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Abstract: This paper presents an efficient method of estimation of rotor cage temperature for induction
machine design, applied for electric and hybrid vehicles. This factor influences the torque produced
by the induction machine with a field-oriented control algorithm. Equipping sensors to measure
the temperature of a rotation component is expensive and is not representative of mass production.
The approach of estimation of rotor cage temperature is based on the good knowledge of motor
parameters and the estimation of the flux of the machine. For an accuracy inductance taking account
of the saturation, the no-load test can be performed. The machine flux will be estimated taking
account of the voltage drop of the system on the test-bench. The rapid prototyping in a real-time
motor control platform will be presented that integrates this estimator of rotor temperature. We finally
show the experimental testing results compared to the measurement of the rotor cage on a prototype
asynchronous low-cost motor designing for battery electric city cars.

Keywords: battery electric vehicle; hybrid electric vehicle; rotor temperature; estimator; induction
machine design; rapid prototyping; experimental prototype testing

1. Introduction

In the recent 10 years, the development and commercialization of electric vehicles have been
dramatic. The battery, the main cost of electric vehicles has seen a significant reduction of its price.
In 2018, the global stock of passenger electric cars including BEV (battery electric vehicle) and PHEV
(plug-in hybrid electric vehicle) surpassed five million vehicles worldwide after exceeding the one
million thresholds in 2015 [1]. Every manufacturer proposes electric vehicles in its product portfolio.
Many electric and hybrid vehicle motors currently on the market use permanent magnet synchronous
machine (PMSM) like Toyota Prius, Nissan Leaf, Tesla Model 3, BMW i3, or externally excited
synchronous motor (EESM) like Renault Fluence, Zoé and others integrate induction machines (IM)
like Cadillac CT6, Tesla Model S, X, Y, Renault Twizy, Mercedes-Benz EQC, Audi Q6 [1–3]. Because of
a severe pollution problem, in Europe, several cities have begun planning to forbid internal combustion
engine (ICE) cars [1] in the coming years such as Paris, London, Oxford, Oslo, Hamburg, etc.

The induction motor (IM) is well-known for its low-cost, reliability and simple manufacturing
compared to the synchronous machines like permanent magnet synchronous machine (PMSM) and
electrically excited synchronous machine (EESM) in traction applications [1–10]. The lower efficiency
and power per volume of the rotor aluminum die-casting cage IM, compared to EESM and PMSM
technologies [5–11], can be solved using copper cage [12,13] and water or oil cooling system [3,4,14,15].
Nevertheless, the torque accuracy of the rotor cage induction machine depends on the rotor temperature,
particularly for electric vehicles that request a large torque-speed range. In terms of derating mode in
the control system, the winding stator can be protected by silicon temperature sensors directly installed
in manufacturing. The rotor is also needed to be protected in order to avoid the demagnetization of
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the magnet (PMSM) or breakage of the rings and the rotor cage bars (IM) when operating at high
temperature and speed. However, the measurement of the temperature of the rotation rotor will require
a huge cost that is not representative of mass production. Several studies have been conducted on the
estimation of rotor temperatures and cascading motor parameters method [16]. This method needs
only the stator resistance but limited for small- and medium-sized industrial applications, establishing
a mathematical high-frequency (HF) model for rotor bar [17], using superheterodyne receivers [18]
or measuring the reactive power [19]. However, the validations with these proposed methods were
realized only compared to the stator temperatures at low-speed operations; no experiments with
measurement of rotor temperature were achieved.

This research work focuses on the direct estimator of the rotor temperature of an induction machine
designing traction motor for a city battery electric vehicle (BEV). In the first section, the dynamic model
of the induction machine, the indirect flux-oriented control algorithm and a novel method of estimation
of rotor temperature will be presented. The following section will a describe rapid prototyping control
platform. In the last section, the experimental results on a prototype induction machine for electric
battery city cars comparing the estimator and the pyrometer will be detailed.

2. Model of Estimator of Rotor Temperature

2.1. Dynamic Model of the Induction Machine

The dynamic model of the induction machine with the synchronous reference reliant to the
rotation field is based on nine equations:

• Four equations of flux and current;
• Four equations of flux and voltage;
• One equation of electromagnetic torque.

