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In this article, we discuss the development and the administration of a multiple-choice test, which we
named Test of Calculus and Vectors in Mathematics and Physics (TCV-MP), aimed at comparing students’
ability to answer questions on derivatives, integrals, and vectors in a purely mathematical context and in the
context of physics. The comparison between the two contexts was achieved by using parallel (isomorphic)
questions in mathematics and physics. The final version of the test contains 34 items (17 in a purely
mathematical context and 17 in the context of physics) involving different representations (graphs, words,
numbers, and formal expressions) of the concepts covered by the test. The test was administered in Spring
2018 to 1252 first-year students enrolled in 23 different degree programs of the School of Science and the
School of Engineering of the University of Padua. We assessed the validity, reliability, and discriminatory
power of the test both as a whole and at the single-item level, obtaining values within the desired ranges.
The analysis of students’ answers to individual items and the comparison between parallel mathematics and
physics items provides insights into the factors that affect students’ ability to use derivatives, integrals, and
vectors in the context of introductory physics. We believe that the instrument we have developed can be
useful not only for research purposes, but also for instructors and for students.
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I. INTRODUCTION

Physics relies heavily on mathematics for both describ-
ing and making predictions about phenomena. Many views
of the role of mathematics in physics can be listed, such as a
pragmatic tool, a language [1], and a way of reasoning [2].
Although mathematics is undoubtedly a powerful tool

for calculation in physics, its role cannot be reduced to
technical aspects. Ever since modern science was born,
mathematics and physics have been strongly intertwined,
so that the role of mathematics in physics can best be
described as structural [3–5]. Despite that, in most univer-
sities mathematics is seen just as a prerequisite for physics
[6]. With only a few exceptions [7–9], calculus and physics
are typically treated as separate subjects taught by faculty
belonging to different departments, and physics instructors
expect calculus courses to provide the students with the
mathematical tools they need in physics. However, it is well

known that proficiency in math does not guarantee success
in physics [1,10–15]. Even when students complete a
calculus course successfully, they may have difficulties in
using the same mathematical tools in a physical context, and
they can be proficient in the “technical” use of mathematics
without actually making sense of physics [5,16,17].
Students’ ability to use mathematics in the context of

physics has often been framed in terms of “transfer”
[18–20]. Traditionally, transfer has been defined as the
ability to apply previously acquired knowledge in a new
context. However, this definition does not account for all
the phenomena associated with knowledge building and the
current theories of knowledge [21,22]. Rather than a mere
application of previous knowledge, modern perspectives
view transfer as an active, student-centered dynamic
process, governed by the students’ epistemic frames [5]
and “noticing” of relevant problem features [23,24], the
visual attributes and “affordances” of the problem [25–28],
and dependent on the disciplinary context [29]. For
example, in the preparation for future learning (PFL)
perspective [30] evidence of transfer is not sought in
“one-shot” students’ performances, but rather in the whole
process of learning. In the transfer in pieces (TiP) per-
spective [31], more subtle evidence of transfer are acknowl-
edged, so that even incorrect answers, when looked through
a more fine-grained lens, can bring the signs of transfer.
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Finally, the actor-oriented transfer perspective [32] focuses
on identifying what similarities, if any, a student sees or
dynamically constructs in two connected but different
situations. These different perspectives are not mutually
exclusive: multiple perspectives can be combined and used
to highlight different aspects of the problem [22,33–36].
In recent years, “conceptual blending” has been proposed

as an alternative framework to account for both context
dependency and the relevance of prior knowledge in
problem solving, both in physics and in other branches of
science [2,37–40]. According to this framework, a student
who encounters a problem in a new context “blends”
information from different “mental spaces” (e.g., mathemat-
ics, physics, everyday experience) to construct an emergent
“blended space” that is unique to the problem and that is
used to solve it. In this view, many physical concepts are
inherently “blended objects” in that they are best represented
by a joint mathematical-physical model that can be described
at different degrees of mathematization [3].
In this complex background, we may therefore wonder

to what extent students’ difficulties in the mathematization
of physics are due to a lack of understanding mathematics.
Research has tried to find an answer to this question
tackling the issue on multiple fronts. In this work, we
contribute to this effort by proposing a quantitative instru-
ment, a test which we named the test of calculus and vectors
in mathematics and physics (TCV-MP), aimed at high-
lighting differences in students’ answers to isomorphic
mathematics and physics questions involving mathematical
concepts that are typically encountered in introductory
physics: derivatives, integrals, and vectors.

II. THEORETICAL BACKGROUND

Several accounts in the literature on physics education
report that students have difficulties in understanding
the relationship between kinematical quantities, a problem
that becomes particularly relevant when graphs are
involved [41–44].
While a general categorization of students’ difficulties

with graphs was proposed by Leinhardt et al. [45], the
first taxonomy of these difficulties in the context of
kinematics was proposed by McDermott and colleagues
[46]. A decade later, Beichner [47] designed the test of
understanding graphs in kinematics (TUG-K), a multiple-
choice test based on six dimensions corresponding to
different categories of typical students’ mistakes that he
identified: graph as picture errors, confusion between slope
and height, variable confusion, non-origin slope errors, area
ignorance, and confusion among area, slope, and height.
Recently, Zavala et al. [48] have proposed a modified
version of the TUG-K improving the parallelism between
the different dimensions of the test, and Dominguez et al.
[49] have developed the test of understanding graphs in
calculus (TUG-C), the counterpart of the TUG-K in a purely
mathematical context.

The quantitative studies mentioned above were aimed
at identifying taxonomies of students’mistakes, useful for a
broad characterization of students’ difficulties. Other stud-
ies sought to investigate specific topics in a greater detail,
making use of qualitative methods in order to gain insights
into students’ reasoning. For example, Wemyss and Van
Kampen [50] investigated students’ ability to determine the
direction of motion, the constancy of speed, and a numeri-
cal value for the speed of an object at a point on a numerical
linear distance-time graph. They found that “technical”
mathematical issues could not account for all of the
observed difficulties, and that the incorrect prior learning
in physics also played a crucial role. Bollen et al. [51]
confirmed Wemyss and Van Kampen’s results, and pointed
out that having a qualitative understanding of a distance-
time graph is not sufficient to correctly determine a value
for the speed. Concerning integral-related concepts,
Nguyen and Rebello [52] researched students’ difficulties
in using the concept of area under a curve in physics
problems. Even when the students mentioned the concept,
they were not always able to relate it to the process of
accumulation. Similar results had been found previously in
the context of mathematics [53].
Another research strand is focussed on comparing

