
feart-08-00194 June 29, 2020 Time: 12:35 # 1

ORIGINAL RESEARCH
published: 29 June 2020

doi: 10.3389/feart.2020.00194

Edited by:
Giovanni Martinelli,

National Institute of Geophysics
and Volcanology, Italy

Reviewed by:
Alexey Lyubushin,

Institute of Physics of the Earth (RAS),
Russia

Galina Kopylova,
Geophysical Survey (RAS), Russia

*Correspondence:
Tamaz Chelidze

tamaz.chelidze@gmail.com

Specialty section:
This article was submitted to

Solid Earth Geophysics,
a section of the journal

Frontiers in Earth Science

Received: 01 April 2020
Accepted: 14 May 2020

Published: 29 June 2020

Citation:
Chelidze T, Melikadze G, Kiria T,

Jimsheladze T and Kobzev G (2020)
Statistical and Non-linear Dynamics

Methods of Earthquake Forecast:
Application in the Caucasus.

Front. Earth Sci. 8:194.
doi: 10.3389/feart.2020.00194

Statistical and Non-linear Dynamics
Methods of Earthquake Forecast:
Application in the Caucasus
Tamaz Chelidze* , Giorgi Melikadze, Tengiz Kiria, Tamar Jimsheladze and
Gennady Kobzev

M. Nodia Institute of Geophysics, Tbilisi, Georgia

In 20th century, more than 10 strong earthquakes (EQs) of magnitudes 6,7 hit South
Caucasus, causing thousands of casualties and gross economic losses. Thus, strong-
EQ forecast is an actual problem for the region. In this direction, we developed a
physical percolation model of fracture, which considers the final failure of solid as
a termination of the prolonged process of destruction: generation and clustering of
micro-cracks, till appearance—at some critical concentration—of the infinite cluster,
marking the final failure. Percolation provides a model of preparation of an individual
strong event (slip or EQ). The natural seismic process contains many such events: the
appropriate model is a non-linear stick-slip model, which is a particular case of the
general theory of the integrate-and-fire process. Non-linearity of the seismic process
is in contradiction with a memoryless Poissonian approach to seismic hazard. The
complexity theory offers a chance to improve strong EQs’ forecast using analysis of
hidden (non-linear) patterns in seismic time series, such as attractors in the phase
space plot. For a regional forecast, we applied the Bayesian approach to assess the
conditional probability expected in the next 5 years of strong EQs of magnitudes five
and more. Later on, in addition to Bayesian probability assessment, we applied to
seismic time series the pattern recognition technique, based on the assessment of the
empirical risk function [generalized portrait (GP) method]: nowadays, this approach is
known as the support vector machine (SVM) technique. The preliminary analysis shows
that application of the GP technique allows predicting retrospectively 80% of M5 events
in Caucasus. Besides long- and middle-term forecast studies, intensive work is under
way on the short-term (next-day) EQ prediction also. Here, we present the results of
multiparametrical (hydrodynamic and magnetic) monitoring carried out on the territory
of Georgia. In order to assess the reliability of the precursors, we used the machine
learning approach, namely, the algorithm of deep learning ADAM, which optimizes target
function by a combination of optimization algorithm designed for neural networks and
a method of stochastic gradient descent with momentum. Finally, we used the method
of receiver operating characteristics (ROC) to assess the forecast quality of this binary
classifier system. We show that the true positive rate statistical measure is preferable for
the EQ forecast.

Keywords: Earthquake forecast, phase space portraits, water level in wells, magnetic variations, machine
learning, receiver operating characteristic
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INTRODUCTION

Caucasus is located in the central section of the Alpine-
Himalayan belt, namely, at the junction of its European and
Asian branches. The seismicity of the region is connected with
the ongoing northward convergence of the Arabian and Eurasian
plates, which began in post-Oligocene (Adamia et al., 2017):
now the GPS velocities in South Caucasus with respect to
Eurasia vary from 2–5 mm/year in the western part to 12–
14 mm/year in the eastern part of the region (Reilinger et al.,
2006). Due to this convergence, in the 20th century alone,
more than 10 strong earthquakes (EQs) of magnitudes from 6
to 7 hit South Caucasus, causing thousands of casualties and
gross economic losses. Thus, the problem of forecast/prediction
of strong EQs is important for the region. The following
solution to this problem seems to be rational: (i) developing
appropriate theoretical models for fracture process of solids
and their testing in numerical experiments; (ii) statistical/non-
linear analysis of seismic catalogs/geophysical data aiming to
forecast long- and middle-term periods of increased probability
of strong (say M ≥ 5) EQs, and lastly, (iii) operative forecast
(short-time prediction) of the next impending strong event
by monitoring geophysical fields, sensitive to tectonic strain
variation (hydrodynamic and magnetic fields’ variations).

The EQ forecast/prediction-oriented geophysical network in
Georgia consists of seismic stations’ network (from 1890),
the network of water-level (WL) monitoring boreholes
(from 1988), and the Tbilisi/Dusheti geomagnetic station
(from 1840), which has operated systematically for a long
time. The summary of results, obtained in Georgia in the
framework of the Soviet Union program for EQ prediction, were
published by Chelidze et al. (1995).

THEORETICAL MODELS

The general approach to developing a physical model of seismic
activity can be divided into two main problems: (i) constructing
the physical model of the sequence of events preceding the main
rupture (a single strong EQ) and (ii) analyzing the complexity
of the entire seismic catalog, considered as time series of EQs
(following the stick-slip or integrate-and-fire model).

