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Key enzymatic processes in biology use the nonequilibrium error correction mechanism called
kinetic proofreading to enhance their specificity. Kinetic proofreading typically requires several de-
dicated structural features in the enzyme, such as a nucleotide hydrolysis site and multiple enzyme–
substrate conformations that delay product formation. Such requirements limit the applicability
and the adaptability of traditional proofreading schemes. Here, we explore an alternative concep-
tual mechanism of error correction that achieves delays between substrate binding and subsequent
product formation by having these events occur at distinct physical locations. The time taken by
the enzyme–substrate complex to di↵use from one location to another is leveraged to discard wrong
substrates. This mechanism does not require dedicated structural elements on the enzyme, making
it easier to overlook in experiments but also making proofreading tunable on the fly. We discuss how
tuning the length scales of enzyme or substrate concentration gradients changes the fidelity, speed
and energy dissipation, and quantify the performance limitations imposed by realistic di↵usion and
reaction rates in the cell. Our work broadens the applicability of kinetic proofreading and sets the
stage for the study of spatial gradients as a possible route to specificity.

I. INTRODUCTION

The nonequilibrium mechanism called kinetic proof-
reading [1, 2] is used for reducing the error rates of many
biochemical processes important for cell function (e.g.,
DNA replication [3], transcription [4], translation [5, 6],
signal transduction [7], or pathogen recognition [8–10]).
Proofreading mechanisms operate by inducing a delay be-
tween substrate binding and product formation via inter-
mediate states for the enzyme–substrate complex. Such
a delay gives the enzyme multiple chances to release the
wrong substrate after initial binding, allowing far lower
error rates than what one would expect solely from the
binding energy di↵erence between right and wrong sub-
strates.
Traditional proofreading schemes require dedicated

molecular features such as an exonuclease pocket in DNA
polymerases [3] or multiple phosphorylation sites on T-
cell receptors [8, 9]; such features create intermediate
states that delay product formation (Fig. 1a) and thus
allow proofreading. Additionally, since proofreading is
an active nonequilibrium process often involving near–
irreversible reactions, the enzyme typically needs to have
an ATP or GTP hydrolysis site to enable the use of en-
ergy supplies of the cell [5, 11]. Due to such stringent
structural requirements, the number of confirmed proof-
reading enzymes is relatively small. Furthermore, generic
enzymes without such dedicated features are assumed to
not have active error correction available to them.
In this work, we propose an alternative scheme where

the delay between initial substrate binding and product
formation steps is achieved by separating these events in
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FIG. 1. Error correction schemes that operate by delaying
product formation. (a) The traditional proofreading scheme
with multiple biochemically distinct intermediates, transi-
tions between which are typically accompanied by energy–
consuming reactions. The T-cell activation mechanism with
successive phosphorylation events is used for demonstration
[8, 10]. (b) The spatial proofreading scheme where the de-
lay between binding and catalysis is created by constraining
these events to distinct physical locations. The wavy arrows
stand for the di↵usive motion of the complex. Binding events
primarily take place on the length scale �S of substrate local-
ization.

space. If substrates are spatially localized and product
formation is favorable only in a region of low substrate
concentration where an activating e↵ector is present,
then the time taken by the enzyme–substrate complex
to travel from one location to the other can be used to
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discard the wrong substrates (Fig. 1b). When this de-
lay is longer than substrate unbinding time scales, very
low error rates of product formation can be achieved,
allowing this spatial proofreading scheme to outperform
biochemical mechanisms with a finite number of proof-
reading steps.
The nonequilibrium mechanism here does not require

any direct energy consumption by the enzyme or sub-
strate itself (e.g., through ATP hydrolysis). Instead,
the mechanism relies on energy investment to actively
maintain spatial concentration gradients of substrates (or
alternatively, the enzyme). Such gradients of di↵erent
proteins in the cell have been measured in several con-
texts (e.g., near the plasma membrane, the Golgi appa-
ratus, the endoplasmic reticulum (ER), kinetochores, mi-
crotubules [12–14]) and several gradient–forming mech-
anisms have been discussed in the literature [14–16]. In
this way, energy consumption for proofreading can be
outsourced from the enzyme and substrate to the gradi-
ent maintaining mechanism.
The scheme proposed here does not rely on any

proofreading–specific structural features in the enzyme;
indeed, any ‘equilibrium’ enzyme with a localized e↵ec-
tor can proofread using our scheme if appropriate con-
centration gradients of the substrates or enzymes can be
set up. As a result, spatial proofreading is easy to over-
look in experiments and suggests another explanation for
why reconstitution of reactions in vitro can be of lower
fidelity than in vivo.