students’ ability to solve problems in different contexts.
For example, Christensen and Thompson [54] investigated
students’ understanding of slopes and derivatives using
graphical “physics-less physics questions”, i.e., physics
problems stripped of their physical context. They found
that students had difficulties in conceptualizing mathemat-
ics tasks formulated in this way, and they argued that “the
type of mathematical tasks we want our students to do in a
physics class may simply be foreign to their mathematical
ways of thinking”. Jones [55–57] compared students’
problem-solving strategies in problems involving definite
integrals in mathematics and in physics. He found that
students, in general, rely more often on antiderivative or
area-based ideas rather than on Riemann sum-based con-
ceptions; in mathematics this was not a problem, since the
three conceptualizations were equally effective, whereas in
physics Riemann sum-based ideas were more productive,
but underutilized. He also found that students often hold a
“prototype image” of integrals that typically considers only
positive values, with little variation in both the size of
function values and steepness of the graph, and does not
include special cases such as discontinuities. The author
argues that this fact can lead to difficulties in interpreting
integrals when the given curve differs from this prototype
[58,59]. Finally, researchers at the University of Zagreb
[29,60–63] explored students’ strategies in interpreting
and using graphs in mathematics, in physics, and in a
context other than physics, using sets of isomorphic items
on the concepts of slope and of area under a curve. They
found that students’ strategies for interpreting the graphs
were context dependent and domain specific. Interestingly,
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students were able to use a variety of productive strategies
in mathematics and in contexts other than physics, while in
physics they tended to stick to previously learned strategies
and to use formulas.
Another concept students typically struggle with is the

vectorial nature of many physical quantities. Knight [64]
found that students had difficulty in manipulating vector
components, establishing the direction of a vector, dealing
with vectorial sum, and using the different types of vector
products. More recently, Nguyen and Meltzer [65] con-
firmed that, even after explicit instruction on vectors, many
students have conceptual confusion in vector concepts
(vector sum, magnitude, and direction), particularly when
vectors are represented in graphical form.
Also in the case of vectors, some studies have attempted

to provide taxonomies of students’ difficulties using quan-
titative instruments. One such taxonomy was proposed by
Barniol and Zavala [66], who developed the test of under-
standing of vectors (TUV). Their taxonomy includes the
graphical properties of direction, magnitude, and compo-
nents of a vector (e.g., components of unit vectors); the
graphical procedures of vector operations (e.g., difference
between vectors, multiplication by a negative scalar);
calculations that involve angles, trigonometric functions,
and the Pythagorean theorem (e.g., confusion between sine
and cosine); and calculations of dot and cross products that
involve unit-vector notation. Recently, Susac and colleagues
[67] have administered the TUV to 889 first-year students
and they have found that some of the itemswerevery difficult
for the students: themost difficult vector conceptwas the unit
vector, followed by the cross product, subtraction of vectors,
the dot product, and vector direction.
Concerning the use of vectors in the context of physics,

Flores and colleagues [68] found that, even after instruction
in mechanics, many students were unable to determine the
direction of the difference between two velocity vectors,
to find the direction of the acceleration vector, and to
determine the relationship between individual forces and
the net force acting on an object. Shaffer and McDermott
[69] also investigated students’ ability to treat velocity and
acceleration as vectors and they found several difficulties,
including not recognizing that the velocity vector is tangent
to the trajectory, not distinguishing between velocity and
acceleration, assuming that the acceleration is zero because
the speed is constant, using a nonzero vector for the
velocity and a zero vector for acceleration at a turnaround
point, and not associating the direction of acceleration with
the direction of net force.
In order to compare students’ ability to use vectors in a

purely mathematical context and in the context of physics,
Van Deventer and colleagues [70,71] designed isomorphic
mathematics and physics items for a subset of vector-
related concepts (vector magnitude and components, vector
subtraction, dot product). Students’ overall performancewas
similar in the two contexts, but some specific differences

were observed. For instance, students performed better on
vector subtraction in physics than in mathematics, since the
reference to a coordinate system cued them towards a correct
answer; conversely, when asked to find an algebraic expres-
sion for the x component of a vector, students struggledmore
in physics than in mathematics when the given angle was
between thevector and they axis. Finally, students performed
poorly on questions involving the dot product both in
mathematics and in physics, with many students drawing
a vector for the dot product.
For both calculus and vectors, the representational

format (graphs, words, numbers, equations) in which a
problem is formulated seems to be particularly relevant.
Representational fluency (i.e., the ability to dynamically
pass from one representational format of a concept to
another) is very important in physics and it is considered a
sign of expertise [72,73]. Specific instruments for assessing
students’ representational fluency have been designed, such
as the KiRC inventory for kinematics [74], and, on a more
interdisciplinary perspective, the representational fluency
survey [75].
Research is unanimous in highlighting that passing from

one representation to the other is not straightforward for
students, and that they may adopt different problem-solving
strategies depending on the specific representational format
used in the problem [76–78]. In fact, some authors have
compared students’ problem solving abilities between
variants of the same test item formulated using different
representational formats, and they have observed statistically
significant differences [79–82].
In particular, researchers have investigated the differences

between students’ ability to handle formal representations
and their ability to use graphs: these two representational
formats are particularly relevant for physics, and among the
different possible representations, they are the ones that
involve the highest degree of mathematization [3,83]. For
example, Bajracharya [78] compared students’ use of
integral-related concepts in mathematics and in physics, in
the presence of graphs and/or equations. He found that, in
general, students preferred to solve problems analytically
rather than using graphical reasoning, and even when no
analytic information was included in a problem, some
students still attempted to solve it by inferring an analytic
expression from the graph. In addition, some of the students
who tried to use the graphs to solve the problem either used
irrelevant features or tried to read off numbers directly from
the graph rather than engaging in interpretation of graphical
properties. Finally, using eye tracking the author found that
previously reported common mistakes could be cued by
specific problems features such as the presence or absence of
equations or the notation used in the problem.More recently,
Van den Eynde and colleagues [84] investigated students’
ability to translate between graphs and equations both in a
purely mathematical context and in the context of physics.
They found that the students had fewer difficulties on
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mathematics items than on physics items, and that they
performed better on items starting from a graph than in those
starting from an equation.
Concerning the topic of vectors, Heckler and Scaife [85]

explored how students’ understanding of vectors in math-
ematics and physics could be influenced by the represen-
tation used in the problem. They found that the average
students’ performance in problems involving the algebraic
notation î ĵ k̂ was better than the performance in the
graphical (arrow) format, both in the context of mathemat-
ics and in the context of physics. Consistently, Liu and
Kottegoda [86] highlighted a disconnect between under-
graduates’ understanding of the algebraic and geometric
aspects of vectors.

III. CONTEXT AND MOTIVATION FOR
THE STUDY

As highlighted in the theoretical background, in research
on students’ difficulties in mathematics and in physics two
main approaches can be distinguished [11,87]: macro-
scopic studies, aimed at identifying taxonomies of students’
difficulties with relevant concepts or tools, andmicroscopic
studies, grounded in theories of knowledge, aimed at
describing students’ knowledge and cognitive processes
in much greater detail. Our study is of the first type. In order
to understand the reasons for this choice and to interpret
our results, we will now specify the context in which the
research was designed.
The study presented here was conducted in 2018 at the

University of Padua, a large-enrollment university in
northern Italy. In the past few years, the Italian government
has funded different actions aimed at sustaining students’
enrollment in scientific degree programs and at preventing
dropout [88]. In the context of such actions, in 2017 a
survey was conducted among faculty who taught intro-
ductory physics courses. The aim was to gain insights into
the main hurdles that students encounter in those courses,
which are often a bottleneck in the students’ career.
The results of the survey suggested that one of the students’
major difficulties was actually the use of mathematics.
These results led to the development of a research project,
the main goals of which were the design and administration
of the instrument that we describe here, and the develop-
ment of supporting actions based on its results. In particu-
lar, we identified the following research questions:
(1) To what extent are students’ difficulties in introduc-

tory physics due to difficulties with the mathematical
tools that are considered prerequisite by instructors?