Physical Model of a Single Strong Event
Preparation
In series of papers (Chelidze, 1986, 1987; Chelidze and
Kolesnikov, 1984), we developed the physical model of the
fracture process based on percolation theory (Sahimi, 1994;
Stauffer and Aharony, 1994; Aharony and Stauffer, 2010; Saberi,
2015), which considers the final failure as a termination of
the prolonged process of damage accumulation in disordered
media (Charmet et al., 1990; Herrmann and Roux, 1990). The
model considers the fracture process as generation/coalescence of
elementary fractures (with increasing volumetric concentration
x) and their clustering, till appearance, at some critical
concentration xc, of the infinite cluster (IC) of cracks (the major
rupture), marking the final destruction of the material. For

the random distribution of elementary cracks with a constant
interaction length L, both percolation theory and laboratory
experiments (Zhurkov et al., 1977) prove that transition from a
diffuse fracture state to the appearance of the IC (main rupture)
occurs at a critical value of damage N:

N−1/3
= ke/L1 (1)

where N is the number of elementary cracks in the unit volume,
ke is the proportionality constant, and L is the mean size of cracks.
According to Chelidze (1987), the value of ke varies in the range
2.5–7 with the mean value 4 and is quite stable for very different
values of N−1/3 and L (Zhurkov et al., 1977). Percolation fracture
theory provides also a mathematical model of preparation of a
single large-scale strong dynamic event (slip or EQ).

It is clear that generation and merging of elementary cracks
are connected with the emission of energy due to redistribution
of local stresses. The appearance of each new crack provokes
seismic energy emission with effective amplitude, depending on
the increment of the size of the existing clusters after addition
of a new elementary crack (Chelidze and Kolesnikov, 1984). The
emitted energy or conditional amplitude A of the event, generated
by the appearance of a new elementary crack, is

A ≈ A0


k+1∑

i=1

si

2

−

k∑
i=1

s2
i

1/2 (2)

where A0 is a conventional amplitude of the dynamic signal, due
to nucleation of a (isolated) single defect, k is the number of
clusters merged by addition of an elementary defect, and si is the
number of sites in the ith cluster, formed by merging two clusters.
Thus, the value of A depends on the increment of the size of the
resulting cluster formed by the coalescence of cracks caused by
the appearance of a new elementary crack.

The percolation model allows formulating several possible
precursors of the main fracture (Chelidze, 1986, 1987), for
example, some anomalies in the behavior of the so-called
percolation functions at approaching the final fracture, such as
(i) increased divergence of finite size of clusters s, in other words,
a strong increase in the scatter of amplitude A at approaching
the critical crack concentration xc; (ii) a strong increase of
the number of large pulses, and (iii) a decrease of the slope
of magnitude–frequency relation. Many of these precursors of
impending final failure are observed in laboratory acoustic
emission as well as in seismic time series (STS) preceding strong
EQ (Chelidze, 1986, 1987).

At the same time, it is clear that such a separate event—
formation of a single major rupture—is only an isolated episode
of the long-term seismic process, containing many strong events
(EQs). Analysis of this process calls for development of different
models, which consider the mechanism of generation of a
continuous sequence of separate strong events.

Modeling the Pattern of a Seismic
Process—Long Time Series of EQs
We know that a seismic process is a large-scale continuous
stick-slip motion along the fault plane, generating a sequence
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of dynamic events of different magnitudes: the approach was
initiated in other works (Brace and Byerlee, 1966; Burridge
and Knopoff, 1967; Ruina, 1983). Such a stick-slip motion is a
particular case of the general theory of the non-linear integrate-
and-fire process (Pikovsky et al., 2003). On the laboratory slider-
spring model, we show that a weak regular forcing synchronized
stick-slip with this impact, which confirms the complex (non-
linear) nature of the seismic process (Chelidze et al., 2005;
2006, 2010; Chelidze and Lursmanashvili, 2003; Chelidze and
Matcharashvili, 2013, 2015). Non-linear models of the seismic
process founded on complexity theory are in contradiction with
a memory-less purely Poissonian approach to seismic hazard
assessment (SHA), where all EQs are considered as independent
events (Cornell, 1968; McGuire, 1976; Bender and Perkins, 1987;
Ogata, 1998).

In the next section, we show that the complexity theory offers a
chance to improve methods of strong EQs’ forecast using analysis
of hidden (non-linear) patterns in STS, such as attractors in the
phase space (PS) plot.

LONG-TERM AND MIDDLE-TERM EQ
FORECAST [BAYESIAN APPROACH,
SUPPORT VECTOR MACHINES (SVMs),
AND PHASE SPACE PORTRAITS (PSPs)]

Bayesian Approach
Besides the standard SHA of Georgia, in 1990, the Georgian
Institute of Geophysics carried out together with the Russian
Institute of Physics of Earth pioneering investigations related to
developing the Bayesian mathematical model of EQ forecast by
analysis of i precursors (Sobolev et al., 1991), which was called the
map of expected earthquakes (MEEQ). We used Bayes equation
for assessing conditional probabilities of EQ occurrence P(D1| K)
in a given spatial pixel:

P(D1|K) =
P (D1)

∏n
i=1 P (Ki|D1)

P (D1)
∏n

i=1 P (Ki|D1)+ P (D2)
∏n

i=1 P (Ki|D2)
(3)

where D1 and D2 are correspondingly alarm and quiescence
diagnoses, Ki is the ith precursor, P(K1| D1) and P(Ki| D2) are
correspondingly probabilities of successful prediction and false
alarm using n predictors, P(D1) is the unconditional stationary
probability of the occurrence of an EQ of M ≥ 5 in a spatial cell
examined, and P(D2) = 1 - P(D1) is the unconditional stationary
probability of the occurrence of an EQ of M ≥ 5.

The compilation of MEEQ envisions three steps: (i) generation
of the map of stationary conditional probability Pscp(D1) of a
strong EQ of M ≥ 5 in the region (Caucasus) for a full catalog;
(ii) compilation of non-stationary conditional probability P(D1|
K) of the occurrence of a strong EQ of M ≥ 5 using the ensemble
of several predictors for a given time interval; (iii) compilation
of probability gain (effectivity), obtained by using previously
mentioned predictive signs in the time and space domains.

The basis of calculations was the seismic catalog of Caucasus
from 1962 to 1987 (Sobolev et al., 1991), which is considered as

homogeneous (events of M2.5 were registered without omission).
Unfortunately, the regional catalog after 1987 due to political
turmoil is of less quality.

