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ABSTRACT 
A holistic understanding of tissue and organ structures and their functions 

requires the detection of molecular constituents in their original three-dimensional (3D) 

context. Imaging mass cytometry (IMC) makes possible the detection of up to 40 

antigens and specific nucleic acids simultaneously using metal-tagged antibodies or 

nucleic acid probes, respectively, but has so far been restricted to two-dimensional 

imaging. To enable use of IMC for 3D tissue analyses, we developed mass 

tomography, which combines quasi deformation-free serial sectioning with novel 

computational methods. We utilized mass tomography to analyze a breast cancer 

sample. The resulting 3D representation reveals spatial and cellular heterogeneity, 

preferential cell-to-cell interactions, detailed tissue-architecture motifs, and the unique 

microenvironment of a micro-invasion, where micro-metastases clonality is examined, 

showing that cells arising from the same invasive area, displaying very distinct 

phenotypes, are all able to produce initial invasive lesions. Mass tomography will 

provide invaluable insights into the tissue microenvironment, cellular neighborhoods, 

and tissue organization. 

 
INTRODUCTION 

Tissues and organs are complex ecosystems comprised of numerous cell types 

arranged in a manner that is inextricably related to function. Understanding tissue 

functions and pathologies thus requires knowledge of its constituent cells and their 

states, extracellular matrix proteins, and vasculature in the context of their three-

dimensional (3D) architectural arrangement. Historically, tissues have been studied 

using microscopy modalities, and recently developed methods have enabled various 

types of 3D tissue analysis (Supplementary Table 1). Confocal 3D microscopy enables 

subcellular resolution analysis of tissue sections but is limited in the tissue depth that 

can be analyzed to about 100 µm (1). Multi-photon and light-sheet microscopes allow 

for 3D reconstructions of tissues up to 1 mm tissue depth at lower, yet single-cell 

resolution (2, 3). These 3D microscopy methods have in common the shortcoming that 

the number of epitopes that can be measured simultaneously is limited, since they rely 

on fluorescent reports that show high spectral overlap. To enable multiplexed tissue 

analysis, cycling immunostaining and chromogenic approaches have been 

implemented. These methods greatly increased the capabilities of fluorescence 

microscopy to simultaneously detect multiple epitopes and transcripts (4-7). The first 
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example of cyclic fluorescent imaging for 3D tissue analysis was published recently 

(8). Since then, other approaches have also been developed, such as the STARmap 

method, which enables imaging of hundreds transcripts to a depth of 8 µm in 3D (9). 

In addition to fluorescence-based approaches, mass spectrometry-based imaging of 

epitopes and transcripts is becoming broadly used. In mass spectrometry-based 

technologies, mass tags, such as a molecule of a defined mass or metal isotopes, are 

used as reporters on affinity reagents (10, 11).  

We recently described imaging mass cytometry (IMC), which allows 

simultaneous detection of up to 40 antigens (12) and nucleic acid sequences (13) in 

formalin-fixed paraffin-embedded (FFPE) (14), frozen tissue sections (15), and in 

cultured cells (16) with subcellular resolution. We also developed the histoCAT and 

histoCAT++ software toolboxes to enable analysis of cell phenotypes and their 

interactions in tissues (14, 17). To expand IMC-based imaging to the analysis of 

tissues in 3D, we developed mass tomography (MT). In this method, reported here, 

the volume and depth of tissue that can be analyzed is only limited by the 

measurement time.  

To demonstrate the utility of mass tomography, we describe the analysis of an 

invasive ductal breast carcinoma sample. We expanded the histoCAT++ 

computational toolset for mass tomography, which enabled single-cell, 3D spatially-

resolved analysis of these data. The full pipeline, from tissue obtention, to cellular 

analysis of a complete 3D model can be performed in one week. Using MT we 

identified a micrometastasis and invasive tumor cells distinguished from surrounding 

glandular tissue. This micrometastasis was localized to areas of stroma strongly 

expressing phosphorylated ribosomal protein S6. Such analysis would not be possible 

in a two-dimensional (2D) setting. This exemplifies how mass tomography applied to 

breast tumor tissue can shed light on the process of invasion in situ. Furthermore, we 

added to the analysis pipeline machine-learning methods that enabled classification 

and discovery of cell types and interactions in 3D, which allowed us to identify and 

map spatially clusters of epithelial basal cells, T cells, and other known phenotypes 

displaying distinct molecular profiles. 

 

Generation of 3D models from IMC data 
Our MT approach is based on the serial sectioning of a punched tissue cylinder 

(1mm diameter) from a paraffin block of archival tissue and subsequent 3D 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.24.113571doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.24.113571
http://creativecommons.org/licenses/by-nc-nd/4.0/


4	
	

reconstruction from 2D IMC data acquired from each individual serial section (Fig. 1A). 

