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Although there is a large and growing literature that tackles the unsupervised outlier detection problem, the

unsupervised evaluation of outlier detection results is still virtually untouched in the literature. The so-called

internal evaluation, based solely on the data and the assessed solutions themselves, is required if one wants to

statistically validate (in absolute terms) or just compare (in relative terms) the solutions provided by different

algorithms or by different parameterizations of a given algorithm in the absence of labeled data. However, in

contrast to unsupervised cluster analysis, where indexes for internal evaluation and validation of clustering

solutions have been conceived and shown to be very useful, in the outlier detection domain, this problem

has been notably overlooked. Here we discuss this problem and provide a solution for the internal evaluation

of outlier detection results. Specifically, we describe an index called Internal, Relative Evaluation of Outlier

Solutions (IREOS) that can evaluate and compare different candidate outlier detection solutions. Initially, the

index is designed to evaluate binary solutions only, referred to as top-n outlier detection results. We then

extend IREOS to the general case of non-binary solutions, consisting of outlier detection scorings. We also

statistically adjust IREOS for chance and extensively evaluate it in several experiments involving different

collections of synthetic and real datasets.
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1 INTRODUCTION

One of the central tasks of data mining is outlier or anomaly detection, the problem of discovering
patterns that are exceptional in some sense. Detecting such patterns is relevant for two main rea-
sons: (i) in some applications, such patterns represent spurious data (e.g., sensor failures or noise)
that should be removed in a preprocessing step for further data analysis; or, more importantly; (ii)
in many applications, such patterns represent extraordinary behaviors that deserve some special
attention, such as genes associated with certain diseases, fraud in financial systems, employees
with unusual productivity profiles, or customers with uncommon purchasing patterns.

Outlier detection techniques can be categorized in different ways. For instance, a common dis-
tinction is that between the methods that assign binary labels (“outlier” vs. “inlier” for those ob-
servations deemed anomalous vs. normal) and methods that assign a score representing a degree
to which an observation is considered to be outlier. Another distinction is that between super-
vised, semisupervised, and unsupervised outlier detection techniques [22]. Supervised techniques
assume that a set of observed instances labeled as inliers and outliers are available to train a classi-
fier. In the semisupervised scenario, labeled outliers are not available, and only previously known
inliers can be used in order to obtain a (one class) classification model. When no labeled data are
available at all, it is necessary to use unsupervised techniques, which do not assume any prior
knowledge about which observations are outliers and which are inliers.

In this work, we focus on unsupervised outlier detection scenarios. In general, an outlier in this
context can be described as “an observation (or subset of observations) which appears to be incon-

sistent with the remainder of that set of data” [6]. In this context, there is no generally applicable
definition of “appearance of inconsistency”; its formalization rather depends on the application
scenario and the detection method to be used. A common scenario is to apply some outlier detec-
tion method to a database with N observations, labeling a certain subset of n such observations
as the n most likely outliers, while labeling the remaining N − n observations as inliers. This is
referred to as the top-n outlier detection problem [2, 4, 7, 17, 29, 34, 37, 45, 51, 63], which is far
from trivial, especially when dealing with multivariate data following complex, unknown distri-
butions. Without labeled examples, the main complicating factor in this problem is that the notion
of “outlierness” is not precisely and generally defined.

The lack of a single, formal, and agreed-upon definition of unsupervised outlier detection is
one of the main reasons why a rich variety of detection methods has been developed, from clas-
sic parametric statistical methods [6, 25] to more recent database-oriented approaches conceived
to deal with multivariate, possibly large databases. Considering the latter category, a plethora of
detection algorithms has emerged in the past 20 years or so. Examples are DB-Outlier [32, 33], k
Nearest Neighbors (kNN) Outlier [4, 51], Local Outlier Factor (LOF) [8] and its many variants [30,
35, 36, 48, 58, 65], and Angle-Based Outlier Detection (ABOD) [37], just to mention a few (see, e.g.,
the works of Schubert et al. [56] and Campos et al. [11] for discussions of these and many more
variants). Each of these algorithms, however, uses its own criterion to judge quantitatively the level
of adherence of each observation with the concept of outlier, from a particular perspective. This
complicates not only the selection of a particular algorithm and/or the choice of an appropriate
configuration of parameters for this algorithm in a practical application, but also the assessment
of the quality of the solutions obtained, especially in light of the problem of defining a measure of
quality that is not tied to the criteria used by the algorithms themselves. These issues are inter-
related and refer to the problems of model selection and assessment (evaluation or validation) of
results in unsupervised learning. These problems have been investigated for decades in the area
of unsupervised data clustering [27], but are rarely mentioned and are virtually untouched in the
area of outlier detection [67].
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In the data clustering domain, the related problems of evaluation and model selection are tackled
by using some kind of quantitative index, called validation criterion [27]. In practice, when labels
are not available, internal validation indexes can be used. These indexes are called internal as
they do not make use of any external information (such as class labels) in the evaluation of a
solution. Instead, internal indexes measure the quality of an obtained clustering solution based
only on the solution and the data objects. Most such indexes are also relative in the sense that
they can be employed to compare different clustering solutions, pointing out which one is better
in relative terms. Therefore they can also be used for model selection. Internal, relative indexes
have been shown to be effective and useful tools for the unsupervised clustering evaluation and
model selection tasks—e.g., see [21, 43, 61, 62] and references therein.

The areas of clustering and outlier detection are related to each other, and from a certain per-
spective, they can even be seen as two sides of the same coin. In fact, when referring to an outlier
as “an observation which deviates so much from other observations as to arouse suspicions that it

was generated by a different mechanism”, as in Hawkins’ [25] definition, it is implicitly assumed
that there are one or more mechanisms responsible for generating the normal, “unsuspicious” ob-
servations. Clusters are possible candidates to model such mechanisms. Surprisingly, although the
internal evaluation problem has been extensively studied in data clustering, it has been completely
neglected in outlier detection. In this article, we step towards bridging this gap by proposing an in-
ternal, relative evaluation measure for unsupervised outlier detection. We start from a definition
of “outlierness” that is not tied to any particular criterion used by outlier detection algorithms.
Rather, it follows the same, common intuition as a multitude of these algorithms and criteria: an
outlier is an observation that is to some extent farther away and can, therefore, be more easily
separated from other observations than an inlier. We formulate separability for outlier detection
in an objective and principled way, leading to a natural definition of the proposed index.

In summary, we make the following initial contributions in this article:

• We describe the first internal, relative validation measure for evaluation of outlier detection
results, Internal, Relative Evaluation of Outlier Solutions (IREOS).

• We describe an improved version of IREOS that is adjusted for chance by removing from
the index the theoretical offset that is expected to be observed when evaluating random
solutions. In addition to the adjusted index, we also devise means to return p-values with
respect to the null hypothesis of a random solution.

• Since the exact procedure to adjust the index for chance can be computationally demanding
for large datasets, we also provide a faster version of the proposed procedure, based on
Monte Carlo experiments.

This article is an extension of our preliminary publication [41], where IREOS has been specifi-
cally conceived for, and experimentally evaluated in, the particular scenario of top-n (i.e., binary)
outlier detection only. In this extended article, we make the following additional contributions:

• We extend IREOS to the more general scenario of non-binary outlier solutions, which in-
volves the evaluation of outlier detection scorings, which is the type of result produced by
most widely used database-oriented algorithms in the literature [11]. The extended index
reduces to the original one when evaluating binary solutions, i.e., the original, top-n index
is a particular case of the generalized version proposed here.

• In contrast to the original IREOS, which can be computed efficiently by taking advantage of
the imbalanced nature of the binary outlier detection problem, where the number of outliers,
n, is given as input and is typically much smaller than the dataset size, N , the proposed
extended version cannot rely on this assumption when evaluating non-binary solutions,
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which makes it computationally more challenging. In order to mitigate the computational
burden, we introduce a number of speedup techniques that allow close approximations of
the exact index to be computed in a small fraction of the runtime.

• We extensively evaluate the extended IREOS index using different collections of synthetic
(30) and real (27) datasets, both in controlled experiments as well as in practical experiments
of model selection involving a number (13) of different outlier detection algorithms.

• As an additional contribution, we show how IREOS can be used as an auxiliary tool to help
characterize the suitability of datasets for outlier detection benchmarking, by assessing the
corresponding ground truth labels of these datasets as candidate outlier solutions.

The remainder of this article is organized as follows. In Section 2, we discuss related work, the
typical approaches for external evaluation, and the different requirements and use cases for internal

evaluation. In Section 3, we introduce IREOS, discussing requirements and solutions, adjustment
for chance, properties, and speedup techniques. We experimentally evaluate the proposed index
in Section 4 and conclude the article in Section 5.

2 RELATED WORK

In the previous literature, the evaluation of unsupervised outlier detection results has been mostly
restricted to making use of labeled datasets to evaluate how algorithms compare to each other,
by assessing, in a supervised way, observations previously known to be inliers or outliers accord-
ing to a particular intuition or semantic (e.g., normal patients vs. patients with an uncommon
pathology). Note that in this scenario, referred to as external evaluation or validation, the labels
are only used to assess the results of otherwise unsupervised outlier detection methods [11]. For
the external evaluation of a top-n outlier detection solution, one is given a dataset with n known
outliers (ground truth) as well as the observations ranked top-n by the given solution. Precision-at-

n (prec@n for short) measures the fraction of the true outliers (i.e., labeled in the ground truth as
outlier) among the top-n objects of the given solution [12]. If an outlier ranking is to be evaluated
beyond the top-n ranks, one could also decide to measure prec@2n, prec@3n, or precision at some
other point in the ranking, but the typical choice is to use the number of true outliers as the cutoff
value for measuring precision [11]. A common alternative is the Receiver Operating Character-
istic (ROC), which compares the candidate ranking against the binary ground truth by plotting
the true positive rate against the false positive rate. Variants of these measures and more in-depth
considerations about the external evaluation of unsupervised outlier detection results have been
discussed, e.g., by Schubert et al. [54] and Campos et al. [11].

For internal evaluation, which is the focus of the current article, the top-n IREOS index, prelim-
inarily introduced in our conference article [41], is, to our knowledge, the first internal validation
index for unsupervised outlier detection. The absence of any index prior to IREOS had been noted
as a gap in the literature that could hinder the development of advanced ensemble selection meth-
ods [67], but the potential applications of internal measures are far more diverse. Most fundamental
is the practical application of outlier detection methods where users would benefit from unsuper-
vised estimates of the quality of a solution provided by some method. After all, the availability
of labeled data required by external evaluation measures is not consistent with the premises of
unsupervised learning, and the commonly practiced external evaluation of unsupervised outlier
detection algorithms makes sense only when comparing performances of algorithms in controlled
experiments.

After our preliminary conference paper [41], a few papers in the literature have acknowledged
the importance of internal indexes for the evaluation of outlier detection solutions in specific ap-
plication scenarios. For instance, Pang et al. [47] use a wrapper approach to optimize an evaluation
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measure to select the most relevant features in a dataset (feature selection problem). The proposed
measure is based on the average deviation of the top-n scores (outliers) from the median of the
remaining scores (inliers). Although this measure might be useful for internal evaluation, it would
be limited to the evaluation of top-n solutions only, and only in relative (not absolute) terms. Weng
et al. [64] propose to use an ensemble of outlier detectors to label a dataset, taking the resulting
labeling as a target ground truth and measuring the quality of individual candidate solutions using
external measures (comparing the level of agreement between these individual solutions and the
ground truth). However, notice that the target reference solution provided by the ensemble and
taken as a ground truth could be readily used as the preferred/selected solution itself. In other
words, instead of selecting an individual outlier detector that best approximates the ensemble, the
ensemble itself could be adopted. Of course, from a pragmatic point of view, the ensemble is just
yet another candidate method rather than a ground truth, and to select between these methods a
true measure of unsupervised outlier detection evaluation, such as IREOS, would be required.

3 INTERNAL EVALUATION OF OUTLIER DETECTION

3.1 Problem Statement

Let X = {x1, . . . , xN } be an unlabeled dataset containing N d-dimensional feature vectors, xi , and
assume that one or more unsupervised outlier detection algorithms will produce, for this dataset,
a collection Ω of nΩ candidate outlier detection solutions, Ω = {ω1, . . . ,ωnΩ }, which one wants to
evaluate in the absence of labels. Solutions ω( ·) produced by unsupervised outlier detection algo-
rithms can be given in different formats. The most common format is a scoring y = {y1, . . . ,yN },
yi ∈ R+, where yi represents the outlier score associated with the data object/observation xi ,
which reflects the degree of outlierness of xi . This type of solution allows objects xi to be sorted
and ranked according to their degree of outlierness yi . When the number of outliers n is known,
one can establish a threshold in the ranking in order to select a subset S ⊂ X, |S| = n, containing
the top-n objects that are labeled as outliers. When represented in this format, we refer to ω( ·) as
binary, top-n solutions.

Given a collection Ω of candidate solutions ωi , whether they are scoring solutions or top-n
solutions, we want to independently and quantitatively measure the quality of each individual
candidate solution, e.g., in order (i) to assess their statistical significance when compared to the
null hypothesis of a random solution; or (ii) to compare them in relative terms so that the best
candidates, corresponding to more suitable models (algorithms and parameters), can be selected.

3.2 Preliminary Attempt: A Baseline Index

We start from the intuition that an outlier is an observation that is to some extent farther off and
can, therefore, be more easily separated (discriminated) from other observations than an inlier.
Initially, we will consider the top-n outlier detection problem, where a binary labeling of n out
of N data objects as outliers, corresponding to a better (worse) unsupervised outlier detection
solution S, is expected to be more (less) in conformity with this intuition. The basic problem is
then to quantify how easy or difficult it is to separate each object xi ∈ S from other objects. In
a good solution S, consisting mostly of genuine outliers correctly detected by some method, the
average degree of separability is expected to be high, whereas in a poor solution containing many
false positives this average degree of separability should be lower.