The map of stationary conditional probability Pscp(D1| K)
was calculated in the following manner: each strong EQ was
represented by its preparatory area Sp, where, according to
existing models of focal processes, significant anomalies of
geophysical fields are expected—namely, the preparation areas
with a size that is an order of magnitude larger than the rupture
size L of a given EQ. The area Sp of such a focal zone for
an EQ of M ≥ 5 was accepted as a circular area of radius
R = 10L, where L ≈ 8 km. Accordingly, the Sp of a single event
Sp = πR2 = 5,400 km2. The unconditional stationary probability
Pusp(D1) of the occurrence of an EQ of M ≥ 5 in a given spatial
cell (pixel) per year is calculated by averaging the data of 36
strong EQs occurring in the period 1962–1983, with clusters
taken as a single event. The Pusp(D1) per 5 years per pixel turns
out to be 0.09. The stationary conditional probability Pscp(D1|
K) was calculated by the Bayes formula, using the stationary
predictors—amplitudes of vertical displacements and existence of
fault intersections in a given cell.

For the calculation of the non-stationary conditional
probability P(D1| K) map, we used the following time series
of (time-dependent) predictors in a given pixel: density of
seismogenic faults ks, slope of the magnitude–frequency relation
γ, seismic activity rate γ (number of events N per unit time),
emitted seismic energy Eem. Note that the value of seismogenic
faults’ density ks was defined as a function of seismic energy,
emitted jointly by faults and activated in the volume V in the
time interval 1t. Predictors are calculated as deviations of
their current values from the long-term (background) values,
normalized to the mean square error of the averaged background
value. The details of calculations of the magnitudes of predictors
and their critical values, when the alarm period should be
announced, are presented in the literature (Sobolev et al., 1991;
Chelidze et al., 1995; Zavjalov, 2006).

We applied the Bayesian approach to assess conditional
probability expected in the next 5 years of strong EQ of
magnitudes five and larger. Specifically, the probability of alarm
was calculated by the above Bayes equation, where P(D1| K)
was considered as a time-variable probability. The probabilities
of successful forecasts and false alarms as well as the mean
alarm periods were estimated from the retrospective analysis of
predictors’ database and the regional catalog of strong EQs. The
forecast was recognized as a successful one if the EQ preparation
area, defined as the circle of radius R = 10L, where L is the half
length of the EQ rupture, covers more than half of the pixel with
a high value of conditional probability P(D1| K), namely, where
the ratio of P(D1| K) to the stationary conditional probability
Pscp(D1| K) is of the order of 2 or more. The 5 years’ duration
of the alarm period was adopted.

The efficiency or probability gain in the time and space
domains (correspondingly Jt and Js), obtained by application of
abovementioned methodology, was calculated as

Jt =
Npr/Tsa

Nsum/Ts
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where Npr is the total number of predicted EQs and Nsum is the
total number of EQs during summary observation period Ts; Tsa
is the summary duration of alarms.

Js =
Npr/Ssa

Nsum/Sobs

where Ssa is the summary area of alarms and Sobs is the summary
area of observations.

The MEEQ compiled for the period 1988–1992 marks an
anomaly in the epicentral areas of the Spitak (M6.9, December
1988) and Racha (M7, April 1991) EQs. The Spitak anomaly
appears in the MEEQ alarm period beginning from 1986 to 1990.
There was no anomaly in MEEQs of the Racha region till 1988,
when a stable anomaly appears close to the epicentral area of
impending EQ (Sobolev et al., 1991; Chelidze et al., 1995).

The foregoing methodology was further developed and
applied to different seismo-active regions of the globe: Central
Asia, South California, China, Western Turkey, and Greece
(Zavjalov, 2006). In most cases, the probability gain Jt was 2.5
compared to random guess, and the mean area of alarm Ssa
occupies only 30% of the total area Sobs with a seismic rate of
one EQ per year.

Generalized Portrait (GP)—SVMs
Later on, Chelidze et al. (1995) used for a long-term forecast
the pattern recognition technique (GP method), based on
the assessment of the empirical risk function (Vapnik and
Chervonenkis, 1974; Vapnik, 1984), in addition to Bayesian
probability assessment. Nowadays, this approach is known as the
SVM technique (Burges, 1998; Nello and Shawe-Taylor, 2000;
Steinwart and Christmann, 2008; Theodoridis and Koutroumbas,
2009). The main point of the SVM technique is calculating the so-
called Vapnik–Chervonenkis (VC) dimension. The VC measure
divides the vector space (where the components of vectors are
different EQ predictors) into two classes: EQ alarm and quietness.
It is important that the method is not very demanding to the size
of the data sample.

The GP technique can be briefly summed as follows: there
is a sequence of situations which reflect the existence of
some distribution density function P(x). Variable x is a vector,
which can have many components (features, symptoms, and
predictors). These situations, represented by the corresponding
set of predictors, can be linked to a definite class of events ω

by some teaching algorithms in assumption that there exists
the conditional probability P(ω| x). If ω = 0, then vector x is
attributed to the first class, and if ω 6= 0, the situation belongs to
the second class. Both P(x) and P(ω| x) are unknown a priori: all
that we know is that they really exist and that these probabilities
reveal themselves in the (x, ω) pairs, obtained after n observations
of the vector x and corresponding classifications ω: x1, ω1; x2,
ω2; x3, ω3 . . . xn, ωn. From this correspondence set, one should
derive a diagnostic rule, which guarantees the minimal number
of errors in the used class a of a decision function. The quality F
of the rule, which links ω and x as ω = F(x, a), is controlled by the
risk function I(F):

