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,e types of crude oil for producing asphalt have a decisive influence on various performance measures (including aging re-
sistance and durability) of asphalt. To discriminate and predict the crude oil source of different asphalt samples, a discrimination
model was established using 12 greatly different infrared (IR) characteristic absorption peaks (CAPs) as predictive variables. ,e
model was established based on diverse fingerprint recognition technologies (such as principal component analysis (PCA) and
multivariate logistic regression analysis) by using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-
FTIR). In this way, the crude oil source of different asphalt samples can be effectively discriminated. At first, by using PCA, the 12
CAPs in the IR spectra of asphalt samples were subjected to dimension reduction processing to control the variables of key factors.
Moreover, the scores of various principal components in asphalt samples were calculated. Afterwards, the scores of principal
components were analysed through modelling based on multivariate logistic regression analysis to discriminate and predict the
crude oil source of different asphalt samples. ,e result showed that the logistic regression model shows a favourable goodness of
fit, with the prediction accuracy reaching 93.9% for the crude oil source of asphalt samples.,emethod exhibits some outstanding
advantages (including ease of operation and high accuracy), which is important when controlling the source and quality and
improving the performance of asphalt.

1. Introduction

Asphalt pavements are widely used: as a black binding
material produced from oil, asphalt is widely used as the
binder in asphaltic mixtures [1–3]. Due to the differences in
origins and production modes of crude oil for producing
asphalt, the properties of crude oil exert important influ-
ences on the performance of asphalt mixtures, which also
lead to significant differences in the performance of the
various asphalt produced therewith [4–8].

,e conventional performance of the same grade of
asphalt is very similar; however, different asphalt exhibit
large differences in various aspects, including high- and low-
temperature performance, durability, and fatigue properties,
which are considered as external expressions of chemical
composition, molecular structure, and transformation of

asphalt [9–11]. Furthermore, the study shows that the dif-
ferences in the composition and structure of asphalt mainly
depend on the source of crude oil and refining process of
asphalt production. Due to the differences in the geological
structure, oil generation conditions, and age, the nature and
composition of crude oil in different regions are very dif-
ferent. However, crude oil with similar properties and
composition in the same region has similar processing,
storage, and transportation options. At the same time, most
of the petroleum asphalt is produced by distillation cur-
rently, and the molecules in the asphalt retain their original
state in the crude oil.,erefore, most of the composition and
structure of asphalt are inherited from crude oil; that is to
say, the structural performance of asphalt mainly depends
on the source of crude oil. Because the asphalt is produced by
different types of crude oil, the physical and chemical
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composition information about asphalt is unique. Just like
the human fingerprint information, these components
which can express the unique structure of asphalt can be
called the “oil fingerprint” of asphalt. It is because of the
uniqueness of “oil fingerprint” information of asphalt that it
is feasible to discriminate the oil fingerprints of asphalt from
different crude oil sources [12–16].

At present, as the composition and structure of asphalt
are extremely complex, the characterization of its structure
requires more high-resolution and high-throughput analysis
means and equipment, so there are few reports on the
identification and analysis of asphalt oil fingerprints [17].
However, the identification and analysis of marine oil spill
fingerprints has always been an issue of widespread concern.
Similar to the method and purpose of identifying “oil fin-
gerprints” of oil spills at sea, the purpose of recognising oil
fingerprints of asphalt is to attain oil fingerprint information
of asphalt through different methods such as physical,
chemical, and biological methods [18]. Moreover, by ap-
plying multivariate statistical methods (including principal
component analysis (PCA) and regression analysis), the
chemical composition variables of oil fingerprints are
summarised, classified, and discriminated [19, 20]. On this
basis, qualitative and quantitative relationships between data
are obtained to distinguish the crude oil source of asphalt,
thus effectively controlling their qualities. Meanwhile, some
testing methods used in the “oil fingerprint” identification of
marine oil spills have been successfully used to analyse the
composition and structure of asphalt [21–23]. For example, a
gas chromatograph-mass spectrometer (GC-MS) was used
to explore the chemical compositions of smoke released by
asphalt materials during heating [24, 25]. Gel permeation
chromatography (GPC) and thin-layer chromatography
(TLC) were used to measure the molecular weights and the
composition distributions of asphalt [26–28]. Nuclear
magnetic resonance (NMR) and Fourier transform infrared
spectroscopy (FTIR) were used to investigate the compo-
sitions, structures, and functional groups of asphalt [29, 30].
In all analytical techniques, compared with other methods
(including GC-MS and NMR), which generally show some
disadvantages (including high cost, damage to samples, and
being laborious and time consuming during analysis), in-
frared (IR) spectroscopy is themost widely used technique in
investigating asphalt materials. ,e reason is that IR spec-
troscopy shows many outstanding advantages, including
being label-free, rapid, nondestructive, and low-cost, with
simple sample preparation [31–33]; however, in the above
analysis, the chemical structures of asphalt are qualitatively
analysed, mainly aiming at those of a certain or multiple
specific asphalt samples while lacking quantitative research
into the types of asphalt. ,e research into discrimination of
the types of asphalt, tracing of the production area, and
quality control of asphalt has not yet been reported.