We propose to assess the separability of individual data objects using a classifier. We advocate
the use of a maximum margin classifier [23, 53, 66], as this type of classifier is able to quantify
how distant each object is from the decision boundary while trying to maximize the margin of
separability between this boundary and the instances of different classes. This idea is illustrated in
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Fig. 1. Illustrative dataset: three different objects labeled as outliers.

Figure 1. Figure 1(a), 1(b), and 1(c) highlights different objects labeled as an outlier (red square) in
different hypothetical outlier detection solutions. In Figure 1(a), the highlighted object, a genuine
global outlier, is far away from a maximum margin classification boundary (dashed line) that dis-
criminates it from the other objects. In Figure 1(b), the highlighted object is arguably a local outlier
(w.r.t. the neighboring cluster), and the margin is narrower but still wider than that in Figure 1(c).
In the case of Figure 1(c), the highlighted object is undoubtedly an inlier and not only the margin
is very narrow, but also the decision boundary needs to be nonlinear (i.e., more complex).

The fact that the decision boundary needs to be nonlinear to separate certain objects (as in the
example in Figure 1(c)) implies that a nonlinear maximum margin classifier is required for our
purpose, such as Nonlinear Support Vector Machines (SVMs) or Kernel Logistic Regression (KLR)
[23, 53, 66]. These classifiers use a kernel function to transform the original (possibly non-linearly
separable) problem into a linearly separable one. One of the most effective and popular kernel
functions is the radial basis kernel, given by:

K (xi , xj ) = e−γ ‖xi−xj ‖2 . (1)

The term γ , which is inversely proportional to the width of such a Gaussian-shaped kernel, is
positively related to the flexibility (degree of nonlinearity) of the decision boundary of the cor-
responding classifiers. In other words, the discrimination capacity of a kernel-based classifier is
positively dependent on γ . As a special case, it approaches a linear classifier as γ approaches zero.
The effect of γ is similar to that of the order of a polynomial kernel function, starting from linear
for first order and getting more and more non-linear as the order increases.

In practical classification tasks, γ can be used to control the compromise between the perfor-
mance of the classifier on the training data vs. on test data. Here, however, we are not interested
at all in the classifier itself or its performance on new, unseen data. We use a classifier merely to
measure the degree of difficulty when trying to discriminate between one individual data object
and the other data objects. The key observation to achieve this without having to specify a partic-
ular value for γ as a parameter is that our original premise tends to hold true, to a lesser or greater
extent, no matter the value of γ . In other words, the fundamental assumption “the more outlier-

ish an object is, the easier is it to discriminate from others” is expected to be observed for different
values of γ , although the contrast between easier and more difficult cases may change. This is il-
lustrated in Figure 2(a). We vary the value of γ from zero up to a maximum value γmax (for which
all the objects labeled as outliers—Figures 1(a), 1(b), 1(c)—can be individually discriminated from
all the others by using a kernel-based classifier). The values along the curves (vertical axis) stand
for a measure p (xj ,γ ) that quantifies in a normalized interval how far each object xj is from the
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Fig. 2. (2(a)) Curves of separability for a maximum margin classifier for each of the objects labeled as outliers
in Figure 1; (2(b)) weighted average separability curves of two top-n outlier detection solutions composed of
the n = 2 outliers (local and global) of Figure 1, differing only in the outlier scores given to them in each of
the solutions.

decision boundary. For all values ofγ , the two outliers are distinctly farther away from the decision
boundary than the inlier.

Thus, we do not need to choose a particular value of γ . Instead, we can measure the overall
separability of an object xj by computing the area under the curve (AUC) over the interval of γ
values, i.e., ∫ γmax

γ=0

p (xj ,γ ). (2)

Our final goal is, though, to evaluate the separability across the collection of data objects labeled
as outliers in a given solution S. We, therefore, take the average curve of separability for those
objects in S, i.e.,:

p̄ (γ ) =
1

n

∑
xj ∈S

p (xj ,γ ), (3)

and then compute the area under this curve to get a single number, i.e.,:∫ γmax

γ=0

p̄ (γ ). (4)

This value can be trivially normalized in [0, 1] by dividing it by its maximum possible value,
γmax , thus giving rise to a first, preliminary index,

I (S) =
1

γmax

∫ γmax

γ=0

p̄ (γ ). (5)

As in practice classifiers need to be trained to compute p̄ (γ ) for eachγ , we discretize the interval
[0,γmax] into a finite number of values for γ , from γ1 = 0 to γnγ

= γmax . A baseline index can thus
be computed (within [0, 1]) as:

I (S) =
1

nγ

nγ∑
l=1

��
�

1

n

∑
xj ∈S

p (xj ,γl )��� . (6)
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3.2.1 Non-Binary Top-n Solutions. Typically, algorithms that produce top-n outlier solutions
also provide a ranking of the objects according to their score of outlierness as estimated by the
algorithm. Even though it is clear that the best solution must rank all outliers before all inliers,
while the worst solution would rank all inliers before all outliers, there are n! different best top-n
solutions that would be equally well rated by the index in Equation (6). These solutions correspond
to rank permutations of the same top-n outliers. The reason why our preliminary index in Equa-
tion (6) does not distinguish between them is that it does not use the information of the outlier
scores or ranks of the top-n data objects, but rather only the data objects themselves (the subset
S). However, the optimal outlier solution should rank more obvious or clear outliers before less
obvious outliers, before those borderline cases that could be outliers or inliers, and so on. This
issue has been addressed [54] in the context of the external evaluation of outlier detection, where
the traditional external measures such as ROC AUC and prec@n cannot make such a distinction
either, even though they have access to a ground truth.

In order to address this problem in our context of internal or relative evaluation of outlier detec-
tion, we propose to introduce weights in Equation (3), which defines the average curve of separa-
bility. This way, Equation (3) becomes a weighted average curve of separability, where a weightw j

is given to the separability values p (xj ,γ ) of each object xj , and thus different rankings or scorings
of the same set of outliers can be distinguished:1

p̄ (γ ) =

∑
j : xj ∈S p (xj ,γ )w j∑

j : xj ∈Sw j
, (7)

The use of weights for external outlier evaluation has been discussed by Schubert et al. [54],
who advocate the usefulness of algorithms that provide outlier scores as a result, pointing out,
however, that the direct comparison of such results from different algorithms is far from trivial
because different algorithms usually produce scores in completely different scales. For this rea-
son, some kind of normalization is unavoidable when comparing solutions provided by different
algorithms. Following the recommendation of Schubert et al. [54], we use the outlier scoring nor-
malization framework proposed by Kriegel et al. [36], as this framework comprises statistically
sound methods based on distribution fitting that can accommodate a large variety of outlier de-
tection approaches. By using this framework, the original outlier scores (y) produced by a given
algorithm can be transformed into the interval [0, 1] in a way that they can be interpreted as out-
lier probabilities. The resulting normalized outlier scores, w ( ·) , can then be used as the weights
associated to objects xj , as shown in Equation (7), irrespective of the algorithm that produced the
solution under evaluation. The interpretation of the weights as probabilities will also be partic-
ularly useful when enhancing our basic notion of separability discussed above towards a more
sophisticated model for outlier evaluation, to be discussed later, in Section 3.3.

The intuition behind the use of weights in Equation (7) as described above is the following:
when evaluating an ideal or optimal solution, both the outlier scores and the separabilities of the
more obvious outliers are expected to be higher than those of the other objects, therefore their
product will be higher. On the other hand, in a suboptimal solution, where the top-n objects may
be the same as the optimal solution, but those with the highest separability are not the ones with
the highest scores (weights) and vice-versa, the product will be penalized. In summary, we expect
that solutions assigning higher (lower) outlier scores to objects with higher (lower) separabilities

1Notice that the use of a weighted average rather than a weighted sum prevents outlier solutions from artificially achieving

higher weighted separability values by indiscriminately increasing the weights.
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will result in larger AUC values as computed by the weighted version of Equation (6), given by:

I (S, y) =
1

nγ

nγ∑
l=1

�
�
∑

j : xj ∈S p (xj ,γ )w j∑
j : xj ∈Sw j

�
� . (8)

Notice that the index in Equation (8), in addition to the subset of top-n objects, S, also requires as
argument the outlier scores, y, which are used to compute the weights w ( ·) following the method
by Kriegel et al. [36]. Hereafter, we refer to this type of solution as non-binary top-n solutions.

An illustrative example corresponding to two hypothetical non-binary top-n outlier detection
solutions is provided in Figure 2(b). Both hypothetical solutions are composed of the n = 2 outliers
(global and local) highlighted in Figure 1, differing only in the outlier scores assigned to them in
each of the solutions. The optimal solution ranks the global outlier (with an outlier score of 1)
before the local outlier (with an outlier score of 0.75), as opposed to the suboptimal solution that
ranks the local outlier first (with an outlier score of 1) and the global outlier next (with an outlier
score of 0.75). These two different solutions would be equally well rated by the original baseline
index in Equation (6). However, using the proposed weighted average curve of separability, the
index can properly distinguish these slightly different solutions, as it can be seen from the corre-
sponding weighted average curves of separability in Figure 2(b). As expected, the optimal solution
has a larger AUC than the suboptimal solution, which corresponds to a larger value of the new
baseline index, I (S, y), in Equation (8).

3.2.2 Evaluation of Full Outlier Scorings. In many practical applications of unsupervised out-
lier detection, the number of outliers in a dataset, n, is unknown, and all that is provided by an
algorithm is a scoring y = {y1, . . . ,yN }, yi ∈ R+, containing the outlier scores yi associated with
every data object xi ∈ X in the dataset. An interesting aspect of our baseline index in Equation (8)
is that it can be straightforwardly generalized to this full scoring evaluation scenario, by just set-
ting n = N , which implies S = X. From this observation, we can write our baseline index in a
more general form that encompasses the top-n scenarios previously discussed as particular cases.
Specifically, given an outlier detection solution to be evaluated, ω, our general baseline index is as
follows:

I (ω) =
1

nγ

nγ∑
l=1

�
�
∑N

j=1 p (xj ,γ )w j∑N
j=1w j

�
� . (9)

In the general case of full scoring evaluation, the outlier solution ω corresponds to a scoring
y = {y1, . . . ,yN } for all objects in the dataset, the corresponding probability weights w ( ·) can be
computed from these scores, and these weights can be directly applied into Equation (9). It is
worth noticing that, in this scenario, the use of weights w ( ·) normalized as probabilities following
the approach by Kriegel et al. [36] is particularly useful because the majority of the data objects,
as clear inliers, will tend to have a weight of zero, thus having no undesired (over) influence on
the results (which could otherwise occur if the raw outlier scores y( ·) were used instead, as these
typically have a very long tail of spurious small values for inliers, which, when aggregated, could
dominate the results).

In the case previously referred to as non-binary top-n solutions, in addition to a scoring y, the out-
lier solution ω also contains the subset S of top-n outliers, i.e., ω = (S, y). In this case, the weights
w ( ·) corresponding to those objects outside S (i.e., not in the top-n) must be set to zero before
the index is computed with Equation (9). By enforcing w j = 0 ∀j : xj � S, Equation (9) becomes
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equivalent to Equation (8). In the even simpler case of a (binary) top-n solution that does not con-
sider scores associated to the top-n outliers, i.e., ω = S, if, in addition to setting to zero the weights
of objects labeled as inliers, the weights of the top-n outliers are set to 1 (w j = 1 ∀j : xj ∈ S), then
Equation (9) reduces to Equation (6).

3.3 IREOS Index

3.3.1 Intuitions Missing in the Baseline Index. Our preliminary baseline index introduced in
Section 3.2 may work satisfactorily in various application scenarios. Conceptually, however, it does
not capture two basic intuitions that we judge important in the realm of outlier detection. Both
are related to the possible presence of clumps of data objects in the dataset. Clumps, or particles,
are subsets of objects lying in the same region of the data space, relatively closer to each other
than they are from other objects, but too small to be deemed a cluster. They may exist for different
reasons, mainly: (i) just by chance, e.g., in datasets with background noise following a Poison
process; or (ii) as a result of anomalies whose instances are relatively rare but tend to be similar
to each other, e.g., some genetic mutations or certain types of frauds. Although the semantics
behind the possible interpretation of such clumps as outliers would be different, namely, noise in
the first case and micro-clusters in the second, in both cases, the analyst may not want to miss the
corresponding objects as potential outliers for further investigations.

Unfortunately, what is a clump can depend on both the application domain and a user’s expec-
tation. If we do not want our measure to be tied to a specific evaluation perspective that prescribes
a clump size, we thus need a mechanism for a user to express in different application scenarios
what they judge to be a set of similar objects that is “too small” to be interpreted as a cluster.
Therefore, in contrast to the common practice of avoiding parameters in evaluation indexes for
unsupervised learning, we advocate here that for outlier detection, it is nonetheless important to
provide the users with an optional control mechanism to adjust their expectations about clump
sizes. Given a certain expectation about what a maximum clump size should be, we should model
an evaluation index so that it is able to differentiate between objects inside clusters and objects in
isolated clumps. This is the first intuition that is missing in our baseline index as it was defined in
Section 3.2. In order to capture this intuition, we define a maximum clump size,mcl , as an optional
control parameter for exploratory data analysis, to be incorporated in our index.

The second intuition that is not captured by the preliminary index is also related to clumps.
While it is clear that the evaluation of each object labeled as an outlier and, accordingly, the whole
index, should be negatively affected by the presence of other objects nearby (e.g., in a clump), it
is intuitive that such a negative impact should be more severe if the nearby objects are assigned
a different label (i.e., they are actually deemed inliers). Consider the example in Figure 3, which
corresponds essentially to the same dataset as Figure 1 except for an additional object placed near
the global outlier at the left bottom corner. On the left, this object’s label (inlier) appears to be
inconsistent with the label of the original object close by (outlier), and the index should be neg-
atively affected. On the right, even though the original object is less of an outlier now in the
presence of the additional object, their common labeling as outliers is more consistent as both
objects can be seen as a clump, so the negative impact of the presence of the new object should be
smaller.