(2) In what ways does students’ performance in purely
mathematical problems differ from their perfor-
mance in parallel physics problems involving the
same mathematical concepts?

Even if quantitative instruments exploring specific topics
do exist in the literature [29,47,49,66,89,90], a “compact”
instrument covering the most relevant mathematical topics

for introductory physics courses while comparing the con-
texts of mathematics and physics was lacking. We think that
our instrument actually fills this gap. We believe that this
kind of assessment can be of interest fromboth a research and
a practical point of view, since it allows testing students’
difficulties across different mathematical topics using a
single instrument, and it provides students and instructors
with feedback that can be useful for improving their learning
and teaching.
The project was supported by several departments belong-

ing to the School of Science and the School of Engineering
of our university and it involved 23 degree programs overall.
As mentioned above, the expected impact was to better
support both students and instructors in first-year physics
courses.

IV. METHODS

A. Choice of the instrument

Since we wanted to survey a large number of students,
we opted for a multiple-choice, distractor-driven test.
Each of the multiple-choice questions contained in the test
featured five options, only one of which was correct.
Although this kind of instrument can bias students’
responses by forcing their choice into one of the given
options, it is useful when a large screening is sought.
It is worthwhile at this point to clarify our perspective on

the relationship between mathematics and physics and on
transfer. Though we acknowledge all the different perspec-
tives on transfer, due to the choice of the instrument we do
not expect our results to provide fine-grained information
on perspectives such as PFL [30] or TiP [31]. In fact, at a first
sight our design might look more similar to a traditional,
“sequestered problem solving” setting [30]. However, in
some studies, such as Ref. [35], research designs similar to
ours have been interpreted according to modern perspectives
such asAOT [32]. Thoughwebelieve that a fullAOTaccount
would require richer, qualitative data that would only be
available through interviews, our study acknowledges this
perspective in that its working hypothesis is that students
may not necessarily see isomorphic problems as “similar”
even if discipline experts would consider them as such.
In other words, our research hypothesis is that students may
adopt different approaches in solving “isomorphic” prob-
lems in a purely mathematical context and in a physical
context. Our goal is to quantify these discrepancies and to
give an account of the differences in students’ answers in
pairs ofmatchedmathematics and physics problems in terms
of the distractors that they choose more frequently.

B. Test development

To design the test, we combined a literature review with
an analysis of end-of-semester exams in order to select a
number of relevant subtopics. Since representational flu-
ency is relevant for expertise in physics, we decided to
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include different representations of the concepts covered in
the test. We considered four broad classes of representa-
tions: words (labeled “W”), graphs (labeled “G”), formal
language (algebraic expressions and equations, labeled “F”)
and numbers (labeled “N”). Each of these representations
could be used either in the question (“input”) or in the
answers (“output”), or in both. For each combination of
representations, two items were created: one item in the
context ofmathematics and one parallel item in the context of
physics. Here we use the word context in its common
meaning to distinguish purely mathematical items (labeled
“M”) from their physics counterpart (labeled “P”), without
any reference to broader meanings. For the mathematical
items, we used the formalism typically used in calculus
courses, in order to highlight differences in framing the
problems that might be due to notation issues. Some of the
items that we designed were inspired by previous research,
but we adapted and re-elaborated all the items to fit into
the goals and structure of our assessment. Other items were
specifically designed for the test. The distractors for each
item were also built based on the literature, and/or on the
analysis of our students’ written exams.
An initial pool of 78 items were developed according to

this logic and this preliminary (“pilot”) version of the test
was checked by experts (faculty who teach physics or
calculus in introductory courses at our university) to assess
content validity. The pilot test was administered in Spring
2017 to 71 first-year students enrolled in the degree course
in architectural engineering, where one of the authors
(G. T.) was lecturing, at the beginning of their physics
course. An item analysis was performed, and students’
responses were examined more in detail by conducting
think-aloud interviews with 10 volunteer students from the
sample. Based on the results, some of the items and/or the

distractors were deleted, added, modified, or rephrased.
The final version of the test contains 34 items (17 in the
context of mathematics þ17 in the context of physics). The
list and categorization of the items according to the context
mathematics (labeled M), and physics (labeled P) and the
representational forms used in each item are reported in
Table I.
The test was administered to the students in Spring 2018,

at the beginning of their physics course. Participation was
voluntary but encouraged by the instructors. The test was
delivered online using the Moodle platform of the
Department of Physics and Astronomy of the University
of Padua, setting a time limit of 90 min for completing the
test. The sample consists of 1252 first-year students
enrolled in 23 different degree programs belonging to
the School of Science (35%) or to the School of
Engineering (65%) of the University of Padua, Italy.
69% of the respondents were male. All of the students
had followed a calculus course in the first semester [91]. At
the time when the test was administered, 65% of the
students had passed the calculus exam (of which 26%
with high marks), 24% stated they had taken the exam but
they had not passed it, and the remaining 11% had not yet
taken the exam. Before entering university, 59% of the
students had attended a “Liceo Scientifico” (scientific high
school) and 38% had attended a technical school in the
technological sector. Other types of schools were less
represented (≤5%).
The full text of the TCV-MP is reported as Supplemental

Material [92] both in English and Italian (the original
language in which it was written and administered). The
items are listed in the same order as they were delivered to
the students (1M-2M-…-17M-1P-2P-…-17P, i.e., the whole
mathematics part was given before the whole physics part).

TABLE I. Summary of test items.

Item Topic Representation

Mathematics Physics Mathematics Physics Input Output

1M 1P Derivatives Position → velocity Words and formal Words
2M 2P Derivatives Position → velocity Graphs Graphs
3M 3P Derivatives Position → velocity Graphs Numbers
4M 4P Derivatives Position → velocity Words Words and numbers
5M 5P Derivatives Position → velocity Graphs Words
6M 6P Derivatives Position → velocity Words Graphs
7M 7P Integrals Velocity → displacement Graphs Words
8M 8P Integrals Velocity → displacement Graphs Graphs
9M 9P Integrals Velocity → displacement Graphs Numbers
10M 10P Vectors—components Velocity (2D) Words Graphs
11M 11P Vectors—components Velocity (2D) Graphs Formal (unit vectors)
12M 12P Vectors—components Forces Graphs Formal (magnitude and angle)
13M 13P Vectors—sum Forces Graphs Formal (components)
14M 14P Vectors—sum Forces Graphs Formal (magnitude and angle)
15M 15P Vectors—difference Velocity (2D) Graphs Graphs
16M 16P Vectors—dot product Work Graphs and formal Numbers and formal
17M 17P Vectors—cross product Torque Graphs and formal Numbers and formal
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For readability, in this paper we report the correct answer as
optionA for all the items, but the optionswere randomized in
the version administered to the students.