,erefore, by utilising attenuated total reflectance-
Fourier transform infrared spectroscopy (ATR-FTIR), the
characteristic functional groups of asphalt from different
crude oil source were discriminated and quantitatively
analysed. Based on multivariate statistics, PCA and logistic
regression analysis were conducted on IR spectral data to

establish a discriminant function. An accurate, nonde-
structive, stable method of discriminating the crude oil
source of asphalt samples was explored, which provides a
scientific basis for realising reasonable selection, supervision
quality, and guaranteed origins of asphalt.

2. Experimental Raw Materials and Methods

2.1. Experimental Materials. During the experiment, 33
asphalt samples were purchased from factories in China for
producing asphalt. Before being applied, the asphalt samples
were sealed in original oxygen-free containers at 5°C to
prevent the samples from being oxidised. Additionally, all
asphalt samples were unprocessed before use. As mentioned
in Section 1, the differences in the “oil fingerprint” of asphalt
are determined by the crude oil from which it is produced.
Due to the same geological structure, oil generation con-
ditions, and age in the same region, the composition and
chemical structure of crude oil are also very similar.
,erefore, the “oil fingerprints” of asphalt produced by
crude oil from the same region are very similar, such as
crude oil from the Middle East Gulf region, including Saudi
Arabia, Iran, Kuwait, Iraq, and United Arab Emirates, crude
oil from South America, including Marry, Poscan, Maya,
and Castilla, and crude oil from the Bohai Rim region of
China, such as Bohai Bay, Huanxiling, and Caofeidian. ,e
crude oil of 33 asphalt samples came from the above three
regions. According to the names of the three regions, the
crude oil source of asphalt is divided into three categories:
Middle East, South America, and the Bohai Rim region of
China. ,e basic performance measures (penetration ratio
(ASTM D5), ductility ratio (ASTM D113), and softening
point (ASTM D36)) of asphalt and the crude oil source of
asphalt are listed in Table 1. It is worth noting that the last
digit of the asphalt number listed in Table 1 represents
different sampling batches of the same asphalt.

2.2. FTIR Analysis. ,rough ATR-FTIR (using a Cary 630
FTIR microscope), the IR spectra of asphalt samples were
explored. Within the range of 400–4,000 cm−1, 64 scans were
conducted, each at a resolution of 1 cm−1. ,e samples were
placed on the horizontal ATR crystal made of zinc selenide,
being subjected to multiple reflections. After each operation,
the ATR crystal was cleaned using acetone.

,e original spectrum data were first subjected to
baseline correction by applying the OMNIC software to
eliminate baseline effects. Afterwards, based on the stand-
ardised variation diagram of preprocessed spectrum data,
the difference in masses of different samples was eliminated.

2.3. Multivariate Statistical Analysis. ,rough the combi-
nation of principal component analysis (PCA) and multiple
logistic regression analysis, the infrared spectrum data are
analysed to establish the discrimination model of the crude
oil source of asphalt. Logistic regression analysis is a mul-
tivariate analysis method to analyse and predict attribute-
dependent variables based on single or multiple continuous
or attribute-independent variables. Furthermore, each

2 Advances in Materials Science and Engineering



variable is required to be independent of each other in
variable screening and parameter estimation. In many
studies, there is a certain degree of linear dependence be-
tween their variables, which is called multicollinearity. ,is
multiple collinear relationshipmay increase themean square
error and standard error of the estimated parameters, which
leads to the instability of the analysis results of the logistic
regression model. ,e main reason for the problem of
multicollinearity is the overlap of information. However,
PCA can reduce the repeatability of information and achieve
the purpose of eliminating multicollinearity by extracting
independent principal components from explanatory
variables.