Further, the lack of reliance on structure makes spatial
proofreading more adaptable. We study how tuning the
length scale of concentration gradients can trade o↵ er-
ror rate against speed and energy consumption on the fly.
In contrast, traditional proofreading schemes rely on nu-
cleotide chemical potentials, e.g., the out of equilibrium
[ATP]/[ADP] ratio in the cell, and cannot modulate their
operation without broader physiological disruptions. We
conclude by quantifying the limitations of our proposed
scheme by accounting for realistic reaction rates and spa-
tial gradients known to be maintained in the cell. Our
work motivates a detailed investigation of spatial struc-
tures and compartmentalization in living cells as possible
delay mechanisms for proofreading enzymatic reactions.

II. RESULTS

A. Slow Transport of Enzymatic Complex Enables

Proofreading

Our proposed scheme is based on spatially separat-
ing substrate binding and product formation events for
the enzyme (Fig. 1b). Such a setting arises naturally
if substrates are spatially localized by having concen-
tration gradients in a cellular compartment. Similarly,
an e↵ector needed for product formation (e.g., through
allosteric activation) may have a spatial concentration
gradient localized elsewhere in that compartment. To

keep our model simple, we assume that the right (R) and
wrong (W) substrates have identical concentration gra-
dients of length scale �S but that the e↵ector is entirely
localized to one end of the compartment, e.g., via mem-
brane tethering.
We model our system using coupled reaction–di↵usion

equations for the substrate–bound (“ES” with S = R,W)
and free (“E”) enzyme densities, namely,

@⇢ER

@t
= D

@2⇢ER

@x2
� kRo↵⇢ER + kon⇢R⇢E , (1)

@⇢EW

@t
= D

@2⇢EW

@x2
� kWo↵⇢EW + kon⇢W⇢E , (2)

@⇢E

@t
= D

@2⇢E

@x2
+

X

S=R,W

kSo↵⇢ES �
X

S=R,W

kon⇢S⇢E . (3)

Here, D is the enzyme di↵usion constant, kon and kSo↵
(with kWo↵ > kRo↵) are the substrate binding and unbinding
rates, respectively, and ⇢S(x) ⇠ e�x/�

S is the spatially lo-
calized substrate concentration profile which we take to
be exponentially decaying, which is often the case for pro-
files created by cellular gradient formation mechanisms
[17, 18]. We limit our discussion to this one-dimensional
setting of the system, though our treatment can be gen-
eralized to two and three dimensions in a straightforward
way.
The above model does not explicitly account for sev-

eral e↵ects relevant to living cells, such as depletion of
substrates or distinct di↵usion rates for the free and
substrate–bound enzymes. More importantly, it does not
account for the mechanism of substrate gradient forma-
tion. We analyze a biochemically detailed model with
this latter feature and experimentally constrained pa-
rameters later in the paper. Here, we proceed with the
minimal model above for explanatory purposes. To iden-
tify the key determinants of the model’s performance, we
assume throughout our analysis that the amount of sub-
strates is su�ciently low that the enzymes are mostly free
with a roughly uniform profile (i.e., ⇢E ⇡ constant). This
assumption makes Eqs. (1)-(3) linear and allows us to
solve them analytically at steady state. We demonstrate
in Appendix C that proofreading is, in fact, most e↵ec-
tive under this assumption and discuss the consequences
of having high substrate amounts on the performance of
the scheme.
In our simplified picture, enzyme activation and catal-

