
LincRNA sequences are biased to counteract their translation 

 
Anneke Brümmer1,3 , Rene Dreos2 , Ana Claudia Marques1,*, Sven Bergmann 1,3,4,* 

1 : Department of Computational Biology (DBC), University of Lausanne, Lausanne, Switzerland 

2 : Center for Integrative Genomics (CIG), University of Lausanne, Lausanne, Switzerland 

3 : Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland 

4 : Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa 

*: equal last authors 

 

Abstract (183 words) 

Long intergenic non-coding RNAs (lincRNAs) account for a large fraction of transcribed loci in the               
human genome. While many lincRNAs are retained in the cell nucleus, preventing their association              
with ribosomes, binding of cytosolic lincRNAs to ribosomes has been observed, but rarely results in               
translation. This raises the question of how translation of short open reading frames (ORFs) within               
cytosolic lincRNAs is hindered. Here, we investigate the content of nucleotide triplets in lincRNA              
putative ORFs (i.e. “codons”) and its potential impact on ribosome binding and translation. 

We find that lincRNA and mRNA ORFs have distinct codon frequencies, that are well conserved               
between human and mouse. In lincRNAs, codon frequencies are less correlated with the             
corresponding tRNA abundance measures than in mRNAs. This correlation is weaker for cytoplasmic             
lincRNAs and lowest for those without experimental evidence for ribosome binding.  

Our results suggest that putative lincRNA codons are a substrate of evolutionary forces modulating              
them to counteract unwanted ribosomal binding and translation. The resulting sequence signatures            
may help in distinguishing bona-fide lincRNAs with regulatory roles in the cytoplasm from transcripts              
coding for peptides.  
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Introduction 

Long intergenic noncoding RNAs (lincRNAs) form a functionally heterogeneous class of RNA, that is              
defined based on their transcript length being longer than 200 nucleotides and their lack of protein                
coding potential (Frankish et al., 2019; Ulitsky and Bartel, 2013). Despite being classified as              
non-coding, many lincRNAs contain short open reading frames (ORFs) and some have been shown to               
associate with ribosomes (Guttman et al., 2013; Ingolia et al., 2014; Ji et al., 2015). While a small                  
fraction of short ORFs in human lincRNAs (fewer than 10%) does translate into experimentally              
detectable peptides (Bánfai et al., 2012), the general consensus is that most ribosome-lincRNA             
associations are non-productive. In support of this, detailed analysis of lincRNA and ribosome             
interactions, using sequencing of ribosome protected fragments (Ribo-seq) revealed marked          
differences between the association of the translation machinery with protein-coding mRNAs and            
lincRNAs, including differences in the tri-nucleotide periodicity of binding (Calviello et al., 2016; Ji et               
al., 2015) or in ribosome release (Guttman et al., 2013). However, the mechanism(s) preventing              
translation of putative ORFs within lincRNAs, particularly of those located in the cytosol, are unclear. 

The genetic code is degenerate and multiple synonymous codons can code for the same amino acid.                
Each of these codons is decoded by different tRNAs, whose abundances vary. The rate at which a                 
codon is translated correlates with the abundance of the decoding tRNA (Dana and Tuller, 2014). In                
mRNA, codon usage is a strong regulator of translation efficiency and speed (Tuller et al., 2010a). For                 
example, codon usage has been shown to differ between mRNAs functioning during proliferation or              
differentiation, in agreement with subsets of tRNAs that are induced during each of these processes               
(Gingold et al., 2014). This co-adaptation of codon usage to tRNA abundance has the consequence               
that protein translation efficiency is enhanced for genes required for a certain cellular process, while it                
is reduced for genes with opposing function. Such specialized translation programs have been             
observed in several contexts, e.g. under cellular stress conditions, in different tissues or in cancer               
(Goodarzi et al., 2016; Plotkin et al., 2004; Torrent et al., 2018). On the other hand, codons that are                   
decoded by less abundant tRNAs are required at certain inter-protein domains to slow down amino               
acid synthesis. This allows a protein domain that is already synthesized to fold before the next protein                 
domain is being synthesized, which is important for ensuring correct co-translational folding of             
functional protein domains (Buhr et al., 2016; Komar et al., 1999; Walsh et al.; Yu et al., 2015). Thus,                   
mRNA codon usage is fine-tuned and adapted to tRNA abundances to ensure optimal protein output. 

Given the established role of codon usage in modulating translation rate and efficiency in mRNA, we                
hypothesised that the codon preferences within lincRNA putative ORFs would be a potential             
mechanism to counteract their translation. The prevention or early abortion of unwanted lincRNA             
translation is important for reducing energy waste and synthesis of possibly harmful peptides.             
Furthermore, ribosomes would not be blocked by lincRNA transcripts, but, instead, be available for              
protein synthesis.  

Here, we analysed the tri-nucleotide (i.e. codon) composition of putative ORFs in lincRNA transcripts              
and detected a bias in the frequencies of putative codons in many lincRNA putative ORFs. We further                 
related the bias in putative lincRNA codon frequencies to ribosome binding measured by Ribo-seq and               
propose that the usage of putative codons that are decoded by rare tRNAs is a mechanism to prevent                  
cytosolic lincRNA translation.  
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Results 

Codon usage is distinct between mRNA coding-regions and lincRNA putative open reading frames 

We considered all long intergenic noncoding RNAs (lincRNAs) annotated by GENCODE (Frankish et             
al., 2019) in human (v19) and mouse (vM16). We predicted, for each lincRNA transcript, all possible                
open reading frames (ORFs) longer than 30 nucleotides, starting with a canonical start codon (AUG)               
and ending at the first in-frame stop codon (UAG, UAA, UGA). Most lincRNAs (97.5%) had at least                 
one such predicted ORF. On average lincRNA transcripts had 10.1 predicted ORFs with an average               
length of 32.4 codons (8.5 times shorter than the average mRNA coding region of 476.2 codons). In                 
the following, we considered for each lincRNA transcript its longest putative ORF (average length of               
61.1 codons; Figure S1A).  