For this reason, this study used a multinomial logistic
regression model based on PCA to improve the discrimi-
nation accuracy of the model. First of all, the PCA was used
to reduce the dimension of the CAPs variables of the infrared

spectrum, so that the variables with strong correlation were
integrated into the same principal components. ,e prin-
cipal components were independent of each other; thus, the
multiple collinear relationship between variables was
eliminated. ,en, by using these principal components as
independent variables, the discriminant model of crude oil
source of asphalt was obtained by logistic regression analysis.

2.3.1. PCA Analysis. PCA refers to a simplification of
multidimensional data to several relevant variables (prin-
cipal components) through a dimension reduction ap-
proach. Each principal component reflects most of the
information of original variables, and the contained infor-
mation is not repeated. PCA can compress countless in-
formation and simplify complex problems [34]. ,e
modelling process of PCA is as follows:

Table 1: Basic properties and crude oil source of asphalt.

Asphalt
number

Asphalt
name1

Penetration
(0.1mm)

Ductility (cm,
10°C)

Softening point
(°C) Source Category

1 MM-1 79.6 65.7 47.3 Middle East (Saudi Arabia) 1
2 Q-1 75.4 >100 46.5 South America (Marry & Poscan) 2
3 SK (BY)-1 69.7 52.2 46.9 Middle East (Saudi Arabia) 1
4 Q-2 61.5 39.0 48.5 South America (Marry & Poscan) 2
5 SL-1 63.4 47.5 47.0 Middle East (Saudi Arabia) 1
6 CMR-1 67.5 >100 47.2 South America (Marry) 2
7 LH-1 76.6 >100 45.6 South America (Marry & Poscan) 2
8 QPK-1 61.8 >100 46.8 Middle East (Iran) 1
9 MM-2 61.1 16.0 49.6 Middle East (Saudi Arabia) 1
10 QP-1 68.9 33.2 48.7 Middle East (Kuwait) 1
11 JB-1 67.3 74.0 47.5 South America (Marry & Poscan) 2
12 SK (XY)-1 71.5 47.9 47.2 Middle east (Saudi Arabia) 1
13 ZH-1 67.4 13.5 48.1 South America (Maya & Castilla) 2
14 JL-1 64.2 35.6 48.2 Middle East (Kuwait) 1
15 HR-1 63.2 85.2 48.6 South America (Marry & Poscan) 2
16 AS-1 62.1 84.3 47.4 Middle East (Saudi Arabia) 1
17 XT-1 62.7 23.9 48.8 Middle East (Saudi Arabia) 1
18 ZH-2 64.0 >100 50.1 South America (Maya& Castilla) 2
19 LH-2 69.0 >100 47.0 South America (Marry & Poscan) 2
20 QL-1 64.0 21.3 50.0 Middle east (Kuwait) 1

21 KL-1 79.8 >100 47.2 Bohai Rim region of China (Bohai
Bay) 3

22 KL-2 61.0 57.8 49.5 Bohai Rim region of China (Bohai
Bay) 3

23 SL-2 65.0 30.0 49.2 Middle East (Saudi Arabia) 1
24 SK (NB)-1 71.0 47.9 48.4 Middle East (Saudi Arabia) 1
25 Q-3 75.0 >100 47.3 South America (Marry & Poscan) 2

26 DSZ-1 69.0 >100 50.0 Bohai Rim region of China
(Huanxiling) 3

27 CMR-2 68.2 >100 47.9 South America (Marry) 2
28 JB-2 64.6 74.0 46.3 South America (Marry & Poscan) 2
29 ZH-3 63.5 >100 51.2 South America (Maya & Castilla) 2
30 LH-3 68.7 >100 47.9 South America (Marry & Poscan) 2

31 DSZ-2 78.4 >100 48.6 Bohai Rim region of China
(Huanxiling) 3

32 SZ-1 61.9 57.8 49.3 Bohai Rim region of China (Bohai
Bay) 3

33 SZ-2 68.0 >100 50.9 Bohai Rim region of China (Bohai
Bay) 3

1In this column, 1, 2, and 3 indicate the different sampling batches of the same asphalt.
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(1) Calculation of the correlation coefficient matrix:

R �

r11 r12 · · · r1p

r21 r22 · · · r2p

⋮ ⋮ ⋮

rp1 rp2 · · · rpp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where rij(i, j � 1, 2, . . . , p) refers to the correlation
coefficient of original variables Xi and Xj, rij � rji,
which can be calculated by using the following formula:

rij �
􏽐

n
k�1 Xki − Xi( 􏼁 Xkj − Xj􏼐 􏼑

�����������������������������

􏽐
n
k�1 Xki − Xi( 􏼁

2
􏽐

n
k�1 Xkj − Xj􏼐 􏼑

2
􏽱 . (2)

(2) Calculating eigenvalues and eigenvectors:
,e characteristic equation |λI − R| � 0 was solved.
Generally, the eigenvalues were calculated by using
the Jacobi method and, in descending order are
λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0. ,e eigenvectors ei(i � 1, 2,

. . . , p) corresponding to eigenvalue λ1 were sepa-
rately calculated, satisfying ‖ei‖ � 1, that is,
􏽐

p

j�1 e2ij � 1, where eij denotes the jth component of
vector ei.