3.3.2 Incorporating the Missing Intuitions. In order to capture both desired intuitions, we pro-
pose the use of classifiers with soft margins to compute the values of separability p (xj ,γ ) required
by our index. The use of soft margin models is common practice both in the literature as well as in
real-world applications when using maximum margin classifiers, such as SVMs and KLR [23, 53,
66]. By making use of a soft margin, these classifiers allow the misclassification of objects at the
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Fig. 3. Dataset of Figure 1 with an additional object at the lower left corner: (3(a)) labeled inlier; (3(b)) labeled
outlier.

price of a penalty term Pt that is incorporated into the original objective of margin maximization.
Such a term is typically in the form:

Pt = C
N∑

j=1

ξ (xj ), (10)

where C is a constant, and ξ (xj ) stands for the individual penalty component associated with
object xj . The farther an object xj is from the margin boundary on the wrong side, the greater the
value of ξ (xj ).

2 The constant C controls the overall cost of penalties. In classification problems,
this is a key parameter used to adjust the compromise between under- and overfitting. Here, since
we are not interested in the performance of the classifiers for new data, this constant is not critical
and should only be big enough so that each object in the dataset can be discriminated from others
by these classifiers when following the procedure to compute the proposed index.

Soft margin classifiers allow the use of a generalized penalty component that can assign different
costs C (xj ) to different objects, rather than a single, uniform cost C:

Pt =

N∑
j=1

C (xj )ξ (xj ). (11)

A suitable design of terms C (xj ) makes it possible to simultaneously incorporate both desired
intuitions that are missing in our baseline index, related to the modeling of clumps. For the sake of
simplicity, let’s initially consider the simplest case involving binary top-n solutions S, where n out
of N objects have been labeled as outliers, and the others have been labeled as inliers. In order to
capture the differences between the two distinct scenarios in Figure 3, we can assign full margin
violation cost C to the objects labeled as inliers yet only a fraction β ∈ [0, 1] of C to the objects
labeled as outliers, i.e.,C (xj ) = C orC (xj ) = β ·C , depending on whether xj has been labeled as an
inlier or an outlier in the solution S under evaluation, respectively. For β = 1, the method reduces to
the ordinary case where objects are treated equally no matter their labels, and thus the separability
of the leftmost outlier in Figures 3(a) and 3(b) would be indistinguishable. In the other extreme,

2For SVMs, ξ (xj ) is zero when xj lies on the correct side of the margin boundary. For KLR, all objects (rather than only

support vectors) can influence the decision boundary and ξ (xj ) can be non-null but tending to zero as xj moves away

from the margin boundary on the correct side.
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β = 0, objects labeled as outliers can be misclassified for free. Notice that, when evaluating the
separability of a specific object, this is equivalent to removing all other objects labeled as outliers
from the dataset. As a consequence, the separability of the leftmost outlier would be much larger
in Figure 3(b) (where the neighboring outlier can be ignored by the margin) than in Figure 3(a)
(where the neighboring inlier, which is subject to full penalty, forces a much tighter margin). The
choice of β would, therefore, tune the influence of other objects depending on their assigned labels
and, as such, it addresses our second desired intuition.

In order to capture our first intuition, the modeling of possible clumps by defining a maximum
clump size, mcl , we can set the fraction of the penalty cost C as β = 1/mcl . This way, we are left
with mcl as a single, optional control parameter in our evaluation method. It is optional because,
by setting mcl = 1, the method reduces to the particular case where clumps are not modeled and
the same, full penalty cost is assigned to all objects. As mcl increases, the objects in a clump will
individually affect less and less each other’s measure of separability, and a larger number of nearby
objects will be needed to get a certain negative impact.

Notice that, in the top-n problem, by setting β = 1/mcl , one needsmcl objects labeled as outliers
to have the same effect as a single inlier. Also, notice that it would be contradictory to setmcl > n, as
no more thann objects can be labeled as outliers in a top-n problem. By considering this conceptual
upper bound, one gets 1 ≤ mcl ≤ n.

Except when mcl = 1, the separability of each object depends on the labels of the other objects
and, therefore, seeking a solution that maximizes the proposed index (rather than using it to assess
a given solution) would hardly be computationally feasible: in principle, for the top-n problem, it

would demand an exhaustive search in a space of size ( N
n

), where typically n � N . In the more
general problem of full outlier scoring evaluation, discussed next, the size of the space would expand
even further due to the infinite number of different possible assignments of outlier scores to each
object (rather than a binary inlier/outlier labeling).

We can extend the above formulation for modeling clumps to the more general evaluation prob-
lem involving full outlier scoring solutions. To achieve this, while keeping the desired properties of
the model previously discussed for the top-n case, we can incorporate the normalized outlier scores
(weights) w ( ·) into the cost components, as C (xj ) = βw j ·C . For an object xj with the maximum
probability of being an outlier according to the solution under evaluation, i.e. w j = 1, it follows
that C (xj ) = β ·C . On the other extreme, for an object with the maximum probability of being an
inlier, i.e., w j = 0, we have C (xj ) = C . For intermediate values, 0 < w j < 1, the higher the outlier
score, the higher the penalty costC (xj ). This way, we keep the original intuition in this extended,
full scoring evaluation model, while having the binary, top-n model clearly as a particular case.

In the general case, therefore, the optional model for clumps to be incorporated into our baseline
index, through the use of penalty terms associated with soft margin classifiers as in Equation (11),
is therefore:

C (xj ) =

(
1

mcl

)w j

·C , (12)

wheremcl is the maximum clump size, as a user-defined parameter, and C is a large constant.

3.3.3 Summary and Algorithm. In brief, IREOS is summarized as follows: like the baseline index
(Section 3.2), IREOS is computed using Equation (9). However, we make use of classifiers with soft
margins in order to compute the termsp (xj ,γ ) in that equation, with the cost for margin violations
set up as in Equation (12). A high-level pseudo code for computing IREOS for a set Ω of multiple
outlier detection solutions (as, e.g., for model selection) is given in Algorithm 1.

As for the classifier to be used in practice, our method is not tied to any specific soft margin
classifier. KLR [23, 66], which we have used for all the experiments reported in this article, offers the
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ALGORITHM 1: IREOS

Procedure IREOS(X,Ω,mcl)
foreach (ω ∈ Ω) do

switch ω do

case is binary top-n solution do // ω = S

if xj ∈ S then

w[xj ] = 1

else

w[xj ] = 0

end

end

case is non-binary top-n solution do // ω = (S, y)
w = NormalizeScores(y)

if xj � S then

w[xj ] = 0

end

end

case is scoring solution do // ω = y

w = NormalizeScores(y)

end

end

/* γmax = value of γ required by the classifier to separate from the other
objects every object labeled as an outlier in all solutions ω ∈ Ω; for scoring
solutions, objects are considered outliers if their weight w j is greater than

0.5 (i.e., outlier probability > 50%) */

γmax = γ | Classifier(X, xj ,w,mcl ,γ ) > 0.5, ∀xj | w j > 0.5, ∀ω ∈ Ω

setOfGammas = [0,γmax] discretized into nγ values

foreach (γ ∈ setOfGammas) do

foreach (xj ∈ X) do

prob[xj ] = Classifier(X, xj ,w,mcl ,γ ) // Separability p (xj ,γ )

end

avgProb[γ ] = WeightedAverage(prob,w) // Inner part of Equation (9)

end

ireos[ω] = NormAUC(avgProb, setOfGammas) // Outer part of Equation (9)

end

end

following benefits: (i) it automatically provides p (xj ,γl ) as the probability that object xj belongs
to the positive (outlier) class; (ii) these terms are not only provided directly as a byproduct of
the classifier, but they are naturally normalized (as probabilities) within [0, 1]; and (iii) KLR is a
classifier known to be robust even in the presence of imbalanced classes and small amounts of
training data.

Note, however, that the use of classifiers other than KLR is possible. Other maximum margin
classifiers, such as SVM [60], can in principle be readily plugged in provided that the SVM scores
are transformed into probabilities [50]. For classifiers other than the maximum margin classifiers,
although it is possible to transform the scores into probabilities [44], other questions would have
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to be thoroughly investigated. For instance, a general question to be answered would be how to
model clumps. Other more specific questions for each classifier would also have to be studied. For
example, for Artificial Neural Networks (ANN) [20], one would have to investigate how possible
convergence to local minima could affect the separability of the observations and, accordingly,
their IREOS scores.

3.4 Adjustment for Chance

The IREOS index, as described above, is ready to be used in practice if one is only interested in
comparing in relative terms a set of different candidate solutions, e.g., for model selection. How-
ever, the interpretation of the index for individual solutions, e.g., for statistical validation, can be
misleading. The reason is that IREOS will provide a certain positive value even when evaluating
purely random solutions. The situation is worsened by the fact that such a value is data dependent.
In fact, note from Figure 2(a) that even inliers will exhibit a non-null value for the AUC of separa-
bility. This prevents interpreting and assessing the statistical relevance of a given result in absolute

terms, which requires the index to be adjusted for chance. Here, we follow the classic statistical
framework for chance adjustment, i.e.,:

Iadj (ω) =
I (ω) − E{I }
Imax − E{I }

, (13)

where Iadj (ω) is the resulting (adjusted) index, I (ω) is the original index in Equation (9), Imax = 1
is the maximum value that the index can take, and E{I } is its expected value assuming that the
outlier weights are randomly assigned to the objects (for scoring solutions), or assuming that the
n data objects labeled as outliers in a top-n solution are chosen randomly. For random solutions,
Iadj is expected to take values around zero. The maximum is still 1, but the index now can take
negative values to indicate solutions even worse than what one would expect to obtain by chance.

The expected value, and for top-n solutions, also the variance that can be used for statistical val-
idation, can be computed exactly for the choice ofmcl = 1. Formcl > 1 or for statistical validation
in scenarios other than the binary top-n case, Monte Carlo simulations can be used to estimate the
relevant statistics. In Appendix A, we provide detailed explanations on how to perform adjustment
for chance as well as statistical validation in the different scenarios.

3.5 Complexity

The asymptotic computational complexity of the algorithm depends on the complexity of the clas-
sifier, O ( f (N ,d )), as a function of the database size N and dimensionality d . For each candidate
solution ω, we need to compute IREOS (Equation (9)), which demands training N · nγ classifiers
in the case of full scoring evaluation, thus resulting in an overall complexity of O (N · nγ · f (N ,d ))
in this case. When the index is adjusted for chance, we may need to evaluate nMC different ran-
dom solutions in Monte Carlo simulations in order to estimate the expected index, as discussed in
Appendix A.2, leading to a complexity of O (nMC · N · nγ · f (N ,d )). This is the complexity in the
most general case. For top-n evaluations, we only need to train n · nγ classifiers, where the usual
assumption is that n � N , which reduces the complexity to O (nMC · n · nγ · f (N ,d )). If Monte-
Carlo simulations are not required (becausemcl = 1 or because statistical validation is not needed,
as in the case of model selection, where all we need is to relatively compare different candidate
solutions), the complexity is further reduced to O (n · nγ · f (N ,d )).

The above complexity can be mitigated in many different ways, starting from the observation
that every single classifier can be trained simultaneously and in a completely independent way.
In the case where we have O (nc ) computer cores for parallel processing, where nc is the num-
ber of classifiers to be trained, the complexity of IREOS reduces to that of the classifier used. In
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other words, IREOS is highly parallelizable and can be implemented in a straightforward way in
distributed (e.g., cloud) environments using parallel computing frameworks such as MapReduce
[14]. In order to make the index even more computationally efficient, we provide strategies to
avoid large amounts of unnecessary computations in the three major components involved in the
complexity of the index: nγ separability values across different values of γ for a given object, sep-
arability values across N different objects for a given value of γ , and the computational burden to
train each classifier for a dataset of size N .

3.5.1 Separability Curves. In practice, in order to calculate the separability curve for a given
data object, we need to discretize the continuous range ofγ values, [0,γmax], intonγ discrete values.
In the experiments performed in our preliminary publication [41], we arbitrarily set nγ = 100 as
a setting that empirically provides a very accurate approximation of the AUC of separability as
discretized into nγ equally spaced values. There are, however, two major limitations with this
approach. First, it does not provide any control of the trade-off between the resulting level of
approximation (which is not known in advance) and the corresponding computational burden. The
only information available is that, by increasing nγ , the approximation (i.e., discretization) error
will decrease at the price of an increase in the computational cost, but the user cannot calibrate
the desired approximation error and automatically derive the smallest nγ that provides that error.
It is possible, for instance, that a very similar (and already good enough) approximation can be
achieved with much fewer than nγ = 100 values, in which case this arbitrary setting will waste
a large amount of computing power to unnecessarily and only slightly improve the quality of
the approximation. In addition, an approach that discretizes values evenly into equally spaced
intervals may not be the most effective and efficient. Instead, a smaller number of γ values can be
sampled from less critical regions of the separability curve, particularly when the curve has already
flattened and therefore requires much fewer values for a good approximation than required in the
leftmost part of the curve.

To overcome these limitations and to significantly speedup the computation of IREOS, instead of
using a fixed, arbitrary number nγ , we will use a variable number nγ according to a user-specified
tolerance for an estimated approximation error. To that end, we make use of the technique of
adaptive quadrature (or adaptive numerical integration) [9, 19, 38]. This technique will approxi-
mate the separability curve by subdividing it recursively into smaller subintervals. The procedure
begins with the approximation of the separability curve with the minimum possible number of
points (three). If this approximation does not reach the user-specified precision, the separability
curve is subdivided into two parts (bisection), and the same procedure is applied recursively and
independently on both (equally spaced) intervals, until the user-specified precision is reached. This
procedure is illustrated in Figure 4, where the three different separability curves in Figure 2(b), cor-
responding to a global outlier, a local outlier, and an inlier, are approximated by this procedure.
Initially, in Figure 4(a), the separability curve represented by the solid line is approximated by the
dotted line using only three points. Since the approximation is not good enough, the separability
curve is divided into two parts, the area of these two parts are calculated independently, and the
procedure is applied recursively to both of them. Figure 4(b) illustrates the bisection as a vertical
line as well as the approximated curve on both sides (five points in total) as a dotted line. Since
the area on the right side has already reached a satisfactory approximation, only the left part will
be further subdivided (Figure 4(c)). This procedure is repeated recursively, until each subdivision
reaches a sufficiently good approximation (Figure 4(d)). The other two separability curves are ap-
proximated using the same procedure, in Figures 4(e)–4(g) and 4(h), respectively. Note that the
number of points needed to achieve a good approximation varies in each case.
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Fig. 4. Approximation of the separability curves in Figure 2(b) using the adaptive quadrature technique. The
original curves are shown as solid lines, whereas the approximate curves are shown as dotted lines. Bisections
are highlighted as vertical lines.

