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Naively, resolving the black hole information paradox requires microscopic details about
quantum gravity. Recent work suggests that, instead, a unitary Page curve can be recovered
by adding disorder-averaged replica instantons to the path integral, though their origin is unclear.
In this Letter, we show how replica instantons and disorder averaging emerge naturally in an
effective theory built from typical microscopic states. We relate replica instantons to a moment
expansion of simple operators, and find a microcanonical description in terms of wormholes and
Euclidean black holes.
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Introduction and summary.—Recent progress on the
problem of information loss in black holes [1–3] has
shed light on how semiclassical gravity calculations can
be made consistent with unitarity, independent of micro-
scopic details in the UV. (See [4–7] for related discus-
sion.) The key step is the inclusion of replica instantons
in the semiclassical path integral [8,9]. Replica instan-
tons are Euclidean configurations involving correlations
between several copies of the theory on distinct anti–de
Sitter (AdS) boundaries. A single boundary theory with
fixed couplings seems to lack such correlations, so
gravitational calculations involving connected multiboun-
dary correlators have commonly been interpreted in terms
of an ensemble of theories. The goal of this Letter is to
see how these correlations, and a statistical description
of typical correlation functions, arise within a single
unitary theory.
A statistical description of individual quantum theories

and states is provided by the celebrated eigenstate
thermalization hypothesis (ETH) [10–13]. The basic idea
is that an isolated chaotic system appears thermal when
probed only with simple (macroscopic) operators. There
is still a pure state evolving unitarily in a single quantum
system, but the physics is effectively coarse grained by
the limited questions we can ask about the system.
Specifically, the ETH states that the matrix elements of a

collection of simple operators fOag can be written

hEijOajEji ¼ fðaÞ1 ðEÞδij þ e−S=2fðaÞ2 ðE;ΔEÞRðaÞ
ij ; ð1Þ

for energy eigenstates jEii of a chaotic system. Here, fðaÞ1

and fðaÞ2 determine the mean and variance, respectively, of
matrix elements for nearby eigenstates. In a given theory, the

RðaÞ
ij are a fixed set of O(1) numbers. If we cannot distinguish

specific states, we can effectively replace the matrix elements
by random variables with the correct statistics. Using this
description does not mean that we are working in an
ensemble of theories; instead, we are interested in the
properties of typical states in a single theory.
In this Letter, we argue that the correct objective for the

semiclassical saddle point expansion of effective field
theory is reproducing the correlators of simple operators
in typical microscopic states. These correlators are well
described by the ETH and we can write down effective
partition functions that generate their moments.
We will derive a set of Feynman rules for diagrammati-

cally computing the partition functions for the moments of
correlators. We show that, in holographic theories, the
partition functions may be understood using the gravita-
tional path integral, with higher moments related to the
replica instantons of [8,9]. Assuming chaos in the micro-
canonical ensemble, we find a simple description of higher
moments and replica instantons in terms of familiar
Euclidean black holes connected by “wormholes”.
Ensembles, quantum chaos, and the ETH.—In this

section, we expand on the ETH and its relationship to
low-energy effective field theory. Consider a microscopic
Hilbert space H for a theory with a gravitational descrip-
tion. For concreteness, we work in a conformal field
theory (CFT) with large central charge c. We concentrate
on the subspace of states within some microcanonical
energy window of width δE about energy E, denoted
HE [14]. We will consider sufficiently high energies E
so that the microcanonical Hilbert space has dimension
exp½SðE; δEÞ� ∼OðecÞ. For the remainder of this Letter, we
suppress any dependence on δE.
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In the microscopic theory, we are interested in correlators
and transition amplitudes for simple operators and states
within the window, e.g.,

hψ ijψ ji; hψ ijOajψ ii; hψ ijOajψ ji; � � � ; ð2Þ

for states jψ ii; jψ ji ∈ HE and some collection of simple
operators fOag. We think of the operators as products of
few local operators, each with Δ ∼ Oð1Þ. In the Heisenberg
picture this means we also exclude operators evolved for
too long in time [15].
To design an effective field theory, we must also specify

