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Abstract

This paper details the approach of team Lancaster to the 2019 EVA data challenge,
dealing with spatio-temporal modelling of Red Sea surface temperature anomalies.
We model the marginal distributions and dependence features separately; for the for-
mer, we use a combination of Gaussian and generalised Pareto distributions, while
the dependence is captured using a localised Gaussian process approach. We also
propose a space-time moving estimate of the cumulative distribution function that
takes into account spatial variation and temporal trend in the anomalies, to be used
in those regions with limited available data. The team’s predictions are compared to
results obtained via an empirical benchmark. Our approach performs well in terms of
the threshold-weighted continuous ranked probability score criterion, chosen by the
challenge organiser.
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1 Introduction

Understanding the behaviour of environmental processes, such as precipitation, wind
speed or temperature, is critical for a number of applications, including weather fore-
casting and predicting the effects of climate change (Cooley et al. 2007; Towe et al.
2017; Rohrbeck et al. 2018). Interest in these environmental processes can be at a
single location or over large spatial areas, as well as over a range of time periods. For
example, questions of interest may be what percentage of the United Kingdom will
observe a mean average temperature of above 15°C for the month of May, or what is
the expected maximum Red Sea surface temperature in 2050.

In some instances, interest lies in the largest values of a spatial process, such as
determining the likely spatial extent of a flood event or a heatwave; example methods
and applications can be found in Davison et al. (2012), Winter et al. (2016) and
Tawn et al. (2018). Approaches include max-stable processes (Smith 1990; Schlather
2002) and Pareto processes (Ferreira and De Haan 2014); these are applicable when
locations experience concomitant extremes, which may not always be the case. More
recent literature that addresses this issue includes work based on Laplace random
fields (Opitz 2016), the Gaussian scale mixture model of Huser et al. (2017), and the
conditional spatial model of Wadsworth and Tawn (2019). Review papers on the topic
of spatial extremes include Davison and Huser (2015) and Davison et al. (2019).

There has been work to extend some of these approaches for modelling spatio-
temporal dependence. While a range of statistical techniques, such as Gaussian
processes, exist for analysing spatio-temporal data (Cressie and Wikle 2011; Wikle
etal. 2019), current spatio-temporal extremes models are limited to problems of mod-
erate dimensions. For example, spatio-temporal max-stable processes are considered
by Davis et al. (2013) and Huser and Davison (2014), but these models suffer from
being computationally expensive to fit. Alternative approaches include the skew-¢
model of Morris et al. (2017), and a space-time extension of the conditional extremes
approach (Simpson and Wadsworth 2020), neither of which are currently feasible for
the very high number of dimensions we will consider here. A key aspect that unites
these models and applications is the importance of understanding the spatio-temporal
dependence.

Our analysis focuses on gaining a better understanding of Red Sea surface tem-
peratures. The Red Sea supports a rich and diverse ecosystem and these high
temperatures may result in coral bleaching. This degradation of the biodiversity of
the Red Sea could have an impact on the local economy, with the north-west coast
being a particularly popular tourist destination (Fine et al. 2019). This will also have
impact on the fishing industries in the area that support a number of communities sit-
uated around the Red Sea. Previous studies such as Allison et al. (2009) and Brander
(2010) have investigated the complex impacts of climate change on fisheries. As a
result, it is important to understand the changing behaviour of the Red Sea and deter-
mine which regions are more susceptible to global warming. Examples of existing
extreme value analyses of Red Sea surface temperatures can be found in Hazra and
Huser (2020) and Simpson and Wadsworth (2020).

The Red Sea surface temperature data for this challenge are not direct measure-
ments, but are instead daily anomalies available from the period 1985-2015, with
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the Red Sea being discretised into 16703 grid cells (locations). Data for some of the
locations and times have been artificially removed. The aim of the challenge was to
issue a probabilistic forecast of the temperature anomalies within specific space-time
regions; predictive performance of our proposed model against the benchmark was
assessed by using a specific metric, in this case the threshold-weighted continuous
ranked probability score (twCRPS) of Gneiting and Ranjan (2011). For more details
on the data set and the challenge, see Huser (2020).