The equations of flux in the reference dq-axis can be expressed:
ϕsd
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ϕrd
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The equations of stator voltage in the reference dq-axis are shown in (2): vsd = Rsisd +
dφsd

dt −ωsφsq

vsq = Rsisq +
dφsq

dt +ωsφsd
(2)

The equations of rotor voltage in the reference dq-axis are shown in (3): vrd = Rrird +
dφrd

dt − (ωs −ωm)φrq = 0

vrq = Rrirq +
dφrq

dt + (ωs −ωm)φrd = 0
(3)

The electromagnetic torque is expressed by the transient model of the induction machine:

Tem = p·
Lm

Lr
(ϕrd·isq −ϕrq·isd) (4)

with

p—number of pole pairs
Lm—magnetizing inductance
LIs, LIr—stator and rotor leakage inductances
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Ls, Lr—total inductances of stator and rotor: Ls = Lm + LIs; Lr = Lm + LIr;
Rs, Rr—resistance of stator and rotor
ωs—stator electric pulsation
ωm—rotor mechanical pulsation
φsd, φsq—stator flux in the reference dq-axis
φrd, φrq—rotor flux in the reference dq-axis
isd, isq—stator currents in the reference dq-axis
ird, irq—rotor currents in the reference dq-axis

2.2. Indirect Flux-Oriented Control (IFOC)

Using the control algorithm Indirect Flux-Oriented Control (IFOC) [20] consists of orienting the
dq-axis to cancel the quadrature flux component. Therefore, the electromagnetic torque of the induction
motor in Equation (4) becomes:

Tem = p·
Lm

Lr
(ϕrd·isq) (5)

The rotor flux is estimated by: ∣∣∣ϕr
∣∣∣
est =

Lm

1 + τr·s
isd (6)

with τr =
Lr
Rr

is the rotor time constant and s is the Laplace transform variable.
The current isd is obtained by the Park transformation. The electric angle of the Park transformation

is the integral of the electric pulsation:

θ =

∫
(ωm +ωg)·dt (7)

where the pulsation of the motor is a product of the number of pole pairs and the speed of the motor
that is measured by a speed sensor.

ωm = p·Ωm (8)

The pulsation of the slip is calculated as:

ωg =
Lm

τr·
∣∣∣ϕr

∣∣∣
est

isq (9)

The two most influential parameters for the IFOC control of the asynchronous motor are the
magnetizing inductance (considering the magnetic saturation state of the machine), and the rotor
resistance. The latter is not directly measurable and evolves with the heating of the machine. Without the
compensation of the rotor resistance strategy in the motor control, the torque produced will not be
close to the demand. Therefore, there are three types of thermal compensation of the rotor resistance
that can be envisaged:

• Indirect rotor temperature estimator based on stator winding temperature experimental
measurement which is the least accurate;

• Direct measurement of the temperature infrared pyrometer (Figure 1). This solution is accurate
but expensive in mass production and needs the space to install it;

• Direct rotor temperature estimator via current flow estimation. This needs sophisticated calculations
and tuning.

Figure 1 shows the compensation of the rotor resistance thanks to the measurement of the rotor
cage temperature using the infrared pyrometer, at 5800 rpm. The torque (or power of 30 kW) is kept
constant with 51 N·m demand for 15 min even when the temperatures of the rotor rise from 30 ◦C to
162 ◦C. Automatically increasing slip in the control algorithm allows us to ensure this operation.
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Figure 1. The 30 kW operating point with slip compensation using infrared pyrometer for measurement
of rotor cage temperature.

2.3. Direct Estimator of Rotor Temperature

From (3), the rotor resistance can be expressed in steady state as:

Rr =
−(ωs −ωm)φrd

irq
(10)

Using the matrix of flux in (1), the rotor flux in d axe is calculated as:

φrd = Lrird + Lmisd =
Lr

Lm
(φsd − Lsisd) + Lmisd (11)

Using (10), (11) and (1), the rotor resistance is now:

Rr =
−(ωs −ωm)

[
φsdLr + isd

(
Lm

2
− LsLr

)]
φsq − Lsisq

(12)

were φsd and φsq are given by (2):

φsd =
vsq −Rsisq

ωs
(13)

φsq =
vsd + Rsisd

ωs
(14)

Finally, the rotor temperature of the rotor cage is shown as:

∧

Trotor (◦C) =
1
α


∧

Rr

Rr20
− 1

+ 20 (15)
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with

Rr20—resistance of rotor at 20 ◦C.
α—variation coefficient of temperature of the rotor die-casting cage (alu. or copper)

To obtain the correct accuracy of this estimator, it is necessary to correct the voltages vsd and vsq.
Indeed, the control voltages are entangled with double errors:

• Phase shift error due to the delay in applying the control voltage to the phases of the machine.
• Amplitude deviation due to idle time and inverter losses (internal voltage drops).