a distribution over states. This reflects uncertainty in
determining the true microscopic state using our simple
low-energy operators, as well as uncertainty in how the
original microscopic state was produced. Wewill attempt to
build a sensible distribution at the coarsest level.
We take our system to be chaotic. For the purposes of

this Letter, we identify chaos with the absence of conserved
charges measurable by simple operators. Although energy
is conserved, restricting the effective theory to finite-time
operators prevents observers from probing the exact energy
of microstates, since it requires times exponentially large in
the entropy S to measure the energy splittings within the
microcanonical window [16].
Given that we cannot distinguish states within a window,

typical states can be described statistically by drawing at
random fromHE, i.e., applying a Haar-random unitary to a
reference state jψ0i ∈ HE [17]. For typical states
jψ ii; jψ ji ∈ HE, we then expect

hψ ijOajψ ji ¼ fðaÞ1 ðEÞδij þ e−SðEÞ=2fðaÞ2 ðEÞRðaÞ
ij ð3Þ

by the central limit theorem. Here, fðaÞ1 ðEÞ is the average of
an operator’s microcanonical eigenvalues and fðaÞ2 ðEÞ2 its

variance, while RðaÞ
ij has the statistics of a matrix of

independent and identically distributed (iid) random com-
plex numbers with zero mean and unit variance [18].
Our assumption that simple operators cannot distinguish

states in a microcanonical window is a restatement of
the ETH, Eq. (1). There, energy eigenstates look like
typical microcanonical states when probed by simple
operators. Note that in the ETH, the functions fðaÞ2 , and

higher moments fðaÞn , depend on the energy differences
ΔE ¼ Ei − Ej, as well as the average energy E. However, if
our energy window is narrower than the Thouless energy
this dependence disappears [19]. We limit ourselves to this
regime in the following.
The typical behavior of correlators is best revealed by

computing averages over sets of random states
fjψ ii ¼ Uijψ0ig, where we integrate over unitaries, Ui,
on HE using the Haar measure. We indicate such averages
with an overline, h…i. For example,

hψ ijOajψ ji≡
Z

dUidUjhψ0jU†
iOaUjjψ0i: ð4Þ

Our effective theory should describe the statistics of
microcanonical correlators for simple operators, specifi-
cally their averages and higher moments. We will see that
the resulting theory is effectively disorder averaged, and,
for the holographic theories under consideration, the typical
correlators are simply determined by semiclassical gravi-
tational saddles.
Generating functions for mean correlators.—We start

with the simplest case, an effective field theory to calculate
the averaged correlators

hψ ijOajψ ji ¼ δije−StrHE
½Oa� ¼ δijf

ðaÞ
1 ðEÞ: ð5Þ

To summarize those observables, we can write a generating
function for the microcanonical mean values as

Zð1Þ
ij ðE; JaÞ≡

X
a

Jahψ ijOajψ ji

¼ δije−SZð1ÞðE; JaÞ; ð6Þ

where

Zð1ÞðE; JaÞ≡
X
a

JatrHE
½Oa�: ð7Þ

By “generating function,” we mean as usual that derivatives
with respect to sources give expectations:

∂Zð1Þ
ij

∂Ja
����
J¼0

¼ hψ ijOajψ ji: ð8Þ

We implicitly include O0 ¼ I in the sum over a,
with J0 ¼ 1 fixed. We make this choice for all micro-
canonical generating functions in the remainder of this
Letter [20].
Feynman rules for the mean partition function: We now

introduce Feynman rules for computing the mean partition
function. These follow from standard diagrammatics for
unitary integrals (e.g., [21]), but we choose notation more
suited to the case at hand [22]. Below, we extend these rules
to compute higher moments.
A correlator hψ ijOjψ ji is indicated by a vertex, and

associated with a numerical factor e−S:

The outer lines carry indices for the state (i; j; k;…), with
outgoing arrows for bras and ingoing for kets. The inner
lines carry the index structure for the matrix elements inHE
of the inserted operator, with respect to any convenient
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microcanonical basis (m; n;…). The double line has an
associated propagator:

States can be contracted to form a (topological) disk,
with operators traced in order around the internal loop.
Thus, our mean partition function is computed by