ysis take place upon reaching the right boundary at a rate
r that is identical for both substrates. Therefore, the den-
sity of substrate–bound enzymes at the right boundary
can be taken as a proxy for the rate of product formation
vS, since

vS = r⇢ES(L), (4)

where L is the size of the compartment.
To demonstrate the proofreading capacity of the

model, we first analyze the limiting case where substrates
are highly localized to the left end of the compartment
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FIG. 2. Dependence of fidelity on the di↵usion time scale
in the limit of very high substrate localization. Individual
curves were made for di↵erent choices of kW

o↵ (varied in the
[10 � 100] kR

o↵ range). ⌧R
o↵ = 1/kR

o↵ is the unbinding time
scale of right substrates, kept fixed in the study. Fidelity
values corresponding to integer degrees of proofreading in a
traditional sense (⌘/⌘eq = ⌘n

eq, n = 1, 2, 3, ...) are marked as
circles. Dominant processes in the two limiting regimes are
highlighted in red in the schematics shown as insets.

(�S ⌧ L). In this limit, the fidelity ⌘, defined as the
number of right products formed per single wrong prod-
uct, becomes

⌘ =
vR
vW

=
p
⌘eq

sinh
⇣q

⌧DkWo↵

⌘

sinh
⇣q

⌧DkRo↵

⌘ , (5)

where ⌘eq = kWo↵/k
R
o↵ is the equilibrium fidelity, and ⌧D =

L2/D is the characteristic time scale of di↵usion across
the compartment (see Appendix A for the derivation).

Eq. 5 is plotted in Fig. 2 for a family of di↵erent param-
eter values. As can be seen, when di↵usion is fast (small
⌧D), fidelity converges to its equilibrium value and proof-

reading is lost (⌘ ⇡ p
⌘eq ⇥

q
⌧DkWo↵/⌧DkRo↵ = ⌘eq). Con-

versely, when di↵usion is slow (large ⌧D), the enzyme un-
dergoes multiple rounds of binding and unbinding before
di↵using across the compartment and forming a product
– ‘futile cycles’ that endow the system with proofreading.
In this regime, fidelity scales as

⌘ ⇠ e

⇣p
kW
off�

p
kR
off

⌘p
⌧D . (6)

To get further insights, we introduce an e↵ective num-
ber of extra biochemical intermediates (n) that a tradi-
tional proofreading scheme would need to have in order
to yield the same fidelity, i.e., ⌘/⌘eq = ⌘neq. We calculate
this number as (see Appendix A)

n ⇡

q
⌧DkWo↵

ln ⌘eq
. (7)

Notably, since ⌧D ⇠ L2, the result above suggests a linear
relationship between the e↵ective number of proofread-
ing realizations and the compartment size (n ⇠ L). In

addition, because the right-hand side of Eq. 7 is an in-
creasing function of kWo↵, the proofreading e�ciency of
the scheme rises with larger di↵erences in substrate o↵-
rates (Fig. 2) – a feature that ‘hard–wired’ traditional
proofreading schemes lack.

Navigating the Speed–Fidelity Trade-O↵

As is inherent to all proofreading schemes, the fidelity
enhancement described earlier comes at a cost of reduced
product formation speed. This reduction, in our case,
happens because of increased delays in di↵usive trans-
port. Here, we explore the resulting speed–fidelity trade-
o↵ and its di↵erent regimes by varying two of the model
parameters: di↵usion time scale ⌧D and the substrate
localization length scale �S .
Speed and fidelity for di↵erent sampled values of ⌧D

and �S are depicted in Fig. 3a. As can be seen, for
a fixed ⌧D, the reduction of �S can trade o↵ fidelity
against speed. This trade-o↵ is intuitive; with tighter
substrate localization, the complexes are formed closer to
the left boundary. Hence, a smaller fraction of complexes
reach the activation region, reducing reaction speed. The
Pareto–optimal front of the trade-o↵ over the whole pa-
rameter space, shown as a red curve on the plot, is
reached in the limit of ideal sequestration. Varying the
di↵usion time scale allows one to navigate this optimal
trade-o↵ curve and access di↵erent performance regimes.
Specifically, if the di↵usion time scale is fast com-