V. RESULTS

A. Test mean score

The box plots describing the score distribution for the
whole test, for the mathematics part, and for the physics
part are shown in Fig. 1. The test mean score was 58%;
the difference between the mean score in the mathematics
part (61%) and the physics part (55%) was significant
(p < 0.001) according to a paired two-tailed t test, with
effect size (Hedges g) gav ¼ 0.25 [93].
It is interesting to compare students’ scores in the test

with their score in the calculus exam. Their relationship is
displayed in Fig. 2. We notice that the median of the test
scores increases as the score in the calculus exam increases,
but also that almost the entire range of test scores is covered
for each of the score bands in the calculus exam.

B. Instrument reliability and discriminatory power

We used some common statistical measures to assess the
reliability and discriminatory power of our test [94]. In
particular we evaluated the Kuder-Richardson index
(KR20) as a measure of internal consistency of the test
(reliability) and Ferguson’s delta as a measure of the test’s
global discriminatory power. We obtained a KR20 of 0.91,
indicating a good reliability of the test as a whole, and a
Ferguson’s delta of 0.99, suggesting that the test is also well
discriminating. For the evaluation of individual items we
employed three statistical measures: the facility index FI
(corresponding to the percent of correct answers normal-
ized to 1), the point-biserial coefficient rpb (measuring item
reliability defined as the correlation between the correct-
ness of the item and the test score), and the discrimination
index DI27% (a measure of the item’s ability to discriminate
between the top-scoring students and the bottom-scoring

students; the percentage indicates that the groups were
defined by the top to bottom 27%) [95].
Figure 3 displays the facility index of each item, compar-

ing parallel items in the mathematics part and in the physics
part of the test. As can be seen from the figure, facility indices
range from 0.37 (item 16M) to 0.94 (item 7M) for the
mathematics part, and from 0.32 (item 17P) to 0.83 (items 1P
and 11P) for the physics part. The average facility index was
0.58, corresponding to the test mean score normalized to 1.
The point-biserial coefficients range from 0.29 (item 11P) to
0.64 (item 2P), with an average of 0.50. All items fulfil the
acceptability criterion rpb ≥ 0.20. The discrimination index
was good (≥0.40) for fourteen items out of seventeen,
with themaximumvalue for item2P (0.81); it was acceptable
for item 1P (0.35; a common acceptability criterion is
DI27% ≥ 0.30), while it was low for items 7M (0.19) and
11M (0.22). These low DI27% values correspond to items
with very high facility indices, i.e., almost all the students
answered these items correctly.
The statistical indices relative to the individual items,

together with the percentage of students who selected each
of the five options for the different items, are reported in
Table II for the context of mathematics and in Table III for
the context of physics. A summary of the values of the
different statistical indices used to evaluate test reliability is
given in Table IV.

C. Degree of association between isomorphic items

In Table V we compare pairs of matched items in
mathematics and in physics by reporting (a) the difference
in facility index, (b) phi coefficients (Φ) for each pair of
matched items. Phi coefficients, which were also used in
similar studies [29] quantify the correlation between pairs of
items; therefore, a low value of Φ (0.10 ≤ Φ ≤ 0.30)
indicates that students’ performance in the two items was
poorly correlated, whereas a highΦ value (≥0.50) indicates
a highly correlated performance. High Φ values do not
necessarily indicate that the students recognized the items as
similar, but low Φ values suggest that the students saw the

FIG. 1. Box plots of students’ scores for the whole test, for the
mathematics part and for the physics part.

FIG. 2. The relationship between students’ scores in the test and
in the calculus exam they took in the first semester.
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items as different. In order to identify item pairs where the
students’ performance may be regarded as “different,” we
have labeled FI differences larger than 10% and Φ values
smaller than 0.30 with an asterisk, and we have marked in
bold the itempairs having at least one of the twovalues above
threshold. A deeper understanding of these values requires a
more detailed analysis of each item, which we report in the
following.

D. Item analysis

In the following, we compare students’ answers to
all pairs of matched items, both in terms of students’

performance and in terms of the distractors that were more
frequently chosen. In fact, as could already be inferred
by looking at Tables II and III, relevant differences in the
answer profile of parallel items were observed. We
retrieved many of the typical mistakes that have been
reported in the literature and in previous taxonomies, but
we also report some new findings.

1. Item 1

Item 1M contained an algebraic expression for the first
derivative of a function, and the students had to relate the
coefficients in this expression to the sign of the slope of the
tangent line to the graph of the function. In the parallel

FIG. 3. Facility index vs item number in the two contexts of mathematics (labeled M) and of physics (labeled P).

TABLE II. Point-biserial coefficients (rpb), discrimination in-
dices (DI27%) and percentage of students who selected each of
the five options for each item in the context of mathematics.a

Item rpb DI27% A B C D E Omit

1M 0.42 0.49 68 6 5 13 4 4
2M 0.60 0.72 64 16 9 4 5 2
3M 0.58 0.74 52 13 6 17 7 4
4M 0.41 0.52 53 5 11 19 10 2
5M 0.57 0.64 73 13 3 4 3 3
6M 0.47 0.53 75 9 6 2 7 1
7M 0.35 0.19 94 1 1 1 1 1
8M 0.52 0.65 51 14 6 8 8b 5
9M 0.62 0.74 64 13 5 5 5 7
10M 0.45 0.50 70 20 5 3 2 1
11M 0.29 0.22 89 5 1 1 2 1
12M 0.45 0.57 51 21 15 9 1 3
13M 0.37 0.45 57 17 4 11 9 3
14M 0.50 0.63 47 21 6 9 9 8
15M 0.48 0.59 52 15 14 11 6 2
16M 0.55 0.69 37 7 11 19 14 12
17M 0.48 0.60 41 7 5 11 19 17

aOption A is the correct one for all the items; the order of
the options was randomized in the version administered to the
students. The value in the A column normalized to 1 gives the
facility index.

bIn this item there were six options. Option F was selected by
the same percentage of students as option E (8%).

TABLE III. Point-biserial coefficients (rpb), discrimination
indices (DI27%) and percentage of students who selected each
of the five options for each item in the context of physics.a

Item rpb DI27% A B C D E Omit

1P 0.39 0.35 83 5 2 2 3 5
2P 0.64 0.81 56 17 10 9 4 3
3P 0.63 0.78 39 5 6 45 2 3
4P 0.44 0.56 47 8 3 12 26 4
5P 0.59 0.74 62 22 2 1 10 3
6P 0.59 0.75 56 17 12 2 10 3
7P 0.56 0.73 53 14 5 8 13 7
8P 0.56 0.64 69 5 3 13 6 4
9P 0.55 0.70 55 17 4 15 3 5
10P 0.55 0.66 66 16 4 4 6 5
11P 0.48 0.43 83 3 3 2 2 7
12P 0.48 0.57 39 20 15 13 2 11
13P 0.50 0.59 59 10 4 8 9 10
14P 0.54 0.68 56 9 6 4 10 14
15P 0.51 0.62 41 22 24 2 2 9
16P 0.53 0.65 39 7 11 12 12 19
17P 0.42 0.50 32 5 10 13 14 26

aOption A is the correct one for all the items; the order of
the options was randomized in the version administered to the
students. The value in the A column normalized to 1 gives the
facility index.
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physics item (1P), an algebraic expression for the time
derivative of position was given, and the students were
asked to determine when the object’s velocity was negative.
The students performed much better on item 1P (83%
correct) than on item 1M (68% correct), with Φ ¼ 0.28.
For item 1M, the most common incorrect answer was
distractor D, consisting in using the wrong coefficient to
determine the sign of the slope.