To gain initial insight into the characteristics of codons in putative lincRNA ORFs we compared their                
relative frequencies with mRNA codon frequencies. Interestingly, the correlation coefficients for human            
(r2 =0.51; Figure 1A) and mouse (r2 =0.46; Figure S1B) were much lower than the correlation of lincRNA                
codon frequencies between species (r2 =0.94), which was similar to what we found for mRNA codon               
frequencies (r2 =0.99; Figure 1B). These results indicate that codon preferences are different between             
lincRNA and mRNA, and that the codon usage in lincRNA putative ORFs is also conserved, and may                 
thus have a functional role. 

In agreement with the overall GC content difference between lincRNAs and mRNAs (Haerty and              
Ponting, 2015), the most enriched codons in mRNAs were often GC-rich, while the most enriched               
codons in lincRNA ORFs were often AU-rich (Figure 1A). To test how different GC contents between                
lincRNA and mRNA impact the correlation in codon usage, we compared frequencies of codons with               
the same CG content. Regardless of the GC content codon class, we found that the correlations                
between lincRNA and mRNA codon frequencies were much lower in mouse and human (Figure S1C)               
than the correlations of lincRNA codon frequencies between human and mouse (r2 >0.96 for all four               
lincRNA GC content codon classes; Figure S1C), which was comparable to the correlations between              
mRNA codon frequencies in mouse and human (r2 >0.98 for all four GC content codon classes; Figure                
S1C). Thus, we concluded that the difference in codon frequencies between mRNA and lincRNA is not                
driven by GC content differences, and that lincRNA codon usage is distinct by itself.  

The relative frequencies of amino acids encoded by mRNA coding regions and lincRNA putative ORFs               
are more similar to each other than the relative codon frequencies between mRNA and lincRNA               
(r2 =0.78 for amino acid usage versus r2 =0.51 for codon usage; Figure S1D), further suggesting that the                
different codon frequencies between the two types of transcripts have a functional role. Interestingly              
when we compare codon preferences for lincRNAs and mRNAs, we found that for most amino acids                
encoded by multiple codons the codon that is preferred by mRNAs is less used by lincRNA putative                 
ORFs (94%, 17 out of 18 amino acids), and for 39% the most common codon in lincRNAs is different                   
from the one in mRNA (Figure S1E). Moreover, the rarest mRNA codon for an amino acid is used                  
more often by lincRNA putative ORFs (72%, 13 out of 18), but lincRNAs use a different rarest codon                  
for only 17% of amino acids.  

 

LincRNA putative codons are less adapted to tRNA abundances than mRNA coding regions 

Next, we investigated how the codon bias between mRNA and lincRNA sequences relates to tRNA               
abundances. We first used the relative number of tRNA genes coding for the same tRNA anticodon as                 
an estimate for the relative tRNA abundances in human and mouse (see Methods). This measure was                
previously shown to correlate well with tRNA abundances (Tuller et al., 2010b). We used previously               

3 
 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 16, 2019. ; https://doi.org/10.1101/737890doi: bioRxiv preprint 

https://paperpile.com/c/y1SVvl/z7z7
https://paperpile.com/c/y1SVvl/z7z7
https://paperpile.com/c/y1SVvl/on5M
https://paperpile.com/c/y1SVvl/on5M
https://paperpile.com/c/y1SVvl/Z3Sr
https://doi.org/10.1101/737890


determined wobble-base pairing and tRNA editing efficiencies (dos Reis et al., 2004) to calculate              
effective tRNA anticodon abundances for codons without genetically encoded, complementary tRNA           
anticodon genes (Figure S2; see Methods). We compared codon frequencies with relative tRNA             
abundances and found that their correlation is stronger and more significant for mRNA as compared to                
lincRNA (Spearman correlation ρ=0.57 with p<2e-6 for mRNA versus ρ=0.32 with p<2e-2 for lincRNA;              
Figure 2A).  

Previously, the tRNA adaptation index (tAI) was defined as a measure for the adaptation of codon                
usage to tRNA abundance (dos Reis et al., 2003). (We will use the word adaptation in this sense                  
throughout this paper.) tAI ranges from 0 (no codon adaptation) to 1 (perfect codon adaptation: only                
codons decoded by the most abundant tRNA anticodon type are used). We computed tAIs for each                
mRNA coding sequence and lincRNA longest putative ORF (see Methods). We found that mRNA              
coding-regions were significantly (p<1e-300, Wilcoxon ranksum test) better adapted to tRNA           
abundances than lincRNA putative ORFs (median tAI 0.328 for mRNA versus 0.315 for lincRNA;              
Figure 2B).  

To better understand the extent of adaptation to tRNA abundance, we related tAIs for mRNA and                
lincRNA sequences to tAIs of three different types of control sequences (see Methods; Figure 2C),               
each assuming different constraints on the nucleotide sequence: 1) shuffled control sequences, which             
preserve the nucleotide frequencies, account for constraints in nucleotide content; 2) frame-shifted            
control sequences, which preserve the nucleotide sequence but use ORFs that are shifted by one               
nucleotide upstream and downstream, account for sequence constraints to preserve functional           
sequence elements (e.g. DNA- or RNA-binding motifs or RNA secondary structure); and 3) “random              
codon” control sequences, in which each codon was replaced by a random codon coding for the same                 
amino acid, account for constraints in amino acid identity.  