A major hurdle to achieve 3D tissue reconstruction is the generation of deformation-

free sections from paraffin-embedded tissues. We initially assessed different FFPE 

and OCT tissue-re-embedding and subsequent sectioning methodologies, but major 

deformations resulted when tissues were sectioned using standard microtomes or 

cryostats, respectively. Switching to an ultramicrotome with a diamond knife designed 

for FFPE sectioning overcame the deformation issues during tissue sectioning (18). 

We also found that antigen retrieval at 95 °C can, depending on tissue type, lead to 

tissue deformation as well. Finally, after testing numerous conditions, we found that 

antigen retrieval at 80 °C with an incubation time of 80 minutes yielded similar retrieval 

efficiency for all antigens tested compared to the 40-minute 95 °C protocol while 

avoiding tissue deformation (Supplementary Fig. 1).  

To illustrate the approach (Fig. 1A, Supplementary Methods), we chose a 

HER2-positive ductal breast carcinoma sample. After preparation of 156 consecutive 

slices from the same tissue, we stained the sections with a breast cancer-centric panel 

of antibodies (Supplementary Table 2) designed to reveal multiple biological aspects 

of the neoplasm such as tumor cell type, vascularization, immune cell infiltration, 

cytokeratin composition, proliferation, apoptosis, hypoxia, cell signaling, and collagen 

deposition. The standard IMC workflow described before was used for imaging of all 

sections (12). Next, to align (i.e., register) the single-section images to perform 3D 

reconstruction, we implemented a novel alignment method based on single-cell 

classification. All images were first subjected to single-cell segmentation using a 

watershed algorithm (Supplementary Fig. 2A). Each cell was assigned a unique 

identifier, and antibody channel statistics were computed for each cell (Supplementary 

Figs. 2B-C). We then used a random forest classifier to assign all cells of all sections 

into one of seven cell phenotypes: luminal epithelial cell, basal epithelial cell, B cell, T 

cell, macrophage, granulocyte, or stromal cell (Methods, Supplementary Figs. 2D-E). 

Using these cell labels, we then carried out the registration (Supplementary Methods). 

Consecutive sections were registered using the cell label match as a metric 

(Supplementary Fig. 2F). Then, all channels for all sections were rasterized after 

applying the computed rotations and preprocessing steps to obtain a normalized 3D 

matrix (Supplementary Figs. 3-4). The retrieved 3D pixel model was visualized and 

subjected to further processing as necessary for downstream data analysis (Fig. 1B, 

Supplementary Video 1, Supplementary Fig. 3-5).  
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The 3D model revealed different constituents of the tumor mass, including the 

tumor parenchyma (Fig. 1B), where the bulk of the epithelial cells of luminal phenotype 

reside. These cells express pan-cytokeratin and are negative for the basal markers 

alpha smooth muscle actin (SMA) and cytokeratin 5 (CK5). The basal layer showed a 

patchy and discontinuous pattern of the basal markers (Fig. 1B, Supplementary Fig. 

6, Supplementary Video 2), indicating that in this particular tumor part of the basal 

layer has lost structure. Hollow areas within the parenchyma, reminiscent of the 

original breast gland lumen, are visible within the different carcinoma blobs. The 

stromal compartment, which contains von Willebrand Factor-positive (vWF+) blood 

vessels, appears heterogeneous in cell composition throughout the volume analyzed 

(Fig. 1B, Supplementary Video 1). Immune cells, including CD20+ B cells, CD8a+ 

cytotoxic T lymphocytes, CD68+ macrophages/fibroblasts, and MPO+ granulocytes, 

were detected in this compartment. Microvasculature surrounded by densely packed 

lymphocytes was visible as were clusters of CD68+ macrophages located far from 

blood vessels and within the hollow areas (Fig. 1B). 

 
Single-cell data derivation from 3D models 

To study the tumor ecosystem of this particular breast cancer sample in depth, 

we performed 3D single-cell segmentation. We defined the cells within the 3D model 

using a modified 3D watershed algorithm (Methods, Supplementary Videos 3-4). Each 

cell was assigned a unique identifier (Fig. 2A, Supplementary Video 4), and statistics 

for all channels were computed for each 3D cell mask including the antibody signal 

statistics and morphological data such as volume, shape descriptors, and direct 

neighbor interactions. These statistics were collated in a cell data catalog with a table 

format similar to the FCS file format obtained from flow cytometry experiments with 

cell registries as rows, and channel statistics and coordinates in the 3D model as 

columns (Fig. 2A).  

To enable the exploration and analysis of the 3D data and cells, we built upon 

our histoCAT++ analysis platform (14) and created histoCAT-3D (Supplementary Fig. 