The stopping condition of this procedure is that the approximation error should be less than a
user-specified threshold. Since the exact error cannot be determined as it would require the ex-
act computation of the separability curves, which is what the use of an approximation is meant
to avoid in the first place, an estimated error bound can be used instead. Since IREOS is defined
conceptually as the AUC of the continuous average curve of separability p̄ (γ ), which we want to
approximate by a finite number of points within the interval [0,γmax], determined using the adap-
tive quadrature technique, the error bound for this approximation can be calculated analytically
through a closed-formula [9]. In particular, there is a class of error bound, known as a posteriori

error estimate, that gives us a computable estimate based on the computed approximation only.
There are different approaches to calculate this type of error estimate [19]. The most commonly

used approach is based on the difference between the approximation of the curve over an entire
interval, using nγ points, and the approximation of the curve after a bisection of the original inter-
val, as the sum of the approximations over the two resulting subintervals, i.e., using 2nγ points (al-
though the midpoint is shared by both intervals, it is technically used twice, once in each interval).

Let I (0,γmax ) be the approximate IREOS index computed over the entire interval [0,γmax] as in
Equation (9), i.e., using nγ discrete points. In addition, let I (0,

γmax

2 ) and I (
γmax

2 ,γmax ) be the approx-

imate IREOS index computed separately in each bisection subinterval, [0,
γmax

2 ] and [
γmax

2 ,γmax],
respectively, each of which uses nγ points. Since IREOS is, by definition, an AUC, it follows that

I (0,
γmax

2 ) + I (
γmax

2 ,γmax ) corresponds to the approximate IREOS index computed over the entire
interval [0,γmax] after the bisection, i.e., using 2nγ points, in contrast to I (0,γmax ), which uses nγ

points only (i.e., before the bisection). In addition, let Iexact be the exact value of the index as if the
exact (continuous) curves of separability were known. For smooth and continuous curves, such as
separability curves, we can estimate the error of the approximation using 2nγ points as [5, 13, 19]:

E2nγ
(I ) :=

���Iexact −
(
I (0,

γmax

2 ) + I (
γmax

2 ,γmax )
) ���

≈ 1
3
���(I (0, γmax

2 ) + I (
γmax

2 ,γmax )
)
− I (0,γmax )���

(14)
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Equation (14) can be interpreted as follows: the absolute error between the exact curve and its
(bisected) approximation using 2nγ points, E2nγ

(I ) (the first expression above, by definition), is

approximately 1
3 of the absolute difference between the approximation using 2nγ points and the

(non-bisected) approximation using nγ points only. Notice that, while the former expression is not
computable because we do not know Iexact , the components in the latter expression are not only
computable but also readily available as we perform the adaptive quadrature procedure. After each
new bisection step is performed, we can recursively apply Equation (14) to the bisected subinterval,
update the total estimated error (as a sum of the errors in all current subintervals), until this error
falls below the user-defined threshold, when the adaptive quadrature can be interrupted.

It is worth noticing that, for the sake of simplicity, the above description of the adaptive quadra-
ture procedure has subsumed the use of the midpoint rule as the method for numerical integration,
but there are other rules that can be applied. In case of higher-order methods, the ratio between
the error when using 2nγ points and the error when using only nγ points can be much more ac-

centuated than 1
3 . For instance, for Simpson’s rule, which is used in our code and experiments, the

ratio is 1
15 [9]. This means that the estimated error decays much more quickly and, therefore, a

smaller number of points is required to achieve a given targeted approximation quality.

3.5.2 Separability Values Across the Dataset. Due to the normalization applied to the outlier
scores, following the approach of Kriegel et al. [36] to compute weights w j as outlier probabilities
associated with the data objects xj , many objects in the dataset will be assigned a weight of zero.
Since the separability p (xj ,γ ) of each object xj is multiplied by the corresponding weight w j in
Equation (9), the separabilities of all objects with weight equal to 0 do not need to be computed,
which in practice can drastically reduce the number of classifiers to be trained.

The normalization proposed by Kriegel et al. [36] presumes the regularization of the scores in
such a way that the expected score for an object considered to be an inlier by the outlier detec-
tion method that produced the scores will have an associated probability (weight) around zero. A
number of outlier detection algorithms in the literature [8, 10, 48, 65] readily provide an expected
score as a mathematical property, so that regularization can be done just by subtracting this value
from the outlier scores—e.g., the expected score for an inlier is around 1 for LOF [8] and around 0
for GLOSH [10]. In case of algorithms for which the expected score of inliers cannot be trivially
determined, the regularization must be performed based on assumptions about the distribution of
the outlier scores; e.g., if a Normal distribution is assumed, the regularization can be performed by
subtracting the mean or median from the scorings, “squeezing” the scores of objects at or below
the mean/median to zero. Notice that, in practice, for algorithms whose expected score for inliers
is known, e.g., LOF, a large amount of the data objects, as inliers, will tend to have null weight,
and therefore it is not unrealistic to assume that, even in the full scoring evaluation scenario, the
separability values and the corresponding classifiers may only need to be computed for a fraction
n of the data objects, where n � N .

In practice, one of the most important applications of IREOS could be model selection, where
the analyst faces a collection of candidate outlier detection solutions produced by different algo-
rithms, or different parameters of the same algorithm, and wants to relatively compare and rank
these solutions, in a completely unsupervised way, in order to pick the best one(s) for further in-
vestigation. In this scenario, it is possible to further speed-up computations by taking advantage
of a pruning strategy, explained below.

Since larger weightsw ( ·) have a greater influence on the composition of the index in Equation (9),
computing the separability values only for a subset of the data objects with the largest weights
may suffice to determine that one solution is necessarily better or worse than others. By sorting
the weights in each candidate solution and then computing IREOS incrementally by processing
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Table 1. Illustrative Example of the Pruning Strategy for Model Selection Involving Three Hypothetical
Candidate Outlier Detection Solutions

Solution 1 Solution 2 Solution 3

p (xi ,γ ) wi Ipartial Îmax p (xj ,γ ) w j Ipartial Îmax p (xl ,γ ) wl Ipartial Îmax

1 0.3 0.3 1 0.2 0.3 0.06 0.76 0.6 0.35 0.21 0.86
0.87 0.2 0.474 0.974 0.6 0.15 0.15 0.7 0.2 0.25 0.26 0.66

1 0.135 0.609 0.974 0.9 0.14 0.276 0.686 0.5 0.15 0.335 0.585
1 0.13 0.739 0.974 1 0.1 0.376 0.686 0.4 0.07 0.363 0.543

0.3 0.12 0.775 0.89 0.95 0.09 0.4615 0.6815 0.3 0.05 0.378 0.508
0.6 0.1 0.835 0.85 0.4 0.08 0.4935 0.6335 0.9 0.045 0.4185 0.5035
0.2 0.015 0.838 0.838 0.2 0.08 0.5095 0.5695 0.92 0.035 0.4507 0.5007

0.3 0 0.838 0.838 1 0.06 0.5695 0.5695 1 0.03 0.4807 0.5007
0.5 0 0.838 0.838 0.1 0 0.5695 0.5695 1 0.02 0.5007 0.5007

Processing of Solution 1 can be stopped earlier, at the 4th iteration, since it cannot be surpassed by Solutions 2 or 3.

Processing of Solution 3 can be stopped at the 7th iteration, as it cannot surpass Solutions 1 or 2.

the normalized products (p (xj ,γ ) ·w j )/(
∑

i wi ) in decreasing order of weightsw j , simultaneously
across all candidate solutions, we can monitor the current partial value of the index (Ipartial) for each

solution as well as the maximum value that the index can reach for that solution (Îmax ) assuming
that all the data objects that have not yet been processed would have maximum separability of 1.
Since both the separability as well as the weight values cannot be negative, i.e., p (xj ,γ ) ≥ 0 and

w j ≥ 0, Ipartial can only increase as we process more objects. Contrarily, Îmax can only decrease.
Hence, by keeping track and comparing the values of Ipartial of each solution against the values of

Îmax for the other solutions, we can stop the calculation of the index of a solution earlier, when it
cannot surpass or be surpassed by any other solution.

An example of this pruning strategy is illustrated in Table 1, where three outlier detection solu-
tions are evaluated. The outlier weights are sorted in decreasing order, and the separability of the
corresponding data objects are computed incrementally (from top to bottom). In each iteration,

one data object is processed at each candidate solution, and the values of Ipartial and Îmax for that
solution are updated and compared with those of the other solutions. Once Ipartial of a solution

is already larger than the Îmax values of all the other solutions that are still active (i.e., being pro-
cessed), the process of this solution can be interrupted. In the example in Table 1, this occurs in the
4th iteration, when Solution 1 no longer needs to be processed as its partial index (Ipartial = 0.739)

cannot be reached by the indexes in Solutions 2 (Îmax = 0.686) and 3 (Îmax = 0.543). We can also

halt processing a solution once its Îmax value is already smaller than Ipartial of all the other solu-
tions that are still active. In our example, this occurs in the 7th iteration, when Solution 3 no longer

needs to be processed as its maximum possible index value (Îmax = 0.5007) cannot reach the index
in Solution 2 (Ipartial = 0.5095).3

3.5.3 Classifiers and Computational Complexity Revisited. The computational cost of IREOS
is dominated by the cost of training multiple classifiers. While maximum margin classifiers are
known for their high efficacy, they are also known for being computationally demanding. Fortu-
nately, different techniques are available in the literature to lessen the computational burden of

3There is also a 3rd scenario in which we can stop processing a solution: let Ω be the set of candidate solutions. If Îmax

of a solution ωi is already lower than the Îpartial values of a subset of solutions ΩA ⊂ Ω, while Îpartial of ωi is already

higher than the Îmax values of the remaining solutions, i.e., those in the subset Ω\{ΩA, ωi }, then ωi cannot surpass or be

surpassed by any other solution and can be stopped.
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Fig. 5. Illustrative example of subsampling and the influence of close and distant objects on an object’s
separability.

these classifiers. These techniques can be categorized into two main approaches: algorithmic and
data selection. The first approach consists of faster algorithms for the Quadratic Programming (QP)
solver required by maximum margin classifiers [31, 49], while the latter approach focuses on the
selection of training data in order to reduce the number of examples (N ) used to train the classi-
fiers [40, 46]. Our approach to speeding up the computation of our index combines the best of both
worlds: while taking advantage of a fast QP solver [31], we also elaborate on a suitable approach
for the selection of the training data.

The most straightforward approach to reduce N is to randomly subsample the dataset avail-
able for training [40]. However, when evaluating the individual separability of a data object, an
informed subsampling is required instead, because separability can be highly affected depending
on the objects filtered out by the sampling procedure. In Figure 5, we can see two different subsam-
ples taken from the dataset illustrated in Figure 5(a). Notice that, when evaluating the separability
of the object marked as a red square, while the subsample in Figure 5(b) completely modified the
decision boundary by filtering out a single object, the boundary in Figure 5(c) has not been af-
fected even though an entire cluster has disappeared. While the use of soft margin classifiers (as
opposed to the strict margin illustrated in Figure 5) significantly reduces the influence of single
data objects on the computation of separability, the message learned from the extreme case illus-
trated in Figure 5 is still valid: closer objects have more influence on the decision boundary and,
accordingly, on the separability of a given object.

While closer neighbors noticeably affect the decision boundary for the separability of a given
object, other more distant objects are likely to be irrelevant. In fact, for certain classifiers, such as
SVMs, only the support vectors matter. For KLR, while all objects influence the decision boundary
to some extent, the influence tends to zero very quickly as an object moves away from the margin
boundary on the correct side. Thus, in order to select the most effective training subset for our
classifiers, we follow previous work from the literature [42, 46] and propose to use only the kNN
of each object (rather than the whole dataset) to evaluate its separability.

When trained from the N objects of a dataset to compute the separability of one particular ob-
ject, the KLR classifier, which is used in all our experiments, runs in O (d · N 3) time, where d is
the data dimensionality. By using a subsample containing only the kNN of the object in question,
this complexity is drastically reduced to O (d · k3), plus O (N ) to determine the kNN using an ordi-
nary linear search, i.e., O (d · k3 + N ). Then, in the worst case scenario where, despite the different
pruning strategies previously described, the separability (and the kNN) of all the N objects in the
dataset would be required to compute IREOS, for nγ different values of γ , the total complexity of

the index would be O (N · nγ · d · k3 + N 2).
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If appropriate index structures are in place, such as a Kd-Tree, the kNN for all N observations
can be determined in O (N logN ) time. Moreover, notice that the exact kNN are not fundamentally
important, because, by using a subsample, we are already computing an approximate value of
separability in the first place, so an approximate-NN approach [18, 57] should suffice. By using
approximate rather than exact nearest neighbors, the k (approximate) nearest neighbors for all N
observations may be determined in O (N ) time, typically with the aid of hashing structures. In this
case, the complexity of IREOS in the worst case reduces to O (N · nγ · d · k3 + N ), i.e., O (N · nγ ·
d · k3). For top-n solutions, the complexity is O (n · nγ · d · k3).