In order to model the sea surface temperature anomalies, we adopt a two-step
approach which accounts for spatio-temporal variations in the marginal behaviour
and dependence structure. The marginal behaviour at a spatial location is modelled
via an extreme mixture model, which allows us to capture differences in the body
and tails of the data. We find interesting spatial variations in the model parameters,
and these can be linked to geographical features of the Red Sea. Conditional on
the fitted marginal models, spatio-temporal dependence is then modelled by using
a localised Gaussian process. While Gaussian processes imply a restrictive spatio-
temporal dependence structure on the extremes, existing spatial extreme methods are
too computationally expensive for large data sets. For those locations with insuffi-
cient data to fit a Gaussian process, the predictive distribution is estimated through
pooling the observed data over a spatio-temporal window.

The paper is structured as follows: Section 2 details the data analysis and the meth-
ods used to model both the marginal and dependence behaviour of the sea surface
temperature anomalies; Section 3 assesses performance with respect to the provided
benchmark estimate and the twCRPS; Section 4 concludes with a discussion of the
ways in which the analysis could be improved.

2 Methods and Data Analysis
2.1 Exploratory data analysis
2.1.1 Challenge description and benchmark prediction

Let Y (s, t) be the sea surface temperature recorded at grid cell s € S C R? and time
teT ={1,..., T}, where |S| = 16703 and T = 11315. Our analysis focuses on
the anomalies

A(s, 1) =Y (s, 1) — (s, 1),

where [i(s, 1), (s,1) € X = S x T, is an estimated mean effect. Parts of the anomaly
data {A(s, t) : (s, 1) € X'} were masked artificially by the EVA 2019 data competition
organiser; see Huser (2020) for more details. We denote the subset of X’ for which
anomalies are available by X7 and we refer to {A(s, t) : (s, ) € A7} as the training
data set.

High temperature events are likely to affect large scale areas for sustained periods
of time. Therefore interest lies in the distribution of the spatio-temporal minimum
rather than the minimum in a particular point in time and space. For each particular
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space-time point, a local neighbourhood N'(s, 1) C X is constructed. Herein, we
consider

NG, t)={B(s,r)x{t—=3,...,t,...,t +3}}N A,

where B(s, r) is a ball centred at location s with radius r = 50 km, and we are
interested in the smallest anomaly within the local neighbourhood,
X(s, 1) = min  A(s', t). (1)
(s",t)eN(s,1)
The aim is to predict X (s, ¢) for certain space-time points within a validation set Xy,
(s,t) € Xy C X\ A, by providing a corresponding distribution function Fj ;(-);
these validation points all lie in the period 2007-2015.

Huser (2020) derives an estimate, termed the benchmark prediction, for the
distribution function Fj;(-), (s, t) € Xy, in three steps. Firstly, the set N¢ of neigh-
bourhoods with no missing values is identified, i.e. N¢ = {(s,1) : N'(s, 1) C Xr}.
Next, the spatio-temporal minima as defined in Eq. 1 are determined for the neigh-
bourhoods in N¢. Finally, the benchmark prediction for Fy,(-) is defined as the
empirical cuamulative distribution function EPen of the values {X(s,t): (s,1) € NcJ.

2.1.2 Exploring spatial and temporal features

The benchmark prediction, Fben | assumes that the data are stationary in space and
time. Evidence suggests that this assumption may not be valid. As an illustrative
example, we focus on the temporal component (the same idea holds for the spatial
component) and separate the data into two time horizons H and H*, where H =
{1,...,T*}and H* = {T* + 1, ..., 11315} with T* € (1, 11315).

We can test whether there is a difference between the empirical cumulative dis-
tribution functions evaluated in these two time horizons, denoted 1:"136” and F Ibﬁ".
We adopt the two-sample Kolmogorov-Smirnov test to detect whether there is any
change in the distribution function. The Kolmogorov-Smirnov test statistic is

Dy g+ = sup ﬁff" (x) — ﬁ,lfl‘i" )],
xeR
where sup is the supremum function, and Dy g+ is tested against a 5% significance
level.