(3) Calculating contribution and cumulative contribu-
tion of principal components:

contribution :
λi

􏽐
p

k�1 λk

, (i � 1, 2, . . . , p),

(3)

cumulative contribution :
􏽐

i
k�1 λk

􏽐
p

k�1 λk

, (i � 1, 2, . . . , p).

(4)

In general, the eigenvalues with the cumulative
contribution not lower than 70% are taken.
λ1, λ2, . . . , λm are the corresponding first, second, . . .,
mth (m≤p) principal components.

(4) Calculating the loads of principal components:

lij � p Zi, Xj􏼐 􏼑 �
����
λieij

􏽱
. (i � 1, 2, . . . , p). (5)

(5) Scores of various principal components:

Z �

z11 z12 · · · z1m

z21 z22 · · · z2m

⋮ ⋮ ⋮

zn1 zn2 · · · znm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

2.3.2. Logistic Regression Analysis. Logistic regression is a
multivariate analysis method for investigating the rela-
tionship between binominal or multinomial observation
results (dependent variable) and influencing factors (inde-
pendent variable), belonging to probabilistic nonlinear re-
gression methods. ,e logistic regression when the

dependent variable only shows two or more states belongs to
binomial logistic regression and multinomial logistic re-
gression, respectively [35, 36]. For discriminating and
classifying the crude oil of asphalt, multinomial logistic
regression is applied to conduct data analysis, owing to the
crude oil of asphalt being sourced from the Bohai Rim region
of China, South America, and the Middle East.

(1) Model fitting:
For multinomial logistic regression, a certain level of
dependent variables is defined as the reference level
herein. Compared with the other levels, i-1 (i refers
to the number of dependent variables) generalised
logistic regression models were fitted. By taking
three-level dependent variables as an example, it is
supposed that the values of dependent variables are 1,
2, and 3: the probabilities corresponding to the values
are π1, π2, and π3, respectively. Based on m-inde-
pendent variables, two models are fitted as follows:

logit
π1

π3
� α1 + β11X1 + β12X2 + . . . + β1mXm, (7)

logit
π2

π3
� α2 + β21X1 + β22X2 + . . . + β2mXm. (8)

(2) Meaning of regression parameters:
For multinomial logistic regression, each indepen-
dent variable contains (m − 1) parameters. ,e pa-
rameter β1m represents an independent variable xm

that changes one unit on the premise that other
independent variables remain unchanged, and it
reflects the variation of the log-odds ratio (OR) of
class i. ,e OR is subjected to logarithmic trans-
formation to obtain the linear mode (ln(pi/1 − pi) �

β0 + β1X1 + β2X2 + . . . + βnXn) of the logistic re-
gression model.

3. Results and Discussion

3.1. Establishment of Discrimination Indices for Crude Oil
Source of Asphalt. FTIR is an important means of iden-
tifying organic compounds. When irradiating organics
using the IR light, the molecules absorb the IR light
leading to vibrational energy level transition, and dif-
ferent chemical bonds or functional groups show diverse
absorption frequencies. ,e contents of various mate-
rials are reflected in their IR absorption spectra, which
can be quantitatively analysed according to peak location
and absorption intensity. ,e structural composition of
asphalt is complex, and asphalt shows significant dif-
ferences in behaviour. For these reasons, it fails to ef-
fectively characterize the difference of behaviours of
asphalt from different crude oil only by quantitatively
comparing the peak areas of IR spectrograms. ,erefore,
by observing the shapes and locations of IR spectro-
grams, 12 significant characteristic absorption peaks
(CAPs) were selected to analyse the transmittances of
absorption peaks.
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,e IR absorption spectra of 33 asphalt samples are
similar. By using the mean value method, the mutual
mode of the IR spectrogram of all asphalt samples was
constructed (Figure 1): the assignments of 12 character-
istics peaks are as follows: the strong absorption peaks
around 2850 cm−1 and 2920 cm−1 are triggered by the
stretching vibration of CH2, and a very weak absorption
peak around 1700 cm−1 is induced by the stretching vi-
bration of C�O. Moreover, the vibration of the benzene
ring leads to the absorption peak in the vicinity of
1600 cm−1, and the absorption peaks at 1380 cm−1 and
1460 cm−1 are caused by the bending vibration of CH3.,e
fingerprint region appears below 1300 cm−1, in which the
absorption peaks at 1166 cm−1 and 1032 cm−1 are trig-
gered by the stretching vibrations of C�S and S�O, re-
spectively.,e stretching vibration of CH results in a weak
absorption peak around 969 cm−1, while the absorption
peaks at 872 cm−1 and 812 cm−1 are induced by vibrations
of an isolated hydrogen and two adjacent hydrogen atoms
on the benzene ring, respectively. Additionally, the ab-
sorption peak at 723 cm−1 is also caused by the stretching
vibration of CH2.