To quantify the extent and direction of sequence adaptation, we calculated, for each transcript, the               
difference in tAIs (∆tAI) between the original and each type of control sequence (Figure 2C). On                
average, ∆tAIs for both mRNAs and lincRNAs, were significantly greater than 0 (p values <1e-300,               
one-sample t-test) for all types of control sequences, and ∆tAIs for mRNAs were significantly more               
positive than those for lincRNAs (p values < 1e-245, Wilcoxon ranksum test), suggesting that, as               
expected, mRNA codons are better adapted to tRNA abundance than lincRNA putative codons.             
Interestingly, the distributions of ∆tAIs were broader for lincRNAs, in particular compared to shuffled              
(standard deviation 0.017 for mRNA and 0.027 for lincRNA) and frame-shifted (standard deviation             
0.024 for mRNA and 0.042 for lincRNA) control sequences. Furthermore, a considerable number of              
lincRNA transcripts had negative ∆tAIs (284, 4076 and 2802 for shuffled, frame-shifted and random              
codon control sequences, respectively; Figure 2C), and the proportion of transcripts with negative ∆tAI              
was significantly greater for lincRNAs than for mRNAs (Fisher exact test p values < 1e-72 in                
comparison with all three types of control sequences; Figure 2C). In conclusion, lincRNAs exhibit a               
larger variability in their tRNA adaptation, which is likely related to a larger functional heterogeneity               
among lincRNAs than among mRNAs, with a significantly larger fraction of lincRNAs showing lower              
adaptation to tRNA abundances than expected. Similar observations were obtained for mouse (Figure             
S3). 

 

Putative codons in cytoplasmic expressed lincRNAs result in lower tAIs than those in non-expressed              
lincRNAs 

In the previous section, we found that lincRNA putative codon usage is less adapted to tRNA                
abundance than mRNA codon usage, and identified a subset of lincRNAs showing lower adaptation to               
tRNA abundance than expected. We hypothesized that, if lincRNA sequences had evolved to reduce              
the likelihood of being translated, this would be more pronounced for highly expressed, cytoplasmic              
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lincRNAs, since these lincRNAs are more frequently exposed to ribosomes and tRNAs and might              
therefore experience a stronger evolutionary pressure for lowering their tAIs. To test this hypothesis,              
we examined the codon usage of expressed transcripts in three ENCODE cell lines, GM12878,              
HeLa-S3, and K562, for which comprehensive experimental data are available to quantify mature             
mRNA and lincRNA expression levels in cytoplasm and whole cells, as well as relative tRNA               
expression levels.  

Thus far, we have used tRNA gene counts to estimate relative tRNA abundances. However this               
metrics is not cell type-specific. Since here, we wanted to calculate tAIs for expressed lincRNAs and                
mRNAs in different cell lines, we evaluated different approaches for quantifying cell type-specific tRNA              
abundances (in particular based on H3K27ac ChIP-seq and smallRNA-seq; see Methods), and            
concluded that smallRNA-seq allows the best quantification of tRNA abundances to use for ENCODE              
cell lines.  

Overall, tAIs calculated using smallRNA-seq-based tRNA quantification confirmed that mRNAs had on            
average higher tAIs than lincRNAs, for all three cell lines (Figure 3B, horizontal blue and red lines for                  
mRNAs and lincRNAs, respectively). We also found that tAIs of expressed mRNAs were significantly              
higher than those of non-expressed mRNAs in a cell line (Figure 3A), as observed previously               
(Waldman et al., 2010). In contrast, the tAIs of expressed lincRNAs were significantly lower than tAIs                
of non-expressed lincRNAs for all cell lines (Figure 3A). This suggests different evolutionary forces              
acting on codon frequencies in expressed mRNAs and expressed lincRNAs, causing expressed            
mRNAs to favor codons recognized by more abundant tRNAs and expressed lincRNAs to prefer              
codons corresponding to lower abundance tRNAs. 

Interestingly, the fraction of lincRNA transcripts with negative ∆tAI was larger, when calculating             
cell-type specific ∆tAIs, for shuffled (>4-fold increase) and random codon control sequences            
(>1.75-fold increase; Figure S5A). Furthermore, lincRNA transcripts with negative ∆tAI in comparison            
with shuffled control sequence were significantly enriched among expressed, as opposed to            
non-expressed, lincRNAs in a cell line (Figure S5B). In contrast, mRNA transcripts with negative ∆tAI               
in comparison with shuffled and frame-shifted control sequences were significantly enriched among            
non-expressed mRNAs in all cell lines (Figure S5B; shown for shuffled controls). This further              
strengthens the hypothesis that putative codons in expressed lincRNAs are biased towards codons             
decoded by rare tRNAs. 

To investigate the relationship between tAI and RNA expression in more detail, we ranked the               
expressed transcripts by their expression level and then calculated the average tAI for an increasing               
fraction of the most highly expressed transcripts. We observed that for mRNAs the average tAI               
decayed steadily with the size of the fraction of transcripts (Figure 3B, blue circles). This was also                 
indicated by a significant positive correlation between tAIs and mRNA expression levels (Spearman             
correlation coefficients 0.13, 0.08, 0.10 with p values < 7e-106, 3e-40, 2e-63 for GM12878, HeLa-S3               
and K562, respectively). In contrast, the average tAIs for expressed lincRNAs were clearly below the               
average tAI for all lincRNAs in most cases, but there was no clear trend towards lower tAIs for more                   
highly expressed lincRNAs (Figure 3B, red circles), and no significant correlation between tAIs and              
lincRNA expression levels (Spearman correlation coefficients -0.05, 0.01, -0.02 with p values > 1e-2,              
5e-1, 2e-1 for GM12878, HeLa-S3 and K562, respectively). One reason for this could be that               
lincRNAs, although expressed in a cell, are more frequently located in the cell nucleus, where               
translation does not takes place, and thus, codon adaptation would not be required. To test this                
possibility, we restricted our analysis to lincRNAs that were expressed in the cytoplasm. Indeed, when               
we ranked lincRNAs by their cytoplasmic expression level, the decrease in average tAIs with the               
cytoplasmic expression became more apparent (Figure 3B, magenta circles). This was also indicated             
by a significant negative correlation between tAIs and cytoplasmic expression levels of lincRNAs for all               
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cell lines (Spearman correlation coefficients -0.12, -0.06, -0.11 with p values < 4e-9, 2e-2, 2e-6 for                
GM12878, HeLa-S3 and K562, respectively).  

Together, these results support our hypothesis that putative codons in abundant cytosolic lincRNAs             
evolved to curb translation, in contrast to lincRNAs that are not expressed in the cytoplasm. 