I (F) = ∫(ω− F (x, a))2
∗ P (ω|x) P (x) dx

= ∫ q(z)P (ω|x) P (x) dx (4)

where the term q(z) = [ω - F(x, a)]2 is called the risk function.
Each classification error increases the function I(F), as in this
case, the observed class and the predicted class do not coincide,
which means that z 6= 0 and correspondingly q(z) = 1; on the
contrary, if z = 0, i.e., the predicted class is correct, then q(z) = 0
and the risk function I(F) does not increase. Thus, the pattern
recognition problem is solved if a chosen risk function is optimal
and the risk function I(F) is minimal for a given P(x| ω). The
diagnostic rule optimization rests on the analysis of the following
features: (i) number of errors, (ii) complexity of rule, and (iii)
length of the x, ω-sequence. The practical rule for the application
of the GP method is that the dimensionality of the space of
predictors d should be at least three times less than the length of
the experimental x, ω-sequence l: (l/d) > 3. After this, we search
for the simplest class of F-functions, which allows us to construct
the optimal hyperplane, dividing the set of x-vectors into two
classes. The term GP is attributed to the vector Q, which is normal
to the dividing hyperplane. If perfect separation of classes is
impossible, the most “naughty” x, ω-pair, which prevents division
of classes, is to be excluded, then the next one, and so on, until
the two classes are divided without overlapping by the distance
R, which represents the width of the dividing strip between two
classes. The ratio of the number of withdrawn vectors to the total
number of vectors defines the level of diagnostic rule reliability.

The above methodology was applied to forecast periods of
strong EQ of M ≥ 5 in Caucasus. The catalog contained 53
events, occurring after 1971. The predictors used earlier in the
Bayesian approach, namely, the density of seismogenic faults ks,
the slope of the magnitude–frequency relation γ, the seismic
activity rate γ (number of events N per unit time), and the
emitted seismic energy Eem, were used in the GP approach
also. Actually, only 30 active periods before strong EQs were
used as the experimental sequence, because considerable time is
needed for the accumulation of averaged values of predictors.
Most of the training procedures follow a scheme: 24 quarterly
values of each predictive function during 6 years, preceding a
strong EQ, were picked out. The first 12 values of these sub-
predictors were attributed to the second class (quiet period) and
the last 12 values to the first class (alarm periods); different
schemes were also tested (Chelidze et al., 1995). The retrospective
forecast was considered as a successful one if the last 12 quarterly
values of the sub-predictor set were recognized as first-class
objects. Table 1 represents the results of the application of the
GP technique to forecasting the periods of increased EQ hazard
level in Caucasus.

The preliminary analysis shows that application of the GP
technique with a predictor γ (the slope of magnitude–frequency
relation) allows retrospectively forecasting 85% of periods with
M5 events and 100% of calm periods without strong events in
Caucasus (Chelidze et al., 1995; Zavjalov, 2006). Addition of a
less informative predictor Eem (emitted seismic energy) spoils the
total forecast quality by 11%.
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TABLE 1 | Results of the application of the GP technique to forecasting the periods of increased EQ hazard level in caucasus using predictor γ or predictors γ and Eem

jointly; n is the number of a given class situation—alarm or quietness.

Classes Predictor γ Predictors γ and Eem

n Successes Failures n Successes Failures

Class 1—alarm 28 24 (85.7%) 4 (14.3%) 27 21 (74.2%) 6 (25.8%)

Class 2—quiet 31 31 (100%) 0 (0%) 28 25 (89.3%) 3 (10.7%)

Total 59 55 (93.2%) 4 (6.8%) 55 46 (81.9%) 9 (18.1%)

Middle-Term Forecast: PSPs
To obtain a middle-term forecast, we analyzed the number
of seismic events in a sequential time window—a seismic rate
(Sobolev, 2011). The seismic rate is widely used as a proxy
of the strain rate in the Earth crust (Dieterich et al., 2000).
We performed PS analysis of data sets obtained from the
seismic catalog of Caucasus 1960–2011 (Chelidze et al., 2018).
The representative magnitude for the period is M2. In this
instrumental period, the two largest EQs, Spitak and Racha
(M6.9–7), struck the region in 1988 and 1991 correspondingly.
Three areas were selected: (i) Batumi area, in order to show
the pattern of STS in a seismically (relatively) quiet region;
(ii) Spitak; and (iii) Racha. We analyzed both original and
declustered, by Riesenberg algorithm (Reasenberg and Matthews,
1988), STS using the catalog of Georgia (Tsereteli et al., 2016). The
following parameters of STS were varied: (i) different epicentral
areas, where STS were obtained; (ii) length of the time window
for the rate count; (iii) year span (periods in the catalog);
(iv) periods before and after strong events; and (iv) different
magnitude thresholds (Chelidze et al., 2018). The PSPs were
compiled using both original STS and STS smoothed by the
Savitzky–Golay (SG) filter. The SG filter has the advantage over,
for instance, the moving average filter, as the magnitude of
the variations in the seismic rate data, i.e., the value of the
local extremes, is preserved (Press et al., 2007). Trajectories
on PSP plots are obtained by connecting the consecutive
phase states in a clockwise direction, which corresponds to
an increase in time. For plotting phase plots, we used either
standard MATLAB scripts (seism_port or phase_portrait). Both
approaches sometimes produce negative values of phase states,
which means that the smoothed lagged values in a given window
are smaller than in the previous ones. In the following, we only
show results, compiled in the following way (Sobolev, 2011):
on the X-axis are plotted the mean values of the number N
of EQs per n days, and on the Y-axis is plotted a differential
of N for the next 10 days, i.e., (Ni=10 – Ni) = dN. The
trajectories on PSP plots form a “noisy attractor” with a diffuse
source area. Such attractors are common in biological systems
(Molaie et al., 2013).

The PS plot analysis reveals some fine details of the seismic
process dynamics related to strong EQ precursory/post-event
patterns. The plots generally manifest two main features: a diffuse
but still limited “source/basin” area, formed by background
seismicity, and anomalous orbit-like deviations from the source
area, which are related to foreshock and aftershock activity of
strong EQs or to appearance of clusters.