We choose T* = 8030, which is equivalent to separating the data into two
time periods: 1985-2006 and 2007-2015. The estimated test statistic is Dy g =
0.125, corresponding to a p-value of 0.004. Thus, we reject the hypothesis that the
cumulative distribution function remains stationary over the time period.

We are also interested in how the spatial dependence changes as a function of dis-
tance. The variogram can be used to determine the spatial dependence of the spatial
process Y and is given by

28(w, w') = Var[Y (w) — Y (w')],
for two particular sites (w, w’), where § is the semi-variogram function (Matheron

1963). If the process Y is stationary, then §(w, w’) = 8(w — w’). The variogram
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explains the spatial dependence of average values of the process, however our interest
also lies in how the spatial dependence changes for the largest values of the process.
The F-madogram is an equivalent function to the variogram that instead describes the
spatial dependence of the extremes (Cooley et al. 2006). The F-madogram is given by

1
v(w, w') = SEF Y w) — F(Y ()],

where F is the distribution function of the spatial process.

These two functions help us to determine the dependence structure of the anomaly
data and plots are provided in the Appendix. Across subsets of S, the empiri-
cal variograms indicate a variation in the spatial dependence structure, while the
F-madograms exhibit a similar spatial dependence for the highest anomalies. We
further examine a potential trend in the dependence by estimating variograms and F-
madograms for the horizons H = {1, ..., 5000} and H* = {5001, ..., T = 11315}.
We find little, or no, change in the dependence of the highest anomalies, while the
overall spatial dependence increases slightly for some parts of Red Sea.

2.1.3 Space-time moving cumulative distribution function

The main method we propose in Section 2.2 relies on there being sufficient data in a
space-time neighbourhood of each validation point (s, ) € Xy . For those validation
points with insufficient data, we could resort to using the benchmark prediction Fhen,
given in Section 2.1.1. However, since there is some evidence of non-stationarity in
X (s, t), we propose to alter this slightly by deriving cumulative distribution functions
across local space-time moving cylinders. Instead of pooling all of those locations
that have complete observations, we use a neighbourhood N, (s, ¢) with

Na(s, 1) = {B(s,7) x {t =365, ...,t,....t +365}} N X,

where B(s, r) is a ball centred at location s with radius » = 75 km. The estimate
ﬁs*_ () for Fy ;(-), (s, t) € Xy, is then derived as the empirical cumulative distribution
function of observations in {X(s/, ) : (s’ 1) € Nc N Ni(s, t)}.

For some of the validation points (s, t) € Xy, the neighbourhood N/ (s, ¢) contains
space-time points for which the anomalies are available, i.e. N(s,t) N X7 # 0.
Then, X (s,?) cannot be larger than any of the observed anomalies {A(s’ )
', t)yeN(s, HN XT}. Therefore, the minimum observed anomaly within the
neighbourhood A/ (s, t) provides an upper bound for X (s, ). We take this property
into account by setting ﬁ;’jt(x) = 1forx > min {A(s',¢') : (s', 1) € N(s, 1) N Xr}.
The same approach is also applied to our estimates derived in Section 2.2.

2.2 Spatio-temporal model
2.2.1 Introduction

The empirical distribution derived in Section 2.1.3 captures large-scale spatio-
temporal trends in X(s,7) (s € S;t € T), but does not account for short-term
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variations in the anomalies which the challenge asks us to predict. This section intro-
duces our model for these short-term variations. Instead of {X (s, ) : (s, t) € X},
we first model the process {A(s, ) : (s,t) € X}, and then derive our estimates for
{Foi() i (s,0) € Xy},

Section 2.1.2 shows that the data exhibit spatio-temporal dependence. This moti-
vates pooling data across nearby space-time points in the training data set X7
to model the anomaly A(s’, '), where (s',t') € X \ X7 refers to a space-time
point for which the recorded anomaly is not available. We may consider modelling
{A(s, 1) : (s, t) € X} via a Gaussian process. However, such an approach would have
to account for, amongst others, the spatial variation in both the dependence structure
and the marginal distributions of the anomalies.