pared with the time scales of substrate unbinding (i.e.,
⌧D ⌧ 1/kRo↵, 1/k

W
o↵), then both right and wrong com-

plexes that form near the left boundary arrive at the
activation region with high probability, resulting in high
speeds, though at the expense of error–prone product for-
mation (Fig. 3b, top). In the opposite limit of slow dif-
fusion, both types of complexes have exponentially low
densities at the activation region, but due to the dif-
ference in substrate o↵-rates, production is highly accu-
rate (Fig. 3b, bottom). There also exists an interme-
diate regime where a significant fraction of right com-
plexes reach the activation region while the vast major-
ity of wrong complexes do not (Fig. 3b, middle). As a
result, an advantagenous trade-o↵ is achieved where a
moderate decrease in the production rate yields high fi-
delity enhancement – a feature that was also identified
in multi-step traditional proofreading models [19].
As we saw in Fig. 3a, in the case of ideal sequestration,

the slowdown of di↵usive transport necessarily reduced
the production rate and increased the fidelity. The lat-
ter part of this statement, however, breaks down when
substrate gradients are weak. Indeed, fidelity exhibits
a non-monotonic response to tuning ⌧D when the sub-
strate gradient length scale �S is non-zero (Fig. 3c). The
reason for the eventual decay in fidelity is the fact that
with slower di↵usion (larger ⌧D), substrate binding and
unbinding events take place more locally and therefore,
the right and wrong complex profiles start to resemble
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FIG. 3. Speed–fidelity trade-o↵ and consequences of having weak substrate gradients. (a) Speed and fidelity evaluated for
sampled values of the di↵usion time scale (⌧D) and substrate localization length scale (�S). The red line corresponds to the
Pareto–optimal front, and is reached in the high substrate localization limit. (b) Density profiles of wrong (EW) and right (ER)
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ES
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complex densities. (c) Fidelity as a function of di↵usion time scale for di↵erent choices of �S . The dashed line corresponds to
the ideal sequestration limit (�S ! 0). Inset: Fidelity as a function of L/�S for a fixed ⌧D. Shaded area indicates the range
where the bulk of fidelity enhancement takes place. Equilibrium fidelity ⌘eq = 10 was used in generating all the panels.

the substrate profile itself, which does not discriminate
between the two substrate kinds.

Not surprisingly, the error–correcting capacity of the
scheme improves with better substrate localization (lower
�S). For a fixed ⌧D, the bulk of this improvement takes
place when L/�S is tuned in a range set by the two key

dimensionless numbers of the model, namely,
q

⌧DkRo↵

and
q
⌧DkWo↵ (Fig. 3c, inset). In Appendix A, we pro-

vide an analytical justification for this result. Taken to-
gether, these parametric studies uncover the operational
principles of the spatial proofreading scheme and demon-
strate how the speed–fidelity trade-o↵ could be dynam-
ically navigated as needed by tuning the key time and
length scales of the model.

Energy Dissipation and Limits of Proofreading

Performance

A hallmark signature of proofreading is that it is a
nonequilibrium mechanism with an associated free en-
ergy cost. In our scheme, the enzyme itself is not directly
involved in any energy–consuming reactions, such as hy-
drolysis. Instead, the free energy cost comes from main-
taining the spatial gradient of substrates, which the en-
zymatic reaction tends to homogenize by releasing bound
substrates in regions of low substrate concentration.

While mechanisms of gradient maintenance may di↵er
in their energetic e�ciency, there exists a thermodynami-
cally dictated minimum energy that any such mechanism
must dissipate per unit time. We calculate this minimum

power P as

P =
X

S = {R,W}

Z L

0
jS(x)µ(x) dx. (8)

Here jS(x) = kon⇢S(x)⇢E�kSo↵⇢ES(x) is the net local bind-
ing flux of substrate “S”, and µ(x) is the local chemical
potential (see Appendix B1 for details). For substrates
with an exponentially decaying profile considered here,
the chemical potential is given by

µ(x) = µ(0) + kBT ln
⇢S(x)

