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Abstract
The frequency spectrum of irregular interference noise has broad bandwidth and poor coherence. But in the same prospecting 
area, the dominant frequency and bandwidth of effective signals are nearly the same (especially for post-stack section); that 
is to say, the frequency spectra of effective signals in seismic traces show a high degree of trace-to-trace correlation. Based 
on this conclusion, we present a novel denoising technique, which works by SVD filtering in the frequency domain. First, 
the input seismic data are transformed to the frequency domain via the Fourier transform. Then, the frequency spectra are 
decomposed into eigenimages by means of SVD. We perform the eigenimage filtering of the frequency spectra by selecting 
singular values to be used in the reconstruction, suppressing the random noise. Compared with the traditional band-pass 
filtering, the presented method is capable of attenuating the interference noise components within the range of frequency 
pass band and protects effective signals in high frequency. Tests on both synthetic and field seismic data show that our 
method can remove random noise and does no damage to effective signal. By comparison with the median filtering and the 
curvelet domain filtering, we concluded that the presented denoising method performs better in removing background noise 
and protecting reflection events.
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Introduction

Reflected seismic signals describing the underlying geo-
logical structure are usually contaminated by random 
noise. Irregular interference noise could be brought into 
the recorded data during the field data collection. In addi-
tion, some processing procedures, such as velocity analy-
sis, deconvolution and migration, also lead to erratic noise 
(Yilmaz 1987). Noise interference may yield unrealistic arti-
facts in inversion or imaging results, hindering the extraction 
of geological information. Therefore, denoising is an impor-
tant processing step. However, it is challenging to effectively 
remove noise from noisy seismic data.

Various denoising methods have been developed and 
applied to eliminate seismic random noise, such as median 
filtering (Bednar 1983), predictive filtering (Canales 1984; 

Gulunay 1986; Spitz and Deschizeaux 1994; Abma and 
Claerbout 1995; Guo et al. 1995; Kang et al. 2003), K-L 
transform (Hemon and Mace 1978; Jones and Levy 1987; 
Al-Yahya 1991; Liu 1999; Kasina 2010), SVD (Freire and 
Ulrych 1988; Bekara and van der Baan 2007), wavelet trans-
form (Zhang and Ulrych 2003; Fantine et al. 2019), shearlet 
transform (Zhang and van der Baan 2019), spectra analysis 
(Ebrahim et al. 2018) and time–frequency peak filtering (Li 
et al. 2018), etc. Among them, applying the coherence of 
multitrace seismic signals and the randomness of noise is 
a promising scheme. Both K-L transform and SVD belong 
to this category. The K-L transform was first introduced to 
seismic data processing for enhancing the signal-to-noise 
ratio of seismic records by Hemon and Mace (1978). The 
K-L filtering can be used to remove noise effectively, but it 
has no fast algorithm. To overcome expensive computational 
cost, Liu (2016) applied a self-organization learning algo-
rithm to perform orthogonal decomposition of input seismic 
data. According to the actual needs of filtering, only a few 
eigenimages are extracted, thus reducing computation costs. 
Freire and Ulrych (1988) first applied SVD technique in seis-
mic data processing. They derived the relationship between 
the K-L reconstruction approach and SVD and separated 
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VSP wave fields from the viewpoint of eigenimage filtering. 
Bekara and van der Baan (2007) made use of SVD technique 
to suppress noise in seismic data, enhancing signal-to-noise 
ratio. Existing SVD techniques work in time domain.

In the research presented in this paper, we propose a novel 
denoising technique which works by SVD filtering in fre-
quency domain. The frequency spectrum of random interfer-
ence noise is not localized and shows poor coherence. But 
in the same area, the dominant frequency and bandwidth 
of effective signals in seismic traces are nearly the same, 
i.e., the frequency spectra of effective signals show a high 
degree of trace-to-trace correlation. Based on this point of 
view, firstly, the input seismic data are transformed to the 
frequency domain via the Fourier transform. Then, the fre-
quency spectra are decomposed into eigenimages by means 
of SVD. In terms of selected singular values corresponding 
to the target signal, eigenimages are extracted to reconstruct 
the filtered spectra. The last step is to take the inverse Fou-
rier transform, back to the time domain. The outline of this 
paper is as follows. First, we present the procedure of SVD 
for noise attenuation in the frequency domain. Then, we 
show results for synthetic and real data.