The gravitational description: The partition function
for a CFT at finite temperature is prepared by a path
integral on Sd × S1. When a bulk dual exists, the gravita-
tional picture is well known (see, e.g., [24–26]). At high
temperatures, the leading semiclassical saddle to the
gravitational partition function with boundary Sd × S1 is
a Euclidean black hole. One can compute simple bulk
correlation functions in this background, and find that their
boundary limit matches the leading-order thermal CFT
correlation function [26–28].
Note that the canonical picture is not essential to this

story. With a little more effort, one can similarly find
the bulk solution dual to the microcanonical partition
function [29]. As long as the microcanonical width scales
as Oð1Þ < δE < Oðc1=2Þ, for CFT central charge c, the
projection of the bulk gravitational path integral onto a
microcanonical band results in a single semiclassical bulk
geometry. Thus, our Feynman diagram is identified with a
black hole,

where the rhs is a diagrammatic shorthand for the micro-
canonical gravitational path integral computing trHE

½Oa�,
and we evaluate the lhs in the same typical state, i ¼ j,
without summing. The partition functions are equivalent:

Zð1ÞðE; JaÞ ¼ ZGravðE; JaÞ ≈ ZGravðβE; JaÞ: ð9Þ

The first identity is holographic, and the second holds in the
thermodynamic limit.
Generating functions for second moments.—So far, we

have only required that the saddles of our effective field
theory describe the mean microcanonical value of simple
correlation functions. However, physical processes may
probe slightly more fine-grained “mesoscopic” questions
about the CFT, namely the higher moments. The simplest
such quantities are the covariances of the distribution of

RðaÞ
ij . We can extract the covariances from products of the

form

hψ ijOajψ jihψkjObjψ li; ð10Þ

now involving two copies of the theory. Using Haar
averages, one can check (see the Supplemental Material
[30], Appendix A) that

hψ ijOajψ jihψkjObjψ li

¼ δijδkle−2S
�
1 −

δjk
eS þ 1

�
tr½Oa�tr½Ob�

þ δjkδlie−2S
�
1 −

δij
eS þ 1

�
tr½Oa⋆Ob�; ð11Þ

where the traces are over HE. Likewise, the Haar averages
contract operator indices only in HE. We denote this
projected multiplication as Oa⋆Ob ≡OaPEOb.
The first line in the above expression depends only on

mean values of operators. At leading order, it is just the
product of disconnected mean generating functions, though
it receives an e−S correction. The second line is a connected
contribution not derivable from the mean generating
function. Like the first line, it also receives an e−S

correction.
We can therefore write a generating function for the

general second moment as

Zð2Þ
ij;klðE; J1;a; J2;bÞ
≡X

a;b

J1;aJ2;bhψ ijOajψ jihψkjObjψ li

¼ Zð1Þ
ij ðE; J1;aÞZð1Þ

kl ðE; J2;bÞ
�
1 −

δjk
eS þ 1

�

þ δjkδlie−2SZð2ÞðE; J1;a; J2;bÞ
�
1 −

δij
eS þ 1

�
; ð12Þ

where

Zð2ÞðE; J1;a; J2;bÞ≡
X
a;b

J1;aJ2;btr½Oa⋆Ob�: ð13Þ

Feynman rules for the second moment partition func-
tion: With the Feynman rules we introduced to compute
the mean correlator, we can already compute the leading
order contribution on each line of (11):

To compute the subleading terms, we need to introduce
a new vertex which resums to generate the factor of
1=ðeS þ 1Þ and enforces that the state index passing along
the lines it joins are equal. This is achieved by
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whose resummation gives

We thus have Feynman diagrams for the corrections:

The gravitational description: The gravitational descrip-
tion of Zð2Þ requires just a slight elaboration on the case of
Zð1Þ. As before, where the microcanonical partition func-
tion was given at leading order by the microcanonical black
hole saddle, the insertion of another simple operator in the
trace does not shift to another saddle and we can compute
the correlator using the same bulk solution. Since the same
energy runs between both operators, they must be equally
spaced on opposite sides of the circular Euclidean-time
boundary. For further discussion of the placement of
operators on the thermal circle, see the Supplemental
Material [30], Appendix B.
In the canonical language, we have the approximate

identity (in the thermodynamic limit)

trHE
½Oa⋆Ob� ≈ trH½e−βEH=2Oae−βEH=2Ob�: ð14Þ

The symmetric insertion of Euclidean evolution between
each operator approximately projects them all onto the
same microcanonical window, HE, where the sum over
energies localizes. Thus, we can write