In Figure 1, we present an example of application of the PS
reconstruction method to EQ time series, which revealed non-
linear structures in the PSP for the circular area with radius
R = 200 km of the strong Racha EQ (M7), which occurred in West
Georgia at 9:12 UTC on 29 April 1991. The used catalog covers
the time long before, during, and after the EQ occurrence. The
dates on different trajectories mark strong EQ occurrences in the
area. The most extended orbits reach the maximal deviations at
lags dN equal to 10 or 20 days on the following dates: (i) 1976,
August—during swarm of EQs within R = 200 km; (ii) 1991,
May—close to the moment of the Racha EQ mainshock, M7.0;
(iii) 1991, June—the moment of a strong Java aftershock of the
Racha EQ (15 June 1991, M6.2); and (iv) 2009, October—the time
of the Racha EQ on 8 September 2009, M6.0 (the late aftershock
of the main 1991 Racha EQ).

The whole length of the most extended trajectory with the
label 3 May 1991 is 133 days, from start to finish at the source
cluster. The time from the moment when a significant deviation
from the background seismicity (“noisy” basin) begins to that
with the label 3 May 1991 is approximately half of the full
orbit duration. We presume that this time is needed to form
a “precursory” half orbit, lasting approximately 60 days. We
presume that a strong deviation of the orbit from the source
area is a precursor of the Racha 1991 event, due probably to
foreshock (correlated) activity, not excluded fully by Reasenberg
declustering. Indeed, Matcharashvili et al. (2016) showed that
after Reasenberg declustering, many correlated events are still
left in the catalog.

Similar PSPs were obtained for the Spitak EQ area (Chelidze
et al., 2018): the PS orbit begins to deviate from the fuzzy source
area approximately 60 days before the Spitak event. It is necessary
to note that the long-deviating orbit for 1983 was obtained also in
the quiet Batumi area due to the effect of a remote (R ≈ 500 km)
1983 Erzurum EQ (Chelidze et al., 2018). However, in PSPs of
Racha and Spitak test areas, there are no orbits connected with the
1983 Erzurum EQ, despite the comparable distance between the
EQ and test areas. Probably, this is due to the directivity effect. We
conclude that the strong EQ forecast using the PSP approach is
promising for revealing deviations in the time domain 30–60 days
before the strong event, though the location of impending event
remains uncertain.

The results of PSP analysis are intriguing, but we still need
many efforts to get definite conclusions: are they just PSPs, or are
they real strange attractors obeying the model of deterministic
chaos, like those proposed by Sobolev (2011)? The appearance of
the strange attractor means that the state of system after some
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FIGURE 1 | Phase space portraits plotted for the number of EQs N smoothed by the Savitzky–Golay filter versus dN using the declustered catalog (10 and 20 days
of smoothed EQ number with a 1-day step) for the area with R = 200 km around the Racha EQ epicenter. On the X-axis are plotted the mean values of the number
N of EQs per n days, and on the Y-axis is plotted a differential of N for n days, i.e., (Ni=n - Ni) = dN for n = 10 (left) and 20 (right) days. The dates on trajectories mark
strong EQ occurrences.

delay repeats itself, i.e., the orbits attain the limit cycle. We
cannot expect such regular behavior in a complicated extremely
heterogeneous Earth system (see Figure 1), but still deviations
of orbits from the source area seem to be informative for
EQ source physics.

SHORT-TERM OPERATIONAL
FORECAST

Networks, Devices, Data
Besides these statistical models, oriented to regional long- and
middle-term forecast studies, intensive work is under way on
the short-term EQ forecast/prediction also. The most systematic
work in this direction in Georgia is connected with regular
monitoring of WL in the network of deep wells, which began
in 1988. Here, we present the results of multiparametrical
(hydrodynamic and magnetic) monitoring carried out in 2017–
2019 on the territory of Georgia.

In this paper, the WL monitoring data in deep wells’
network in Georgia, operated by the M. Nodia Institute
of Geophysics (Figure 2), are used. The WL monitoring
network in Georgia includes several deep wells, drilled in a
confined subartesian aquifer: Kobuleti, Akhalkalaki, Marneuli,
Lagodekhi, Ajameti, Chvishi, Nokalakevi, and Oni (Table 1
and Figure 2). The sampling rate at all these wells is 1/min
(except Oni, where the sampling rate is 1/10 min). Measurements
are done by sensors MPX5010 with a resolution at 1% of
the scale (Freescale Semiconductors; 1) and recorded by a
datalogger XR5 SE-M (Pace Scientific; 2) remotely thru a
modem, Siemens MC-35i Terminal (Siemens) using program

1www.freescale.com
2http://www.pace-sci.com/data-loggers-xr5.htm

LogXR; the datalogger can acquire WL data for 30 days at the
1/min sampling rate. Variations of WL represent an integrated
response of the aquifer to different periodic and quasi-periodic
(tidal variation and atmosphere pressure) as well as to non-
periodic influences, including generation of EQ-related strains
in the Earth crust of the order of 0.1–0.001 microstrain. The
atmosphere pressure factors (Figure 3) were subtracted from the
summary WL variations.

Magnetic variations were recorded at the Dusheti
Geophysical Observatory (latitude 42.052N, longitude
44.42E), by the fluxgate magnetometer FGE-95 (Japan),
registering x, y, z components at a count rate of 1/s with
accuracy of 0.1 nT. The data are representative for a whole
territory of Georgia.

Machine Learning (ML) Methodology
Quantitative analysis of impacts of different components of
endogenous and exogenous origins in the observed integral
dynamics remains one of the main geophysical problems.
Especially important, taking into account their possible
prognostic value, is identifying the impact of non-periodic
processes related to the EQ generation. We investigate the
dynamics of regular and non-periodic components in the
considered time series using special ML programs: ADAM
and ROC (Diederik and Ba, 2014). The advances in ML allow
teaching computers to learn from the observed data how to
make decisions or predictions (Bottou and Bousquet, 2012;
Diederik and Ba, 2014). In the last years, ML was successfully
applied to the problem of laboratory stick-slip and slow EQ
sequence prediction (Rouet-Leduc et al., 2017, 2019). We
presume that other geophysical observations, sensitive to earth
strain, also are promising for EQ prediction. Namely, we used
the ML approach to make a short-term forecast (prediction) of
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FIGURE 2 | Map of Georgia with location of the deep wells’ network (red circles) for WL monitoring and the Dusheti Geomagnetic Observatory (blue circle). The star
marks the location of the 1991 M7 Racha EQ.