Methodology

Singular value decomposition (SVD)

Let � represent a seismic data matrix which contains m 
traces each with n data points, i.e.,

generally m < n . The SVD of � is given by Freire and 
Ulrych (1988)

where r = rank(�) , �k is the kth eigenvector of the covari-
ance matrix ��T , also known as the propagation vectors, 
�k is the kth eigenvector of �T� , also known as the eigen-
wavelets, and �k is the kth singular value of � . The matrices 
� = (�1, �2,… , �r) and � = (�1, �2,… , �r) are both orthog-
onal. � = diag(�1, �2,… , �r) is a diagonal matrix in which 
the singular values are ordered in decreasing magnitude as 
�1 ≥ �2 ≥ ⋯ ≥ �r . According the matrix theory, �k can be 
shown to be the positive square roots of the eigenvalues of 
��

T . The term �k�Tk  is an ( m × n ) matrix, which is referred 
to as the kth eigenimage of � . Eigenimages form an orthogo-
nal basis for the representation of �.

The SVD filtering depends on the coherence among seismic 
traces. The SVD-filtered data �̃ is obtained by taking only 
the contribution of the partial eigenimages into account. This 

� = (xij)m×n, i = 1, 2,… ,m; j = 1, 2,… , n

(1)� = ���
T
=

r
∑

k=1

�k�k�
T
k
,

can perform by selection of singular values. For instance, the 
enhanced signal is

and removed noise is given by

SVD denoising in frequency domain

The basis of this work lies in: the frequency spectrum of ran-
dom interference noise has poor coherence, but in the same 
area, the dominant frequency band of effective signals shows 
a high degree of trace-to-trace correlation.

The steps of SVD denoising technique in frequency domain 
are as follows:

(1) Input seismic data � = (xij)m×n , i = 1, 2,… ,m ; 
j = 1, 2,… , n.

(2) Take the split radix FFT of each trace.
  �̂ = FFT[�] = �̂R + j�̂I .

(3) Perform the SVD transform for �̂R and �̂I , respectively.
  Owing to the conjugate symmetry of discrete Fourier 

transform (Lyons 2001), the SVD transforms of both 
�̂R and �̂I are done only for the first half length of fre-
quency sample points (within folding frequency).

(4) Analyze the distribution of singular values associated 
with �̂R and �̂I , determining filter parameter p.

(5) Perform the filtering.

(2)�̃ =

p
∑

k=1

𝜎k�k�
T
k
,

(3)�̃ =

r
∑

k=p+1

𝜎k�k�
T
k
.

Fig. 1  Synthetic seismic data with additive Gaussian noise, the lowest 
reflector shows a fault
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  Compute ̃̂𝐗R and ̃̂𝐗I by Eq. 2.
(6) Obtain ̃̂𝐗 =

̃̂
𝐗R + j

̃̂
𝐗I.

(7) Take the split radix IFFT of each trace.
  �̃� = IFFT[

̃̂
𝐗].

The conventional filtering method in frequency domain 
designs a band-pass filter in terms of the frequency range 
of effective signals, enhancing signals and rejecting noise. 
Its drawback is that it fails to remove the noise component 
within frequency pass band and preserve effective signals in 
low and high frequency. The presented SVD method in fre-
quency domain is different from the conventional frequency 
filtering. Instead of defining a frequency filter, we design a 
SVD filter in eigensubspace. It is capable of attenuating the 
noise component within frequency pass band and protects 
effective signals in low and high frequency.