2. Item 2

In item 2M, students were given the graph of a function
and they had to select the correct graph representing
the function’s first derivative. In its parallel item 2P, the
students were given a position-time graph and they had to
identify the corresponding velocity-time graph. In both
contexts, the input function was quadratic.
The students’ performance was similar in the two items

(64% correct in 2M, 56% correct in 2P,Φ ¼ 0.49). The most
common incorrect answer in both contexts (16% for item

2M, 17% for item 2P) was distractor B, corresponding to a
sort of “linearization” of the input graph. This kind of error
was not included in previous taxonomies. One possible
interpretation of this result follows Elby’s “What You See
Is What You Get” account [25]. According to this perspec-
tive, students are attracted by relevant perceptive features
of a graph such as “going up-going down” and these features
may take prevalence over less evident conceptual features.
Similarly, Moore and Thompson [96] reported that students
often adopt a “static shape thinking” in which graphs are
interpreted as static objects that are described in terms of
macroscopic trends rather than as representations of covary-
ing quantities.
It could be argued that students following this kind of

reasoning may also choose distractor D, corresponding to a
graph which reproduces the input graph exactly. One of the
possible reasons why the students prefer distractor B over
distractor D could be that they probably know that the first
derivative of a quadratic function is a linear function, which
leads to the exclusion of distractor D. However, they cannot
identify the exact relationship between the function and its
first derivative, and as a way out, they opt for a graph that
satisfies the condition of being linear, but at the same time
reminds them of the original graph. This kind of reasoning
was actually observed in some of the pilot interviews.
Finally, some students (10%) selected distractor C in

item 2P, corresponding to a graph that is correct in the first
two-thirds, but incorrect in the third one, where students’
reasoning might have been similar to the WYSIWYG
reasoning or to the “static thinking” reasoning described
above. In fact, the transition from a function that “goes
down” to a function that “goes up” in distractor C reflects
the going up-going down behavior of the input graph in this
region. Similar students’ graphs were reported, for instance,
by McDermott et al. [46] and by Bajracharya [78].

3. Item 3

In item 3M, the students were required to calculate the
first derivative of a function at a point, given its graph. In the
parallel physics item 3P, they had to calculate an object’s
velocity at a given instant, given its position-time graph.
The students performed better on item 3M (52% correct)

than on item 3P (39% correct). The preferred incorrect
answer for both contexts, distractor D, consists in calculat-
ing y=x (or s=t) rather than Δy=Δx (or Δs=Δt). This kind
of mistake has been categorised in previous taxonomies
as “non-origin slope error.” However, the percentage of
studentswho chose this distractor was dramatically different
between the two contexts. In item 3M (context of math-
ematics), distractor D was selected by 17% of the students,
while in item 3P (context of physics) 45% of the students
chose it—evenmore students than the ones who selected the
correct answer (39%). Another difference between the two
contexts concerns distractor B, which corresponds to read-
ing the value of the function directly off the y axis. In item

TABLE IV. Summary of the values of the five statistical indices
used to assess test reliability.

Test statistic Desired value Value

Kuder-Richardson index >0.70 0.91
Ferguson’s delta >0.90 0.99
Facility index (FI) [0.30, 0.90] av. 0.58
Point-biserial coefficient (rpb) ≥0.20 av. 0.50
Discrimination index (DI27%) ≥0.30 av. 0.60

TABLE V. Facility index (FI) differences and phi coefficients
(Φ) for pairs of parallel items in the context of mathematics (M)
and in the context of physics (P). FI differences larger than 10%
and Φ values smaller than 0.30 are labeled with an asterisk, and
the item pairs having at least one of the two values above
threshold are marked in bold.

Item pair FI(M) FI(P) FI difference (M-P) Φ

1 0.68 0.83 −0.15� 0.28�
2 0.64 0.56 þ0.08 0.49
3 0.52 0.39 þ0.13� 0.36
4 0.53 0.47 þ0.06 0.20�
5 0.73 0.62 þ0.11� 0.35
6 0.75 0.56 þ0.19� 0.26�
7 0.94 0.53 þ0.41� 0.14�
8 0.51 0.69 −0.18� 0.28�
9 0.64 0.55 þ0.09 0.42
10 0.70 0.66 þ0.04 0.46
11 0.89 0.83 þ0.06 0.27�
12 0.51 0.39 þ0.12� 0.35
13 0.57 0.59 −0.02 0.44
14 0.47 0.56 −0.09 0.35
15 0.52 0.41 þ0.11� 0.35
16 0.37 0.39 −0.02 0.36
17 0.41 0.32 þ0.09 0.35
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3M, 13% of the students selected this answer, while in its
parallel item3P itwas chosen byonly 5%of the students. The
mistake represented by this distractor was categorized as
“confusion between slope and height” in previous taxono-
mies, although some authors such as Wemyss and Van
Kampen [50] have argued that students who commit this
mistake may not be really confusing the two variables, but
rather just picking up the only answer they can think of.
These findings suggest that, in the context of physics,

miscalculating the slope was only part of the problem. It is
well known that students often define “velocity” as “space
over time”, an oversimplification that they have learned at
school and that may be reinforced by the fact that, in high
school, students mostly interact with position-time graphs
that pass through the origin [50]. Our results confirm that
issues related to the incorrect prior learning of physics
cannot be underestimated. Consequently, instructors should
be warned against considering students’ mistakes in cal-
culating velocities as a mere misapplication of mathemati-
cal knowledge and they should be aware that students may
hold incorrect or oversimplified interpretations of physical
concepts even when they have good results in mathematics.

4. Item 4

Items 4M and 4P concerned the relationship between the
first derivative of a function and the function’s maxima.
The two parallel items were formulated a little differently.
In item 4M (context of mathematics), the students were
given information about the sign of a function’s derivative
and they had to decide where the function had its maximum
value within the given interval. In item 4M (context of
physics), information was given about the sign of an
object’s acceleration and the object’s velocity at a point,
and the students were required to choose the correct option
describing the object’s velocity at another point. A similar
percentage of students answered these two items correctly
in the two contexts (mathematics 53%, physics 47%), but
the Φ coefficient was low (0.20), suggesting that the two
performances are weakly correlated. In fact, by checking
the students’ answers more in detail, it turns out that the
number of students who answered only one item (either M
or P) correctly is comparable to the number of students who
answered both items correctly or both items incorrectly.