To compensate for these differences, we have identified a model of alteration of the voltage. For the
amplitude difference, we used a phase voltage instrumentation (power analyzer) connected to the
CAN bus prototyping platform, allowing us to use in the real-time software a reference measurement,
and then compare to the estimated voltage using the control variables.

By scanning the operating points at various temperatures, we observed that a simple offset on the
10 V voltage amplitude compensated for amplitude differences quite well.

For the phase shift error, we implemented a calibrated angular correction with respect to the
estimated voltage using the control voltage variables. This angular compensation has been provided
proportional to the speed since the delay of application of the voltage to the phases by the inverter
is a constant time delay related to the switching frequency. The calibration used is a cartography on
the regime.

Phase current measurements are also out of phase due to sampling. An angular correction has
therefore also been implemented to guarantee the coherence between estimated flows and currents in
the calculation of the estimator.

Using the voltage reference measurement, to overcome the amplitude difference, we set this
compensation to center the temperature estimation error on a set of operating points.

3. Rapid Control Prototyping Platform

To ensure the development of the motor control, its validation and its development on the
test-bench, we used a rapid prototyping solution to implement the Matlab/Simulink schema-block
software in real-time. This allows a “model-based design” approach through short development loops,
upstream of an industrial development phase.

The principle is to set up a software architecture and control strategies (Figures 2–4) using
a system design model, and then translate these strategies in real-time on the real system, in test tanks.
Throughout development, we maintain the porting of strategies on both the system model and the
real-time prototyping. So that we ensure functional justification and prevalidation of software evolutions.

For rapid prototyping, we have adopted the dSpace solution which offers a modular set of control
cards integrated into a chassis provided with a power supply, a PHS communication bus and a real-time
remote measurement and calibration software, as well as driver libraries in Simulink schema-block
format. We use the DS5202 ACMC solution (Alternative Current Motor Control) which offers the
possibility of prototyping the entire control, including various PWM variants calculated and realized
by a Field Programmable Gate Array (FPGA).

This software prototyping device is itself coupled, for the electronic power part, to an inverter
consisting of the following elements:

• A 230 Vac power supply providing the different voltage levels necessary for sensors and drivers:
+5 V, +8 V, +15 V, −15 V;

• A module Infineon HP1 250 Arms, 400 V three-phase IGBT inverter module on a cold-water plate;
• A concepts driver board with HW protection stage (minimum dead time, over-current protection

(OCP), over-voltage protection (OVP));
• Three-phase current sensors and their conditioning stage (power supply and filtering),

voltage interfaces.
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This platform includes the different control modes required for validation and debugging (Figure 3).
For each control mode, the necessary interfaces are also defined.
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It is then possible to build the architecture of the model-based design platform and build the
model of the system.

Integrated into the platform, we have two assembly versions of the software:

• The simulation assembly coupled with the physical design model (environmental load model),
the simulated Model in the Loop (MIL).

• The prototyping assembly coupled to the dSpace platform driver interfaces, the computable HIL
(Hardware in the Loop) model.

This rapid motor control prototyping platform is focused on being 100% open and editable:

• Interface observing all types of sensors: speed/position sensor, temperature sensor (thermocouple,
an infrared sensor for rotor cage instrumentation);

• Modification of the regulation parameters, energy parameters in real-time, no need to flash the
inverter (time-saving);

• Soft highly flexible open/modifiable to improve motor control.
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4. Experimental Testing Results

4.1. Test-Bench and E-Motor Prototype

Figures 5 and 6 show the control interface of the rapid prototype platform and the test-bench
with installing the prototype. The control area is well protected because of high-speed test-bench with
a maximum speed of 15 krpm.