Experiment with synthetic data

Figure 1 represents a noisy synthetic section that consists of 
48 traces with 250 samples per trace. The sampling inter-
val of the data is 2 ms. The Nyquist frequency is 250 Hz. 
The wavelet on each trace is a 40 Hz Ricker wavelet with 
zero phase. The section has been corrupted with additive 
Gaussian noise (mean μ = 0, variance σ = 30.0). There are 
three horizontal reflectors, the lowest one of which contains 
a fault. By means of split radix FFT, the dataset is trans-
formed into the frequency domain. Figure 2a, b shows the 
real and imaginary components of the frequency spectra, 
respectively. SVD is successively applied to Fig. 2a, b. The 
distribution curves of singular values corresponding to real 
and imaginary parts are separately plotted in Fig. 2c, d. It 
can be seen that there is little difference between distribution 

Fig. 2  Singular values decom-
position of the frequency 
spectra. a The real part of the 
frequency spectra of the seismic 
data in Fig. 1. b The imaginary 
part of the frequency spectra 
of the seismic data in Fig. 1 c 
Singular values of the real part, 
with the blue line represent-
ing whole singular values and 
the red line representing the 
selected singular values to be 
used in reconstruction. d Singu-
lar values of the imaginary part, 
with the blue line representing 
whole singular values and the 
green line representing the 
selected singular values to be 
used in reconstruction. e The 
first eigenimage of the real part. 
f The second eigenimage of the 
real part. g The third eigenim-
age of the real part
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trends of the two curves in Fig. 2c, d. Therefore, in the pre-
sented SVD denoising scheme on frequency spectra, the 
determination of filter parameter p needs only the singular 
values curve of real part (or imaginary, either of them). Fig-
ure 2e–g shows the first three eigenimages of the real com-
ponent in Fig. 2a. We take p = 3 to perform SVD filtering 
for Fig. 2a, b and then go back to time domain via inverse 
FFT. The denoised section is displayed in Fig. 3.

Real data examples

Two real data examples considered here are taken from 
land surveys in a basin in northwestern China using a 
dynamite source. The ground weathered layer is thick and 
heterogeneous. As a result, explosion and receiving con-
ditions are less good. The recorded data contain strong 
noise. The stacked sections are often contaminated by 
stacking noise, largely due to static correction, velocity 
analysis and deconvolution.

Figure 4 shows a stacked section consisting of 130 
traces with 1000 samples per trace. The existence of ran-
dom noise reduces the quality of seismic section. The deep 
reflection is concealed by the strong background noise. 
To understand the characteristics of the seismic data, we 
perform the frequency spectrum analysis. The magnitude 
spectrum of the sixth seismic trace in the section is given 
in Fig. 5. It can be seen that the noises occupy a broad 
frequency band and show a strong energy level. The domi-
nant frequency of effective signal is about in the range 
of (10, 70) Hz. The conventional frequency filtering is 
less capable of attenuating the noise within the range of 
frequency pass band. Meanwhile, the effective informa-
tion within the rejecting range may be cut off. Instead of 
the frequency filter, we apply a SVD filter to the real and 
imaginary components of the frequency spectra, which 
is the Fourier transform of input seismic data. The noise 
reduction is performed by selecting singular values used 

Fig. 3  Denoised result. The first three singular values in Fig. 2c, d are 
selected for reconstruction

Fig. 4  A stacked section contaminated with random interference 
noise. The deep reflection is concealed by the strong background 
noise

Fig. 5  Frequency spectra of the 
raw and filtered seismogram 
(trace 6)
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in the reconstruction of eigenimages. Figure 6 shows the 
distribution curve of singular values corresponding to 
the frequency spectra of Fig. 4, plotted in blue line. Fig-
ures 7, 8, 9 and 10 are, respectively, the results of recon-
struction associated with singular values in Fig. 6a–d. In 
Fig. 7, only the contribution of the first ten eigenimages 
is taken into account. As a result, the random noise is 
eliminated completely, but a little loss of local horizon 

details occurred (e.g., the area marked by the ellipse). 
Figure 8, the reconstruction of Fig. 6b (from �11 to �15 ), 
shows missed details. Finally, we make use of the first 15 
singular values (Fig. 6c) to extract the effective signals. 
The enhanced signals are shown in Fig. 9. Figure 10 shows 
the removed noises (the reconstruction of Fig. 6d with 
Eq. 3). Clearly, there is no loss of geological informa-
tion. Applying a band-pass filter with a parameter of (0, 
10, 70, 80) Hz to Fig. 4, the denoised data are displayed 

Fig. 6  Singular values of the 
frequency Spectra of Fig. 4. The 
blue line represents whole sin-
gular values. The red and green 
lines represent the selected 
singular values to be used in 
reconstruction