3.2. Analysis of Predictive Variables Based on Descriptive
Statistics. ,e IR spectra of all asphalt samples are similar,
and it is difficult to distinguish the differences among asphalt
samples by comparing spectrograms alone. Hence, 12 sig-
nificantly different CAPs were selected from the spectro-
grams to describe the transmittances of absorption peaks
based on descriptive statistics. From two aspects of cen-
tralised location (including indices such as average and
median) and degree of dispersion (including indices such as
extreme value), the samples are described so as to reflect
spectrographic data (Table 2).

In Table 2, according to the analysis result of descriptive
statistics on the transmittances of 12 CAPs, it can be seen
that the asphalt produced by crude oil from the Bohai Rim
region of China showed a larger transmittance. By contrast,
the transmittances of asphalt produced by crude oil from the
Middle East and South America were consistently low.
However, it is impossible to distinguish the oil source of
asphalt based on the descriptive statistics of infrared spectral
transmittance of asphalt. ,erefore, it is necessary to in-
troduce multivariate statistical analysis methods, such as
multinomial logistic regression analysis based on PCA de-
scribed in Section 2.3.

3.3. Correlation Analysis of Predictive Variables.
Correlation analysis aims to explore the correlation among
multiple variables, which is also an important parameter for
evaluating the fingerprint variables of asphalt [37]. In order
to further evaluate whether the selected 12 variables were of
sufficient significance to the prediction model, a correlation
analysis of the 12 CAP variables was required. Generally,
correlation analysis is conducted by applying Pearson and
Spearman correlation coefficients. ,e Pearson correlation

coefficient is generally applicable to data satisfying a normal
distribution, and the Spearman correlation coefficient is
employed for data that do not satisfy a normal distribution.
,erefore, before the correlation test, it is necessary to test
the normal distribution of 12 variables to determine the
appropriate correlation test method.

By using the skewness-kurtosis test method, whether
the transmittances of the 12 CAPs of 33 asphalt samples
conform to a normal distribution was assessed, and
through the K-S test as an auxiliary analysis method, the
accuracy of the test results was ensured [38, 39]. ,e 12
variables were processed by importing them into SPSS19
(Tables 3 and 4).

It can be seen from Table 3 that the values of skewness
and kurtosis of transmittances of the 12 CAPs of all asphalt
samples produced by three origins of oil fluctuate within a
certain small positive and negative range around zero. It can
be further seen from Table 4 that the asymptotic signifi-
cances of the 12 variables all exceed 0.05. Moreover, based on
the result of the skewness-kurtosis test, it can be considered
that the 12 variables of 33 asphalt samples all conform to a
normal distribution, which provides a basis for determining
the method for testing correlation among variables.
,erefore, the Pearson correlation coefficient is used to
analyse the correlation between variables (Table 5).

As shown in Table 5, the IR CAP at 2850 cm−1 showed a
significant correlation with those at 2920, 1460, and
723 cm−1, respectively. Additionally, there are significant
correlations between each IR CAP at 1700, 1600, 1460, 1380,
1166, 1032, 969, 872, 812, and 723 cm−1. Moreover, multiple
CAPs exhibited a high correlation. ,e aforementioned
CAPs with high correlation covered all 12 CAPs. ,is
showed that the 12 selected CAPs contained most of the
fingerprint information about the asphalt, thus providing a
basis for selecting variables capable of discriminating the
different crude oil sources of asphalt.
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Figure 1: ,e common mode of infrared fingerprints of the
asphalt.
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3.4. Establishment of Logistic Regression and Discriminant
Model Based on PCA

3.4.1. PCA on All Variables. According to the correlation
analysis of variables, it can be seen that the information
contained in the 12 CAPs shows a certain repeatability. PCA
not only can remove repeated information but can retain key
information, thus realising dimension reduction. Further-
more, it makes the modelling for logistic regression and
discrimination more reliable due to reducing the distur-
bance caused by accidental factors.

