) –
(4.65), χ1 (χ2,3 and χ4,5,6) at the fixed point p1 (p2,3 and p4,5,6) are less than six (three
and two), i.e. χ1 = 0, 1, ..., 5 (χ2,3 = 0, 1, 2 and χ4,5,6 = 0, 1). If an orbifold zero mode
wavefunction gives a winding number at p1 (p2,3 or p4,5,6) larger than or equal to six (three
or two), it accidentally contains some contribution from removable zeros. In other words,
some removable zeros accidentally coincide unremovable zeros at the fixed points and then
enhance the value of χi. By taking an appropriate linear combination of orbifold zero modes,
we can find that the winding number is less than six, three, or two.

4.5 Generic counting formula

We now turn to a generic zero-mode counting formula on all the orbifolds T 2/ZN (N =
2, 3, 4, 6). Before claiming it, it is convenient to review our ingredients in hand. The important
quantities on the orbifolds T 2/ZN are given as follows:

• the flux quanta M , where the homogeneous flux f is given as qf = 2πM

• the discretized Scherk-Schwarz twist phase (α1, α2)

• the ZN eigenvalue η = 1, ω, . . . , ωN−1 (ω = e2πi/N), where the ZN eigen zero modes
satisfy ξη(ωz) = η ξη(z)

These quantities above characterize the orbifold eigen states, and in fact the numbers of
the ZN eigen zero modes turn out to depend on M, (α1, α2), η, and N in a considerably
complicated way, as shown in Tables 1 – 4.

An important quantity here is
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flux parity twist winding number total nη

M η α χ1 χ2 χ3 χ4 χ5 χ6 Vη =
∑

i χi (M − Vη)/6 + 1

6m+ 1 1 1/2 0 +2 +2 +1 +1 +1 +7 (M − 1)/6

ω 1/2 +1 0 0 0 0 0 +1 (M + 5)/6

ω2 1/2 +2 +1 +1 +1 +1 +1 +7 (M − 1)/6

ω3 1/2 +3 +2 +2 0 0 0 +7 (M − 1)/6

ω4 1/2 +4 0 0 +1 +1 +1 +7 (M − 1)/6

ω5 1/2 +5 +1 +1 0 0 0 +7 (M − 1)/6

6m+ 2 1 0 0 +1 +1 0 0 0 +2 (M + 4)/6

ω 0 +1 +2 +2 +1 +1 +1 +8 (M − 2)/6

ω2 0 +2 0 0 0 0 0 +2 (M + 4)/6

ω3 0 +3 +1 +1 +1 +1 +1 +8 (M − 2)/6

ω4 0 +4 +2 +2 0 0 0 +8 (M − 2)/6

ω5 0 +5 0 0 +1 +1 +1 +8 (M − 2)/6

6m+ 3 1 1/2 0 0 0 +1 +1 +1 +3 (M + 3)/6

ω 1/2 +1 +1 +1 0 0 0 +3 (M + 3)/6

ω2 1/2 +2 +2 +2 +1 +1 +1 +9 (M − 3)/6

ω3 1/2 +3 0 0 0 0 0 +3 (M + 3)/6

ω4 1/2 +4 +1 +1 +1 +1 +1 +9 (M − 3)/6

ω5 1/2 +5 +2 +2 0 0 0 +9 (M − 3)/6

Table 8: The winding number χi at the fixed point pi (i = 1, 2, 3, 4, 5, 6). All the values of
(M − Vη)/6 + 1 exactly agree with the numbers nη of the Z6 physical zero modes given in
Table 4.

• the sum of the winding numbers χi at the fixed points pi for the ZN eigenstates be-
longing to the ZN eigenvalue η, i.e. Vη ≡

∑
i χi.

A complete list of Vη =
∑

i χi is ready in Table 5 – 8. Interesting features that can be read
off from the tables are

M − Vη = 0 mod N (4.66)

and

∑
η

Vη =
N−1∑
k=0

Vωk = N2. (4.67)

An important observation is that the quantity

M − Vη
N

+ 1 (4.68)
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flux parity twist winding number total nη