7, Supplementary Video 5). Analysis of our datasets with histoCAT-3D showed that 

cells that express luminal cytokeratins 8, 18, 19, and cells expressing the basal 

cytokeratin 5 and other breast cancer epithelial markers such as SMA, HER2, and 

CD44 delineate the main tumor parenchyma. Different cells expressed these markers 
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in markedly different proportions. This heterogeneity recapitulated our previous 

findings (17). The multiple cell types that make up the stromal compartment were 

identified by expression of vimentin, collagen I, vWF, and immune markers, including 

CD45, CD8a, CD3e, CD68, and MPO. We observed a clear tendency for different 

types of T cells (e.g., CD45+CD3e+CD8a+ cytotoxic T lymphocytes and 

CD45+CD3e+CD8a- cells, which are most likely helper T cells) to cluster together 

around the vWF+ microvasculature (Supplementary Videos 1,5). Specific processes 

of interest were revealed by specific markers, such as Ki-67 and phospho-histone 3, 

which were often co-expressed and are indicative of proliferation, cleaved caspase-3 

and cleaved PARP (cPARP), which are markers of apoptosis, and phospho-ERK1/2 

and phospho-S6, which indicate MAPK and PI3K pathway activation, respectively. 

These observations are in line with conclusions drawn from the raw-voxel data (Fig. 

1B). The key advantage of using data post cell segmentation is that the phenotype of 

each cell in the model can be determined and further cellular downstream analyses 

can be performed. 

 

Single-cell data analysis and annotation 
In order to comprehensively visualize and annotate the 3D single-cell data we 

used dimensionality reduction, unsupervised clustering, and supervised classification 

algorithms in a similar manner to that used for 2D IMC (14, 17). These results were 

added as additional features in columns of the computed cell data table (Fig. 3A). The 

tSNE embedding clearly separated the main cell types in the sample and showed 

correspondence with the 3D structure (Fig. 3B-C). Further sub-classifications of cells, 

using automatic clustering methods, such as FLOCK or k-means, were then mapped 

directly over a tSNE map and the 3D model (Fig. 3D-E, Supplementary Videos 6-7). 

To further augment the cell phenotype analysis, we utilized supervised machine 

learning (SML) to classify the cells. In this breast tumor sample, seven major cell types 

were defined (basal epithelial cells, luminal epithelial cells, B cells, T cells, 

macrophages, granulocytes, and other stromal cells), and a random decision tree 

classifier that learned from all antibody signals was trained by direct interaction with 

the 3D model (Supplementary Fig. 8, Supplementary Methods) and used to classify 

more than 50000 cells in the model (Fig. 3F-G). Cell labels from this classification can 

be overlaid with the unsupervised clustering labels allowing the researcher to perform 
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orthogonal corroboration of phenotypes and clusters identified using unsupervised 

methods.  

 

Phenotypic analysis of the cellular components of the tumor microenvironment 

In order to unravel the cellular composition of the tumor in 3D, we proceeded in 

a manner analogous to that used for 2D multiparametric imaging (9, 10, 12, 17). To 

identify cell-type clusters in an unbiased manner, without forcing the system to a given 

k (i.e. number of clusters), we used the FLOCK algorithm, which has been used 

successfully to cluster single-cell data from multiparametric flow cytometry data (19, 

20). Using FLOCK, cells were categorized automatically into 30 different phenotypic 

clusters. Phenotypic and spatial analyses of these groups revealed both expected and 

novel phenotypes (Fig. 3H-I). Certain clusters correspond to known cell types such as 

B cells (cluster 11) and endothelial cells (cluster 10). Other known cell compartments 

of greater complexity were assigned to more than one cluster. For example, T cells 

were assigned to clusters 5, 6, 9, and 10. Cluster 6 contained cytotoxic T lymphocytes, 

as it is the only one of the four T cell clusters that displays CD8a expression. Clusters 

5, 9, and 10 contain other types of T cells, showing similar marker expression, with the 

exception of vWF and SMA, which were only present in cluster 10 due to the spill-over 

caused by the close proximity of these cells to blood vessels (Supplementary Fig. 9).  

Two clusters, 13 and 14, are consistent with the macrophage phenotype since 

cells of both clusters express CD68. Interestingly, these clusters are spatially 

separated (Supplementary Fig. 10A-B). Cluster 13 cells are located within the stroma 

of the tumor. In contrast, cluster 14 cells are located in hollow areas within the epithelial 

packages. The cluster 14 macrophages are associated with cPARP-positive epithelial 

cells (Supplementary Fig. 10C-D), suggesting that these are areas where cells are 

undergoing apoptosis. Another interesting example of a finding made using this cell 

atlas is that there are two different clusters of basal cells, which differ in the HER2 and 

CD44 levels (Supplementary Figs. 11-12, Supplementary Videos 6-7). These clusters 

map to patches of basal cells in the 3D model (Supplementary Fig. 10). Understanding 

these different phenotypes in the basal layer may shed light on the early steps of 

invasion in ductal carcinomas. Furthermore, analysis of immune cell localization 

revealed enrichment of different types of lymphocytes in the region of a microvascular 
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scaffold, denoted by presence of vWF+ cells, with higher concentrations of cells 

assigned to FLOCK clusters 9 and 11. On the other hand, clusters 5 and 6 showed 

appeared enriched in a different stromal area near an epithelial DCIS (Figures 3H-I, 

Supplementary Fig. 9). All these examples demonstrate that the multi-parametric 

molecular data enabled identification of clearly related populations that differ in 

location.  