5. Item 5

In item 5M, the students were required to relate the graph
of a function to a verbal description of its first derivative.
In its parallel item 5P, the students had to relate a position-
time graph to a verbal description of the object’s motion,
formulated in terms of its velocity.
The students’ performance was slightly better on item

5M (73% correct) than on item 5P (62% correct). The most
common incorrect answer in both contexts was distractor
B, but it was selected by a higher percentage of students
in the context of physics (22%) than in the context of

mathematics (13%). According to previous taxonomies,
this mistake could be classified as “variable confusion”.
Following this account, the students who selected this option
did not pay attention to the fact that the given graph
represented the functionwhereas the descriptionwas referred
to the function’s derivative, and they chose an answer that
would be correct if both the graph and the description
were both referred to the same variable. Another difference
between the two items is that, in item 5P, a significant portion
of the students (10%) chose distractor E, i.e., they interpreted
the horizontal axis as the line alongwhich themotion occurs.
Previous research by Trowbridge and McDermott [42] has
highlighted that, in physics, students sometimes employ
kinematics concepts indiscriminately. Difficulties in inter-
preting the direction of motion and separating the shape of
a graph from the path of the motion have also been reported
in the literature [46,50] and we may also consider Elby’s
WYSIWYG perspective [25] as an alternative interpretation
of this kind of mistakes.
Students’ choice of distractor B could also be interpreted

using the notion of “graphical forms,” introduced by
Rodriguez and colleagues [40,97]. Similarly to Sherin’s
symbolic forms [98], graphical forms involve associating
intuitive mathematical ideas to a pattern, which in this case
is a region of a graph. For example, the graphical form
“steepness as rate” entails the idea that different levels of
steepness in a graph correspond to different rates; “straight
means constant” involves the idea that a straight line indicates
a lack of change; and “curve means change” implies that a
curve indicates a changing rate. Graphical forms are impor-
tant in interpreting the “story” represented in a graph and are
therefore particularly relevant for this pair of items, where
students are required to associate a graphwith its “story” told
in verbal language. According to the graphical form account,
in item 5M the graphical form “curve means change” and/or
“straight means constant” may have been activated in
response to the fact that line in the graph is not straight:
this graphical feature may, in fact, have attracted the students
towards distractor B, which contains the word “decreasing,”
rather than towards the correct answer, that contains the
word “constant.”Correspondingly, in item 5P the first part of
the graph may have activated the graphical form “straight
means constant,” and the second part of the graph may have
activated the graphical form “steepness as rate”, associated
with the words “constant” and “slows down” in distractor B.

6. Item 6

In item 6M, students were given a verbal description of a
function in terms of the function itself and of its derivative,
and they had to identify the correct graph representing the
function. In its parallel item 6P, the motion of an object was
described verbally and students had to select the corre-
sponding position-time graph.
Item 6M was answered correctly by 75% of the students,

while item 6P was answered correctly by 56% of the
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students. The low Φ value (0.26) also suggests that the two
items were seen as different. Similarly to the previous pair
of items, the most common incorrect answer (distractor B)
would be categorized as “variable confusion” according
to previous taxonomies. However, this mistake can also
be interpreted according to the graphical forms account.
In fact, in item 6M the graphical form “straight means
constant” may have been activated in association with the
part of the graph where x ≥ 4, and correspondingly, in item
6P, the word “constant” might have cued the students into
choosing graphs that feature straight lines, like the ones in
distractors B and E.

7. Item 7

Item 7M probed students’ interpretation of the definite
integral of a function as the area under the graph of the
function, while its parallel item 7P probed the students’
knowledge of the physical meaning of the area under a
velocity-time graph.
Items 7M and 7P were the ones where the largest differ-

ence between the two contexts was observed: while in item
7M most of the students (94%) correctly associated the
definite integral with the area under the curve, in item 7P
only 53% of the students choose the correct answer. The
smallΦ value (0.14) confirms that the students actually saw
the two items as different. The most common incorrect
answers in item 7P was associating the area with the object’s
acceleration (14%), and saying that the area has no meaning
in physics (13%). Both mistakes have been reported in the
literature and they have been categorized as “area ignorance”
in previous taxonomies [47].

8. Item 8

It item 8M, the students were given the graph of a function
f; FðxÞ was defined as the definite integral of the function
from0 to x, and the students had to identify a graph that could
represent F. Correspondingly, in item8P, students were given
a velocity-time graph and they had to select the correct graph
representing the object’s displacement.
Against the trend, the students performed better in the

context of physics (69%) than in the context of mathematics
(51%), with a Φ value of 0.28. For sure, one of the reasons
is that item 8M contained an extra distractor. However, the
response profile was quite different in the two contexts,
suggesting that the presence of the extra distractor does not
fully explain the observed difference. In fact, in item 8M the
most common incorrect choice was distractor B (a graph
having the same shape as the input graph), while in item 8P
the preferred distractor was D (13%), containing a graph that
differs from the correct one for the sign of the curvature of
the parabola in the first part. It may be that these students
remembered that “if the velocity-time graph is linear, then the
displacement-time graph is a parabola,” without however
being able to determine the sign of the curvature correctly.
Another prominent reason for the observed difference is that

the figure in 8P ismuch simpler than the figure in 8M. In fact,
the graph in 8M is continuously curving while the majority
of the graph in 8P is not only straight, but horizontal.
The graphs were chosen based on typical end-of-semester
tests and the corresponding students’ mistakes, but we
recognize that a graph of the curve in 8M ismore complicated
to figure out than the integral of a constant.

9. Item 9

In item 9M, the students were given the graph of a
function and they had to calculate the definite integral of
the function up to a given point. In its parallel item 9P,
students had to calculate an object’s displacement up to a
certain time instant, given its velocity-time graph.
Students’ performance was similar in the two contexts

(64% correct for item 9M, 55% for item 9P). The Φ value
was 0.42. Items 9M and 9P were isomorphic except for a
difference in the formalism. In fact, item 9M mentioned
the definite integral of the given function up to point x ¼ 2
as Fð2Þ, whereas item 9P asked for the displacement
“between t ¼ 0 and t ¼ 2s.” This discrepancymight explain
the observed difference in the answer profile. In fact, in item
9M the preferred distractor was B, corresponding to the
value of the function at x ¼ 2, while in item 9P 15% of the
students choose distractor D, corresponding to the difference
of the values of the function in t ¼ 0 and in t ¼ 2. The role
of the different formalism used in mathematics and physics
has been discussed in the literature [1].

10. Item 10

In items 10M and 10P, the students were given the verbal
description of a vector and they to identify its graphical
representation. In the purely mathematical version, the
students had to identify a vector of magnitude 1 forming a
positive angle with the x axis, while in the parallel physics
item the students had to identify the correct graphical
representation of a velocity vector of magnitude 5 m=s
along a direction forming a positive angle with the x axis.
A similar percent of correct answers was observed in
the two contexts (70% for item 10M, 66% for item 10P,
Φ ¼ 0.46). In both cases, the most common incorrect
answer consisted in selecting a vector having both compo-
nents equal to the given vector magnitude.