The value of k is a compromise between the quality of approximation and runtime. It is im-
portant to notice that most existing unsupervised outlier detection algorithms require the com-
putation of the kNN for all observations in the dataset, where k is a user-defined parameter of
these algorithms (typically a small constant such that k � N ). If the same value of k given as
input to the algorithm or algorithms that produced the outlier detection solution(s) to be eval-
uated is also used to compute IREOS, the kNN computed by the algorithms can be reused with
no extra cost to IREOS. This makes the worst-case complexity of IREOS to be O (N · nγ · d · k3)
for scoring solutions or O (n · nγ · d · k3) for top-n solutions even when using exact (rather than
approximate) nearest neighbors. Finally, notice that these results subsume centralized processing,
but one can significantly speed up computations using parallelization schemes (as we do in our
code).

3.5.4 Final Remarks. Before demonstrating that the index developed in this chapter works well
in practice, we want to point out that we are aware of a vulnerability that could potentially al-
low “adversarial” outlier detection methods to fool the index to some extent. Recall that the basic
definition of the index for a full scoring (Equations (8) and (9)) is a weighted average, where the
average of separability values, weighted by an outlier detection method’s scores, is taken over the
sum of the scores assigned by the method. It is easy to see that a method could get the maximum
possible IREOS score, if it would somehow be able to detect the strongest outlier (in terms of sep-
arability), and would then assign this outlier a weight of 1 and all other data objects a weight of
0. While this property is not desirable, it is practically not very relevant, since outlier detection
methods are typically not designed to fool an evaluation index. An alternative evaluation index
that does not have this property can be based on a weighted Pearson correlation coefficient (with
separability values as weights). However, the drawback of the weighted correlation is that not
all of the speed-up strategies developed in this section easily apply, making it computationally
much more demanding. We have implemented and experimented with an evaluation index based
on weighted Pearson Correlation, and its performance in terms of quality is indeed comparable
to the index proposed in this chapter, but not systematically better, and much worse in terms of
runtime. Therefore, we recommend to use the index as proposed in this section, and evaluate its
performance in detail in the next section.

4 EVALUATION

4.1 Datasets

We combine different strategies to annotate datasets used for evaluation, following statistical con-
siderations, following the semantical notion of unusual classes, or following common procedures
and examples from the literature.

4.1.1 Synthetic Datasets. For experiments on synthetic data, we adopt previously published
benchmarking datasets that have been designed and used to evaluate outlier detection methods
[68, 69]. We use a collection referred to as “batch1” [68, 69]. The 30 datasets in this collection
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vary in the dimensionality d ∈ [20, . . . , 40], in the number of clusters c ∈ [2, . . . , 10], and for each
cluster independently in the number of points nci

∈ [600, . . . , 1000]. For each cluster, the points
are generated following a Gaussian model with randomly selected parameters that are attribute-
wise independent. The sampled cluster is randomly rotated and the covariance matrix is rotated
accordingly. Based on the covariance matrix, the Mahalanobis distance between the mean of a
cluster and each cluster point is computed. The distribution of the Mahalanobis distances follows
a χ 2 distribution with d degrees of freedom. Points with distances on the right the tail of this
distribution can be seen as outliers.

4.1.2 Real-world Datasets and Preliminary Benchmarking Experiments. The first collection of
real-world datasets is composed of 23 real datasets from a publicly available outlier detection
repository that contains approximately 1,000 variants of 23 main datasets [11]. As these datasets
are originally from clustering and classification tasks and, therefore, there is no guarantee that
the ground truth labels of objects as inliers and outliers in these datasets are in conformity with
the spatial distribution of the data (i.e., in principle it is unknown if the semantic represented
by the labels is properly captured in the feature space where the objects have been described),
Campos et al. [11] proposed two indexes to characterize the suitability of each candidate dataset
for outlier detection benchmarking. One of the indexes is called difficulty, which measures the
disagreement between the results of a collection of representative outlier detection methods
and the ground truth labels, such that a high value of the index indicates that the methods have
difficulty in detecting the objects labeled as outliers in the ground truth. Therefore, the ground
truth labels of a dataset with a high difficulty value are not consistent with the notion of outliers
as captured by a variety of algorithms, which may suggest that the labels are not aligned with
the spatial distribution of the data. The second index proposed by Campos et al. [11] is called
diversity, which measures the disagreement of a given collection of outlier methods with respect
to the outlier scores that they assign to data objects labeled as outliers in the ground truth. A low
diversity score combined with a low difficulty score suggests that the outliers in the ground truth
can be detected by most algorithms (an easy dataset). A high diversity score combined with a high
difficulty score can occur, e.g., if most of the algorithms are unable to detect most of the outliers,
but a few outliers, which vary from algorithm to algorithm, can be detected by each algorithm.

A limitation of the measures of difficulty and diversity mentioned above is that they rely on a
collection of representative outlier detection algorithms. Therefore, if these measures suggest that
a dataset is very hard, we do not know for sure if there is a problem with the existing algorithms
only (in which case the dataset is suitable for benchmarking in studies involving future algorithms)
or if there is a problem with the dataset (the labels are fully or partially inconsistent with the data
distribution and, therefore, the dataset may not be suitable for benchmarking). For instance, a
low diversity score combined with a high difficulty score could occur, e.g., if the outliers in the
ground truth are assigned low outlier scores (as inliers) by most algorithms, either because the
algorithms are not good enough or because the objects labeled as outliers cannot be detected as
such (or both). In order to help disambiguate these scenarios, we propose the use of IREOS as an
additional, complementary measure of hardness for a dataset, which has the advantage of being
algorithm independent, i.e., unlike the measures of difficulty and diversity, it depends only on
the data. To that end, we take the ground truth labels of a dataset as a candidate (binary, top-
n) solution and compute IREOS, adjusted for chance, for this “solution”. Higher values (close to
1) would indicate that the ground truth labels are highly correlated with the separability of the
objects labeled as outliers, while low values (around zero) would suggest the opposite.

In Figure 6, we reproduce an experiment from Campos et al. [11], where a scatter-plot of the
diversity and difficulty scores for several downsampled variants of a variety of base datasets is
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Fig. 6. Scatter-plot of difficulty vs. diversity for several downsampled variants of a variety of base datasets,
following [11], but coloring points according to the IREOS assessment of the ground truth labels (adjusted
for chance, withmcl = n, where n is the number of outliers in the ground truth). Hotter colors represent lower

IREOS values, i.e., the ground truth only agrees to a smaller degree with the notion of separability adopted
by IREOS. Note that the IREOS score appears to be compatible with the difficulty score. The result obtained
withmcl = 1 is very similar.

displayed. For each dataset with different downsampled variants, the 95% confidence ellipse is
shown as well as the individual points for each variant. The means of the ellipses are indicated by
an “x”, labeled with the corresponding base dataset. The datasets with only one variant are shown
as a filled square. Unlike the original plot [11], our plot in Figure 6 maps the value of the adjusted
IREOS for each dataset into a cold/hot color. Notice that datasets with high difficulty and diversity
scores do tend to exhibit lower values of IREOS. Since these two strategies to assess the hardness
of a dataset are based on completely different evaluation mechanisms, their compatible results
suggest that both can be useful and that the intuition of separability adopted by IREOS seems to
capture well the (not always explicit) intuition of the various outlier detection methods used in
the study of Campos et al. [11].

Supported by these results, and to increase the chances that the solutions of the unsupervised
outlier detection methods are not completely meaningless with respect to the ground truth labels,
we chose for each of the 23 datasets from Campos et al. [11], the variant with the lowest difficulty
score, whenever there are multiple downsampled variants of the dataset available for the chosen
percentage of outliers. We chose from the variants with 5% of outliers, normalized, and without
duplicates.

The collection of 23 real-world datasets [11], some of which are displayed in Figure 6, does not
include 4 of the 11 datasets used in the experiments in our preliminary publication [41], namely,
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Isolet, Multiple Features, Optical Digits, and Vowel. For the sake of completeness, here we will also
include these four datasets, resulting in 27 datasets in total.

4.2 Methods and Measures

In our experiments, we evaluate results by contrasting the unsupervised assessment of candidate
outlier solutions performed by IREOS against the supervised assessment using the ground truth,
i.e., using the labels as provided in the datasets.4 We then study the relationship between the
quality assessments of the solutions with respect to the ground truth and the quality assessments
of the solutions computed by IREOS. To assess the quality of a given scoring solution with respect
to the ground truth, i.e., in a supervised way, we compute the Area Under the ROC Curve (ROC
AUC) of the outlier scores in the solution under evaluation against the labels in the ground truth.
For the real-world datasets, the ground truth labels are binary (i.e., outlier/inlier, according to a
certain classification perspective), but this is not necessarily the case for the synthetic datasets,
where the true probability distributions are known, and p-values (or rather their complement) can
be used as reference outlier probabilities when computing the ROC AUC.

In addition to evaluating the IREOS assessment against the assessment using ground truth, we
also contrast the assessment made by IREOS against a baseline. For that purpose, we use as the
baseline a method originally designed for feature selection.5 It is worth noting that the baseline
index used here has not been originally published or by any means used for internal evaluation of
outlier detection. Instead, the index was originally proposed as a filter method for feature selection.
In order to use a feature selection method for internal evaluation of outlier detection solutions,
the candidate solutions can be seen as a set of features (each candidate outlier detection solution
corresponds to a feature). We take advantage of the fact that certain feature selection methods rank
the features according to their importance, so, by treating candidate outlier solutions as features,
these candidates will then be ranked.

In order to produce a diverse collection of candidate outlier solutions to be assessed, we collected
10 different solutions for each dataset. For the real-world datasets, these solutions were produced
by the same outlier detection algorithms involved in the benchmarking study of Campos et al. [11],
namely: COF [58], FastABOD [37], INFLO [30], KDEOS [55], KNN [51], KNNW [3, 4], LDOF [65],
LDF [39], LOF [8], LoOP [35], ODIN [24], and SimplifiedLOF [56]. In addition to these algorithms,
we also included a recent outlier detection method called GLOSH [10], for a total of 13 algorithms.
All these algorithms share a parameterization in terms of a local neighborhood size, hereafter
referred to as k , which is the main parameter in all of these algorithms (and the only parameter in
many of them). For those algorithms that have additional parameters, following Campos et al. [11],
we used the default values suggested by the original authors. For each real dataset, the algorithms
were run by varying their neighborhood size k between 1 and 100.6 In order to select a diverse
subset of 10 candidate solutions for each dataset, we ensured that the best and the worst solutions
according to their ROC AUC were selected, and the remaining solutions were selected trying to
keep an interval as equally spaced as possible between solutions in terms of their ROC AUC values.

For the synthetic datasets, since the actual distributions used to generate the data are known,
algorithms are not needed to produce suitable candidate solutions. Instead, the candidate solutions
were produced artificially, in a fully controlled way. We start from the perfect solution given by

4Notice that these labels are not used by our index in any way, except if the index is specifically applied to assess the

ground truth itself as a candidate solution, as in Figure 6.
5We would like to thank the anonymous reviewer for suggesting this method as the baseline for IREOS.
6Notice that, except for GLOSH, all these results have been precomputed and are available in the repository associated

with the benchmarking study of Campos et al. [11].
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the ground truth (ROC AUC = 1), which is as follows: based on the known covariance matrix of
the multivariate normal distribution that generated each data object, the Mahalanobis distance
between each object and the mean of the distribution is computed. The distribution of the Ma-
halanobis distances follows a χ 2 distribution with d degrees of freedom, from which an outlier
probability for each data object can be readily obtained as the complement of the p-value. For
each synthetic dataset, the corresponding p-value complements are taken as a non-binary ground
truth, i.e., a perfect scoring solution. In order to produce a diverse collection of 10 candidate outlier
solutions to be assessed, for each dataset, we start from the ideal solution as described and itera-
tively produce new solutions by swapping the outlier score of one outlier (p-value < 0.025) with
the score of a random inlier. This way, at each new iteration, the ROC AUC deteriorates as we are
worsening the ideal solution by flipping the scores of outliers and inliers (as per a 97.5% confidence
level). Once again, in order to select a diverse subset of 10 candidate solutions for each dataset, we
ensured that the best and the worst solutions according to their ROC AUC were selected, and the
remaining solutions were selected trying to keep an interval as equally spaced as possible between
solutions in terms of their ROC AUC values.

It is worth noticing that the outlier scores in the candidate outlier solutions obtained for the
synthetic datasets already can be interpreted as (complementary) outlier probabilities (p-values),
so the normalization procedure used by IREOS to produce regularized weights from the raw out-
lier scores is not necessary. As for the real datasets, whose candidate solutions have been obtained
from a diverse collection of algorithms producing outlier scores with different characteristics, the
normalization is required. In these cases, we applied the Gaussian scaling setting of the normal-
ization framework by Kriegel et al. [36], which has been recommended by the authors based on
the overall results presented in their article.

4.2.1 Categories of Experiments. We perform two main categories of experiments. The first cat-

egory of experiments is designed to assess the compromise between computational efficiency and
efficacy of the strategies proposed in Section 3.5 to speed up the computation of IREOS. First, each
proposed strategy is evaluated separately in terms of computational gain and loss of approxima-
tion quality in relation to the original index. Then, all the proposed strategies are combined and
compared against the original index.

The second category is designed to assess the effectiveness of IREOS, which is tested in two
different experimental scenarios. In each of these scenarios, we assess the effectiveness of both
original and approximate IREOS with all speedup strategies combined, as well as compare them to
a baseline index. In the first scenario, we measure the goodness of fit between the rankings obtained
by assessing the 10 candidate solutions of each dataset in a supervised way (using ROC AUC) and
in an unsupervised way (using IREOS, approximate IREOS, and the baseline index). The goodness
of fit is measured by computing the Spearman correlation between these two rankings of the same
10 candidate solutions, for each dataset. The second scenario involves model selection: using the
quality assessments of the solutions computed by the three different indexes, we selected the best
solution of each dataset according to their respective scores, these solutions are then compared in
terms of ROC AUC against the best, worst, and expected (average) ROC AUC values across the
entire collection of candidate solutions.