,e transmittances of the 12 CAPs of 33 asphalt samples
are input into the SPSS19 software for PCA. ,e results are
displayed in Table 6 and Figure 2. As shown in Table 6, there

Table 2: Descriptive statistics analysis of the 12 CAPs.

Statistical indicators Oil source Average value Median value Maximum value Minimum value

2920–1
Middle East 52.10 51.62 55.46 49.83

South America 55.85 54.20 61.02 53.29
Bohai Rim region of China 54.39 53.29 56.64 53.23

2850–1
Middle East 59.82 59.51 63.60 58.43

South America 63.26 62.39 67.38 60.74
Bohai Rim region of China 62.97 62.36 64.88 61.69

1700–1
Middle East 91.07 91.14 91.96 89.28

South America 91.46 91.50 92.29 90.83
Bohai Rim region of China 92.92 92.41 94.06 92.29

1600–1
Middle East 87.31 87.37 88.25 85.10

South America 87.67 87.49 88.74 87.20
Bohai Rim region of China 90.66 90.26 91.63 90.08

1460–1
Middle East 68.71 68.64 70.10 67.64

South America 69.81 69.81 71.68 68.27
Bohai Rim region of China 72.03 72.18 72.24 71.67

1380–1
Middle East 75.51 75.48 76.95 74.08

South America 76.11 76.12 77.26 74.77
Bohai Rim region of China 78.51 78.50 78.96 78.07

1166–1
Middle East 85.26 85.41 86.33 83.43

South America 85.88 85.91 86.84 84.65
Bohai Rim region of China 89.48 89.10 90.25 89.08

1032–1
Middle East 84.37 84.49 86.35 82.29

South America 85.78 86.30 86.80 82.57
Bohai Rim region of China 90.10 89.81 90.68 89.81

969–1
Middle East 86.53 86.72 87.73 84.97

South America 87.28 87.22 88.10 85.98
Bohai Rim region of China 90.33 90.15 90.69 90.14

872–1
Middle East 83.74 83.93 84.64 81.00

South America 84.86 84.67 86.09 83.79
Bohai Rim region of China 88.97 88.53 89.86 88.50

812–1
Middle East 80.73 81.12 81.85 77.23

South America 82.70 82.79 83.88 80.40
Bohai Rim region of China 88.63 88.24 89.43 88.21

723–1
Middle East 78.18 78.14 80.74 76.17

South America 81.32 81.38 82.70 78.25
Bohai Rim region of China 85.61 84.90 87.15 84.78

Table 3: ,e skewness-kurtosis test of the 12 CAPs.

Statistical indicators (cm−1) Skewness Kurtosis
2920 1.123 1.279
2850 0.797 0.130
1700 0.713 1.241
1600 1.120 1.379
1460 0.509 −1.149
1380 0.509 −0.728
1166 1.129 0.600
1032 0.737 −0.213
969 0.926 0.074
872 1.052 0.735
812 0.975 0.245
723 0.651 0.459
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are three principal components whose eigenvalues exceed
one.,e first, second, and third principal components explain
77.658%, 15.498%, and 3.508% of the nature of the original
variables, respectively. ,e cumulative variance contribution
of the three principal components is 96.664% (research shows
that there is a high explanation rate when the cumulative
contribution is higher than 70%). It can be seen from the scree

plot (Figure 2) that the broken lines of the first three principal
components are steep while later tending to become shal-
lower. ,is further indicates that it is appropriate to extract
the three principal components (PCA1, PCA2, and PCA3).
According to the correlation coefficients between the prin-
cipal component and the original variables, the principal
componentsY1,Y2, andY3 are separately expressed as follows:

Y1 � 0.035x1 + 0.055x2 + 0.095x3 + 0.103x4 + 0.098x5 + 0.097x6 + 0.104x7 + 0.100x8 + 0.104x9
+ 0.106x10 + 0.106x11 + 0.102x12,

(9)

Y2 � 0.503x1 + 0.449x2 − 0.088x3 − 0.056x4 + 0.128x5 − 0.001x6 − 0.115x7 − 0.138x8 − 0.120x9

− 0.042x10 − 0.049x11 + 0.069x12,
(10)

Y3 � −0.025x1 + 0.393x2 + 0.527x3 + 0.049x4 − 0.781x5 − 0.997x6 + 0.004x7 + 0.305x8 − 0.025x9

+ 0.129x10 + 0.069x11 + 0.471x12,
(11)

where x1, x2, . . . , x12 represent the transmittances of CAPs
at 2920, 2850, 1700, 1600, 1460, 1380, 1166, 1032, 969, 872,
812, and 723 cm−1, respectively.