Zð2ÞðE; J1.a; J2;bÞ ¼ ZGravðE; J1.a; J2;bÞ
≈ ZGravðβE; Ja; Jð1=2Þb Þ; ð15Þ

where Jð1=2Þb is the source for the operator Obðβ=2Þ ¼
e−βEH=2ObeβEH=2. Our immediate takeaway is that the
Euclidean wormhole needed to compute Zð2Þ is just the
standard wormhole for the microcanonical (or thermal)
black hole.
Furthermore, while we have no direct gravitational

interpretation of the corrections to the leading terms, we
have suggested that they might be thought of as topologi-
cally nontrivial “wormholes” that glue the geometries
together, such as

See [8] for a related discussion of “handles” joining replica
instantons. In Appendix C [30], we work through examples
of the squared partition function and second Rényi entropy.
Higher moments.—We can similarly compute higher

moments of our correlation functions, with details relegated
to Appendix A [30]. In short, to calculate

Yn
m¼1

hψ im jOam jψ jmi ð16Þ

at leading order, we sum over Feynman diagrams showing
how identical states are joined to form traces of the
operators. For example, the fourth moment has a term

To compute the correct normalization, we must resum an
infinite series of contributions from vertices linking the
boundaries. We showed above how to compute the leading
order corrections in terms of vertices that join two
boundaries together. Further corrections take the form of
k-point vertices (see the Supplemental Material [30],
Appendix A 1), with

The gravitational description: Each leading-order term
needed to compute the higher moments is just a product of
microcanonical traces, and will be calculated by the same
gravitational saddles as the microcanonical black hole of
energy E without operator insertions. For each trace with p
operators inserted, we space them equally in order of the
trace around the Euclidean time circle. The canonical
picture is likewise simple. The canonical generating func-
tion for the trace with p operators is just given by

ZGravðβE; fJðm=pÞ
am gp−1m¼0Þ; ð17Þ

where Jðm=pÞ
am sources e−βEHm=pOame

βEHm=p.
As in the case of the second moment, we can view the

subleading corrections to each trace as k-boundary worm-
holes joining the true gravitational geometries together, for
instance
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Again, we have no true gravitational solution dual to these
corrections, but regard it as a heuristic description to
motivate further work.
Discussion.—In [8], statistical averages for traces of

operators were computed using wormholes in a genuine
ensemble of JT gravity theories. We instead perform these
traces with respect to (microcanonically typical) pure states
of a single chaotic theory. As a result, our connected replica
wormholes are just standard microcanonical wormholes
joined by “handles.” Our geometries are related to [8] by
gluing distinct copies seamlessly together via bulk branes:

Other ensembles: We use a different ensemble from [8],
and hence arrive at different bulk geometries. We have
argued that, for a microcanonical window in a chaotic
system, the CUE is the right statistical ensemble for a short-
time observer. Adopting a different notion of typicality will
give corrections to the moments of our distribution, and
require a modified gravitational interpretation (see [31–33]
and references therein).
Moreover, by restricting ourselves to states within a

narrow microcanonical band, we have avoided questions
about the dependence of the moments on energy
differences. Understanding the relevant bulk geometries
for the more general case is of obvious interest.
RG and EFT:Our notion of coarse-graining is different

from the standard Wilsonian RG perspective, where UV
degrees of freedom are “integrated out.” It would be
illuminating to directly relate the integrating out of micro-
scopic splittings at high energy to other approaches to
renormalization and coarse graining [8,34–40].
Finally, we have employed a skeletal notion of EFT,

concentrating on semiclassical bulk saddles rather than the
full gravitational field theory. Relatedly, we have focused
on short-time physics, when states in the Schrödinger
picture have not had time to explore atypical corners of
Hilbert space. Extending our framework in either direction
may reveal connections to previous work on ETH and
gravity at late times [23,26,41–43].
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