 

tRNA adaptation of putative codons in lincRNAs is able to counteract ribosome binding, with codons               
close to start codons being likely more important  

To verify how tRNA adaptation relates to translation, and if low tAIs of putative ORFs in lincRNAs                 
result in less ribosome binding, we analysed translation efficiencies (TEs) and ribosome binding using              
ribosome protected RNA fragment sequencing (Ribo-seq) data. We chose to focus on GM12878             
because Ribo-seq data were available in replicates for this cell line (Cenik et al., 2015). TEs were                 
computed for each gene as the ratio of Ribo-seq reads to RNA-seq reads covering annotated coding                
regions in mRNAs and identified longest putative ORFs in lincRNAs (see Methods). Similar to              
previous reports (Dana and Tuller, 2014), we found a significant correlation between TE and tAI for                
mRNAs (r=0.11, p<1e-30; Figure 4A). In the case of lincRNAs, we expected the influence of tAI on TE                  
to be detectable only for those lincRNAs that were predominantly found in the cytoplasmic. We               
considered lincRNAs to be cytoplasmic if their relative cytoplasmic abundance (ratio of cytoplasmic to              
total expression) was higher than the median relative cytoplasmic abundance for mRNAs. Indeed, we              
found a significant correlation between TE and tAI for cytosolic lincRNAs (r=0.16, p=3.7e-2; Figure              
4B), but not for the remaining lincRNAs (r=0.01, p=0.91), supporting our hypothesis that codon              
optimization can regulate ribosome association for lincRNAs and that this mechanism would            
predominantly affect cytosolic lincRNAs. 

According to previous studies (Ji et al., 2015), a fraction of lincRNAs may be missannotated and                
actually coding for small proteins or peptides. For these lincRNAs, we expected their codon              
frequencies to be more adapted to the tRNA abundance than those of bona-fide lincRNAs. To               
examine this, we specifically compared tAIs between cytoplasmic lincRNAs with no ribosomes bound             
(Ribo-seq reads=0) and cytoplasmic lincRNAs, whose longest putative ORFs overlapped with           
experimentally supported peptide coding sequences (see Methods) and, additionally, were bound by            
ribosomes in GM12878 (Ribo-seq reads>0). Indeed, we observed a significant difference in tAIs             
between peptide-encoding lincRNAs and cytoplasmic lincRNAs with no experimental evidence for           
ribosome binding (p=2.2e-5; Figure 4C).  

Previously, an unusual codon usage immediately downstream of mRNA start codons was observed             
and connected with an efficient initiation of translation (Bentele et al., 2013; Tuller et al., 2010b). To                 
investigate codon position dependent effects in tRNA adaptation, we calculated local-tAIs for each             
codon position downstream from start codons, as done previously (Tuller et al., 2010b). Overall, there               
was a strong difference in local-tAIs between likely misannotated and bona-fide lincRNAs at almost all               
codon positions within a window of 40 codons from start codons (Figure S6). Furthermore, local-tAIs of                
likely peptide encoding transcripts were more similar to those of mRNAs. In particular, the first 10                
codons after the start codon of peptide encoding transcripts were well adapted to tRNA abundances,               
and tAIs were very similar to those of mRNAs, for local-tAIs (Figure S6) and for tAIs calculated                 
considering the first 10 codons of each ORF only (Figure 4D).  

These results suggest that tRNA adaptation of putative codons in lincRNAs is able to counteract               
ribosome binding, and that it is likely more important for codons at the beginning of putative ORFs, in                  
agreement with previous studies highlighting the importance of translation initiation for mRNA            
translation efficiency (Nakahigashi et al., 2014).   
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Discussion 

LincRNAs are similar to mRNAs with regard to their transcript length and biogenesis, but, in contrast to                 
mRNAs, lincRNAs do not code for proteins and many have been shown to have regulatory functions                
(Ulitsky and Bartel, 2013). Whereas association between cytoplasmic lincRNAs and ribosomes has            
been reported, such interactions rarely give rise to detectable peptides, suggesting the presence of a               
mechanism counteracting the translation of lincRNA putative ORFs. Here, we carried out a             
comprehensive analysis of lincRNAs ORF sequences providing evidence that many of them are             
biased towards codons recognized by less abundant tRNAs. We propose that this codon bias              
contributes to preventing unwanted translation of putative ORFs in cytosolic lincRNAs. 

By definition lincRNAs lack an apparent open reading frame and coding potential. Thus, it may not be                 
surprising that putative ORFs within lncRNAs present codon compositions different from mRNA coding             
regions. However, the observed conservation of codon frequencies in lincRNAs between human and             
mouse to an extent comparable with the conservation observed for codon frequencies within mRNA              
(Figure 1B) indicates that lincRNA codon composition, while distinct from that of mRNAs, is not               
random.  

Indeed, the comparison with randomized control sequences revealed a subset of lincRNAs composed             
of codons that were less adapted to tRNA abundances than expected, and the proportion of such                
lincRNAs was substantially larger than that in mRNAs (Figure 2). Importantly, these lincRNAs were              
enriched among cytosolic lincRNAs (Figure S5), and their codon composition was less adapted to              
tRNA abundances than those of non-expressed lincRNAs (Figure 3). It is important to note that the                
majority of lincRNAs are still better adapted to tRNA abundances than the control sequences we               
examined. This might be due to a coding capacity of some lincRNAs earlier during evolution (Hezroni                
et al., 2017). In general, lincRNAs are thought to be evolutionary younger than mRNAs and thus may                 
have had less time to optimize their putative codons. Furthermore, some lincRNAs may have been               
mis-classified and actually code for peptides (Ma et al., 2014; Ruiz-Orera et al., 2014; Yeasmin et al.,                 
2018).  