3.4.2. :e Process and Result of Multinomial Logistic
Analysis. By substituting the transmittances of the 12 CAPs
of 33 asphalt samples into formulae (9–11), the scores of the

Table 6: Result of principal component analysis.

Number of principal components Eigenvalue Variance contribution (%) Cumulative variance contribution (%)
1 9.319 77.658 77.658
2 1.860 15.498 93.156
3 1.017 3.508 96.664
4 0.255 2.123 98.787
5 0.081 0.677 99.464
6 0.031 0.256 99.720
7 0.019 0.159 99.879
8 0.006 0.051 99.931
9 0.004 0.033 99.964
10 0.003 0.021 99.985
11 0.002 0.013 99.998
12 0.000 0.002 100.000
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Figure 2: Analysis of the scree plot of principal components.
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three principal components can be calculated (Table 7).
Moreover, the scores of the principal components are taken
as factors, and three kinds of origins of asphalt are con-
sidered as dependent variables. Among them, the crude oil
from the Bohai Rim region of China is regarded as a ref-
erence group to establish a multinomial logistic regression

model based on principal components. On this basis, the
parameters of the three principal components used for the
logistic regression model are obtained.

Based on the parameter from regression, the logistic
regression model can be obtained as follows:

logitp1 � 17.130 − 40.988Y1 + 5.758Y2 − 1.788Y3,

logitp2 � 22.543 − 21.163Y1 + 9.509Y2 + 0.024Y3,

logitp3 � 0(reference group),

(12)

where p1, p2, andp 3 refer to the probabilities of crude oil
sources (the Middle East, South America, and Bohai Rim
region of China) of asphalt and Y1, Y2, and Y3 denote the
first, second, and third principal components, respectively.

By substituting expressions (9), (10), and (11) into ex-
pression (12), the expression (formula (13)) for

characterising the relationship between the logistic regres-
sion model and the 12 variables can be acquired. During
discrimination and prediction, the probabilities of crude oil
sources of asphalt can be separately acquired by substituting
the transmittances of the 12 CAPs of the asphalt. ,e
maximum probability corresponds to the predicted origin:

Table 7: ,e scores of each principal component.

Asphalt number Asphalt name2 PCA1 PCA2 PCA3
1 MM-1 −0.446 −0.840 −0.024
2 Q-1 −0.537 0.876 1.484
3 SK (BY)-1 −0.870 −0.225 −0.392
4 Q-2 −0.383 0.118 −1.233
5 SL-1 −0.986 0.240 −0.471
6 CMR-1 −1.796 0.963 −0.386
7 LH-1 −0.865 −1.151 0.438
8 QPK-1 −0.123 −0.995 −0.555
9 MM-2 −1.042 −0.455 −0.089
10 QP-1 −0.593 −1.212 −0.046
11 JB-1 −0.742 −1.037 −0.711
12 SK (XY)-1 −1.152 −0.335 0.338
13 ZH-1 −0.470 −0.919 −0.641
14 JL-1 −0.113 −0.717 −1.306
15 HR-1 −0.523 −0.757 0.423
16 AS-1 −0.316 −0.098 1.739
17 XT-1 −0.268 0.156 2.187
18 ZH-2 0.418 2.666 −0.827
19 LH-2 −0.434 2.149 −1.062
20 QL-1 −0.451 0.336 0.688
21 KL-1 0.175 −0.225 −0.545
22 KL-2 −0.153 0.221 0.312
23 SL-2 0.627 1.081 0.147
24 SK (NB)-1 −0.268 0.156 2.187
25 Q-3 0.418 2.666 −0.827
26 DSZ-1 0.175 −0.225 −0.545
27 CMR-2 −0.153 0.221 0.312
28 JB-2 1.536 −0.789 −0.679
29 ZH-3 1.626 −0.611 −1.122
30 LH-3 2.273 0.072 1.503
31 DSZ-2 1.536 −0.789 −0.679
32 SZ-1 1.626 −0.611 −1.122
33 SZ-2 2.273 0.072 1.503
2In this column, 1, 2, and 3 indicate the different sampling batches of the same asphalt.
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logitp1 � 17.130 + 1.506x1 − 0.372x2 − 5.343x3 − 4.632x4 − 1.883x5 − 2.199x6