11. Item 11

In items 11M and 11P, the students were given a graphical
representation of a vector and they had to identify its
algebraic representation. In the context of physics, a velocity
vector was given. The percent of correct answers was very
high in both contexts (89% for item 11M, 83%). The low Φ
value is due to the fact that the number of students who
answered only item 11P correctly is similar and even higher
than the number of students who answered both items
incorrectly.
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12. Item 12

In items 12M and 12P, the students had to select the
correct algebraic expression for the components of a vector,
starting from its graphical representation. In the context
of physics, the given vector represented the weight of an
object moving on an incline.
Consistent with the literature [70,71], students had more

difficulties in the context of physics (39% correct) than in
the purely mathematical context (51% correct). In both
contexts, the most common mistake consisted in choosing
the wrong sign for the negative component of the given
vector (20%–21%), and in inverting the sine and the cosine
of the given angle (15%). This latter mistake was catego-
rized as “confusion between sine and cosine” in previous
taxonomies, but it could also be due to the fact that the
angle indicated as θ was the complement of the angle used
in the formulas for components, which is also commonly
labeled θ. The choice of this angle was intentional, since we
wanted to detect situations where students use a remem-
bered formula rather than looking at the graph for context.
Remarkably, in item 12P a relevant percentage of the
students (11%) did not provide an answer.

13. Item 13

In item 13M, the students were given two input vectors
(A⃗ and B⃗) in graphical form, and they had to select the
correct option for the magnitude of their sum, expressed
algebraically. In the corresponding physics problem, two
forces acting on an object were displayed graphically, and
the students were required to calculate the magnitude of the
net force on the object. The percentage of correct answers
in the two contexts was basically the same (57% for item
13M, 59% for item 13P) and the Φ value was 0.44.
However, in item 13P, the students who chose an incorrect
answer were almost equally spread across the different
options (including skipping the question), while in item
13M the majority of the students who selected an incorrect
answer (17%) chose option B, corresponding to the wrong
sign of the x component of one of the input vectors.

14. Item 14

In item 14M, two input vectors (A⃗ and B⃗) were
displayed, and the students had to select the correct option
for the x-component of their sum, expressed algebraically.
In the context of physics, two forces acting on an object
were displayed, and students had to identify the correct
algebraic representation of the x component of the net
force. Students’ performance in the two items was similar
(47% correct on item 14M, 56% correct on item 14P). The
Φ value was 0.35. The slightly worse performance in
mathematics could be due to the fact that, in item 14M, one
of the two input vectors (B⃗) had a negative x component;
choosing the incorrect sign for the x component of B⃗ was

indeed the most common incorrect choice (21%) in this
item.

15. Item 15

Items 15M and 15P were about students’ vector differ-
ence, and the vectors were represented graphically both in
the question and in the answers. The physical context for
item 15P was the motion of the Moon around Earth: two
vectors representing the velocity of the Moon at two
instants of time were displayed, and the students had to
select the vector corresponding to the change in velocity
over the given time interval.
Item 15M was answered correctly by 52% of the

students, while item 15P was answered correctly by only
41% of the students. The most common mistakes were
calculating the sum of the two vectors instead of their
difference (distractor B, selected by 15% of the students in
item 15M and by 22% of the students in item 15P), and
choosing a vector of magnitude equal to the magnitude
difference of the two input vectors (distractor C, selected by
14% of the students in item 15M and by 24% of the
students in item 15P, where the two input vectors had the
same magnitude).
In order to highlight the role that contextualization might

have played in the students’ framing of these two items, we
report an excerpt from one of the pilot interviews. Just
before this conversation, the student had tried to solve item
15M, and he had calculated the sum of the two vectors
instead of their difference. Then he was asked to solve
item 15P.

Student: It is about circular motion. We have centripetal
acceleration. Centripetal acceleration is… v square
over r… it points to the center… [looks puzzled]
Interviewer: What are you thinking about?
S: None of these answers is correct, because it [accel-
eration] points to the center, so it should be like this
[draws a vector pointing to the center, starting at point
1] here, and like this [draws a vector pointing to the
center, starting at point 2] here. The Moon moves on a
circle, but its speed is constant. This is constant circular
motion.
I: Ok. If I told you the correct answer was there, what
would you say?
S: Well, if I must choose among these ones, I’d say zero
[distractor C], since they [the two vectors] have the
same magnitude. But there is centripetal acceleration,
unless they are asking something different.

The student did not immediately frame item 15P as a
problem about vector difference. Instead, he started recall-
ing miscellaneous facts and formulas about circular motion,
which, however, did not cue him towards the correct
answer. When invited to select one of the given options,
the student chose option C (corresponding to the magnitude
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difference) since it was the only thing he could think of,
although he was not convinced. Though the students’
knowledge of the physics of the problem could have
guided him towards the correct answer, in fact it mainly
distracted him by activating unhelpful resources. Rather
than a “failure” in transfer, this situation could be seen as a
different framing of the problem depending on the context:
since the student expected the problem to be about circular
motion, he activated his resources accordingly. According
to a transfer in pieces perspective [31], the student has
consistently applied his knowledge resources in precisely
those situations where they were relevant according to his
framing.

16. Items 16 and 17

Items 16M/16P concerned the dot product, while items
17M/17P concerned the cross product. The physical con-
text for the dot product was the work done by a force along
a given path, while the cross product was contextualized as
the torque exerted by a force on a bar.
The percent of correct answers for these two pairs of

items were among the lowest ones in the test (37% for item
16M and 41% for item 16P; 39% for item 17M and 32% for
item 17P). In items 16M/16P, the most common mistake
was exchanging the sine and the cosine, while the second
most common mistake was interpreting the result of the
dot product as a vector in the same plane as the two input
vectors. In items 17M/17P, the most common incorrect
answers consisted in selecting a vector in the same plane as
the input ones and in calculating the dot product instead
of the cross product. Just like in items 12M/P, we cannot
infer from the results if the confusion between sine and
cosine was “genuine” or if it was rather due—at least in
part—to the choice of thewrong angle. In any case, students
committing this kind of mistake were not using geometric
reasoning: they were engaging in a purely “calculation
mode” rather than trying to make sense of the problem.
The low percent of correct answers in these two pairs

of items can be interpreted as a confirmation that vector
products are a very difficult topic for students. It is
remarkable that a large percentage of students actually
skipped these items, particularly in the context of physics.
This fact could be seen as a further indication of students’
difficulty with this topic. However, we should also take into
account that the students had just started their study of
physics at the university level. In fact, though work and
torque are covered in high school, they are often not treated
as vector products before university, and it might be that the
students who skipped these questions were simply not
familiar with this description.

E. Comparison across different representations

As mentioned above, we designed the test items includ-
ing different representations of the concepts covered by
the test, in order to see if the different representations

played a role in determining students’ problem solving
ability. We have actually found evidence of such
differences, as it can be seen by comparing the facility
indices of items on the same topic (e.g., derivatives)
containing different representations. For example, facility
indices range from 0.52 (item 3M) to 0.75 (item 6M)
across the six items about derivatives in the context of
mathematics, and from 0.39 (item 3P) to 0.83 (item 1P)
across the corresponding items in the context of physics.
This suggests that students’ ability in answering problems
about derivatives also depends on the representational
formats used in the problem.
The comparison between items 2P and 3P provides an

excellent example of how students’ performance can be
inconsistent across the different representations. The two
items were about the relationship between position and
velocity. Item 2P was solved correctly by 56% of the
students, while only 39% of them selected the correct
answer in item 3P. The input for both items was an object’s
position-time graph, but the output representational format
was different: in item 2P, the students were asked to select
the object’s velocity-time graph, while in item 3P they had
to calculate the object’s velocity at a given instant of time
numerically.
Below we analyze the two items from the point of view

of a student by reporting the following excerpt from her
think-aloud interview.