The tumor cell continuum is more complex than those of macrophages or T 

cells and includes 15 FLOCK clusters. These results indicate that our 3D model 

represents known biology and provides a detailed molecular subclassification of 

cancer heterogeneity in 3D (Supplementary Figs. 11-14). Such heterogeneity 

observed within the tumor compartment is in keep with previous findings from our 

group in a large scale analyses of large cohorts of breast cancer samples(12, 21). 

 

Cellular and environment relationships can be more accurately determined in a 
3D model than a 2D model 

We hypothesized that 3D analysis would result in higher accuracy in the 

measurements of distances and the relationships between cells than does 2D IMC. 

We confirmed this first by measuring the distances between cells and the nearest 

blood vessel in 2D sections and reconstructed 3D models (Fig. 4A, Supplementary 

Video 8). The distances measured in 3D differed from those measured in 2D, being 

distances were always shorter when measuring in 3D (Fig. 4B). This was expected 

since in single 2D planes the features above and below the plane cannot be detected.  

In another tissue sample analyzed, stack images were analyzed one-by-one in 

2D as well as in 3D. This tissue displays a hypoxic area in the center of an enlarged 

epithelial compartment as denoted by positive carbonic anhydrase IX (CAIX) staining. 

In 2D, a mismatch between the center of the hypoxic area and the farthest point to 

stroma (oxygen source) at different depths of the tissue was observed (Fig. 4C). In the 

3D reconstruction, however, it is apparent that a strip of stromal tissue penetrates into 

the tumor through half of the depth or the measured volume, explaining the apparent 

contradiction from 2D (Supplementary Video 9). Thus, the 3D analysis shows that the 

farthest points from the stroma are the most hypoxic, as expected, whereas this 

correlation is elusive in the 2D analyses, depending on the depth of the section 

evaluated.  
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Finally, we tested whether cell-to-cell interactions are more faithfully 

represented in 3D than in 2D. To address this we computed a graph of cell interactions 

and then computed the interaction frequencies amongst all the previously defined cell 

types for each section in 2D and for the 3D model (Figs. 3 and 4D). Both the expected 

(predicted number of interactions amongst all cell types if randomly shuffled provided 

the abundances of each cell type) interactions and the actual, observed interaction 

rates were calculated for 2D and 3D datasets (Fig. 4D). The differences between the 

3D and 2D observed interactions were also quantified (Fig. 4E) (17). We could observe 

that 3D interaction analysis yielded a different cell interaction picture compared to 2D. 

Examples of this are a greater homotypic interaction amongst macrophages (7.9-fold 

higher measured in 3D vs. 2D) and a decreased heterotypic B cell to macrophage 

interaction (5.1-fold lower in 3D vs. 2D). Plausible explanations for these differences 

are under-sampling in the 2D space and the existence of interactions that occur in 

constrained directions (e.g., lymphocytes tethered to blood vessels).  

 

Pseudo-dynamic process analysis 
The FFPE tissues analyzed using IMC represent a snapshot in time. Recent 

work presented approaches to determine a pseudo-time dimension from snapshot 

single cell data (22, 23). Since many dynamic processes in biology follow a spatial-

temporal relationship, it should also be possible to infer their chronology from a 

structural trace. Given that 3D models provide a complete picture of spatial-temporal 

processes, the data presented here should be ideal for such an analysis.  

Indeed, examination of our 3D model indicates a striking example of what can 

be hypothesized as a spatially detectable dynamic process: Sequential stack 

reconstruction of one region revealed a micro-invasive lesion and a stream of invasive 

tumor cells (Fig. 5A, Supplementary Video 10). The distal part of the tumor in the Z 

axis contained no invading cells, and the tumor cell packages had smooth tumor to 

stroma boundaries. Toward the center of the Z axis and through the proximal area, 

invading epithelial cells, emerging from a localized protrusion, were observed (Fig. 5A-

B). These invading cells form an inverted cone. As the distance to the point of scape 

from the tumor increases, invading cells form larger structures that may be incipient 

micrometastases (Fig. 5C-D). Moreover, we observed that the detected 

micrometastases in the inverted cone increase in size proportionally to the distance to 

the protrusion, which we hypothesize is their point of origin (Fig. 5E). This is in 
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agreement with the hypothesis that motile tumor cells escaping tumor structures 

develop into metastases as they migrate away from the origin (24), constituting the 

incipient lesions that develop into invasive carcinomas. Such correlation requires 

careful validation with orthogonal methods. Yet, 3D analysis is a valuable for 

hypotheses generation for such pseudo-dynamic processes, for instance, the 

aforementioned tumor invasion. 