Finally, relating the codon bias to translation efficiencies (TEs) we observed a significant correlation              
between tAI and TE for mRNA genes as well as for cytosolic lincRNA genes (Figures 4A and B).                  
Closer examination of the set of cytosolic lincRNAs revealed a subset that is likely being misannotated                
as non-coding and may actually code for peptides. This subset showed markedly different tAIs              
compared to those found for bona fide lincRNAs that are non-coding and do not bind to ribosomes                 
(Figures 4C, D and S6), providing further evidence for codon modulation to counteract translation of               
true lincRNAs. This suggests the tAI as a potential criterion for predicting likely misannotated lincRNAs               
that actually encode peptides, in addition to previous Ribo-seq-based methods (Calviello et al., 2016;              
Guttman et al., 2013).  

The fact that the correlation between TE and tAI, while significant, was not very strong, might have                 
several explanations. One reason could be that the evolutionary impact on codon bias in human is                
expected to be weaker than in species with larger population sizes or shorter generation times               
(Subramanian, 2008). Another explanation could be that there are additional factors influencing            
ribosome binding and translation efficiency, such as the RNA secondary structure or codon order, both               
of which have been reported previously for mRNA (Tuller et al., 2010a, 2010b). Finally, it could also be                  
a consequence of the current inability of Ribo-seq methods to distinguish between different transcript              
isoforms expressed from the same gene locus (Figures 4A and B). This averaging over transcript               
isoforms likely causes a dilution of the actual correlation strength between TE and tAI. Indeed, the                
difference in tAIs was much more significant, when comparing between lincRNAs with experimental             

7 
 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 16, 2019. ; https://doi.org/10.1101/737890doi: bioRxiv preprint 

https://paperpile.com/c/y1SVvl/eRS5
https://paperpile.com/c/y1SVvl/41Hn
https://paperpile.com/c/y1SVvl/41Hn
https://paperpile.com/c/y1SVvl/4zIx+LAhL+VEqk
https://paperpile.com/c/y1SVvl/4zIx+LAhL+VEqk
https://paperpile.com/c/y1SVvl/9Xxp+VikX
https://paperpile.com/c/y1SVvl/9Xxp+VikX
https://paperpile.com/c/y1SVvl/7Mio
https://paperpile.com/c/y1SVvl/Z3Sr+yHUc
https://doi.org/10.1101/737890


evidence for being translated into peptides and lincRNAs without ribosome-binding on the transcript             
level (Figure 4C). 

In conclusion, in this study we provided a comprehensive analysis of putative codons in lincRNA               
ORFs. Our results suggest that these codons are a substrate of evolutionary forces counteracting              
unwanted ribosomal binding and translation. The resulting sequence signatures may help in            
distinguishing bona-fide lincRNAs with regulatory roles in the cytoplasm from those transcripts coding             
for peptides, yet more work will be needed to distill such signals in the context of other potential                  
constraints on lincRNA sequences related to their regulatory function, such as structure or binding              
motifs. Another interesting aspect is that tRNA concentrations can vary across cell types, imposing              
potentially different constraints on the evolution of codon frequencies to either curb ribosome binding              
of true lincRNAs, or promote it for peptide-coding transcripts. A further future direction could be to                
study natural genetic variations or targeted mutations in lincRNA sequences to establish an impact on               
ribosome binding and translation. Finally, it has not escaped our notice that similar signatures in               
putative codons may exist in ORFs of other classes of cytosolic non-coding RNA. 

 

Methods 

Identification of putative ORFs in lincRNAs 

All lincRNA transcripts annotated in GENCODE v19 (for human) and vM16 (for mouse) (Frankish et               
al., 2019) that did not overlap any protein coding genes on the same strand were considered. Putative                 
ORFs in lincRNAs starting with a canonical start codon (AUG) and ending at the first in-frame stop                 
codon (UAG, UAA, UGA) were identified using a custom python script. The longest putative ORF in a                 
lincRNA transcript was considered for further analysis, if it was longer than 30 nucleotides. 

We excluded mitochondrially encoded transcripts, as these are translated using mitochondrially           
encoded tRNAs. 

 

Estimation of relative tRNA abundances based on tRNA gene counts 

The numbers of tRNA genes coding for the same tRNA anticodon type were counted based on                
genomic annotations of tRNAs from GENCODE v19 (for human) and vM16 (for mouse)             
(www.gencodegenes.org ) (Frankish et al., 2019). For tRNA anticodon types that are not encoded in              
the human or mouse genomes, effective tRNA abundances were estimated using previously            
determined weights for tRNA editing and wobble-base pairing efficiencies (dos Reis et al., 2004). In               
particular, the weights, w, are w(G:U)=0.41, w(I:C)=0.28, w(I:A)=0.999, and w(U:G)=0.68, where the            
first letter denotes the first nucleotide in a tRNA anticodon nucleotide triplet and the second letter the                 
third nucleotide of a codon. 

 

Estimation of cell-type specific relative tRNA abundances  

Due to the repetitive nature of tRNAs, their strong secondary structure, and the high frequency of                
post-transcriptional tRNA modifications, high-throughput quantification of tRNA expression is still          
challenging. Recently, two dedicated experimental high-throughput approaches for the quantification          
of tRNA expression, hydro-tRNA-seq (Gogakos et al., 2017) and DM-tRNA-seq (Zheng et al., 2015),              
have been proposed, but they have only been applied to one cell line, HEK293. On the other hand,                  
smallRNA-seq and H3K27ac-ChIP-seq data were previously used to quantify tRNA abundances (Ji et             
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al., 2015; Shi et al., 2018), and these data were generated for the selected ENCODE cell lines. To                  
establish which of the latter two approaches performs better in estimating relative tRNA expression              
levels, we quantified relative tRNA expression levels based on smallRNA-seq and H3K27ac-ChIP-seq            
in HEK293 cells, and compared it with those from hydro-tRNA-seq and DM-tRNA-seq. Based on these               
comparisons in HEK293 cells (Figure S4), we chose the smallRNA-seq-based approach to estimate             
cell-type specific relative tRNA abundances in our analysis of ENCODE cell lines. Effective tRNA              
abundances for tRNA anticodons not encoded in the human genome were calculated as described              
above. 