We address these aspects in two modelling steps. In the first step, we fit a marginal
model to the observed values of A(s, 1), ..., A(s, T') separately for each gridcell s €
S in Section 2.2.2, yielding an estimated distribution function G(-). We then con-
sider the process of transformed random variables {U (s, t) = G [A(s, )] : (s, 1) €
X}, which provides approximate uniform marginal distributions for each grid
cell. In the second step, in Section 2.2.3, we model the non-stationary process
{U(s, 1) : (s, 1) € X} and derive estimates for { F ;(-) : (s, 1) € Xy }.

2.2.2 Marginal modelling

Since the anomalies represent deviations from an estimated mean, we first test
whether A(s, 1), ..., A(s, T) (s € S) are normally distributed; for notational brevity,
we drop the location index s in the rest of this subsection. The Lilliefors test
(Lilliefors 1967) rejects the null hypothesis of A(1), ..., A(T) being normally dis-
tributed at the 1% significance level for 13,200 of the 16,703 locations. A closer
examination of the model fit indicates that the normal distribution is poor at captur-
ing the lower and upper tail behaviour of the anomalies, while providing a very good
fit for the bulk of the distribution.

Extreme value theory provides us with an asymptotically justified modelling
framework for the highest (lowest) values of a continuous random variable Z. We
adopt a peaks-over threshold approach and consider Z | Z > u (u € R). For some
suitably high threshold u, exceedances by Z of u are modelled using the generalised
Pareto distribution GPD(y, £) with

£z —1/&
P(Z§z+u|Z>u)=1—<1+E> = H(z; ¥, §) (z>0),
+

where {z}, = max {0, z}, and (¥, £) € R4 x R are the scale and shape parameters
respectively. Pickands (1975) shows that this family of distributions arises as the
only possible non-degenerate limit for scaled excesses of Z as u tends to the upper
end point of the distribution. The lower tail of Z is modelled in the same way by
first picking a sufficiently small threshold ¢ and then fitting a generalised Pareto
distribution using that P(Z <€ —z | Z <) =P(—Z >z7—LC | —Z > —¥).

To improve upon the marginal fit of the normal model, we define an extreme
mixture model (Frigessi et al. 2002; Behrens et al. 2004; MacDonald et al. 2011)

@ Springer



A spatio-temporal model for Red Sea surface temperature anomalies 135

which provides more flexibility regarding the tail behaviour of the distribution func-
tion G(-). Given thresholds ¢ and u ({ < u), observations are modelled as being
normally distributed within the interval [¢, u], and generalised Pareto distributed oth-
erwise, with separate parameters (V¢, &) and (v, &,) for the lower and upper tail,
respectively. The distribution function is thus

(=) |
O [1 —HE—a; ¥, &)l ifa <¢,

(o

a—pu .
G@ = 19 if¢ <a<u,

o
cb(“_“>+[1—¢(u)}1{(a—u;%,gu) ifa>u,
o o

where ®(-) denotes the standard normal cumulative distribution function.

Prior to estimating the spatially varying model parameters (u, o, V¢, &, ¥y, &,) in
Eq. 2, we consider threshold stability plots (Coles 2001) for a subset of 50 grid cells.
As a result, we choose the empirical 6% and 94% quantiles of the observed anoma-
lies A(1), ..., A(T) as thresholds ¢ and u, separately for each grid cell. Parameter
estimates are derived using likelihood inference; note that for fixed £ and u, (u, o)
can be estimated independently of (¢, &) and (¥, &,).