M η α χ1 χ2 χ3 χ4 χ5 χ6 Vη =
∑

i χi (M − Vη)/6 + 1

6m+ 4 1 0 0 +2 +2 0 0 0 +4 (M + 2)/6

ω 0 +1 0 0 +1 +1 +1 +4 (M + 2)/6

ω2 0 +2 +1 +1 0 0 0 +4 (M + 2)/6

ω3 0 +3 +2 +2 +1 +1 +1 +10 (M − 4)/6

ω4 0 +4 0 0 0 0 0 +4 (M + 2)/6

ω5 0 +5 +1 +1 +1 +1 +1 +10 (M − 4)/6

6m+ 5 1 1/2 0 +1 +1 +1 +1 +1 +5 (M + 1)/6

ω 1/2 +1 +2 +2 0 0 0 +5 (M + 1)/6

ω2 1/2 +2 0 0 +1 +1 +1 +5 (M + 1)/6

ω3 1/2 +3 +1 +1 +0 +0 +0 +5 (M + 1)/6

ω4 1/2 +4 +2 +2 +1 +1 +1 +11 (M − 5)/6

ω5 1/2 +5 0 0 0 0 0 +5 (M + 1)/6

6m+ 6 1 0 0 0 0 0 0 0 0 M/6 + 1

ω 0 +1 +1 +1 +1 +1 +1 +6 M/6

ω2 0 +2 +2 +2 0 0 0 +6 M/6

ω3 0 +3 0 0 +1 +1 +1 +6 M/6

ω4 0 +4 +1 +1 0 0 0 +6 M/6

ω5 0 +5 +2 +2 +1 +1 +1 +12 M/6− 1

Table 8: (Continued.) The winding number χi at the fixed point pi (i = 1, 2, 3, 4, 5, 6). All
the values of (M−Vη)/6+1 exactly agree with the numbers nη of the Z6 physical zero modes
given in Table 4.

always takes an integer value even though M/N and Vη/N do not necessarily become integers.
Furthermore, from (4.67), the quality (4.68) turns out to satisfy

N−1∑
k=0

(
M − Vωk

N
+ 1

)
= M. (4.69)

Since the number nωk of the ZN eigen zero modes belonging to ZN eigenvalue ωk (k =
0, 1, . . . , N − 1) satisfies6

N−1∑
k=0

nωk = M, (4.70)

the relations (4.69) and (4.70) suggest that the following equality should hold:

nη =
M − Vη
N

+ 1. (4.71)

6 The relation (4.70) comes from the fact that the sum of the numbers of all the ZN eigen zero modes on
T 2/ZN is identical to the number of the zero modes on T 2, i.e. M .
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In fact, we can explicitly verify (4.71) by directly comparing nη in Tables 1 – 4 with (M −
Vη)/N + 1 in Tables 5 – 8. We call (4.71) a zero-mode counting formula on the magnetized
orbifolds T 2/ZN , and it is the most important result in this paper.

5 Discussion and conclusion

In this paper, we have considered the toroidal orbifolds T 2/ZN (N = 2, 3, 4, 6) with magnetic
flux background as 2d extra dimensions. We have focused on the numbers of the ZN eigen
zero modes on T 2/ZN , which depend on the flux quanta M , the SS twist phase (α1, α2),
and the ZN eigenvalue η. In the previous researches, only a part of such numbers has been
obtained, and neither a generic zero-mode counting formula nor an index theorem on the
orbifolds has been investigated.

In Section 3, we have succeeded in deriving a complete list for the numbers of the ZN
eigen zero modes on T 2/ZN . Because of quite complicated dependence on the flux quanta,
the SS twist phase, and the ZN eigenvalue, it seems hard that all the numbers of the ZN
eigen zero modes can be universally explained by a simple formula. Surprisingly, we have
found in Section 4 that all the numbers of the ZN eigen zero modes can be described by a
single zero-mode counting formula (4.71). A crucial ingredient for the zero-mode counting
formula is the sum of the winding numbers at the fixed points on T 2/ZN , i.e. Vη.

Although the origin of the last term in (4.71) is unclear, the first two terms of M/N
and −Vη/N may be understood from an index theorem point of view, as follows. From the
Atiyah-Singer index theorem, the number of the zero modes on T 2 is given by

q

2π

∫
T 2

F = M. (5.1)

On the other hand, on the orbifold T 2/ZN , a naive extension of (5.1) would be of the form

q

2π

∫
T 2/ZN

F =
M

N
, (5.2)

which may explain the first term M/N in (4.71). The reason why M is divided by N in (5.2)
is that the area of the T 2/ZN fundamental domain is given by (the area of T 2)× (1/N).