In the following, details of the different approaches for the quantification of tRNA abundances are               
given: 

(a) relative tRNA quantification based on smallRNA-seq data: 

SmallRNA-seq reads (fastq files) for GM12878, HeLa-S3, and K562 cells were downloaded from the              
ENCODE data portal (www.encodeproject.org ) (Consortium and The ENCODE Project Consortium,          
2004). In the case of HEK293 cells, smallRNA-seq reads were downloaded from the GEO database               
(www.ncbi.nlm.nih.gov/geo, accession number GSM1067868) (Kishore et al., 2013). Reads were          
pre-processed using the fastx toolkit (http://hannonlab.cshl.edu/fastx_toolkit/) and then mapped to          
native and mature tRNA sequences using segemehl v0.2 (Hoffmann et al., 2009). Of the mapped               
reads, only those with a minimum length of 15 nucleotides were retained. To account for the high                 
frequency of tRNA modifications, which may result in mapping mismatches, the allowed mismatch             
ratio (mismatched nucleotides / read length) was set to 10%. Other mismatch ratios (7% and 15%)                
were tested, but these did not improve the correlation with tRNA sequencing approaches             
(hydro-tRNA-seq (Gogakos et al., 2017) and DM-tRNA-seq (Zheng et al., 2015)), or resulted in a               
smaller fraction of reads mapping to tRNA sequences in sense direction. The number of              
smallRNA-seq reads mapping to each tRNA anticodon type divided by the total number of mapped               
reads was taken as an estimate for the relative tRNA abundance. 

(b) relative tRNA quantification based on H3K27ac ChIP-seq data: 

Bedfiles of identified H3K27ac-ChIP-seq peaks in GM12878, HeLa-S3, HEK293, and K562 cells were             
downloaded from ENCODE (www.encodeproject.org ) (Consortium and The ENCODE Project         
Consortium, 2004). H3K27ac ChIP-seq peaks that overlapped tRNA gene annotations extended by            
500 nucleotides up- and downstream were determined using bedtools (Quinlan, 2014). Relative tRNA             
abundances were estimated by the ratio of the sum of peak enrichment values (log2 fold enrichment                
H3K27ac-ChIP-seq over background, in column 7 of the bedfiles) for each tRNA anticodon type to the                
peak enrichment values of all peaks overlapping extended tRNA genes. 

(c) relative tRNA quantification from experimental tRNA-seq methods applied to HEK293: 

Hydro-tRNA-seq-based tRNA quantifications were downloaded from the supplement (Table S5) of           
Gogakos et al. (Gogakos et al., 2017). DM-tRNA-seq (Zheng et al., 2015) read counts of two                
replicates were downloaded from GEO (www.ncbi.nlm.nih.gov/geo, accession numbers GSM1624820         
and GSM1624821) and tRNA abundances were calculated as the average over the two replicates. 

 

tRNA adaptation index (tAI) 

As proposed by dos Reis et al. (dos Reis et al., 2004), the tAI of an ORF was calculated as the                     
geometric mean over normalized abundances of tRNAs that are complementary to codons in an ORF:  
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,AI  t = √n ∏
n

i
wi   

where is the total number of codons in an ORF, and is the normalized abundance of the tRNA n            wi         
anticodon type that is complementary to the codon at position .i   

Normalized tRNA abundances were obtained through division by the maximum of all tRNA             
abundances:  

,/max(f )wi = f tRNAi tRNA 
  

where  is the frequency of the tRNA complementary to the codon at position .f tRNAi i  

In Figures 4A and B, in order to compare translation efficiencies (TEs) with tRNA adaptation values on                 
the gene-level, tAIs were calculated per gene by considering the union of codons in the ORFs of all                  
annotated transcript isoforms encoded by a gene. 

In Figure S6, local tAIs were calculated per codon position within a window of 40 nucleotides                
downstream of start codons. In this case, codons were considered at the same position of a set of                  
ORFs. For better visualization, local-tAI values were smoothed by taking the geometric mean of              
local-tAI values over three consecutive codons (positions i to i+2; Figure S6B) or five consecutive               
codons (positions i to i+4; Figure S6C). 

In Figure 4D, tAIs were calculated per transcript, but by considering only the first 10 codons after start                  
codons. 

 

tAIs of random control sequences for each mRNA coding region and lincRNA longest putative ORF 

(a) shuffled sequences: 

Shuffled sequences were generated by random permutations of the nucleotides in the ORF. This was               
done 100 times. tAIs were then calculated for the union of codons resulting from all shufflings.  

(b) frame-shifted sequences: 

tAIs of frame-shifted sequences were calculated for codons in nucleotide sequences shifted by one              
and two nucleotides downstream and ending two and one nucleotides, respectively, upstream of the              
stop codon of the original ORF. 

(c) random codons coding for the same amino acid sequence: 

Each codon in an ORF was replaced by a random codon coding for the same amino acid. This was                   
done 100 times. tAIs were calculated for the union of codons resulting from all randomizations. 

 

Quantification of RNA expression based on ENCODE data 

Transcript quantifications in cytosol and total cells based on polyA-selected RNA-seq were            
downloaded from ENCODE (www.encodeproject.org ) (Consortium and The ENCODE Project         
Consortium, 2004) for GM12878, HeLa-S3, and K562 cells. TPM (transcripts per million) values were              
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used to quantify the relative expression of transcripts within a cell line. Transcripts with TPM>0.1 were                
considered as expressed. 

 

Quantification and analysis of translational efficiencies in GM12878 

Ribo-seq data (2 replicates) and polyA-selected RNA-seq data (3 replicates) for GM12878 cells were              
downloaded from GEO (www.ncbi.nlm.nih.gov/geo; accession number GSE65912) (Cenik et al.,          
2015). Adapter sequences were trimmed from read ends using cutadapt v1.8 (Martin, 2011), and              
reads were retained with a certain length (16 to 35 nt for Ribo-seq and 35 to 60 for RNA-seq) and                    
minimum quality score of 30 in at least 90% of read bases. Reads were further discarded that mapped                  
to human rRNAs or tRNAs (ENSEMBL database v91, (Zerbino et al., 2018)) using bowtie2 v2.3.0 (-L                
15 -k 20)(Langmead and Salzberg, 2012), or if mapping to coding regions or longest putative ORFs of                 
two or more gene loci annotated in the human transcript database (ENSEMBL v91) using bowtie2               
(v2.3.0, -L 15 -k 20). Remaining reads were summarized at gene level using an in-house script. 