Figure 1 demonstrates the estimated model parameters over space, indicating a
north-south trend in the marginal behaviour of the anomalies. Interestingly, the strong
north-south trend for o correlates with topographical features of the Red Sea; the
water in the northern Red Sea is generally deeper than in the southern Red Sea.
When studying the tail behaviour, most estimates for the shape parameters &, and &,
are negative, corresponding to the distribution of Ay, ..., A7 being short-tailed with
finite lower and upper end points; this agrees with previous studies on extreme low
and high temperatures (Thibaud et al. 2016; Winter et al. 2016). We also calculate
the site-wise 80% and 90% quantiles of the estimated GPD distributions. Similarly
to o, we find a north-south decrease in these quantiles, with the trend being stronger
in the upper tail. Consequently, anomalies in the northern Red Sea appear to be more
variable than in the southern Red Sea. To assess the fit of the extreme mixture model
Eq. 2, we examine the quantile-quantile plots for two locations in Fig. 2. The plots
show a very good overall fit and illustrate that the lower and upper tail behaviour are
well captured.

@)

2.2.3 Dependence modelling

We now require a model to capture the spatio-temporal dependence between the
anomalies. For spatial extremes, a variety of such models exist, but the spatio-
temporal case is less well-studied in the literature. The most well-known models
for spatio-temporal extremes are max-stable processes (Davis et al. 2013; Huser and
Davison 2014), however, currently available inferential methods are computation-
ally expensive, and cannot handle the large number of space-time locations we wish
to study. We instead propose the use of Gaussian processes to model the spatio-
temporal dependence. As well as bringing computational efficiency to our approach,
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Fig. 2 Quantile-quantile plots for the grid cells with spatial index 3500 (left) and 9000 (right). The solid
line represents the fit for a normal distribution, while the dashed line corresponds to the extreme mixture
model fit. The dotted vertical lines are the thresholds £ and « used in the extreme mixture model

they facilitate the simulation of observations for locations with missing data, allow-
ing us to estimate the distribution of the process X (s, #) for space-time locations in
the validation set Xy via a conditional approach.

Consider a Gaussian process {Z(w) : w € R™} with mean function u
R™ — R and covariance function p(wy, wz), for wi, wy € R™. In our applica-
tion, we are interested in the Gaussian process at a finite set of space-time locations
(s,01,...,(s,1), € S x T. The process at these locations follows a multivariate
Gaussian distribution with mean vector u € R" and covariance matrix X € R™*",
obtained via the covariance function p. Suppose we want to generate observations for
the first n1 space-time locations, conditioning on observations at a further n, loca-
tions. The mean vector ; and covariance matrix X can be partitioned to represent
these two sets of locations, i.e., u = (@1, n2) for n; € R™* and up € R*2,and £ =
|:E“ 212i| for £j1 € RM>XM 3, € RM*"2 5, € R"™*™ and Xy € R™*"2,

o1 X
Conditioning on observations z € R"? at space-time locations (s, £),;4+1, - - -, (8, ),
we can generate observations for locations (s, #)1, ..., (s, ),, by sampling from a
multivariate Gaussian distribution with mean vector u* and covariance matrix X*
given by

pr=p 4+ TRiy (@ —p) T =3 - Tpiy T

In order to focus on modelling the dependence of our temperature anomalies, we
consider fitted quantiles at each spatial location, defined by #(s, 1) = Gs {A(s, 1)} €
[0, 1], where GS denotes the fitted extreme mixture model Eq. 2 at location s. To
obtain values on a scale conducive to Gaussian process modelling, we apply a probit
transformation to these empirical quantiles, obtaining

2(s, 1) = 7 [acs, 0] € (—o0, 00),
for each (s,7) € Xp; ®~! denotes the inverse cumulative distribution function of

the standard normal distribution. Then, the marginal observations for grid cell s €

@ Springer



138 C. Rohrbeck et al.

S, z(s, 1), ...,z(s, T), are Normal(0, 1) distributed. However, the size of the data
makes the estimation of a single Gaussian process across S x 7 infeasible in R.

Instead, we fit a local Gaussian process separately for each (s,?) € Xy, using
non-missing values of z(s, t) at locations within a space-time cylinder

N(s,t) ={B(s,r') x {t =3, t =2, t — Lit,t + L, t +2,t +3}} N X.