4.2.2 Parameters. We evaluate IREOS withmcl = 1 (no modeling of clumps) andmcl = n, where
n is the number of outliers according to the ground truth (for synthetic datasets, n is the number
of data objects with p-value < 0.025, i.e., around 2.5% of the dataset size). Since n is unknown
in practical application scenarios, we also experiment with another (empirical and generic, not
domain-specific or application-oriented) setting for the case where the optional mechanism for

modeling clumps is used:mcl =
√

5% · N .
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For the evaluation of feature importance/relevance in an unsupervised setting by the baseline
index, we use the Laplacian Score (LS) [26], which makes its evaluation based on the structure
of a nearest neighbor graph. For the construction of such graph, we consider three neighborhood
sizes k , namely: 1 and 100, as these were the minimum and maximum values used by the outlier

detection algorithms themselves, and
√
N , which is common practice in the literature [16].

Following our preliminary publication [41], the number of discrete γ values for the computa-
tion of the index when the speedup strategies are not in place (including adaptive quadrature for
numerical integration) is nγ = 100. As previously discussed, the constant penalty cost for soft mar-
gin violations,C , only needs to be large enough to perform its intended role, and our experiments
show that the results obtained with values ofC varying several orders of magnitude are very sim-
ilar and do not change the conclusions. For instance, we showed earlier [41] that the differences
in the results for C varying from 100 to 800,000 are negligible. The experiments reported in this
article have been run with C = 100.

4.3 Results

4.3.1 First Category of Experiments (Efficiency of Approximations). In this first category of ex-
periments, we evaluate the fast, approximate strategies to compute IREOS discussed in Section 3.5.
We start with a comparison between the computational cost of the index when using a fixed num-
ber nγ = 100 of points to compute the separability curves and the cost when using the adaptive
quadrature approach. We experiment with the estimated approximation error set to 0.01, 0.005, and
0.001. The results are shown in Table 2, where columns with header “Classifiers” show the average
number of classifiers trained to evaluate a solution, whereas columns with header “Diff” show the
average absolute difference between the index as computed with nγ = 100 and as computed with
a variable nγ determined by the adaptive quadrature technique. All the averages were taken over

the assessment of 30 candidate solutions, 10 for mcl = 1, 10 for mcl =
√

5% · N , and 10 for mcl = n.
For the estimated error of 0.01, which was the largest one used, the number of classifiers needed
to evaluate a solution with adaptive quadrature falls as low as 6% of the amount required with nγ

fixed, while the observed approximation errors (Diff) are in the second or third decimal digit. For
an estimated error of 0.001, all datasets required less than a third of the classifiers needed with nγ

fixed, and most Diff values were in the third or fourth decimal digit.
Our next experiment assesses the reduction of the computational cost when avoiding the un-

necessary computation of separability curves for data objects with zero outlier probability (weight
w ( ·) = 0) as well as by using the pruning strategy that stops early when ranking candidate solu-
tions for model selection. The results are shown in Table 3. Notice that, in this comparison sce-
nario, Diff is irrelevant, because: (a) Pruning byw ( ·) = 0 produces an exact result (Diff = 0), not an
approximation; and (b) in model selection, the exact value of the index is not important, only the
ranking of the candidate solutions matters, and the stop early pruning strategy produces the same
ranking of candidate solutions as the one that would be obtained by sorting the solutions accord-
ing to the index computed without any pruning. Notice from Table 3 that each of these pruning
techniques is able to reduce computations to less than 50% of the original cost in most datasets.

Our third experiment assesses the trade-off between average runtime and quality of approxi-
mation of IREOS with the separability of each object computed using the object’s kNN only, as
opposed to using all the other objects in the dataset. We varied the number of the nearest neigh-
bors, k , as: 10, 50, 100, and 250. The results are shown in Table 4, for a representative sub-collection
of the datasets, all of which are computationally demanding. As can be seen, this approach pro-
vides by far the largest computational gains. In fact, for these datasets, each classifier required by
the approximate IREOS has been computed on average with at most around 2% of the original
runtime, in the case of the largest neighborhood, k = 250. Except for dataset Wilt with k = 10 (the
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Table 2. Comparison Between IREOS with Fixed nγ and Variable nγ as Determined by the Adaptive
Quadrature Approximation

Dataset
Fixed nγ Ad. Quad.: E2nγ (I ) = 0.01 Ad. Quad.: E2nγ (I ) = 0.005 Ad. Quad.: E2nγ (I ) = 0.001

Classifiers Classifiers Diff Classifiers Diff Classifiers Diff

Annthyroid 694,200 41,704.2 (6.01%) 0.035 62,081.2 (8.94%) 0.00155 76,952.8 (11.09%) 0.00036

Arrhythmia 25,600 1,536 (6%) 0.04594 5,684.2 (22.2%) 0.00347 8,143.2 (31.81%) 0.00075

Cardiotocography 173,400 10,614.8 (6.12%) 0.01484 16,917.4 (9.76%) 0.01709 27,562.2 (15.9%) 0.01543

Glass 21,400 1,288.8 (6.02%) 0.05718 3,492.6 (16.32%) 0.00173 4,996.8 (23.35%) 0.00031

HeartDisease 15,700 942 (6%) 0.03257 2,162.2 (13.77%) 0.00466 3,368 (21.45%) 0.00098

Hepatitis 7,000 420 (6%) 0.04733 1,354.4 (19.35%) 0.0033 1,889.8 (27%) 0.00057

InternetAds 168,200 10,341 (6.15%) 0.02633 28,822.2 (17.14%) 0.00705 44,124.4 (26.23%) 0.00521

Ionosphere 35,100 2,137.8 (6.09%) 0.04363 6,925.8 (19.73%) 0.00922 9,435.4 (26.88%) 0.00835

Isolet 91,000 5,460 (6%) 0.02557 18,553 (20.39%) 0.0052 26,693.2 (29.33%) 0.00089

Lymphography 14,800 888 (6%) 0.03175 2,108.4 (14.25%) 0.00453 3,246.2 (21.93%) 0.00105

MultipleFeature 40,800 2,448 (6%) 0.03655 8,070.8 (19.78%) 0.00529 12,005.6 (29.43%) 0.00107

OpticalDigits 114,400 6,889.8 (6.02%) 0.01573 17,985.8 (15.72%) 0.00786 28,545 (24.95%) 0.00146

PageBlocks 513,900 30,919.4 (6.02%) 0.01231 39,310.6 (7.65%) 0.00287 48,580.8 (9.45%) 0.00067

Parkinson 5,000 300 (6%) 0.04883 888 (17.76%) 0.00222 1,303.6 (26.07%) 0.00048

Pima 52,600 3,225.4 (6.13%) 0.02824 7,307.2 (13.89%) 0.00768 11,381.2 (21.64%) 0.0062

Shuttle 101,300 6,078 (6%) 0.01641 7,087.2 (7%) 0.0155 8,810.2 (8.7%) 0.01529

SpamBase 266,100 16,701.4 (6.28%) 0.02191 43,310.2 (16.28%) 0.00502 62,923 (23.65%) 0.001

Stamps 32,500 1,960.6 (6.03%) 0.02733 3,916.2 (12.05%) 0.00939 6,134.4 (18.88%) 0.00823

Vowel 10,000 600 (6%) 0.0545 980 (9.8%) 0.05453 1,576.6 (15.77%) 0.05357

Waveform 344,300 21,198.4 (6.16%) 0.00765 55,365.6 (16.08%) 0.00754 86,595.8 (25.15%) 0.00192

WBC 22,300 1,352.4 (6.06%) 0.05597 4,047.4 (18.15%) 0.00382 5,801 (26.01%) 0.00317

WDBC 36,700 2,231.4 (6.08%) 0.04083 6,520.2 (17.77%) 0.00432 9,673.8 (26.36%) 0.00209

Wilt 481,900 28,979.4 (6.01%) 0.01374 37,752.4 (7.83%) 0.01388 48,340.8 (10.03%) 0.01992

WPBC 19,800 1,188 (6%) 0.05295 3,778.2 (19.08%) 0.00299 5,555 (28.06%) 0.00048

Columns “Classifiers” show the average number of classifiers trained to evaluate a solution. Columns “Diff” show the

average absolute difference between the index as computed with nγ = 100 and as computed with a variable nγ determined

by the adaptive quadrature technique.

smallest neighborhood), the observed absolute difference (i.e., the approximation error) Diff was
in the second or third decimal digit.

The results of an experiment that combines all the speedup strategies simultaneously are sum-
marized in Table 5. In this case, for each dataset, we report the average time to compute the entire
index for one candidate solution, if a single processing core was used.7 The estimated error for
adaptive quadrature and the number of nearest neighbors were set to 0.005 and 250, respectively.8

As can be seen, with exception of the InternetAds dataset, IREOS can be computed in a few min-
utes without any major loss of accuracy, even considering a sequential (rather than parallelized)
implementation.

4.3.2 Second Category of Experiments (Effectiveness). The results of the second category of
experiments, for the first scenario involving the correlation between the rankings of candidate

7Although our experiments have been run with our parallelized code in a multi-core server, we report the sum of the

runtimes required to train classifiers across multiple processing nodes, as a worst-case scenario assuming a non-parallelized

implementation.
8This is also the setting used in the second category of experiments (effectiveness).
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Table 3. Comparison between IREOS with and without Pruning Strategies

Dataset
No pruning Pruning: w ( ·) = 0 Pruning: Stop Early
Classifiers Classifiers Classifiers

Annthyroid 694,200 232,710 (33.52%) 193,816.7 (27.92%)
Arrhythmia 25,600 13,820 (53.98%) 13,753.33 (53.72%)
Cardiotocography 173,400 69,490 (40.07%) 66,096.67 (38.12%)
Glass 21,400 7,480 (34.95%) 7,010 (32.76%)
HeartDisease 15,700 7,250 (46.18%) 6,866.667 (43.74%)
Hepatitis 7,000 3,320 (47.43%) 3,236.667 (46.24%)
InternetAds 168,200 79,830 (47.46%) 78,270 (46.53%)
Ionosphere 35,100 21,890 (62.36%) 20,700 (58.97%)
Isolet 91,000 45,400 (49.89%) 44,393.33 (48.78%)
Lymphography 14,800 6,480 (43.78%) 6,210 (41.96%)
MultipleFeature 40,800 19,430 (47.62%) 19,080 (46.76%)
OpticalDigits 114,400 57,420 (50.19%) 53,643.33 (46.89%)
PageBlocks 513,900 204,170 (39.73%) 184,410 (35.88%)
Parkinson 5,000 2,230 (44.6%) 2,053.333 (41.07%)
Pima 52,600 20,930 (39.79%) 19,926.67 (37.88%)
Shuttle 101,300 47,120 (46.52%) 42,490 (41.94%)
SpamBase 266,100 172,240 (64.73%) 168,766.7 (63.42%)
Stamps 32,500 12,820 (39.45%) 12,406.67 (38.17%)
Vowel 10,000 3,310 (33.1%) 3,060 (30.6%)
Waveform 344,300 163,570 (47.51%) 158,636.7 (46.08%)
WBC 22,300 8,720 (39.1%) 8,166.667 (36.62%)
WDBC 36,700 15,660 (42.67%) 14,833.33 (40.42%)
Wilt 481,900 171,230 (35.53%) 148,256.7 (30.77%)
WPBC 19,800 8,200 (41.41%) 7,960 (40.2%)

Table 4. Comparison Between IREOS with and Without the use of kNN Approximation
to Compute Separability

Dataset
Full Dataset k = 10 k = 50 k = 100 k = 250

Runt. Class. Diff Runtime Class. Diff Runtime Class. Diff Runtime Class. Diff Runtime Class.

Cardiotocogr. 382ms 0.0565 0.07ms (0.02%) 0.0195 0.57ms (0.15%) 0.0172 1.69ms (0.44%) 0.0161 8.49ms (2.22%)

InternetAds 22s 0.0382 0.65ms (≈0%) 0.0121 7.01ms (0.03%) 0.0102 30.18ms (0.13%) 0.0087 493.93ms (2.17%)

PageBlocks 3s 0.0908 0.04ms (≈0%) 0.0418 0.38ms (0.01%) 0.0383 1.26ms (0.04%) 0.0294 6.89ms (0.2%)

SpamBase 1s 0.0369 0.07ms (≈0%) 0.0292 0.69ms (0.04%) 0.0336 2.54ms (0.15%) 0.0319 11.12ms (0.66%)

Waveform 1s 0.0308 0.04ms (≈0%) 0.0130 0.47ms (0.03%) 0.0078 1.58ms (0.08%) 0.0038 8.65ms (0.46%)

Wilt 2s 0.1105 0.04ms (≈0%) 0.0510 0.34ms (0.01%) 0.0410 1.13ms (0.04%) 0.0266 6.20ms (0.23%)

The reported runtimes are the average times to compute each classifier. The number of classifiers does not change in this

strategy.

solutions as determined by unsupervised outlier evaluation indexes and by the ground truth, are
summarized in Table 6.9 For the real datasets, which are individual datasets, the entries denote
the value of the Spearman correlation between the indexes scores and ROC AUC values for the

9Since the original IREOS does not take advantage of the speedup strategies, we have not computed the index for the

datasets ALOI, KDDCup99, and PenDigits, as these large datasets are computationally very demanding.
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Table 5. Comparison Between IREOS with and without Fast, Approximate Strategies

Dataset
No Approximation Combined Approximate Strategies
Runtime Index Runtime Index Diff

Annthyroid 2348:54:58 0:4:5 (≈0%) 0.00265
Arrhythmia 0:13:56 0:1:45 (12.64%) 0.00356
Cardiotocography 18:26:45 0:1:24 (0.13%) 0.01707
Glass 0:2:9 0:0:18 (14%) 0.00182
HeartDisease 0:1:0 0:0:14 (23.53%) 0.00467
Hepatitis 0:0:7 0:0:1 (19.07%) 0.0033
InternetAds 1061:10:47 1:52:59 (0.18%) 0.00989
Ionosphere 0:13:47 0:1:4 (7.83%) 0.00924
Isolet 93:21:28 0:10:9 (0.18%) 0.0078
Lymphography 0:0:55 0:0:9 (16.92%) 0.00453
MultipleFeature 8:24:43 0:4:38 (0.92%) 0.00558
OpticalDigits 8:51:46 0:1:57 (0.37%) 0.00785
PageBlocks 491:47:43 0:2:24 (0.01%) 0.00172
Parkinson 0:0:3 0:0:0 (18.89%) 0.00222
Pima 0:30:43 0:0:45 (2.47%) 0.0079
Shuttle 3:18:20 0:0:39 (0.33%) 0.0161
SpamBase 124:9:0 0:5:45 (0.08%) 0.01186
Stamps 0:7:3 0:0:23 (5.53%) 0.00965
Vowel 0:0:40 0:0:1 (3.06%) 0.05453
Waveform 179:39:0 0:3:59 (0.04%) 0.00972
WBC 0:2:32 0:0:21 (13.88%) 0.00382
WDBC 0:13:19 0:0:42 (5.37%) 0.004
Wilt 359:23:27 0:2:8 (0.01%) 0.00333
WPBC 0:4:4 0:0:20 (8.57%) 0.00299

The reported runtimes are the average times needed to compute the entire index assuming a sequential

(non-parallelized) implementation.

corresponding set of 10 candidate solutions. For the collection of synthetic data, the entries denote
the average and the standard deviation of the Spearman correlation between the indexes scores
and ROC AUC values over the multiple datasets of the collection.