Due to the multiparametric nature of IMC, it is possible to investigate which 

tissue components change during the metastatic process. For instance, the invading 

tumor cells described above seem to migrate toward an area that is enriched in stromal 

cells that express high levels of phospho-S6 (Supplementary Video 11). It is important 

to underscore that, in this setting, local micrometastases can be differentiated from 

sectioned fragments of tumor structures with confidence, as given the 3D information, 

it is possible to determine whether a given epithelial body is disconnected from the 

tumor network or not (Fig. 5D-E); this is impossible in 2D cuts (Fig. 5C). Strikingly, two 

adjacent metastases (Fig. 5F, i and ii) showed very different levels of numerous 

molecules (Fig. 5G-L), most notably cytokeratins. Both lesions express low levels of 

epithelial markers CK8/19 and HER2. Yet, one lesion displayed a higher level of 

expression of the basal marker CK5 and a lower level of expression of CK19 compared 

to the other and to the tumor network. These results highlight the suitability of mass 

tomography, by combining highly parametric molecular analysis with 3D spatial 

reconstruction, to further our understanding of complex dynamic processes such as of 

the clonal evolution of cells during the processes of invasion and metastasis. In this 

example, we clearly show that early micro-metastases with the same origin can 

drastically differ in their cytokeratin expression, supporting a multi-clonal theory of 

metastasis (24). 

Data visualization and analysis 

Enhanced data visualization techniques with user-defined semantics are 

needed to enable interrogation of 3D multiparametric datasets. Thus, we have 

developed features to efficiently combine all the available information together with 

additional annotations and metrics. Once collated, the information can be collectively 

visualized and queried as a cell atlas, using strategies to combine molecular data with 

labels and voxel, area, or cell masks. Using this approach, higher-level tissue 
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structures, such as blood vessels or collagen beds, can be delineated and annotated 

as well. Examples of a 3D cell-rendering that combines raw cell data statistics from 

SMA with a label annotation (Fig. 6A) and voxel maps of vessels and its corresponding 

binary mask (Fig. 6B, Supplementary Video 8) are shown. Topological relationships 

can be determined; for example, the distances from every cell to the closest blood 

vessel can be measured (Fig. 6B). We also implemented different visualization 

modalities, such voxel-based, isosurfaces (Supplementary Fig. 15, Supplementary 

Video 12), spheres, and color stripes and patterns (Fig. 6C-D, Supplementary Video 

13). The latter is a powerful approach that has been already been applied to 

microscopy 3D/5D datasets to augment the amount of data that can be simultaneously 

be visualized in 3D (25, 26). Furthermore, we have transferred this 3D cell atlas to a 

mobile phone application (histoCAT-mobile, Supplementary Video 14) that uses 

augmented reality. With this app, a researcher can colorize the channels, interact with 

the cells, and train cell classifiers (Fig. 6E). In the future, these capabilities will enable 

for an easy and efficient, cloud-based, crowd-sourced data analysis, a modern 

technique for quality labeling of data for machine learning that leverages the principle 

of the “wisdom of the crowd”(27). 

CONCLUSION 

In summary, we show that multi-parametric tomographic analysis of tissues is 

possible using mass tomography, with no theoretical size limit. IMC was used to 

analyze an FFPE archive tissue sample using a serial sectioning method. To analyze 

the generated data, histoCAT-3D and histoCAT-mobile were developed to allow cell- 

and tissue-wide segmentation, cell model construction, cell phenotype discovery and 

annotation, topological data calculation, machine learning-based dataset enrichment, 

and visualization of the data. The molecular and cellular atlases that can be 

constructed using MT will enable visualization and analysis of detailed tissue 

architecture and lineage- and cell-communication mechanisms in native 3D contexts 

for any tissue type. Some computational and technical aspects still need to be 

improved. For instance, acquisition time is long (four full days for the presented data), 

hence, development of hardware with higher ablation speed will allow both shorter 

acquisition times or alternatively, better resolution, such as 0.5µm in all dimensions 

(adjusting the section thickness to 0.5µm too). Furthermore, better cell segmentation 
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and channel cross-talk calculation algorithms will reduce the signal spill-over (28), or 

could increase practically the acquisition speed by allowing ablations schemes with 

lesser resolution, followed by computational processing with tools such as generative 

adversarial convolutional neural networks (GANs), which can virtually increase the 

resolution (29). 

 
FIGURE LEGENDS 

Figure 1. Mass tomography procedure. (A) Small rods or blocks of FFPE 

tissue are cut with a modified diamond-knife using an ultramicrotome into 2-µm 

sections. Sequential sections are placed on regular microscopy slides. Typically, 40 

to 50 sections are placed on each glass slide. After rehydration, tissues are subjected 

to antigen retrieval, followed by staining with metal-labeled antibodies. All sections are 

analyzed by IMC. Data are processed computationally to equalize channels, order 

sections according to the annotation, merge different acquisitions for the same section, 

and de-noise low intensity channels. Images are then segmented to identify cells, and 

cells are registered using a novel object-based algorithm. Finally, a full 3D voxel model 

is assembled and prepared for visualization. (B) Examples of renders of different 

antigens from the same mass tomography 3D voxel model of a breast cancer tumor: 

(left) pan-cytokeratin (panCK), SMA, vWF, cytokeratin 5 (CK5), and CD20; (upper 

right) vWF (in red) revealing blood vessels; (lower right) immune cell markers MPO 

(granulocytes), CD68 (macrophages), CD8a (cytotoxic T cells), CD20 (B cells) in 

context with the vWF+ vasculature. 