FIGURE 3 | Recording of WL (blue), barometric pressure (black), and computed tidal variations (green) in the Ajameti well before and after the 02/09/2016 Gagra EQ
(M4), marked by the red line.
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EQs of magnitudes M3–4 in Georgia and adjoining territories
using as predictors the training geophysical monitoring data
on WL in the deep wells’ network and geomagnetic field. The
choice of precursory signs of the impending EQ is founded
on the theoretical models of tectonic/seismic process as well
as on numerous field observations of pre-seismic anomalies.
It is well known that underground water dynamics and, in
particular, WL variations in the deep wells reflect anomalous
pre-seismic hydraulic flows in the aquifer due to the impact
of tectonic strain (King et al., 2000; Wang and Manga, 2009;
Martinelli, 2015). We choose the interaction length R for EQs
of M3–4 hydraulic precursors (R = 200 km) for a given well.
Note, that there are different assessments of EQ precursory
area. According to the widely used models, the anomalous
precursory static strain area (Dobrovolsky et al., 1979) is of
the order of 20–30 km for EQs of M3 and 50–70 km for M4.
We presume that there are at least two mechanisms, which
can explain the accepted long radius of action of hydraulic
precursors (R = 200 km): (i) long-range fluid diffusion from
the stressed source to the well due to poroelastic effects and
(ii) the fast squirt-flow (Dvorkin et al., 1994) of pore water
from the EQ source to the well, excited by foreshocks of the
impending EQ – such signals can travel on a long distance
(Chelidze et al., 2016). The small spikes in WL before EQ
(Figure 3) can be explained by foreshock activity in the
EQ source.

The geomagnetic field’s variations are also recognized as
possible tectonic strain-related signs of impending EQ (Stacey,
1964; Kopytenko et al., 1990; Pulinets and Boyarchuk, 2004).
The physical mechanism of precursory magnetic anomaly can
be the magnetostriction of rocks (Stacey, 1964), magnetic field
induced by underground water flow (Jouniaux and Pozzi, 1995),
and migration of positive holes (p-holes) or gases/fluids along
the fault due to tectonic stress, leading to the appearance
of magnetic field anomalies due to lithosphere–atmosphere–
ionosphere coupling (De Santis et al., 2019). By the way,
Kopytenko et al. (1990) detected geomagnetic anomalies in
recordings of the Dusheti Geomagnetic Observatory in Georgia
before the strong 1991 Racha (M7) and 1988 Spitak (M6.9) EQs.

Precisely, we analyzed WL in the wells, tidal variations (Tid1,
Tid2, and Tid3), local magnetic field components (mv1, mv2,

TABLE 2 | Locations and depths of wells in Georgia.

Location Name Depth of
well, m

Interval of
screen, m

Aquifers’ lithology

Nakalakevi Nak 600 255–367 fractured andesite–basalts

Kobuleti Kblt 2,000 187–640 fractured andesite–basalts

Marneuli Marn 3,505 1,235–
1,600

fractured mergels

Chvishi Tsk 3,675 3,250–
3,675

fractured limestones

Akhalkalaki Akh 1,400 100–1,400 fractured andesite–basalts

Ajameti Ajmt 1,339 520–740 fractured limestones

Lagodekhi Lgdx 800 255–367 fractured shales

Oni Oni 255 70–250 fractured shale and basalts

and mv3)—where numbers 1, 2, and 3 correspond to x, y, and
z components of the variables—and hourly geomagnetic DST
index (DST) data for the year 2019 (Table 1).

The example of WL recording in the Ajameti well before the
02/09/2016 Gagra EQ and synchronous data on tidal variations
and barometric pressure are presented in Figure 3. The small
anomalous WL spikes before EQ are noticeable even visually.

In the Table 3, we present the values of WL with correction
factors for each well with a 1-min count rate and synchronous
tidal and geomagnetic data. In the last column of the table, the
occurrences of EQs (Events) at a given day, hour, and minute on
the distance of R = 200 km from the well are marked by 1 and
their absence by 0.

For the analysis of observed data, we used the algorithm of
deep learning ADAM (Kingma and Ba, 2014), which optimizes
target function by the combination of the optimization algorithm
designed for neural networks (Karpathy, 2017) and a method
of stochastic gradient descent with momentum (Bottou and
Bousquet, 2012). Our goal is to reveal the change in ML, using
statistical characteristics of the time series of Table 3, which
precede (here, by 1 day) the occurrence of a seismic event of
M3–4; in other words, we consider the next-day EQ forecast
problem. In order to apply the ML approach to 1-min observation
data (Table 3), it is necessary to transform standard input files
into somehow structured data, which permits finding hidden
regularities and optimization of prediction. Namely, we calculate

TABLE 3 | One-minute values of predictors and correction factors: water level in the well, tidal variations’ components, magnetic field components, geomagnetic DST
index, and EQs.

Date Water Tid1 Tid2 Tid3 Mv1 Mv2 Mv3 DST Event

1/11/2019 0:00 −130.175 −0.0211 −0.01516 −0.1135 −18.7 −25.1 105.0 −18 0

1/11/2019 0:01 −130.155 −0.02092 −0.01502 −0.11385 −18.7 −23.7 104.6 −18 0

1/11/2019 0:02 −130.155 −0.02075 −0.01488 −0.11418 −18.4 −23.2 104.8 −18 0

.. .. .. .. .. .. .. .. .. ..

.. .. .. .. .. .. .. .. .. ..

1/22/2019 18:35 −128.697 −0.01092 0.068955 −0.01541 19.3 43.3 203.1 6 1

.. .. .. .. .. .. .. .. .. ..

.. .. .. .. .. .. .. .. .. ..