Notice that, for the synthetic data, the Spearman correlation between IREOS (both original and
approximate) and ROC AUC is maximum across the entire collection of 30 datasets. It shows that
the ordering of the candidate solutions based on the notion of outlierness as captured by IREOS
is perfectly aligned with the ordering of candidate solutions based on the notion of outlierness
according to the underlying statistical mechanism that generated the data, irrespective ofmcl . Note
that the way the solutions for synthetic datasets are generated makes the solutions numerically
very similar, which causes LS to produce very similar scores for the set of solutions (with small
variations), leading to a Spearman correlation close to zero (random).

For the real-world datasets, which represent a more intricate evaluation scenario where the
ground truth labels may be fully or partially inconsistent with the spatial distribution of the data,
as discussed in Section 4.1, there is a clear correlation most of the time. However, low or even
negative values of correlation can be observed for datasets that appear to have inconsistent la-
belings according to the measures of diversity and difficulty proposed by Campos et al. [11], e.g.,
Annthyroid and Wilt (see Figure 6). The Wilt database, in particular, showed a strong negative
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Table 6. Spearman Correlation Between Unsupervised Outlier Evaluation Indexes
and ROC AUC (Based on ground truth labels)

Spearman IREOS IREOS IREOS ApproxIREOS ApproxIREOS ApproxIREOS LS LS LS

correlation mcl = 1mcl =
√

5% · Nmcl = n mcl = 1 mcl =
√

5% · N mcl = n k = 1 k =
√

N k = 100

ALOI — — — −0.115 −0.115 0.103 −0.188 −0.139 −0.139

Annthyroid 0.248 −0.285 −0.394 0.248 −0.285 −0.37 −0.382 −0.248 −0.248

Arrhythmia 0.539 0.673 0.721 0.539 0.673 0.721 0.576 0.83 0.515

Cardiotocography 0.758 0.915 0.976 0.758 0.915 0.976 −0.188 0.345 0.636

Glass 0.467 0.479 0.382 0.467 0.479 0.394 0.273 0.321 0.285

HeartDisease 0.927 0.903 0.903 0.927 0.903 0.903 0.273 0.758 0.77

Hepatitis 0.939 0.903 0.903 0.939 0.903 0.903 0.188 0.879 0.042

InternetAds 0.636 0.915 0.782 0.709 0.891 0.721 −0.794 −0.794 −0.721

Ionosphere 0.648 0.721 0.709 0.648 0.721 0.709 0.879 0.794 0.624

Isolet 0.273 0.6 0.6 0.2 0.588 0.588 0.806 0.697 0.394

KDDCup99 — — — 0.855 0.782 0.733 0.37 0.309 0.527

Lymphography 0.661 0.758 0.758 0.661 0.721 0.758 −0.358 −0.661 −0.006

MultipleFeature 0.152 0.515 0.515 0.212 0.503 0.503 −0.406 0.103 −0.079

OpticalDigits 0.733 0.782 0.782 0.648 0.782 0.782 0.552 0.6 0.418

PageBlocks 0.927 0.964 0.952 0.927 0.964 0.952 0.758 0.794 0.855

Parkinson 0.515 0.515 −0.37 0.515 0.515 0.515 0.042 0.115 0.309

PenDigits — — — 0.6 0.661 0.661 0.455 0.467 0.467

Pima 0.758 0.83 0.879 0.758 0.879 0.879 0.479 0.515 0.539

Shuttle 0.867 0.867 0.867 0.867 0.867 0.867 0.576 0.818 0.394

SpamBase 0.794 0.842 0.842 0.794 0.842 0.842 0.867 0.77 0.709

Stamps 0.588 0.636 0.685 0.588 0.636 0.685 −0.224 −0.467 −0.067

Vowel 0.927 0.709 0.661 0.927 0.709 0.648 0.079 −0.733 −0.527

Waveform 0.818 0.855 0.891 0.794 0.855 0.891 0.879 0.818 0.758

WBC 0.042 0.042 0.042 −0.018 0.042 0.042 0.079 −0.079 −0.103

WDBC 0.915 0.952 0.952 0.915 0.915 0.915 0.758 0.673 0.127

Wilt −0.794 −0.903 −0.939 −0.794 −0.903 −0.915 −0.709 −0.576 -0.552

WPBC 0.479 0.648 0.806 0.479 0.648 0.806 0.879 0.855 0.685

Synthetic 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 −0.152 ± 0.329−0.036 ± 0.119−0.028 ± 0.109

IREOS (columns 2–4), approximate IREOS (columns 5–7), and Baseline LS (columns 8–10).

correlation across all the measures. The Principal Component Analysis (PCA) visualization of the
five-dimensional Wilt database, using the first two principal components, shown in Figure 7, can
help explain this result. As can be seen, most of the outliers, plotted in red, lie deep in the denser
region of the cluster, which can explain the negative correlation with IREOS, since most objects
labeled as outliers in the ground truth seem to be clear inliers from the viewpoint of the spatial
distribution of the data.

When comparing the results for different values of clump size, the correlations in Table 6 are
similar across differentmcl values for most datasets, which suggests that this optional parameter is
not critical. As previously discussed, whether clumps should be modeled or not, and, if so, what the
expectations about the maximum size of a clump (as opposed to a cluster) should be, are problem-
specific decisions. With our three general settings for mcl across all the datasets, we notice that,
while for most datasets the results are similar, for certain datasets, such as Isolet, Multiple Features,
and WPBC, modeling clumps (mcl > 1) provides better results, whereas the opposite occurs for a
few other datasets, most noticeably Parkinson and Vowel. Overall, our generic (i.e., blind, not
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Fig. 7. PCA visualization of the Wilt dataset using the first two principal components. Outliers according to
the ground truth are displayed in red.

Fig. 8. Average ranking of the indexes over the Spearman correlation experiment.

application-specific) heuristicmcl =
√

5% · N seems to provide a good compromise, if not the best
result, in almost all cases. Comparisons of performances of IREOS for different values ofmcl must
be taken with a grain of salt, though, because the ground truth (i.e., labels based on some sort of
semantic) can be seen as only one of the different possible perspectives of what outliers should be
in each dataset.

The results of the first scenario presented in Table 6 can also be summarized in Figure 8.10

Figure 8(a) shows the average ranking of Spearman correlation for the different configurations of
the indexes. The length of the upper bar (CD) indicates the critical difference of the well-known

10Note that when the comparison involves the three indexes, we do not include the datasets ALOI, KDDCup99, and PenDig-

its, as we did not compute IREOS for them.
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Friedman/Nemenyi statistical test [15] at significance levelα = 0.05. When we compare the average
ranking of original IREOS, where the index is computed without any approximation strategy, to
the approximate IREOS, we can see that both indexes exhibit similar performance for the different
configurations of clump size. In fact, when we compare the correlation results from Table 6 be-
tween the original and approximate IREOS, we can see that, apart from a few localized differences,
the overall results remain stable, and the conclusions do not change. As can also be noticed and

already discussed earlier, when we use modeling of clumps (mcl =
√

5% · N and mcl = n), IREOS
achieves superior results. For example, when compared only the approximate IREOS against the
baseline in Figure 8(b) (comparison over a higher number of datasets), the use of modeling of
clumps achieves superior results with statistical difference when compared to any configuration
of LS. Notice, however, that even formcl = 1 (no modeling of clumps), IREOS is, on average, better
than any parametrization of LS, but using this configuration, there is a statistical difference only
for LS with k = 100. In Figure 8(c) and 8(d), instead of showing the results for each evaluation in-
dex and configuration separately, we take the best result from each index (highest correlation for
each dataset, irrespective of index configuration). From Figure 8(c), we can see that while overall
results remain stable when comparing the original to the approximate IREOS, the original IREOS
tends to provide better results, albeit without statistical difference. In this setup, we can also see
even more clearly the superiority of IREOS over LS. Even in the scenario with a smaller number of
datasets (Figure 8(c)), IREOS presents superior results with statistical difference when compared
to LS, while approximate IREOS presents statistical difference only in the scenario with a higher
number of datasets (Figure 8(d)).

The results for the experimental scenario involving model selection are summarized in Table 7,
which shows the ROC AUC values corresponding to the worst, the expected (average), and the
best candidate outlier solution for each dataset, along with the ROC AUC value of the solution
selected as best according to indexes (i.e., in an unsupervised way). For each selected solution,
the table also indicates which algorithm produced this solution. To get a better sense of where
the selected solutions are located within the distribution of the ROC AUC values for all candidate
solutions, we also show box plots of the distributions for each dataset in Figure 9. The position of
the solutions selected by the indexes are indicated by special symbols in the plots.

By using the original IREOS with mcl = n for the model selection, one would select the most
accurate solution according to the ground truth in 10 out of the 24 datasets. IREOS with mcl = 1

makes the best choice for 9 out of the 24. IREOS with mcl =
√

5% · N makes the best choice for
11 out of the 24. The approximate IREOS has similar performance, however, in a higher number
of datasets. Irrespective of the settings of clump size, approximate IREOS makes the best choice
for 10 out of the 27 datasets. In cases where the best solution according to IREOS (both original
and approximate) is not the one with highest ROC AUC value, the choice is often much better
than the expected (average) and worst values, and often close to the quality of the best possible
selection, for at least two of the three clump size settings used. Exceptions are the datasets ALOI,
Annthyroid, Wilt, and Glass. The ALOI, Annthyroid, and Wilt datasets were already expected to
exhibit poor results due to the label inconsistency problem discussed in the previous experimental
scenario and in Section 4.1. The low value of ROC AUC in the best solution chosen by IREOS for
the Glass dataset can be explained due to the large number of ties in the scorings produced by
the solution. This solution produced only 8 non-null values of scorings for the 214 objects in the
dataset. When the ROC curve is computed, past these 8 objects, the curve will walk diagonally,
resembling a random solution, as shown in Figure 10(a), which explains the low ROC AUC value.
The PCA visualization of the Glass dataset for the first two principal components (Figure 10(b))
suggests that the eight objects detected as outliers in the solution selected by IREOS, plotted in
red, are apparently not in clear disagreement with the spatial distribution of the data.
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Fig. 9. Distribution of the ROC AUC values for all candidate solutions used in the model selection experi-
ments. The position of the solutions selected by the indexes as best are indicated by their respective special
symbols (left column: IREOS variants, center column: Approximate IREOS variants, right column: LS vari-
ants).

In Figure 11, we summarize the model selection experiment. In Figure 11(a), we can see again
IREOS outperforming LS in all configurations. In fact, we can observe that in the model selection

experiment (Table 7 and Figure 9), LS using k =
√
N makes the best choice only for 6 out of the

27 datasets. For the other configurations, the performance is even worse. LS with k = 1 makes
the best choice for 4 out of the 27, and LS with k = 100 makes the best choice for 3 out of the
27. When comparing this scenario of model selection (Figure 11(b)) to the previous scenario of

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 4, Article 47. Publication date: June 2020.



47:34 H. O. Marques et al.

Fig. 10. Best solution selected by IREOS variants (exact and approximate) for the Glass dataset. Outliers
highlighted in red.

Fig. 11. Average ranking of the indexes over the model selection experiment.

the correlation (Figure 8(b)), the difference between modeling clumps or not modeling clumps has

reduced, the average ranking formcl =
√

5% · N andmcl = n has increased, and there is no longer

statistical difference with respect to LS with k =
√
N . For the other two configurations of LS (k = 1

and k = 100), approximate IREOS is better with statistical difference for any configuration ofmcl .
In Figure 11(c) and 11(d), we repeat the average ranking, but now considering the best solution
selected by each index irrespective of their configurations. In this setup, we can see again that
IREOS (both original and approximate) has a clear advantage over LS.

4.3.3 Final Remarks. We performed two different categories of experiments. In the first cate-
gory of experiments, we evaluated the fast, approximate strategies to compute IREOS. We per-
formed three different experiments. In the first experiment, we evaluated the approximation of
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the separability curves via the adaptive quadrature. Computing the index using adaptive quadra-
ture can be seen as an improvement rather than an approximation of the index as it represents
both more efficient and more effective computation. By using the adaptive quadrature, there is no
need to set an arbitrary value for nγ . Instead, the user has to specify a tolerance error, which is
common practice in many machine learning algorithms that involve iterative optimization, such
as ANNs, SVMs, KLR, k-means, among others. In the second experiment, we assessed the reduc-
tion of the computational cost when avoiding unnecessary computation via pruning. Pruning by
w ( ·) produces the exact index, and therefore, it should be performed whenever it is possible. In the
third experiment, we evaluated the approximation of the index with the separability of each object
computed using the object’s kNN only. This approximation provides by far the largest computa-
tional gains, reducing the classifier complexity from O (N 3) to O (k3). Therefore, it should always
be considered for very large datasets.