Student: I think the answer is A.
Interviewer: Ok. Can you explain your reasoning?
S: I take the tangent for each point [she mimics the
tangent with her hand]. At the beginning the slope is
positive. Then it goes like this [puts her hand horizon-
tally], so the derivative is zero. And then it goes like this
[mimics a negatively sloped line]. Negative. Therefore,
the answer is A.
I: Ok. What about item 3P?
S: [She reads it aloud]. “The velocity….” Er… I don’t
know. I mean it is… the derivative… but the derivative of
what? I am used to see x…x to the square…
I: You referred to the derivative correctly when solving
item 2P. What did you use in that case?
S: The tangent line.
I: Can you use this idea to solve item 3P?
S: No. I mean, I can figure out how the straight line
behaves, but… how do I calculate the numbers? I need
an equation to calculate the numbers.
I: Since you do not have any equations, can you think of
anything else you could do?
S: I don’t know. Maybe I should make a general
calculation and so it would be… space over time…
[she hesitates]
I: You’re not convinced, are you?
S: No, because that holds when it [the velocity] is
constant, but it is not constant here.
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Apparently, this student understands the geometrical
meaning of the first derivative of a function, and she is
able to use this concept to go from the graph of a function to
the graph of its derivative. She can also use this idea
correctly in the context of physics, recognizing velocity as
the time derivative of position and mentioning both the
graphical (slope of the tangent) and functional (first
derivative) relationship between the two kinematical quan-
tities. However, when asked to calculate a point derivative
numerically, the student fails to do that, claiming that she
needs an equation to calculate numbers. It seems that the
student is looking for a function to match, i.e., she is
engaging in a purely “calculational” game, or, equivalently,
seeking for a plug-and-chug solution rather than trying to
make sense of the problem [56,78]. She is thinking of
position and velocity algebraically, without any reference to
the physical meaning of these two quantities. According to
Rodriguez et al. [40], this student would be described as a
“nonblender”: she never refers to physics ideas or to
“blended” ideas, but only to mathematical concepts and
procedures. It is interesting to notice that even in item 2P
(which she solved correctly) the student adopted a non-
blended reasoning, which was, however, productive in
that case.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have described an assessment, named
“test of calculus and vectors in mathematics and physics,”
which we developed with the aim of comparing students’
ability to answer questions on derivatives, integrals, and
vectors in a purely mathematical context and in the context
of physics. The assessment, a multiple-choice test, included
multiple representations (graphs, words, numbers, and
formal expressions) of the chosen concepts. We now
discuss how the results presented above provide insights
into our research questions.
Our first research question was To what extent are

students’ difficulties in introductory physics due to diffi-
culties with the mathematical tools that are considered
prerequisite by instructors?
Although there is an overall correlation between stu-

dents’ performance in the mathematics part and in the
physics part of the test, the effect is not particularly strong.
Also the comparison between students’ score in the test and
their score in the calculus exam suggests that it is not
sufficient to rely only on calculus courses for learning how
to use mathematics in the context of physics. Focusing our
inquiry down to individual pairs of parallel items, the
analysis of Φ coefficients suggests that students do not
necessarily use the same strategy on parallel questions in
the context of mathematics and in the context of physics, or
in other words, they sometimes frame “parallel” isomorphic
differently depending on the context. The degree of
association between parallel questions depends on the
specific subtopic and on the representations used in the

problem. In some cases, students seem to have context-
specific preferred strategies which are likely to depend on
previous instruction.
The qualitative analysis of students’ answers leads us to

our second research question: In what ways does students’
performance in purely mathematical problems differ from
their performance in parallel physics problems involving
the same mathematical concepts?
For a relevant number of items, the students’ answer

profile (frequency of choice of each option) in pairs of
matched items in the two contexts was quite different, even
when the percent of correct answers was similar. This
means that the students’ attention was directed towards
different distractors in a context-specific manner. In
context-rich problems, students are easily distracted by
irrelevant features that can activate unhelpful resources, but
even when visual cues suggest a similarity between parallel
questions in mathematics and in physics, students some-
times apply different strategies. Particularly for some
topics, the acquisition of solid context-specific procedures
(e.g., using formulas to calculate quantities in kinematics)
seems to be difficult to discard and it may limit the
students’ problem solving abilities. It is therefore con-
firmed that previous instruction plays a very relevant role in
enhancing or hindering students’ capacity to use different
strategies. Often, students tend to be stuck in a purely
calculational mode, rather than trying to make sense of the
problems. Finally, the choice of a specific strategy also
depends on the representations and/or the formalism used
in the question and in the answers.
In general, our results confirm that a good performance

in physics is not just a matter of knowing enough math.
Often, the students’ main difficulty does not lie in the
mathematics itself, but rather in constructing a “blended”
mathematics-physics framework [2]. Sometimes, students
may develop “synthetic” approaches that can be considered
a first step towards the blending of physics and mathemat-
ics, but this process is not automatic and not always
productive. As a consequence for instruction, we argue
in favor of explicitly training the students in the mathema-
tization of physics as a competence, highlighting the
structural role of mathematics, rather than relying on single,
automated problem-solving procedures where mathematics
only plays a technical role. This suggestion is consistent
with authors such as Uhden et al. [3], whose mathematical-
physical model for the use of mathematics in physics
education supports the adoption of teaching strategies
focussed on the structural dimension.
The relationship between mathematics and physics is

particularly relevant for university instruction, where the
two disciplines are taught separately by faculty belonging
to different departments and having different backgrounds.
Bridging the gap between the two contexts is often a
responsibility that is left to the students. Although we may
agree that students of this age should have a reasonable
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degree of autonomy and responsibility for their learning,
we think that a deeper collaboration between mathematics
and physics instructors should be sought. In particular,
we recommend to our colleagues who teach physics in
introductory courses not to take the mathematization of
physics for granted, and we encourage them to provide
explicit instruction on it. A possible, favorable context
for this specific instruction could be recitations held by
teaching assistants (TAs). TAs have the opportunity to meet
students in smaller groups, and they could help the students
reflect on the ways they frame and solve problems and
support them in developing a blended reasoning.
We think that the test we have described here can be a

useful instrument for both instructors and students. We
believe that the added value of this instrument is that it
considers different aspects of previous research, addressing
three topics that are very relevant for physics. Using the
test, instructors and TAs can obtain a “picture” of their
classroom in order to adjust their teaching and to address
their students’ difficulties more effectively, whereas the
students can get individual feedback on their preparation.
Finally, we think that our results can be relevant for other
researchers in physics education who are interested in
similar topics.
A future development of the project will be to design

online learning modules that will be offered to the students
based on their results in the test. The content of the modules

will follow the topics of the test, while the activities will
be focused on mathematization and on the use of different
representations in physics. Moreover, we are testing a
modified version of the test to be used in secondary schools
with the aim of improving students’ mathematization skills
before they enter university.
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