We tested the estimator of rotor cage temperature on a prototype induction machine (Figure 6)
with aluminum die-casting rotor cage and totally enclosed fan cooled designed for: 60 kW peak power
and 12 krpm top speed, applied for a small battery electric city car [21]. The pyrometer installed on the
rear housing is used to measure the online rotor cage temperature.

Electronics 2020, 9, x FOR PEER REVIEW 8 of 13 

 

Test-bench

Real time 
tuning control

Drive dynamometer 
& monitoring

 
Figure 5. Tuning of motor drive in the real-time control platform of the high-speed test-bench. 

Inverter

E-motor

 
Figure 6. Full instrumentation of the prototype of 60 kW, 12 krpm on the high-speed test-bench. 

The motor control calibration is tuned on a test-bench using IFOC model in real-time developed 
in-house in the Matlab/Simulink environment. No-load and locked rotor tests are performed in 
order to determine finely the motor parameters (stator and rotor resistances, leakage inductances, 
magnetizing inductance including the magnetic saturation). The motor control criteria are required 
in the soft map: 

• Ensuring torque responses ± 5% comparing to torque demand in every step, in torque-speed 
range as shown in Figure 7; 

• Including field weakening strategy that consists to reduce automatically the flux when operating 
at high speed; 

• Optimizing the efficiency at every grid point in the whole torque-speed range; 
• Taking into account the variation of rotor resistance when motor temperatures increased (Figure 

1); 
• Realizing the derating mode when the temperature of stator winding or of rotor cage exceeds its 

limit, by decreasing the power. 
 

Figure 5. Tuning of motor drive in the real-time control platform of the high-speed test-bench.



Electronics 2020, 9, 1096 8 of 12

Electronics 2020, 9, x FOR PEER REVIEW 8 of 13 

 

Test-bench

Real time 
tuning control

Drive dynamometer 
& monitoring

 
Figure 5. Tuning of motor drive in the real-time control platform of the high-speed test-bench. 

Inverter

E-motor

 
Figure 6. Full instrumentation of the prototype of 60 kW, 12 krpm on the high-speed test-bench. 

The motor control calibration is tuned on a test-bench using IFOC model in real-time developed 
in-house in the Matlab/Simulink environment. No-load and locked rotor tests are performed in 
order to determine finely the motor parameters (stator and rotor resistances, leakage inductances, 
magnetizing inductance including the magnetic saturation). The motor control criteria are required 
in the soft map: 

• Ensuring torque responses ± 5% comparing to torque demand in every step, in torque-speed 
range as shown in Figure 7; 

• Including field weakening strategy that consists to reduce automatically the flux when operating 
at high speed; 

• Optimizing the efficiency at every grid point in the whole torque-speed range; 
• Taking into account the variation of rotor resistance when motor temperatures increased (Figure 

1); 
• Realizing the derating mode when the temperature of stator winding or of rotor cage exceeds its 

limit, by decreasing the power. 
 

Figure 6. Full instrumentation of the prototype of 60 kW, 12 krpm on the high-speed test-bench.

The motor control calibration is tuned on a test-bench using IFOC model in real-time developed
in-house in the Matlab/Simulink environment. No-load and locked rotor tests are performed in order to
determine finely the motor parameters (stator and rotor resistances, leakage inductances, magnetizing
inductance including the magnetic saturation). The motor control criteria are required in the soft map:

• Ensuring torque responses ± 5% comparing to torque demand in every step, in torque-speed
range as shown in Figure 7;

• Including field weakening strategy that consists to reduce automatically the flux when operating
at high speed;

• Optimizing the efficiency at every grid point in the whole torque-speed range;
• Taking into account the variation of rotor resistance when motor temperatures increased (Figure 1);
• Realizing the derating mode when the temperature of stator winding or of rotor cage exceeds its

limit, by decreasing the power.Electronics 2020, 9, x FOR PEER REVIEW 9 of 13 
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4.2. Experimental Results of Estimator of Rotor Temperature

Firstly, the estimator of rotor temperature is experimentally tuned to estimate the right machine
flux considering the voltage drop of the whole system on the test-bench (dead time of IGBT, DC/AC
cables, connection points).