Translation efficiencies (TEs) were calculated for each gene as the log2 ratio of Ribo-seq to RNA-seq                
read counts, as proposed before (Ingolia et al., 2009), using DESeq2 (Love et al.). 

Due to size selection of the ribosome-protected RNA fragments in the experimental Ribo-seq method,              
only RNA fragments that were covered by a single (isolated) ribosome will be sequenced, and longer                
fragments that were protected by multiple adjacent ribosomes will not be captured. This has the               
consequence that transcripts that are translated intensively (covered with many adjacent ribosomes)            
will end up with a low number of Ribo-seq reads (only those from single ribosomes), resulting in very                  
low TE values. To exclude these cases, we restricted our analysis to genes with a log2 TE value of                   
larger than -6.  

We also excluded histone mRNA genes, which represented outliers with very high TEs. These high TE                
values are likely caused by the inability of the quantification of the total expression level of histone                 
mRNAs based on polyA-selected RNA-seq. Since histone mRNAs are not usually polyadenylated,            
polyA-selected RNA-seq does not capture the true total expression of histone mRNAs.  

 

Analysis of lincRNAs that likely code for peptides 

We downloaded the genomic coordinates of experimentally supported peptides (<100 amino acids) in             
lincRNAs from the SmProt database (http://bioinfo.ibp.ac.cn/SmProt/) (Hao et al., 2018). We combined            
peptide-coding regions in annotated human lincRNAs that were supported by various experimental            
data, in particular from mass spectrometry, literature mining, ribosomal profiling, and known            
databases, as indicated in the SmProt database. We then overlapped these regions with longest              
putative lincRNA ORFs (requiring a minimum overlap of 10 codons) to obtain a set of experimentally                
supported peptide-coding lincRNA ORFs. In total, experimentally supported peptide-coding lincRNA          
ORFs were found in 222 lincRNA genes. 
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Figure 1 

 

 

 

 

Figure 1: Distinct codon usage in lincRNAs. 

(A) Comparison of codon frequencies (excluding start and stop codons) in mRNAs and lincRNA 
longest putative ORFs. Squared Pearson (r2 ) and Spearman (ρ2 ) correlation coefficients are 
indicated. Codons with an absolute z-score >1.2 (gray lines) of their log2 frequency ratio are labeled in 
red, and codons with high frequencies (>2%) in both RNA classes are labeled in black. (B) Squared 
correlation coefficients (Pearson in top panel and Spearman in bottom panel) for comparing codon 
frequencies (excluding start and stop codons) between mouse and human within the same RNA class 
(diagonal elements in each panel), and between mRNA and lincRNA in either human or mouse 
(off-diagonal elements). 

 

  

13 
 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 16, 2019. ; https://doi.org/10.1101/737890doi: bioRxiv preprint 

https://doi.org/10.1101/737890


Figure 2 

 

 

 

Figure 2: LincRNA codons are less adapted to relative tRNA abundances than mRNA codon 
usage. 

(A) Scatter plots of relative tRNA anticodon frequencies and codon frequencies in mRNA coding 
regions (left panel) and lincRNA longest putative ORFs (right panel). Pearson (r) and Spearman (ρ) 
correlation coefficients with p values are indicated. (B) Cumulative density of tRNA adaptation indexes 
(tAIs) for mRNA (blue) and lincRNA sequences (red). The total number of transcripts for each class of 
RNA is indicated in parentheses. P value was calculated using a Wilcoxon ranksum test to compare 
tAIs of mRNAs with those of lincRNAs. (C) Cumulative densities of ∆tAIs calculated for each transcript 
(mRNA in blue, lincRNA in red) as the difference between tAIs of original and control sequence. Three 
types of control sequences are shown as indicated on the top of each panel. For each ∆tAI distribution 
the percentage and number of transcripts with negative ∆tAIs (∆tAI < 0) is indicated. P values were 
calculated using Fisher’s exact test to compare the proportions of transcripts with negative ∆tAI 
between mRNAs and lincRNAs.  
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Figure 3 

 

 

 

Figure 3: Codon usage of highly expressed, cytoplasmic lincRNAs is less adapted to tRNA 
abundances. 

(A) Boxplots of tAIs for expressed (solid boxes) mRNAs (blue) and lincRNAs (red), and non-expressed 
sequences (dashed boxes) in three cell lines, GM12878, HeLa-S3, and K562, as indicated on top of 
each panel. P values to compare tAIs of expressed with those of non-expressed RNA sequences are 
indicated above each box and are calculated using a Wilcoxon ranksum test. Notably, the range of 
tAIs differs for each cell line, as it depends on the cell type-specific distribution of relative tRNA 
abundances. (B) Average tAIs (y-axis) for an increasing fraction of top expressed RNA sequences, as 
indicated on the x-axis. The RNA expression level was either measured in whole cells (mRNA blue 
and lincRNA red) or in the cytoplasmic compartment of cells (mRNA light blue and lincRNA orange). 
The total numbers of expressed transcripts are indicated in parentheses in the legend inside each 
panel. Horizontal lines (mRNA blue and lincRNA red) indicate the average tAIs for all transcripts 
(expressed and not expressed) calculated using cell type-specific tRNA abundance estimates. 
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Figure 4 

 

 

 

Figure 4: Lower tAIs correspond to lincRNAs with less or no ribosome-binding. 