⇢S(0)
= µ(0)� kBT

x

�S

, (9)

where kBT is the thermal energy scale. Notably, the
chemical potential di↵erence across the compartment,
which serves as an e↵ective driving force for the scheme,
is set by the inverse of the nondimensionalized substrate
localization length scale, namely,

��µ =
L

�S

, (10)

where ��1 = kBT . This driving force is zero for a uniform
substrate profile (�S ! 1) and increases with tighter
localization (lower �S), as intuitively expected.
We used Eq. 8 to study the relationship between dis-

sipation and fidelity enhancement as we tuned �µ for
di↵erent choices of the di↵usion time scale ⌧D. As can be
seen in Fig. 4, power rises with increasing fidelity, diverg-
ing when fidelity reaches its asymptotic maximum given
by Eq. 5 in the large�µ limit. For the bulk of each curve,
power scales as the logarithm of fidelity, suggesting that
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a linear increase in dissipation can yield an exponential
reduction in error. Notably, such a scaling relationship
has also been proposed for a general class of biochemical
processes involving quality control [20]. This logarithmic
scaling is achieved in our model when the driving force is
in a range where most of the fidelity enhancement takes
place, namely,

��µ 2
q

⌧DkRo↵,
q
⌧DkWo↵

�
. (11)

Beyond this range, additional error correction is attained
at an increasingly higher cost.

Note that the power computed here does not in-
clude the baseline cost of creating the substrate gradient,
which, for instance, would depend on the substrate di↵u-
sion constant. We only account for the additional cost to
be paid due to the operation of the proofreading scheme
which works to homogenize this substrate gradient. The
baseline cost in our case is analogous to the work that
ATP synthase needs to perform to maintain a nonequi-
librium [ATP]/[ADP] ratio in the cell, whereas our cal-
culated power is analogous to the rate of ATP hydrolysis
by a traditional proofreading enzyme. We discuss the
comparison between these two classes of dissipation in
greater detail in Appendix B3.

Just as the cellular chemical potential of ATP or GTP
imposes a thermodynamic upper bound on the fidelity
enhancement by any proofreading mechanism [21], the
e↵ective driving force �µ imposes a similar constraint
for the spatial proofreading model. This thermodynamic
limit depends only on the available chemical potential
and is equal to e��µ. This limit can be approached very
closely by our model, which for �µ & 1 achieves the ex-
ponential enhancement with an additional linear prefac-
tor, namely, (⌘/⌘eq)max ⇡ e��µ/��µ (see Appendix B2).
Such scaling behavior was theoretically accessible only to
infinite–state traditional proofreading schemes [21, 22].

This o↵ers a view of spatial proofreading as a procession
of the enzyme through an infinite series of spatial filters
and suggests that, from the perspective of peak error re-
duction capacity, our model outperforms the finite–state
schemes.

Proofreading by Biochemically Plausible

Intracellular Gradients

Our discussion of the minimal model thus far was not
aimed at a particular biochemical system and thus did
not involve the use of realistic reaction rates and di↵usion
constants typically seen in living cells. Furthermore, we
did not account for the possibility of substrate di↵usion,
as well as for the homogenization of substrate concen-
tration gradients due to enzymatic reactions, and have
thereby abstracted away the gradient maintaining mech-
anism. The quantitative inspection of such mechanisms
is important for understanding the constraints on spatial
proofreading in realistic settings.
Here, we investigate proofreading based on a widely

applicable mechanism for creating gradients by the spa-
tial separation of two opposing enzymes [12, 18, 23]. Con-
sider a protein S that is phosphorylated by a membrane–
bound kinase and dephosphorylated by a delocalized cy-
toplasmic phosphatase, as shown in Fig. 5a. This setup
will naturally create a gradient of the active form of pro-
tein (S⇤), with the gradient length scale controlled by the

rate of phosphatase activity kp (S⇤ kp�! S). Such mecha-
nisms are known to create gradients of the active forms of
MEK and ERK [14], of GTPases such as Ran (with GEF
and GAP [24] playing the role of kinase and phosphatase,
respectively), of cAMP [14] and of stathmin oncoprotein
18 (Op18) [25, 26] near the plasma membrane, the Golgi
apparatus, the ER, kinetochores and other places.
We test the proofreading power of such gradients, as-