− 4.932x7 − 5.439x8 − 4.909x9 − 4.817x10 − 4.750x11 − 4.626x12,

logitp2 � 22.543 + 4.042x1 + 3.115x2 − 2.835x3 − 2.711x4 − 0.876x5 − 2.086x6

− 3.294x7 − 3.421 − 3.343x9 − 2.640x10 − 2.708x11 − 1.491x12,

logitp3 � 0(reference group).

(13)

Additionally, to validate whether the model shows ade-
quate practical meaning, it is necessary to test the goodness of
fit, pseudo R-squared, and likelihood ratio of the model. ,e
tests (including the Pearson chi-square test and the deviance
chi-square test) of goodness of fit can test whether the model
fits the original data, or not. If the significance level exceeds
0.05, the fitting effect is favourable.,e pseudoR-squared value
can verify the degree of explanation offered by the model for
information contained in its original variables, which is shown
in Cox, Nagelkerke and McFadden pseudo R-squared values.
,e closer the result is to 1, the better the explanation. ,e
likelihood ratio test measures the contribution of original
variables to the model. If the significance level is lower than
0.05, the contribution of original variables is high.

According to the test result (Table 8) obtained through
use of the logistic regression model, the goodness of fit,
pseudo R-squared, and likelihood ratio of the model all
satisfy test requirements. ,is indicates that the extracted
principal components PCA1, PCA2, and PCA3 also retain
key information about the data while effectively realising
dimension reduction, which makes a significant contribu-
tion to the construction of the logistic regression model. ,e
final result obtained through model regression is also
meaningful.

3.4.3. Validation of Discriminatory Effect of the Model.
By taking IR CAPs of 33 original asphalt samples as veri-
fication samples, the discrimination effect obtained through

the multinomial logistic regression model in multivariate
statistical analysis was evaluated by applying formula (13).
,e discrimination result of multinomial logistic regression
in multivariate statistical analysis is shown in Table 9.

As shown in Table 9, discrimination accuracies of 15, 12,
and six asphalt samples separately produced by crude oil
sourced from the Middle East, South America, and Bohai
Rim region of China are 93.3%, 91.7%, and 100%, respec-
tively. ,e comprehensive discrimination accuracy is 93.9%.
,e above result showed that multivariate logistic regression
analysis based on PCA can rapidly discriminate the origins
of asphalt.

4. Conclusions

Based on ATR-FTIR technology, the infrared spectra of 33
kinds of asphalt produced by crude oil from the Middle East,
South America, and Bohai Rim region of China were col-
lected. Furthermore, the 12 selected CAPs of infrared spectra
were analysed by multivariate statistics. ,e comprehensive
accuracy of the logistic regression model based on PCA in
discriminating asphalt, which were produced by crude oil
from three different regions reached 93.9%. ,e results
indicated that the combination of ATR-IR spectral analysis
and multivariate statistics can accurately and nondestruc-
tively discriminate between different crude oil source of
asphalt. Moreover, the method shows some remarkable
advantages, including ease of operation, rapidity, and high

Table 8: ,e test of the logistic regression model.

Test of goodness of fit
Coefficient Chi-square Significance level
Pearson 5.502 1
Deviance 6.078 1

Test of pseudo R-squared Cox and Snell Nagelkerke McFadden
0.849 0.971 0.971

Test of likelihood ratio

Parameter Chi-square Significance level
B 13.521 0.001
F1 47.335 0.000
F2 8.554 0.014
F3 3.389 0.042

Table 9: ,e discrimination result of multinomial logistic regression.

Observed value
Predicted value

Middle East South America Bohai Rim region of China Discrimination accuracy (%)
Middle East 14 1 0 93.3
South America 1 11 0 91.7
Bohai Rim region of China 0 0 6 100.0
Percentage (%) 45.5 36.4 18.2 93.9
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accuracy, which is important when controlling the origins
and quality of asphalt and improving the performance
thereof.

,e method provided in this paper is suitable for the oil
source identification of base asphalt produced by crude oil
from different regions and can also provide reference for
other kinds of asphalt, such as polymer-modified asphalt.
However, the accuracy and applicability of this method need
to be further improved. In particular, whether the asphalt
produced by crude oil mixing from different regions can be
effectively identified needs further research.
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