12/31/2019 23:09 −134.191 −0.05563 −0.02369 −0.04903 29.0 3.7 196.1 −3 0

Similar analysis of input data was carried out for other seven wells: the results are presented in Tables 5, 6.
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for each observation data value (Water, Tid1, Tid2, Tid3, Mv1,
Mv2, Mv3, and DST), presented in Table 2 (at a minute count
rate), with five statistical functions: Average, Var, SD, Min, and
Max. As a result, we obtained Table 4 with dimension 45 × 365
for the mentioned predictors. We also add the 46th column with
values 0 or 1 which mark the occurrence (1) or absence (0) of
a seismic event in the range M3–4 at the distance of 200 km
from the well at a given minute of the year. The catalog used for
compilation of the column was from www.emsc-csem.org.

As a result, we obtained 40 input and one output (target) data
for ML. Table 4 is constructed so that a specific day with 40
previously known statistical parameters corresponds to the value
of the next day’s event occurrence (0 or 1). We are looking for a
functional connection of the previous precursory day data to the
next-day seismic event. In other words, the next-day EQ forecast
is produced on the basis of statistical analysis of five geophysical
variables for the preceding days.

It was interesting to explore the forecasting potential used
in ML statistical measures. In Figure 4, we present the weights
of such measures, obtained in the process of ML on our 1-day
input data for the Ajameti well. We see that in this case the
leading factors are the maximal value of the z-component of tidal
variation, then followed by, approximately with the same weights,
the x-component of magnetic variation and the mean daily value
of WL. In general, in all wells, we find six to seven measures,
which have the largest weights. This conclusion could change if
we include into the input data several preceding days, which we
plan to do in the future. The recent paper of Zhang et al. (2019)
indicated that the magnitude and phase shift of the tidal response
changed significantly after the great Tohoku EQ, so we can expect
that a similar effect can take place during EQ preparation.

In order to estimate the reliability of the precursors, we used
the methodology of receiver operating characteristics (ROC),
which is a standard technique for assessing the performance of
a binary classifier system (Fawcett, 2006). We are looking for
a binary classification (positive p or negative n) of data with
four possible outcomes (diagnoses): if the prediction outcome
is positive p and the actual value is also p (i.e., the event is
correctly predicted), then the outcome is called a true positive
(TP) with synonyms sensitivity, recall, and hit rate. If, on the
contrary, the diagnosis is positive p and the actual value is n,
then the prediction is false positive (FP) with the synonym fallout.
Accordingly, when both the diagnosis and the actual value are
n, the result is a true negative (TN), and when the prediction
outcome is n while the actual value is p, the prediction is
classified as a false negative (FN). Using these four diagnoses, the
ROC program provides the possibility to calculate the following
statistical measures:

Precision = TP
AV =

TP
TP+FP ; Recall = True positive rate

(TPR) = TP
TP+FN ; Accuracy = TP+TN

TP+FP+TN+FN

False positive rate (FPR) = FP
FP+TN ; F-measure = F-

score = 2 precision∗recall
precision+recall - the harmonic mean of precision and

recall: the perfect value of the score is 1, and the worst one is 0. TA
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FIGURE 4 | The weights of different statistical measures, obtained in the process of machine learning using input data for the Ajameti well (blue columns). The red
curve shows the cumulative percentage of separate weights.

The K-S statistic is a non-parametric test of the equality of
continuous one-dimensional probability distributions that can be
used to compare a sample with a reference Kolmogorov–Smirnov
probability distribution.

Phi coefficient = (TP ∗ TN - FP ∗ FN)/sqrt[(TP + FP)
∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)], which is a
correlation coefficient between the observed and predicted
binary classifications; it returns a value between + 1 (a perfect
prediction) and −1 (total disagreement between prediction
and observation).

Lift = [TP/(TP + FP)]/[(TP + FN)/(TP + FP + TN + FN)],
which is a measure of the performance of a model at predicting
or classifying cases, measuring against a random choice model,
i.e., how good it is at identifying the positive (1s) or negative (0s)
instances of our dataset.

Kendall’s tau coefficient and Spearman’s rank correlation
coefficient (rho) assess Pearson’s correlation between
the input values and target values with a difference
that the first one works well in the case of linear
relationships, whereas the second one is applicable even
with non-linear relationships.

ROC AUCH (ROC convex hull) = ROC AUC (area under
the ROC curve), which is a performance measure for the ROC
classification problem at various thresholds settings. It tells how
much the model is capable of distinguishing between classes 1
and 0. The higher the AUC, the better the model predicts 0
as 0 and 1 as 1.

ML Results
The sequence of resources created to generate the deep learning
net for all wells (Deepnet) was as follows: Dataset ML_(well

name)_2019: 365 instances, 40 fields (1 categorical, 40 numeric);
Deepnet ML_(well name)_2019; auto structure suggestion; three
hidden layers; ADAM; learning rate = 0.001; beta1 = 0.9;
beta2 = 0.999; epsilon = 1e-08; missing values; and max.
training time = 1,800. The only parameter which varies for
different wells is the number of iterations (indicated for each
well separately).

As an example, we show in detail the ML workflow for
the 2019 Ajameti well (Figure 5); the number of iterations is
177. Analyzing results presented in Figure 5, we can conclude
that the used technique allows next-day forecast (predicting) of
38 EQs (TP) from the total number of 44. Three predictions
of event occurrence turn to be false—FP. Seven predictions
of the quiet state failed (FN), and 299 of them correctly
predicted quietness (TN).

According to Table 5 wells allow forecast of next-day
EQ with lesser omission. Note that the sum of all ROC
values is less than 365, which means that some days’
observations failed. Table 6 contains values of different
statistical measures, which we explained above. These data
characterize in more detail the different aspects of ADAM
algorithm forecasts.