suming experimentally constrained biophysical parame-
ters for the gradient forming mechanism. Specifically, we
consider an enzyme E that acts on active forms of cog-
nate (R⇤) and non-cognate (W ⇤) substrates which have
o↵-rates 0.1 s�1 and 1 s�1, respectively (hence, ⌘eq = 10).
These o↵-rates are consistent with typical values for sub-
strates proofread by cellular signalling systems [10, 27].
We assume that both R⇤ and W ⇤ have identical spatial
gradients due to the kinase/phosphatase setup shown in
Fig. 5a (i.e., S represents both R and W ). We then con-
sider a dephosphorylation rate constant kp = 5 s�1 that
falls in the range 0.1�100 s�1 reported for di↵erent phos-
phatases [18, 28, 29], and a cytosolic di↵usion constant
D = 1 mm2/s for all proteins in this model. With this
setup, exponential gradients of length scale ⇠ 0.5 mm are
formed for R⇤ and W ⇤ (see Appendix D for details).
As expected, proofreading by these gradients is most

e↵ective when the enzyme–substrate binding is very slow,
in which case the exponential substrate profile is main-
tained and the system attains the fidelity predicted by
our earlier explanatory model (Fig. 5b). The system’s
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low kon⇢E), the gradient of S⇤ is suc-
cessfully maintained, allowing for proof-
reading. At high enzyme activity (large
kon⇢E), the dephosphorylation with rate
kp = 5 s�1 is no longer su�cient to main-
tain the gradient and proofreading is lost.
(c) Substrate profiles for di↵erent choices
of enzyme activity. Numbers indicate
kon⇢E in s�1 units. The black line shows
an exponential substrate profile with a
length scale �S =

p
D/kp ⇠ 0.5 mm.

proofreading capacity is retained if the first–order on-
rate is raised up to kon⇢E ⇠ 10 s�1, where around 10-fold
increase in fidelity is still possible. If the binding rate
constant (kon) or the enzyme’s expression level (⇢E) is
any higher, then enzymatic reactions overwhelm the abil-
ity of the kinase/phosphatase system to keep the active
forms of substrates su�ciently localized (Fig. 5c) and
proofreading is lost. Overall, this model suggests that
enzymes can work at reasonable binding rates and still
proofread, when accounting for an experimentally char-
acterized gradient maintaining mechanism.

DISCUSSION

We have outlined a way for enzymatic reactions to
proofread and improve specificity by exploiting spatial
concentration gradients of substrates. Like the classic
model, our proposed spatial proofreading scheme is based
on a time delay; but unlike the classic model, here the
delay is due to spatial transport rather than transitions
through biochemical intermediates. Consequently, the
enzyme is liberated from the stringent structural require-
ments imposed by traditional proofreading, such as mul-
tiple intermediate conformations and hydrolysis sites for
energy coupling. Instead, our scheme exploits the free en-
ergy supplied by active mechanisms that maintain spatial
structures.

The decoupling of the two crucial features of proof-
reading – time delay and free energy dissipation – allows
the cell to tune proofreading on the fly. For instance,
all proofreading schemes o↵er fidelity at the expense of
reaction speed and energy. For traditional schemes, nav-
igating this trade-o↵ is not always feasible, as it needs
to involve structural changes via mutations or modula-
tion of the [ATP]/[ADP] ratio which can cause collateral
e↵ects on the rest of the cell. In contrast, the spatial

proofreading scheme is more adaptable to the changing
conditions and needs of the cell. The scheme can priori-
tize speed in one context, and fidelity in another, simply
by tuning the length scale of intracellular gradients (e.g.,
through the regulation of the phosphotase or free enzyme
concentration in the scheme discussed earlier).
On the other hand, this modular decoupling can com-