 
Figure 2. Single-cell analysis of mass tomography data. (A) Segmentation 

and cell catalog generation pipeline. A scalar field (voxel model) is used as an input 

for a watershed segmentation in 3D. Detected objects are assigned unique cell 

identifiers. Statistics for all channels and morphological descriptors are calculated for 

every segmented cell (N cells, M channels). (B) Single-cell protein expression data 

visualized by rendering over the 3D mask. Multiple markers can be visualized 

simultaneously with automatically generated or user-defined colors. 

 
Figure 3. Generation of a comprehensively annotated single-cell 3D atlas. 

(A) Schematic showing the application of multiple methods to augment and annotate 
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the catalog (N cells, M channels). Here tSNE and principal component analysis were 

added as new columns (O new channels). Cluster identifiers generated using 

automatic cell clustering methods, such as FLOCK, can be added to the data table as 

well. Supervised machine learning was used to classify all cells. Topographic 

information such as distance to particular structures can be calculated by combining 

the 3D mask with other calculated masks; for instance, the distance to closest blood 

vessel. (B-G) Displays of heterogeneous information types on (B, D, F) 2D projections 

of a 3D tSNE map and (C, E, G) 3D single-cell maps showing (B, C) color-coded 

protein expression, (D, E) FLOCK clusters, and (F, G) user-defined cell labels 

assigned after supervised machine learning classification. For protein expression, 

color intensity is proportional to protein levels; for categorical data, such as clusters or 

labels, colors are random and represent cell class. (H) Heatmap showing a summary 

of mean expression of measured markers in discovered cell phenotype clusters after 

using the FLOCK method. Cluster 11 expression is consistent with B cells (CD20+, 

CD44+, CD45+) and Cluster 6 with cytotoxic T cells (CD8+, CD3+); Clusters 5, 9, and 

10 likely represent other T cell types. Multiple clusters consistent with tumor cells were 

identified, underscoring a high heterogeneity of protein expression in tumor cells. 

Clusters 13 and 14 are characterized by CD68 expression and are likely 

macrophages. (I) Average distance to tumor mask (bottom) or to a blood vessel mask 

(top) of all FLOCK clusters. 

 
Figure 4. Distance measurements accuracy for 3D versus 2D models. (A) 

Cell distance-to-vessel measurements in 2D (top) and 3D (bottom) models. Left to 

right the panels show the chosen proxy marker signal, the generated binary masks for 

vessels, the distance of each cell to the vessel mask in a heat-color scale, and 

distances to vessel color-coded in heat scales for T cells and tumor cells. (B) 

Quantification of distance from a cell to a vessel in 2D and 3D for selected annotated 

cell types. (C) Slice 1 and slice 49 from a 3D model containing a hypoxic area. Hypoxic 

centers are marked with asterisks and Xs in slices 1 and 49, respectively, and distance 

to stroma is marked with + and - for slices 1 and 49, respectively. Markers for hypoxia 

(carbonic anhydrase IX), stroma (SMA), tumor parenchyma (pan-cytokeratin), and 

distance are displayed in several color combinations in raw pixel data (leftmost panel) 

or cell data after segmentation in 2D (all other panels). (D) Pairwise cell type 
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interaction chord diagrams (3D vs. 2D and observed vs. expected frequencies). (E) 

Heatmap matrix showing differences in interactions scores between 3D and 2D. 

 

Figure 5. Observation of an invasive process using mass cytometry. (A) 

Sequential tomographic imaging of tumor parenchyma using a surface-detection 

algorithm. A protrusion in the surface of a DCIS-like structure is visible around 120 µm 

above the model floor level, and a stream of invading tumor cells are observed 

between the protrusion and the stroma. A large invasive structure is observed around 

240 µm from the floor of the model. (B) Projection orthogonal to that of panel A 

showing the parenchymal protrusion and the area invaded by single tumor cells. (C) 

A 2D projection toward the ceiling of the model shows invasive structures formed at 

the opposite side of the invading stream. Cytokeratin expression is heterogeneous in 

different lesions (marked i and ii). (D) Epithelial segments are classified as belonging 

to the tumor network (blue), single disseminated cells (green), or local metastases 

(red). (E) Bubble graph showing pseudotime/distance-to-invasion-origin versus size of 

invasive lesion (F) 3D mapping of local metastases i (blue) and ii (light blue) identified 

in panel C. (G-K) Mean expression of different epithelial markers in the segmented 

epithelial bodies shows high variability of expression in metastases and the tumor 

epithelial network. (L) Color composite for mean protein expression for CK5, CK19, 

and CK8/18 in the segmented epithelial bodies. 