In the second category, we evaluated the effectiveness of IREOS in an experimental scenario
involving the correlation between the rankings of candidate solutions as determined by IREOS
and by the ground truth, as well as in another scenario involving practical experiments of model
selection. In these two different experimental scenarios, we evaluated IREOS using the optional
parametermcl , which allows the domain expert to adjust the notion of clump size vs. cluster size, in
three different settings. We setmcl = 1 to represent cases where clumps are not modeled,mcl = n

to represent cases where the clumps are modeled with domain information, and mcl =
√

5% · N
to represent cases where the clumps are modeled in the absence of domain information. When
comparing the results for different values of clump size, the results are similar across differentmcl

values for most datasets, which suggests that this optional parameter is not critical. However, we
notice that, while for most datasets the results are similar, modeling clumps (mcl > 1) tended to
provide better results overall (see Figures 8 and 11). Therefore, in absence of domain information to
decide whether clumps should be modeled or not, or what should be the maximum size of a clump,

we recommend our generic (i.e., not application specific/informed) heuristicmcl =
√

5% · N , which
has systematically provided a good compromise, if not the best result, in almost all cases.

In the second category of experiments, we also compared IREOS against a baseline method.
On average, all the different configurations of IREOS provided better results than any of the dif-
ferent configurations of the baseline, with statistical significance for some of the configurations.
When only the best result of each index is considered, irrespective of their configurations, we ob-
served statistically significant difference between IREOS (superior) and the baseline. Notice that
the baseline used in our experiments has not been proposed specifically for this task, and we do
not recommend its use in practical applications for different reasons. First, in contrast to IREOS,
where the optional parameter for modeling of clumps has a clear interpretation, allowing domain
experts to adjust the notion of clump size vs. cluster size, the neighborhood size k of the baseline
(LS) is difficult to interpret, particularly as computed in the outlier scorings space. Second, the im-
portance/relevance of each candidate outlier solution, as seen as candidate features for a feature se-
lection method, depends on the other solutions/features, such that a given solution may be deemed
more (or less) important depending on the remaining candidate solutions under assessment.

5 CONCLUSIONS

We addressed in this article the long-term open problem [67] of internal and relative evaluation
of outlier detection results, that is, the assessment of the quality of results of unsupervised outlier
detection methods without referring to external information (such as class labels). In the typical
application scenario of outlier detection, such external information about what the outliers are is
not available in advance, and results need to be assessed by domain experts.
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IREOS is the first measure to allow such quality assessment of solutions automatically and,
as a consequence, to select better solutions (models, parametrizations) for a given problem. We
discussed the properties of IREOS, including derived statistics,p-values, and adjustment for chance.
Experiments with synthetic and real data, using both artificially generated candidate solutions as
well as real candidate solutions from outlier detection algorithms, show the usefulness of IREOS
for unsupervised quality assessment of outlier detection results.

It is important to acknowledge that no single index can capture all possible facets of the unsuper-
vised outlier detection problem. In fact, in the related area of data clustering, relying on multiple
indexes is considered good practice and a variety of indexes have been proposed over the past few
decades [61]. Some works in the clustering literature have taken advantage of such diversity to
build ensembles of validation indexes [28, 62]. In the realm of unsupervised outlier detection, for
which evaluation is still in its infancy, the development of new evaluation indexes is an important
topic for future work. For instance, the use of different classifiers, other than those used in our
article, could give rise to new variants of IREOS. Different types of classifiers could lead to indexes
with different biases, which nevertheless would still follow the same fundamental intuition behind
IREOS. We hope, though, that our work will also stimulate the development of indexes supported
on different grounds.

A ADJUSTMENT FOR CHANCE AND STATISTICAL VALIDATION

A.1 Exact Computation

A.1.1 Scoring Solutions. Initially, we consider the evaluation of full scorings, where a random
solution according to the adopted null model assumes that the outlier weights w ( ·) are randomly
and independently assigned to objects following a uniform distribution within [0, 1]. In order to
adjust IREOS for chance, all we need is to derive term E{I } in Equation (13) for this null model.
Notice that this term can be written from Equation (9) as:

E{I } = 1

nγ

nγ∑
l=1

E{p̄ (γl )}, (15)

where

p̄ (γl ) =

∑N
j=1 p (xj ,γl ) ·w j∑N

j=1w j

=

N∑
j=1

p (xj ,γl ) · w̃ j , (16)

w̃ j =
w j∑N

j=1w j

. (17)

Term E{p̄ (γl )} in Equation (15) can be written from Equation (16) as:

E{p̄ (γl )} = E
⎧⎪⎪⎨⎪⎪⎩

N∑
j=1

p (xj ,γl ) · w̃ j

⎫⎪⎪⎬⎪⎪⎭
. (18)

The random scoring solutions w ( ·) are independent from the data objects, but the objects’ sep-
arabilities p (·, ·) will depend on w ( ·) when the optional modeling of clumps is in place, i.e., when

mcl > 1 in Equation (12). In this case, it is hard to derive E
{∑N

j=1 p (xj ,γl ) · w̃ j

}
analytically, due

to the complex relation between p (·, ·) and w ( ·) , which depends on the kernel-based soft margin
classifier formulation and optimization solution. For this reason, we initially assume the scenario
where the optional model of clumps is not in place, i.e.,mcl = 1.

Recall that, whenmcl = 1, the classifiers just try to discriminate between each data object xj and
the other objects, no matter their outlier labeling or scorings. In this case, p (·, ·) does not depend
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on w ( ·) and, thus, Equation (18) can be written as:11

E{p̄ (γl )} =
N∑

j=1

p (xj ,γl ) · E
{
w̃ j

}
. (19)

Term E{w̃ j } can be computed analytically as follows. From Equation (17), it is clear that∑N
j=1 w̃ j = 1, thereby:

E
⎧⎪⎪⎨⎪⎪⎩

N∑
j=1

w̃ j

⎫⎪⎪⎬⎪⎪⎭
=

N∑
j=1

E
{
w̃ j

}
= E{1} = 1, (20)

and since the weights w j are i.i.d.:

E{w̃1} = E{w̃2} = · · · = E{w̃N }, (21)

which in Equation (20) yields:

N · E{w̃ j } = 1, (22)

and, accordingly:

E{w̃ j } =
1

N
. (23)

Substituting Equation (23) into Equation (19), we have the following result:

E{p̄ (γl )} =
N∑

j=1

p (xj ,γl ) · E{w̃ j } =
1

N

N∑
j=1

p (xj ,γl ), (24)

which in Equation (15) yields:

E{I } = 1

nγ

nγ∑
l=1

��
�

1

N

N∑
j=1

p (xj ,γl )��� . (25)

A.1.2 Top-n Solutions. For binary top-n solutions, the previous null model is no longer appli-
cable as there are not any scores available. The adopted null model in this case assumes that a
random solution consists of a subset of n objects to be labeled as outliers, which are drawn from
the dataset X with uniform probability. We can therefore interpret such a random solution as a
sample SR ⊂ X of size |SR | = n taken without replacement from a population X with size |X| = N .

Recall that, in binary top-n solutions, the average separability term p̄ (γl ) is not weighted, and it
is computed over the separabilities of the top-n objects only, i.e.,:

p̄ (γl ) =
1

n

∑
xj ∈SR

p (xj ,γl ), (26)

from which we can take the expectation as:

E{p̄ (γl )} = 1

n

∑
x j ∈SR

E{p (xj ,γl )} = E{p (xj ,γl )}. (27)

This is an instance of the well-known result that the expected value for the mean of an i.i.d.
sample of size n is the mean of the population. Here, for a given γl , our (finite) population consists
of the N precomputed values p (xj ,γl ) for all data objects xj in the database X. In fact, formcl = 1,
the separabilities p (·, ·) depend only on the data, not on any particular realization SR of random

11When mcl = 1, the separabilities can be pre-computed for each data object, irrespective of the outlier solution under

evaluation and, accordingly, they become constant terms in the adopted null model.
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candidate outliers, and therefore they can be independently precomputed. Taking their average
gives the exact value for E{p̄ (γl )}, i.e.,:

E{p̄ (γl )} = E{p (xj ,γl )} = 1

N

N∑
j=1

p (xj ,γl ). (28)

Substituting this equation into Equation (15) yields once again the very same result in Equa-
tion (25). In other words, even though the null models are different, the expected value of the
index is the same, given by Equation (25), for both scoring or binary top-n solutions.

A.1.3 Statistical Validation—Top-n Solutions. The variance is not needed for the adjustment for
chance in Equation (13), but it can be useful for statistical validation when this type of validation
is required. Since our index is given by a sum of random variables 1

nγ
p̄ (γl ) over γl , we can compute

the variance of the index as:

Var{I } = Var
⎧⎪⎨⎪⎩

1

nγ

nγ∑
l=1

p̄ (γl )
⎫⎪⎬⎪⎭ =

1

n2
γ

nγ∑
l1,l2=1

Cov (p̄ (γl1), p̄ (γl2)), (29)

which can also be rewritten equivalently as:

Var{I } = 1

n2
γ

nγ∑
l=1

Var{p̄ (γl )} + 2

n2
γ

l2−1∑
l1=1

nγ∑
l2=2

Cov (p̄ (γl1), p̄ (γl2)). (30)

This equivalent form emphasizes the possible lack of independence of p̄ (γl ) over γl , specifically
when the second term is not null. For the first term, it follows from Equation (26) that:12

Var{p̄ (γl )} = 1

n2

∑
xj ∈SR

Var{p (xj ,γl )} = 1

n
Var{p (xj ,γl )}, (31)

i.e., the variance of the sample mean is the variance of the population over the sample size. Anal-
ogously, for the covariance one has

Cov (p̄ (γl1), p̄ (γl2)) =
1

n
Cov

(
p (xj ,γl1),p (xj ,γl2)

)
, (32)

Equations (31) and (32), which are required by Equation (30), can both be exactly computed once
we have precomputed the whole population p (·, ·), which is possible when mcl = 1. In this case,
provided that the sample size is not critically small, the Central Limit Theorem (CLT) ensures that,
for each γl , the sample mean p̄ (γl ) follows at least approximately a Normal distribution, i.e.,

p̄ (γ ) ∼ N (E{p̄ (γ )},Var{p̄ (γ )}). (33)

This means that, for random binary solutions SR andmcl = 1, our index in Equation (6) is given
by a sum of normally distributed variables 1

nγ
p̄ (γl ) overγl . The sum of normally distributed random

variables

X ∼ N
(
μX,σ

2
X

)
(34)

and

Y ∼ N
(
μY,σ

2
Y

)
(35)

12Since the population is of a finite size (N ), though, when considering sampling without replacement and sample sizes n

significantly large w.r.t. N (e.g., more than 5%), a finite population correction factor (N − n)/(N − 1) can be used to adjust

the computed variance [59].
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is also normally distributed, i.e.,:

X + Y ∼ N
(
μX + μY,σ

2
X+Y

)
(36)

where [52]

σ 2
X+Y = σ 2

X + σ
2
Y + 2 Cov(σX,σY) (37)

This leads to the interesting result that, in this particular setting (binary top-n solutions and
mcl = 1), our index IREOS, as a sum of sample means, will follow at least approximately a Normal
distribution according to the CLT, i.e., I ∼ N (E{I },Var{I }), with mean E{I } and variance Var{I }
computed in an exact way as described above.

Since we know such a mean and variance for the population, we thus can go beyond the ordinary
adjustment for chance (Equation (13)) and perform statistical validation as well. Particularly, if we
are given a certain outlier detection solution, S, and the corresponding value for our adjusted index,
Iadj (S), we can assess the statistical significance of Iadj (S) by means of a z-test. In this case, ap-value
can be trivially computed based on the Normal assumption by contrasting Iadj (S) against the null
hypothesis of a random solution [59].

A.2 Approximate Computation Via Monte Carlo

The exact computations described above presumemcl = 1. For different evaluation setups,p (xj ,γl )
can no longer be independently precomputed for each object xj ∈ X, as the separability of a given
object as assessed by the classifiers now depends also on the binary labels or the degrees of out-
lierness assigned to the other objects of the dataset, for each possible random solution. This means

that, for a given γl , the size of our finite population expands from N to at least ( N
n

) (for the bi-
nary top-n problem) and, as such, it can easily become intractable for exhaustive computations.
Even when mcl = 1, precomputing N terms p (xj ,γl ) for each γl (i.e., N · nγ in total) may be com-
putationally prohibitive for large databases as well, as each term demands to train an independent
classifier.

To make adjustment for chance feasible whenmcl > 1 or N is large, and also to make statistical
validation possible in evaluation scenarios other than the binary top-n case, we can use Monte
Carlo simulations in order to estimate the relevant statistics rather than trying to compute them
in an exact and exhaustive way. The idea is to sample a number nMC of random outlier detection
solutions whereby the desired statistical moments can be estimated. In particular, the expected
value in Equation (13) can be directly estimated from the sample.

When statistical validation is needed, we also need to estimate the baseline distribution under
the null hypothesis. There are different alternatives. For binary top-n solutions, if the normality
assumption is evoked from the CLT, a parametric approach is possible based on a t-student distri-
bution with the sample estimates for the mean and variance (i.e., a t-test, which is known to be ro-
bust even when normality is not fully satisfied [1]). Alternatively, p-values can be directly derived
from observed histograms in a non-parametric way [27] for each candidate outlier solution ωi .

The sample size, nMC , clearly represents a trade-off between computational burden and accu-
racy. Larger (smaller) samples lead to more (less) accurate estimations yet from a larger (smaller)
number of trained classifiers. Rather than setting the value for nMC arbitrarily, one can also de-
termine nMC automatically, by specifying (i) a certain significance level as the probability that the
sample mean will fall within, and (ii) a prespecified confidence interval around the population
mean [59].
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