plicate the experimental identification of proofreading en-
zymes and the interpretation of their fidelity. Here, the
enzymes need not be endowed with the structural and
biochemical properties typically sought for in a proof-
reading enzyme. At the same time, any attempt to re-
constitute enzymatic activity in a well–mixed, in vitro
assay, will show poor fidelity compared to in vivo mea-
surements, even when all necessary molecular players are
present in vitro. Therefore, more care is required in stud-
ies of cellular information processing mechanisms that hi-
jack a distant source of free energy compared to the case
where the relevant energy consumption is local and easier
to link causally to function.
While we focused on spatially localized substrates and

delocalized enzymes, our framework would apply equally
well to other scenarios, e.g., a spatially localized enzyme
(or its active form [24, 30]) and e↵ector with delocal-
ized substrates. Our framework can also be extended to
signaling cascades, where slightly di↵erent phosphatase
activities can result in magnified concentration ratios of
two competing signaling molecules at the spatial location
of the next cascade step [14, 31, 32].
The spatial gradients needed for the operation of our

model can be created and maintained through mul-
tiple mechanisms in the cell, ranging from the ki-
nase/phosphatase system modeled here, to the pas-
sive di↵usion of substrates/ligands combined with active
degradation (e.g., Bicoid and other developmental mor-
phogens), to active transport processes combined with
di↵usion. A particularly simple implementation of our
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scheme is via compartmentalization – substrates and ef-
fectors need to be localized in two spatially separated
compartments with the enzyme–substrate complex hav-
ing to travel from one to another to complete the reac-
tion. As specificity is known to be a critical problem in
secretory pathways involving the naturally compartmen-
talized parts of the cell, e.g., the ER, the Golgi appara-
tus with its distinct cisternae, endosomes and the plasma
membrane [33, 34], they are potential candidates for the
implementation of spatial proofreading. Experimental
investigations of these compartmentalized structures in
light of our work will reveal the extent to which spatial
transport promotes specificity.
In conclusion, we have analyzed the role played by spa-

tial structures in endowing enzymatic reactions with ki-
netic proofreading. Simply by spatially segregating sub-
strate binding from catalysis, enzymes can enhance their

specificity. This suggests that enzymatic reactions may
acquire de-novo proofreading capabilities by coupling to
pre-existing spatial gradients in the cell.
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APPENDIX A: ANALYTICAL CALCULATIONS OF THE COMPLEX DENSITY PROFILE AND
FIDELITY

We begin this section by deriving an analytical expression for the density profile of substrate–bound enzymes
(⇢ES(x)) in the case where the ⇢(x) ⇡ constant assumption holds. Based on this result, we then obtain expressions
for fidelity in low, high, and intermediate substrate localization regimes. We reserve the studies of speed and fidelity
in the general case of a nonuniform free enzyme profile to Appendix C.

1. Derivation of the complex density profile ⇢ES(x)

The ordinary di↵erential equation (ODE) that defines the steady state profile of substrate–bound enzymes is

D
d2⇢ES

dx2
| {z }
di↵usion

� kSo↵⇢ES(x)| {z }
unbinding

+ kon⇢S(0)e
�x/�

S⇢E(x)| {z }
binding

= 0. (S1)

Here ⇢S(0) is the substrate density at the leftmost boundary, whose value can be calculated from the condition that
the total number of free substrates is Stotal, namely,

Stotal =

Z L

x=0
⇢S(0)e

�x/�
S dx

= ⇢S(0)�S

⇣
1� e�L/�

S

⌘
) (S2)

⇢S(0) =
Stotal

�S

�
1� e�L/�

S

� . (S3)
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In the limit of low substrate amounts where the approximation ⇢E(x) ⇡ constant is valid, Eq. S1 represents a linear
nonhomogeneous ODE. Hence, its solution can be written as

⇢ES(x) = ⇢(h)
ES

(x) + ⇢(p)
ES

(x), (S4)

where ⇢(h)
ES

(x) is the general solution to the corresponding homogeneous equation, while ⇢(p)
ES

(x) is a particular solution.