An important feature of orbifolds is that they possess fixed points, which are singularities
on manifolds. Hence, they should be removed from the orbifold fundamental domain. This
observation may explain the second term −Vη/N in (4.71). If the winding number χi is
non-vanishing at the fixed point pi, it implies the presence of localized flux at the fixed point
[31, 32]. That would lead to the second term −Vη/N , because the removal of all the fixed
points means the subtraction of the localized fluxes at the fixed points from (5.2).

We have proved the zero-mode counting formula (4.71) by examining the numbers nη and
(M − Vη)/N + 1, separately. It would be of great interest to derive the counting formula
(4.71) directly from an index theorem on the orbifolds. We will pursuit the derivation of our
formulae somewhere.
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A Gamma matrices

The notation in this paper is basically the same as that in [27, 28]. The 6d gamma matrices
are taken as

{ΓM ,ΓN} = 2ηMN (M,N = 0, 1, 2, 3, 5, 6), (A.1)

ηMN = diag (+1,−1,−1,−1,−1,−1), (A.2)

Γµ =

(
γµ 0
0 γµ

)
(µ = 0, 1, 2, 3), (A.3)

Γ5 =

(
0 iγ5

γ5 0

)
, Γ6 =

(
0 γ5

−γ5 0

)
, Γ7 =

(
γ5 0
0 −γ5

)
. (A.4)

Also, we define

∂i =
∂

∂yi
(i = 1, 2), (A.5)

∂ =
i

2 Im τ
(τ̄ ∂1 − ∂2), ∂̄ = − i

2 Im τ
(τ∂1 − ∂2). (A.6)

B Proof of the generalized Landsberg-Schaar relation

In this appendix, we give a proof of the generalized Landsberg-Schaar relation

1√
p

p−1∑
n=0

exp

(
πi(n+ ν)2q

p

)
=
eiπ/4√
q

q−1∑
n=0

exp

(
−πin

2p

q
− 2πinν

)
(B.1)

with p, q ∈ N, ν ∈ Q, and pq + 2qν ∈ 2Z. Note that (3.20) and (3.21) are just special cases
of (B.1), because we can realize them by plugging ν = 0 into the generalized one.

First of all, let us define

G(z) =
eiπq(z+ν)2/p

e2πiz − 1
(B.2)

and adopt the contour in Figure 3. Now, as easily seen, the paths C2 and C4 for 0 < θ < π/4
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Figure 3: A contour that we have adopted.

do not contribute to the integral ∫
C2,C4

dz G(z)
Λ→∞−−−→ 0 (B.3)

in the limit of Λ→∞.
Defining

I = lim
Λ→∞

{∫
C1

dz G(z) +

∫
C3

dz G(z)

}
, (B.4)

we express the integral I in terms of the new coordinates, C1 : z ≡ a+ p+ reiθ and C3 : z ≡
a+ reiθ (−1 < a < 0), as

I = lim
Λ→∞

∫ Λ

−Λ

dr eiθ
[
G(a+ p+ reiθ)−G(a+ reiθ)

]
= lim

Λ→∞

∫ Λ

−Λ

dr eiθ

(
q−1∑
k=0

e2πi(a+reiθ)k

)
eiπq(a+reiθ+ν)2/p. (B.5)

Now, by using x ≡ (reiθ + a)e−iπ/4, we reach

I = lim
Λ→∞

∫ (Λeiθ+a)e−iπ/4

(−Λeiθ+a)e−iπ/4
dx eiπ/4

q−1∑
k=0

e−π(q/p)X2
k−iπ(2νk+pk2/q),

=

∫ ∞
−∞

dx eiπ/4
q−1∑
k=0

e−π(q/p)X2
k−iπ(2νk+pk2/q), (B.6)

where Xk ≡ x+ (ν+ pk/q)e−iπ/4 (k = 0, 1, ..., q− 1). Performing the Gaussian integrals with
respect to x leads to

I = eiπ/4
√
p

q

q−1∑
k=0

e−iπ(2νk+pk2/q). (B.7)
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On the other hand, the residue theorem for the function G(z) gives

∮
dz G(z) = 2πi

[a]+p∑
k=[a]+1

ResG(z)

=

[a]+p∑
k=[a]+1

eiπq(k+ν)2/p, (B.8)

where [x] = max {n ∈ Z |n ≤ x} denotes the floor function. By imposing −1 < a < 0, we
finally obtain ∮

dz G(z) =

p−1∑
k=0

eiπq(k+ν)2/p. (B.9)

Equating (B.9) with (B.7) yields (B.1). This completes the proof.
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