(A, B) Scatter plots of translation efficiencies (TEs) and tAI values for expressed mRNA genes (A), and 
for cytosolic lincRNA genes (B). The gene density is color-coded from low (dark blue) to high density 
(yellow). Pearson (r) and Spearman (ρ) correlation coefficients with p values are indicated. The total 
number of quantifiable genes is indicated in parenthesis above each panel. (C) Boxplots with tAIs for 
cytosolic lincRNA transcripts without ribosome-binding (Ribo-seq reads=0; red), for cytosolic lincRNA 
transcripts with bound ribosomes (Ribo-seq reads>0) that overlapped experimentally supported 
peptide-coding regions (purple), and for mRNA transcripts (blue). The total numbers of transcripts in 
each group are indicated in parentheses below each box. (D) Boxplots of tAIs calculated for the first 
10 codons downstream of start codons for the same three groups of transcripts described in (C).  
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Figure S1 
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Figure S1: Comparison of codon usages in mRNA and lincRNA. 

(A) Histograms of the lengths of mRNA coding regions (top) and lincRNA longest putative ORFs 
(bottom). (B) Same as Figure 1A, but for mouse. Comparison of codon frequencies (excluding start 
and stop codons) in mRNAs and lincRNA longest putative ORFs. Squared Pearson (r2 ) and Spearman 
(ρ2 ) correlation coefficients are indicated. Codons with a z-score >1.2 of their log2 frequency ratio are 
labeled in red, and codons with high frequencies in both RNA classes are labeled in black. (C) 
Squared Pearson (r2 , top table) and Spearman (ρ2 , bottom table) correlation coefficients for 
comparing codon frequencies between mouse and human within the same RNA class (first two 
columns) and between mRNA and lincRNA in either human or mouse (last two columns). The first row 
indicates the correlation coefficients for all codons (excluding start and stop codons), and the following 
rows indicate correlation coefficients for codons stratified by their GC content: 7 codons with no G or C 
nucleotides (GC0), 13 codons with one G or C nucleotide (GC1), 16 codons with two G or C 
nucleotides (GC2), 8 codons with only G or C nucleotides (GC3). (D) Comparison of amino acid 
frequencies encoded by mRNA coding regions and lincRNA longest putative ORFs. (E) Frequencies 
of the rarest (left panel) and most preferred (right panel) codon coding for each amino acid in mRNA, 
for mRNA (blue) and lincRNA (red) and for a uniform codon usage as a control (gray). Amino acids are 
indicated in between panels and the respective codons are indicated at the side of each panel (rarest 
codons left and most preferred codons right). Codons are labeled bold when the rarest codon has a 
higher frequency in lincRNA (left), or when the preferred codon has a lower frequency in lincRNA 
(right).  
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Figure S2 

 

 

 

Figure S2: Distributions of tRNA abundances 

Histogram of relative tRNA anticodon abundances based on tRNA gene counts (left panel), and for 
effective tRNA gene counts accounting for wobble base pairing and editing efficiencies (right panel; 
see Methods). 
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Figure S3 

 

 

 

Figure S3: Same as Figure 2, but for mouse. 

(A) Scatter plots of relative tRNA anticodon frequencies and codon frequencies in mouse mRNA 
coding regions (left panel) and in mouse lincRNA longest putative ORFs (right panel). Pearson (r) and 
Spearman (ρ) correlation coefficients with p values are indicated. (B) Cumulative density of tRNA 
adaptation indexes (tAIs) for mouse mRNA (blue) and lincRNA sequences (red). The total number of 
transcripts is indicated in parenthesis. P value was calculated using a Wilcoxon ranksum test to 
compare tAIs of mRNAs with those of lincRNAs. (C) Cumulative densities of ∆tAIs for each transcript 
calculated as the difference between tAIs of original and control sequence. Three types of control 
sequences are shown as indicated on the top of each panel. For each ∆tAI cumulative distribution the 
percentage and number of transcripts with negative ∆tAIs (< 0) is indicated. P values were calculated 
using Fisher’s exact test to compare the proportions of transcripts with negative ∆tAI between mRNAs 
and lincRNAs.  
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Figure S4 

 

 

Figure S4: Comparison of relative tRNA expression quantification approaches in HEK293 cells 
(see Methods). 

Scatter plots with Pearson (r) and Spearman (ρ) correlation coefficients for comparisons between 
different approaches for quantifying relative tRNA abundances (%) in HEK293 cells (see Methods), in 
particular based on H3K27ac-ChIP-seq data, smallRNA-seq data, hydro-tRNA-seq (Gogakos et al. 
2017) and DM-tRNA-seq (Zheng et al. 2015), as indicated by the x- and y-axes labels.  
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Figure S5 

 

 

Figure S5: Analysis of cell-type specific ∆tAIs in GM12878, HeLa-S3 and K562 cells. 

(A) Fraction of transcripts with negative ∆tAI, calculated using cell-type specific relative tRNA 
abundances, for the three types of control sequences as indicated on top of each panel. (B) Fraction 
of transcripts with negative ∆tAI in comparison with shuffled control sequences. Fractions are shown 
for mRNA (blue bars) and lincRNA (red bars) for three cell lines as indicated on top of each panel. The 
first bar of each type of RNA shows the percentage of transcripts with negative ∆tAI among expressed 
transcripts (TPM>0.1), and the second bar among non-expressed transcripts (TPM=0). P values 
comparing the fraction of transcripts with negative ∆tAI between expressed and non-expressed 
transcripts are calculated using Fisher’s exact test and are indicated above each panel. 
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Figure S6 

 

Figure S6: Codon position-specific tAIs for the first 40 codons 

Profile of local-tAIs for the first 40 codons downstream of start codons for three groups of transcripts: 
cytosolic lincRNA transcripts without ribosome-binding (Ribo-seq reads=0; red line), cytosolic lincRNA 
transcripts with bound ribosomes (Ribo-seq reads>0) that overlapped experimentally supported 
peptide-coding regions (purple line), and mRNA transcripts (blue line). The total numbers of transcripts 
in each group are indicated at the top of the figure. The actual local-tAI values at each codon position 
are shown in (A), while local-tAI values are smoothed by taking the geometric mean over 3 
consecutive codons in (B), and over 5 codons in (C).  
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