Here, B(s, r") denotes a ball centred at s with some radius ’ > r, i.e., N'(s,t) D
N (s, t). We take an exponential separable covariance function,

p (s, )1, (s, )2} = eXP(

_Istion —s20on| IStlat — S20adl 101 — tzl)
®lon Plat Gime 7

with (s, t)1, (s, )2 € S x T and | - | denoting the absolute difference. In our analysis,
we generally find that ¢ is larger than ¢jon and ¢y, corresponding to consecutive
daily anomalies for the same grid cell being more dependent than the anomalies for
two grid cells on the same day which are 1° in longitude (latitude) apart.

The radius ’ is initially set to 60km, and increased in 10km increments until the
cylinder N7 (s, 1) contains at least 100 points, up to a maximum radius of 150km. This
approach ensures sufficient data to estimate the parameters of the Gaussian process,
while still accounting for spatial trends in the data. We fit these Gaussian process
models using the package DiceOptimin R (Picheny et al. ), and generate 500 sam-
ples for each missing observation within the original space-time cylinder N (s, 1),
using the conditional simulation approach detailed above. For those validation loca-
tions with less than 100 available data points in N (s, ¢) at radius ' = 150km, we
use the distribution function obtained via the space-time moving cylinders discussed
in Section 2.1.3.

Having generated these observations for the space-time locations with missing
data, we transform back to the interval [0, 1] using the cumulative normal distribu-
tion function, and transform to the original scale using the marginal fits discussed in
Section 2.2. Taking the minimum observation in N (s, t) for each sample results in
500 simulations of X (s, #) for each (s, t) € Xy. We finally use these observations to
empirically estimate the required distribution function.

3 Results
3.1 Comparison to the benchmark

We first compare our method to the empirical approach used to calculate the bench-
mark. In Fig. 3, we present the benchmark CDF, as well as a recalculated benchmark
using data only from the validation period (2007 to 2015). We also present results
for our proposed method, by averaging our predicted distributions across all space-
time locations in Xy, i.e., we take the average CDF for each anomaly value where
the distribution functions are evaluated.

Here, we observe a clear difference in the results obtained via the benchmark
approach computed for the training data with complete neighbourhoods and obser-
vations within the validation period, particularly for anomalies in the range [—1, 1].
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Fig.3 A comparison of the original benchmark (solid line); a version of the benchmark for the validation
period only (dashed line); and the average of our estimated CDFs for all locations in Xy (dotted line)

This disparity highlights the existence of a temporal trend in the anomaly data (see
Section 2), and supports our use of a localised approach. On average, our method
closely agrees with the empirical results within the validation period, demonstrating
that, overall, we are able to capture this temporal behaviour.

3.2 Evaluation of the score

We further examine the performance of our approach using the threshold-weighted
continuous ranked probability score (twCRPS) from the data challenge. Let I:}, : be
the predicted distribution function for the minimum anomaly X (s, t) over N (s, 1),
and denote the true value by x (s, #). The twCRPS is then approximated by

400 k
1 A 2 —1.5
— [Fst(xk>—]lix(s,t) §xk” [ r-
100 ’ 0.4
k=1
where x¥ = —1 + k/100 (k = 1,...,400). We select a test data set X* C X

containing 4,200 space-time locations, such that no data are missing over N (s, 1)
for (s,#) € X*. Data are then randomly removed from N(s, t) for (s,1) € X*;
the amount of missing data is sampled from the empirical distribution function of
missing values within NV '(s’, t') for (s’, t') € Xy. We generate five such data sets for
each (s, t) € X'*, with the aim to recover the true value x (s, #) using our approach in
Section 2.

The approximated score across the test points in X* is 0.17 x 10~%. The discrep-
ancy between the scores for the set X'* and the validation set Xy used by Huser
(2020) is subsequently explained. Firstly, our generated test data is only similar to
the validation data with respect to the number of missing data points within the 50km
radius. However, the test data exhibit less missing observations within the 150km
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radius, and our Gaussian process approach can thus be applied more often. In partic-
ular, the space-time moving cumulative distribution function had to be derived only
once for the points in X'*, while we had to use it for 15% of the space-time points in
Xy . The second reason for the discrepancy in the scores is that X'* covers the years
1985-2015 while the challenge considers the period 2007-2015. Given the positive
trend in the anomalies, and the fact that the twCRPS gives more weight to predicting
high values of X (s, t), a higher average score is to be expected for space-time points
in the later years.