Fig. 7  Denoised section via SVD filtering. The first ten singular val-
ues are used. The background noise is eliminated completely, but a 
little loss of geological details occurred

Fig. 8  Reconstruction of Fig. 6b (from 11th to 15th singular values) 
shows missed details
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in Fig. 11. The background noise remains strong, and the 
continuity of events is less good. Figure 12 is the differ-
ence plot between Figs. 4 and 11. The magnitude spectrum 
of the sixth seismic trace in Fig. 9 is also plotted in Fig. 5. 
Figure 13a, b shows, respectively, the frequency spectra 
of the raw data (Fig. 4) and the denoised section (Fig. 9). 
Inspection of Figs. 5 and 13 shows the presented method 
is capable of attenuating the noise within the range of fre-
quency pass band. In addition, the denoised section has a 
broad frequency band, which is beneficial to preventing 
decrease in the resolution of seismic data (Yilmaz 1987; 
Fons ten et al. 2013).

Figure 14 shows another stacked section consisting of 
216 traces with 3000 samples per trace. There is a plenty of 

random interference noise in the section. Random noise is 
the main factor that affects the quality of the section. In this 
case study example, we compare the performance of median 
filtering, curvelet domain filtering and the presented denois-
ing method for noise removal.

Figures 15, 16 and 17 show the results after noise removal 
using, respectively, median filtering, curvelet domain filter-
ing and the presented denoising method. The main drawback 
of median filtering is its tendency to retain some background 
noise. Median filtering is least effective in removing back-
ground noise (see Fig. 15). The curvelet domain filtering 
succeeds in suppressing background noise, but it did less 
well in terms of protection of coherent signals (see Fig. 16). 
The performance of the presented denoising method is better 

Fig. 9  Reflection signals separated from Fig.  4 using SVD filtering 
method. The first 15 singular values are used. The weak reflection can 
be recognized more clearly, and it is convenient to interpret

Fig. 10  Removed random noise. It is the difference plot between 
Figs. 4 and 9. No loss of geological information

Fig. 11  Filtered section by means of a band-pass filter with a param-
eter of (0, 10, 70, 80) Hz. Background noise remains strong, and 
events are distorted

Fig. 12  Difference plot between Figs. 4 and 11. High-frequency com-
ponents of the coherent signal are attenuated
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than that of the curvelet domain filtering in terms of sup-
pression of background noise. Inspection of Figs. 15, 16 
and 17 shows that the presented denoising method performs 
best in terms of protecting coherent signals. The continuity 
of seismic events in Fig. 17 is better than that in Fig. 16. 
Figures 18, 19 and 20 show the removed noises (i.e., differ-
ence plots, section before minus section after filtering) for 

median filtering, curvelet domain filtering and the presented 
denoising method.

Conclusion

In this paper, we have developed a novel denoising scheme 
which works by SVD filtering in frequency domain. This 
approach is better than the traditional band-pass filtering in 

Fig. 13  Comparison of the fre-
quency spectra. a The raw data. 
b SVD-filtered section

Fig. 14  A stacked section contaminated with random interference 
noise. Random noise is the main factor that affects the quality of the 
section

Fig. 15  Reflection signals separated from Fig. 14 using median filter-
ing. Some background noise remains
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removing the background noise. Instead of the frequency 
filtering, we perform the eigenimage filtering of the fre-
quency spectra by selecting singular values to be used in 
the reconstruction, suppressing the random noise. Compared 

with the traditional band-pass filtering, the presented method 
is capable of attenuating the interference noise components 
within the range of frequency pass band and protects effec-
tive signals in high frequency. Through comparison to the 
median filtering and the curvelet domain filtering, the pre-
sented denoising method performs better in removing back-
ground noise and protecting reflection events.

Fig. 16  Reflection signals separated from Fig.  14 using curvelet 
domain filtering. The curvelet domain filtering succeeds in suppress-
ing background noise, but it did less well in terms of protection of 
coherent signals

Fig. 17  Reflection signals separated from Fig. 14 using the presented 
denoising method. The uncorrelated background noise level has been 
reduced and trace-to-trace coherency thus enhanced

Fig. 18  Removed noises (the difference plot between Figs. 14, 15)

Fig. 19  Removed noises (the difference plot between Figs. 14, 16)
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