According to the data presented in Tables 5, 6, five wells
(Ajameti, Akhalkalaki, Chvishi, Lagodekhi, and Oni) have good
next-day joint EQ/quietness prognostic characteristics (ROC
AUCH 0.97–0.81). At the same time, it is necessary to point
that due to an overwhelming prevalence of quiet days, even
the random prediction of the quiet state is highly successful,
and this makes the success of joint prediction very high. We
conclude that ROC measures, containing the TN value, increase
the joint assessment (ROC AUCH) values. Consequently, the
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FIGURE 5 | Machine learning and ROC analysis results for 1-year data: next-day M3–4 EQ forecast results for the Ajameti well area (R = 200 km).

really important measures for the EQ-oriented prediction are
“EQ-selective” measures, which do not include TN measures,
such as TPR = Recall. In this case, the “best” wells seem to
be Ajameti and Chvishi. Note that this conclusion is true only
for the next-day forecast—we hope that taking into account
input data for several forerunning event days instead of one
day can improve the forecasting potential of the used ML
algorithm. We cannot exclude also the possibility of different
sensitivities of separate wells to pre-seismic deformations,
affecting WL in wells.

It is interesting to note that calculated tidal variations reveal
high forecasting potential (Figure 3): this can be explained by
the indirect effect, the change of the local strain sensitivity
of hydraulic properties (permeability and transmissivity) in an
aquifer during EQ preparation. Such anomalies were observed
by Zhang et al. (2019) after the Tohoku EQ: we presume that
similar processes can take place on the preparatory stage of
seismic event also.

Next-Day Forecast Testing on the
Randomized Events Catalog
In order to assess the reliability of the ML results in the
next-day EQ forecast, we distorted the sequence of EQs in

TABLE 5 | ROC values for different wells.

Name TP FP FN TN Actual EQ number

Ajmt 38 3 7 299 45

Akh 3 0 41 317 44

Cvsh 25 2 5 232 30

Kbl 18 119 17 190 35

Marn 30 50 41 177 126

Lgdx 67 11 51 232 71

Nkl 19 92 16 234 35

Oni 2 0 56 240 58
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TABLE 7 | ROC values for the randomized EQ catalog—Ajameti well.

Name TP FP FN TN

Ajmt 0 0 44 303

the “Events” column in the Table 4 in the following way:
the dates of events (EQs) for the time t were displaced
in time randomly to positions t + 3 or t + 4. After
this, the ADAM algorithm was again used to check the
forecast results on the same input data and the randomized
EQ sequence.

The results of ML testing on the distorted EQ catalog
of Ajameti well data, presented in Tables 6, 7 show that
EQ forecast results are negative (TPR, Recall = 0.0%), in
contrast to the original data results (Figure 5 and Tables 5, 6).
This points to a high accuracy of prediction based on the
original data (TPR, Recall = 84%). Namely, all ROC measures,
predicting EQ occurrence, have zero values in Tables 7, 8
for randomized data; only quiet days are predicted more or
less successfully even in the case of distorted data, which
should be expected.

FUTURE WORK

Our short-term forecast analysis was restricted to solving the
next-day prediction problem. At the same time, some anomalies
are appreciable even visually several days before EQ without
complicated analysis (Figure 3). The preliminary results of
the quantitative (wavelet) analysis on our data show that the
correlation between tidal variations and WL in some wells
is broken several days before the local EQs of magnitudes
M3–4, in both the amplitude and frequency spectra. We also
fixed disturbances of wavelet patterns of magnetic variations
in the same periods well before the seismic event. In the
future, we are going to apply a detailed ML + ROC analysis
to longer (say, several days) prediction intervals and longer
series of input data (namely, observation data for dozens
of years, prior to 2019), which can improve the results of
short-term forecast, in particular, to solve the question on the
different prognostic potentials of different wells. In addition,
we tried to use a longer prediction interval (10 days) for
the Marneuli well, but in this case, the TPR was only 14.5%,
i.e., less than the next-day TPR forecast (42%), though the
joint EQ/quietness forecast improved significantly (ROC AUCH
increased from 42 to 81%). The small TPR effectiveness
of the well can be explained by the low sensitivity of the
well to EQ-related strains or by another effect, namely,
that sometimes a shorter prediction time can be better
than a longer one.

CONCLUSION

We applied several statistical methods to EQ forecast in Caucasus
and Georgia and assessed their effectiveness:
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(i) Bayesian approach to assess conditional probability of
expected strong EQs;

(ii) Pattern recognition technique, based on the assessment of
the empirical risk function;

(iii) Non-linear PS plot analysis;
(iv) Machine Learning/Receiver Optimization Characteristic

(ML/ROC) algorithms, which show that five wells (Ajameti,
Akhalkalaki, Chvishi, Lagodekhi, and Oni) have a good
next-day joint EQ/quiet prognostic characteristics (ROC
AUCH 0.97–0.81). The other three wells show a less
satisfactory result—from 64 to 73%. Our opinion is that
due to an overwhelming prevalence of quiet days, even
the random prediction of a quiet next-day state is highly
successful, and this makes the success of joint EQ/quietness
prediction very high due to the large value of the TN
term.

Thus, we think that “EQ-aimed” measures, such as
TPR = Recall, which do not include the TN measure, are
really important for the EQ prediction-oriented studies. In
this case, two from the eight wells show good ROC, namely, a
high value of the TP EQ prediction (TPR, Recall) of the order
of 84–83%; i.e., the next-day impending EQ was predicted
from the previously observed data with above-indicated
probability. Of course, we cannot exclude the possibility of
different sensitivities of separate wells to EQ precursors (different
strain sensitivities).

In order to assess the reliability of the ML results in
the next-day EQ forecast, we distorted the sequence of EQs
in the “Events” sequence and applied the same (ML/ROC)
algorithm to the randomized catalog. The results of ML testing
on the distorted EQ catalog of Ajameti well data show that
EQ forecast results became negative (TPR, Recall = 0.0%), in
contrast to the good results obtained for the original data (TPR,
Recall = 84–83%).

There is a hope that extending the ML/ROC analysis to longer
(say, several days) prediction intervals and longer time series of
input data (namely, observation data for dozens of years, prior to
2019) can improve the results of short-term forecast.
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