 

Figure 6. Cell atlas visualization in 3D and augmented reality. (A) 

Simultaneous representation of measured data, here for SMA, and derived data, which 

in this case is the luminal cell label. (B) vWF signal (left) was transformed into a binary 

mask representing blood vessels (middle). The mask was subsequently used to 

calculate the distance to closest blood vessel for every cell with measured vWF signal 

represented simultaneously with the derived distance data with user-defined colors 

(right). (C) Generation of a virtual-shaped atlas. Arbitrary shapes (e.g., spheres), 

colors, sizes, and patterns (stripes) are used to increase the number of representable 

variables that can be visually interpreted. (D) A sphere model of the tumor with left 

and center stripes showing SMA and cytokeratin 5 expression, respectively (intensity 

proportional to protein levels), and right stripe showing basal cell label (full intensity or 

black for other cell types). (E) histoCAT-mobile, an iOS application featuring features 

augmented reality, virtual reality, and interactive 3D rendering of the cell model. The 
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app allows custom multicolor visualization of channels, and immersive augmented and 

virtual reality experience to explore and annotate the cells in the tumor. The application 

is available for download for iPhone 8 or later at: 

https://itunes.apple.com/us/app/histocat/id1439254241 
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Supplementary Figure Legends 
 

Supplementary Fig. 1. Slice deformation after 95 ºC and 80 ºC heat-induced 

antigen retrieval. Top row shows two consecutive slices in white, and the 

corresponding overlay using red and cyan after a 95 ºC, 40-minute antigen retrieval 

treatment in Tris-HCl buffer. Bottom row shows an equivalent experiment with 80 ºC 

treatment for 80 minutes. 
Supplementary Fig. 2. Slice registration strategy. (A) Each individual IMC 

image was segmented using a watershed algorithm. (B) All channel intensity statistics 

(features) per cell were calculated using the cell segmentation mask. (C) Example cell 

data for one slice. All features are plotted over the segmentation mask using a white 

scale for detected protein intensity. (D) Interactive cell labeling over the segmentation 

mask. (E) Cell labels obtained using the classifier trained during interactive cell 

labeling. (F) Example of cell label-based registration. 
Supplementary Fig. 3. 3D voxel model generation pipeline. (A) Example 

overlay of iridium signal from five consecutive slices before registration. (B) Example 

overlay of iridium signal from five consecutive slices after registration. (C) Detail of 

aligned slices with pan-cytokeratin signals in red and cyan on consecutive slices. (D) 

Full 156-slice stack SMA signal before registration. (E) SMA signal in full stack after 

registration. (F) Top and side view in 3D of the SMA staining, which labels the basal 

layers and vessel walls forming a complex mesh. (G) A subset of the stack shows 

correct alignment of the SMA signal. (H) Example cube render of a tumor after 

selection of a region of interest to ensure the 3D volume was generated from an area 

that contains information from all the slices. 
Supplementary Fig. 4. Signal from multiple channels after generating the 3D 

voxel model using an intensity scale. 
Supplementary Fig. 5. Example of 3D model image processing. Color render 

of raw voxel data in indicated channels (values obtained by rasterization after applying 

the rotation transforms are lineally interpolated). Bottom, same render after performing 

a per channel Gaussian convolution in 3D. 
Supplementary Fig. 6. Tumor basal layer showing expression of two breast 

gland basal epithelial markers. SMA expression is uniform within the basal layer, 

whereas expression of cytokeratin-5 is variable. 
Supplementary Fig. 7. histoCAT-3D software architecture. 
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Supplementary Fig. 8. Example image of labeling tool for the 3D model. Gray 

cells are unlabeled, and colored cells have been selected by the researcher and 

assigned defined phenotypes. 
Supplementary Fig. 9. Differential immune cell distribution over the tumor 

stroma. (A) Expression of blood vessel (vWF), fibroblast (collagen I), and immune cell 

(CD45, CD8a, CD3e, and CD20) markers in the 3D model. (B) Identity color map for 

clusters 5, 6, 9, and 11. (C) A white ellipse shows cumuli of cells belonging to clusters 

5 and 6 in the non-vascularized area of the stroma. (D) A yellow ellipse denotes the 

vascularized area, marked by vWF+ cells. (E) The same yellow ellipse shows cumuli 

of cells belonging to the clusters 9 and 11 in this vascularized area. 

Supplementary Fig. 10. Phenotypic analysis of distinct macrophage 
populations in the 3D model. (A) Clusters 13 and 14 are localized in different 

topological sites (stromal for cluster 13 and hollow areas within parenchymal tissue for 

cluster 14) as indicated by (B) pan-cytokeratin expression, (C) macrophage (CD68) 

marker expression, and (D) cPAPR expression indicative of apoptotic cells.  