Figure 8 shows a comparison between the results obtained by the measurement of the infrared
pyrometer and the ones achieved by the estimator of rotor cage temperature at an operating point of
30 kW at 5800 rpm in field weakening area, during 15 min. The temperature found by the estimator
(red color) follows the measured one (blue color). The gap is very close even to a large evolution
between 30 ◦C and 170 ◦C.

We also note that the temperature of the rotor is higher than the one of stator winding (green color)
in this continuous performance for totally enclosed fan cooled (TEFC) with aluminum rotor cage
induction machine. The torque produced by the prototype considering the estimator is kept constant
in 900 seconds thanks to the compensation of the rotor resistance control technique. This average value
is measured of 51.1 N·m, very close (only +2.2%) to the torque demand in Figure 8 (second one).Electronics 2020, 9, x FOR PEER REVIEW 10 of 13 
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at 300 Vdc and 5800 rpm.

The same things are observed on another operating point at lower speed 3000 rpm and higher
torque 100 N·m in Figure 9. The rotor temperature rises between 90 ◦C and 200 ◦C for more than
7 min. Even at a quite high initial temperature (90 ◦C), the estimator quickly follows the real rotor cage
temperature. The average torque is measured at 96.6 N·m, only a −3.4% gap compared to the torque
request during 450 s in Figure 9 (second). Using TEFC, on equivalent power performance of 30 kW at
lower speed of 3000 rpm, the duration is shorter compared to higher speed operating point of 5800
rpm which is higher air flow cooling and lower torque, 51 N·m against 96.6 N·m, consequently fewer
joule losses.

Finally, this estimator is tested on the torque-steps (20/50/100/140) N·m as shown in Figure 10.
The torque responses and the temperatures given by the estimator are very close to the demand and
heating reality of the machine.

These good results at low speed and high speed in the field weakening region for continuous
performances with long durations confirm the effectiveness of the development estimator for rotor
cage temperature of induction machine control drive design for electric and hybrid powertrains.
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5. Conclusions

In applications of electric and hybrid vehicles, without information on the rotor cage temperature,
no protection for the thermomechanical strength of the rotor can be implemented in the control system
software. The gap of request torque by the driver’s pedal and produced torque of the induction
machine is large and random.

The efficient direct estimator of the rotor cage temperature of the induction machine based on the
estimation of machine flux is detailed. This method is suitable for applications of the motor operating in
a large torque-speed range. The algorithm is implemented in the rapid control prototyping for electric
and hybrid powertrain platforms, developed in-house. The experimental testing results compared to
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the measurement by a pyrometer on a prototype asynchronous motor of 60 kW peak for city battery
electric vehicles in continuous performances of 30 kW at low and high speeds and in torque-steps have
validated the proposed method. In any study case, the estimator has found the rotor temperature close
to the measurement by pyrometer and the real torque realized by the prototype is very near to the
request with a maximum gap of 3.4%. These experimental results and methodology can play a role in
the benchmarking for other developments in the community involved in the control design drives and
testing of electrical machines.

6. Patents

This research work reported in this manuscript is related to the patent, number of FR3033961B1 [22]
written by both authors (T.-V.T. and E.N.).

Author Contributions: This article presents the collective work of both authors (T.-V.T. and E.N.). Both authors
have read and agreed to the published version of the manuscript.

Funding: This research work received no external funding.
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Nomenclature

p number of pole pairs
Lm magnetizing inductance
LIs, LIr stator and rotor leakage inductances
Ls, Lr total inductances of stator and rotor
Rs, Rr resistance of stator and rotor
Rr20 resistance of rotor at 20 ◦C
ωs stator electric pulsation
ωm rotor mechanical pulsation
ωg slip pulsation
φsd, φsq stator flux in the reference dq-axis
φrd, φrq rotor flux in the reference dq-axis
isd, isq stator currents in the reference dq-axis
ird, irq rotor currents in the reference dq-axis
vsd, vsq stator voltages in the reference dq-axis
vrd, vrq rotor voltages in the reference dq-axis
Tem electromagnetic torque of the motor
Ωm motor speed angular
|φr|est estimated rotor flux
τr rotor time constant
s Laplace transform variable
θ electric angle of the Park transformation
Trotor estimated rotor temperature
α variation coefficient of temperature of the rotor die-casting cage (alu. or copper)
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