4 Discussion

We thank Raphaél Huser for organising this data challenge. Our approach utilised
tools from spatial statistics and extreme value analysis, and could be extended.
For instance, other teams showed that machine learning techniques can be applied
successfully to recover the missing values in the data. It would be interesting to
explore whether a combination of these approaches could yield better results. Specif-
ically, our localised Gaussian process estimates may potentially be replaced by
their approaches. The implementation of a cross-validation scheme would help to
distinguish the advantages and disadvantages of both approaches.

One drawback of using Gaussian processes for extreme value modelling, is their
ability to capture only asymptotic independence, i.e., situations where the largest val-
ues occur separately across different variables. The development of computationally
efficient models that are able to capture both asymptotic dependence and asymptotic
independence is a topic that still requires attention, and it is likely that our approach
would be improved by the added flexibility such models would bring. Conditional
models for extremes (Heffernan and Tawn 2004; Wadsworth and Tawn 2019), which
are able to capture these different tail dependence classes as well as allowing for
straightforward simulation of missing data, have recently been extended to the spatio-
temporal setting by Simpson and Wadsworth (2020), and provide one possible avenue
for the improvement of our approach.

Another extension may be to address the temporal non-stationarity in the marginal
behaviour of the anomalies. We again used the Lilliefors test to decide whether the
anomalies may be modelled via a normal distribution. The data were split into blocks
of length 500 days, and the null hypothesis was rejected for 30%-80% of locations
on the 5% significance level across blocks. Next, we considered the two time series
A(l), ..., A(5000) and A(5001), ..., A(T) and fit separate extreme mixture mod-
els. The thresholds ¢ and u were set to the empirical 6% and 94% quantiles of the
respective time series. The mean parameter i was higher for the second time period
for all locations, and the highest difference was found for the central Red Sea. Fur-
ther, o was higher in the first period for most locations, except the most northern
and southern locations. Finally, the 80% quantiles of the GPD for the lower tail were
similar across the two periods, while the 80% quantiles of the GPD(y,,, &,) were on
average slightly shorter in the second period. In addition to a temporal trend, we con-
sidered seasonality in the parameters of the extreme mixture model; the estimates
were very similar for all seasons. In summary, we found a positive trend in the mean
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of the anomalies and a negative trend in their variation. Furthermore, the results indi-
cated that the temporal trend in marginal behaviour varies across locations. To capture
these features, one may define a spatio-temporal model for each of the parameters;
however, we did not investigate this aspect further due to time constraints.

Acknowledgments We would like to thank the referees and Associate Editor for their helpful comments.
Christian Rohrbeck is beneficiary of an AXA Research Fund postdoctoral grant. Emma Simpson’s work
is supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored
Research (OSR) under Award No. OSR-CRG2017-3434. Ross Towe is supported by Engineering and
Physical Sciences Research Council (Grant Number: EP/P002285/1) ‘The Role of Digital Technology in
Understanding, Mitigating and Adapting to Environmental Change’.

Compliance with Ethical Standards

Conflict of interests The authors declare that they have no conflict of interest.

Appendix
Empirical analysis of the spatial and extremal spatial dependence

We produce variograms and F-madograms for the four sub-regions in Fig. 4. The left
column in Fig. 5 shows that spatial dependence varies across sub-regions. Further-
more, there appears to be a temporal variation in the spatial dependence for two of
the sub-regions. The right column of Fig. 4 indicates that the extremal spatial depen-
dence exhibits less spatial variation than the overall spatial dependence. Furthermore,
the plots demonstrate slight changes in the extremal spatial dependence, but not as
strong as for the overall spatial dependence.
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Fig. 5 Variograms (left) and F-Madograms (right) for the four subregions in Fig. 4. The black curve
corresponds to the time horizon ¢+ = 1,...,5000, and the grey curve corresponds to the period t =
5001, ..., 11315. The dashed lines are the central 80% confidence intervals
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