Supplementary Fig. 11. Example of cluster discovery combining supervised 

and unsupervised machine learning-driven cell labeling. (A) 2D projection of a 3D-

tSNE map (see also Supplementary Video 5) with cell labels obtained from a trained 

random forest classifier. A yellow oval indicates an area in the tSNE plot enriched with 

basal epithelial cells. (B) 3D mapping of the cell labels shown in (A). (C) Same tSNE 

projection as in (A) with labels for clusters obtained after using the k-means clustering 

algorithm (k=15). The area marked in (A) has two main k-means clusters, marked as 

“cyan cluster” and “blue cluster”. (D) 3D mapping over the cell volume of the k-means 

clusters. Arrows indicate examples of the basal localization in DCIS packages for both 

“cyan” and “blue” k-means clusters. 
Supplementary Fig. 12. Heatmaps showing mean values for all the channels 

analyzed in all 15 k-means clusters and the cells classified into 7 classes using 

supervised machine learning (SML) obtained from the cell data. Blue bar graphs show 

the number of events in each bin, green graphs the average distance to the closest 

blood vessel, and red bars the average distance to the tumor parenchyma. 
Supplementary Fig. 13. Clustermap showing mean values for all the channels 

analyzed in all 30 FLOCK clusters obtained from the cell data. 
Supplementary Fig. 14. Clustermap showing mean values for all the channels 

analyzed in all 15 k-means clusters obtained from the cell data. 
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Supplementary Fig. 15. An example of isosurface rendering of the 3D cell data 

model. 
	

SUPPLEMENTARY VIDEOS 

Supplementary Video 1: Mass tomography rendered voxel data. 
http://www.bodenmillerlab.org/catena_et_al_mass_tomography/SuppVideo1.mp4 
 
Supplementary Video 2: SMA (blue) and cytokeratin 5 (green) markers in voxel 
3D reconstruction shows patchy cytokeratin 5 coverage within the epithelial basal 
membrane.  
http://www.bodenmillerlab.org/catena_et_al_mass_tomography/SuppVideo2.mp4 
 
Supplementary Video 3: Detail of nuclear signal (iridium 191) in 3D. 
http://www.bodenmillerlab.org/catena_et_al_mass_tomography/SuppVideo3.mp4 
  
Supplementary Video 4: Detail of cell mask obtained after performing 3D 
segmentation over the nuclear signal shown in Supplementary Video 2.  
http://www.bodenmillerlab.org/catena_et_al_mass_tomography/SuppVideo4.mp4 
 
Supplementary Video 5: Cell model showing expression of different measured 
markers.  
http://www.bodenmillerlab.org/catena_et_al_mass_tomography/SuppVideo5.mp4 
 
Supplementary Video 6: 3D tSNE map showing examples of different measured 
markers, cluster labels, and labels from a supervised random forests classifier.  
http://www.bodenmillerlab.org/catena_et_al_mass_tomography/SuppVideo6.mp4 
 
Supplementary Video 7: FLOCK, k-means, and supervised classification labels 
displayed over the 3D tumor cell model.  
http://www.bodenmillerlab.org/catena_et_al_mass_tomography/SuppVideo7.mp4 
 
Supplementary Video 8: Blood vessel structural mask and resulting computation 
of distance to vessel mask for all cells or different cell subsets.  
http://www.bodenmillerlab.org/catena_et_al_mass_tomography/SuppVideo8.mp4 
 
 
Supplementary Video 9: Section of a hypoxic area of a tumor showing distance to 
stromal areas, a stromal marker (SMA), and a hypoxia marker (carbonic anhydrase 
IX).  
http://www.bodenmillerlab.org/catena_et_al_mass_tomography/SuppVideo9.mp4 
 
Supplementary Video 10: 3D axial tour through a 3D tumor model displaying 
epithelial and B lymphocyte surfaces. In the middle of the video, from the center 
and toward the lower right quadrant, a protrusion from which disseminated cells 
spring is observed.  
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http://www.bodenmillerlab.org/catena_et_al_mass_tomography/SuppVideo10.mp4 
 
Supplementary Video 11: 3D axial tour through a 3D tumor model displaying 
epithelial and B lymphocyte surfaces and pS6 signal.  
http://www.bodenmillerlab.org/catena_et_al_mass_tomography/SuppVideo11.mp4 

 
Supplementary Video 12. Isosurface rendering of the 3D cell data model. 
http://www.bodenmillerlab.org/catena_et_al_mass_tomography/SuppVideo12.mp4 
 
Supplementary Video 13: 3D tumor cell atlas showing spherical representation of 
cells with blended or striped marker colorings.  
http://www.bodenmillerlab.org/catena_et_al_mass_tomography/SuppVideo13.mp4 

 
Supplementary Video 14. histoCAT-mobile demo. 
http://www.bodenmillerlab.org/catena_et_al_mass_tomography/SuppVideo14.mp4 
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