Looking for solutions of the form Ce�x/� for the homogeneous part, we find

C

✓
D

�2
� kSo↵

◆
e�x/� = 0. (S5)

The two possible roots for � are ±
q
D/kSo↵. Calling the positive root �ES , which represents the mean distance traveled

by the substrate–bound enzyme before releasing the substrate, we can write the general solution to the homogeneous
part of Eq. S1 as

⇢(h)
ES

(x) = C1e
�x/�

ES + C2e
x/�

ES , (S6)

where C1 and C2 are constants which will be determined from the boundary conditions.
Since the nonhomogeneous part of Eq. S1 is a scaled exponential, we look for a particular solution of the same

functional form, namely, ⇢(p)
ES

(x) = Cpe�x/�
S . Substituting this form into the ODE, we obtain

Cp

✓
D

�2
S

� kSo↵

◆
e�x/�

S = �kon⇢S(0)e
�x/�

S⇢E . (S7)

The constant coe�cient Cp can then be found as

Cp =
kon⇢S(0)⇢E

kSo↵ � D

�2
S

=
kon⇢S(0)⇢E

kSo↵

✓
1� D/kSo↵

�2
S

◆

=
kon⇢S(0)⇢E

kSo↵

✓
1�

�2
ES

�2
S

◆ , (S8)

where we have used the equality �ES =
q
D/kSo↵.

Now, to find the unknown coe�cients C1 and C2, we impose the no-flux boundary conditions for the density ⇢ES(x)
at the left and right boundaries of the compartment, namely,

d⇢ES

dx

��
x=0

= � C1

�ES

+
C2

�ES

� Cp

�S

= 0, (S9)

d⇢ES

dx

��
x=L

= � C1

�ES

e
� L

�
ES +

C2

�ES

e
L

�
ES � Cp

�S

e
� L

�
S = 0. (S10)

Note that we did not take into account the product formation flux at the rightmost boundary when writing Eq. S10
in order to simplify our calculations. This is justified in the limit of slow catalysis – an assumption that we make in
our treatment. The above system of two equations can then be solved for C1 and C2, yielding

C1 = ��ES

2�S

eL/�
ES � e�L/�

S

sinh(L/�ES)
Cp, (S11)

C2 =
�ES

2�S

e�L/�
S � e�L/�

ES

sinh(L/�ES)
Cp. (S12)

With the constant coe�cients known, we obtain the general solution for the complex profile as

⇢ES(x) = C1e
�x/�

ES + C2e
x/�

ES + Cpe
�x/�

S

= Cp

✓
�ES

�S sinh(L/�ES)


�e(L�x)/�

ES + e(x�L)/�
ES

2
+

e�x/�
ES + ex/�ES

2
e�L/�

S

�
+ e�x/�

S

◆

=
kon⇢S(0)⇢E

kSo↵
�
1� �2

ES
/�2

S

�
✓

�ES

�S sinh(L/�ES)


� cosh

✓
L� x

�ES

◆
+ cosh

✓
x

�ES

◆
e�L/�

S

�
+ e�x/�

S

◆

=
kon⇢S(0)⇢E

kSo↵
�
1� �2

ES
/�2

S

�
✓

�ES

�S sinh(L/�ES)


� cosh

✓
L� x

�ES

◆
+ cosh

✓
x

�ES

◆
e�L/�

S

�
+ e�x/�

S

◆
. (S13)
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2. Density profile in low and high substrate localization regimes

If substrate localization is very poor (�S � L), the substrate distribution will be uniform (⇢S(x) = ⇢̄S = Stotal/L),
resulting in a similarly flat profile of enzyme–substrate complexes with their density ⇢1

ES
given by

⇢1
ES

=
kon⇢S(0)⇢E

kSo↵

=
kon⇢̄S⇢E

kSo↵
. (S14)

This is the expected equilibrium result where the complex concentration is inversely proportional to the dissociation
constant (kSo↵/kon).

In the opposite limit where the substrates are highly localized (�S ⌧ �ES , L and ⇢S(0) ⇡ Stotal/�S from Eq. S3),
the complex density profile simplifies into

⇢ES(x) ⇡
konStotal⇢E

kSo↵�S(��2
ES
/�2

S
)

✓
� �ES

�S sinh(L/�ES)
cosh

✓
L� x

�ES

◆◆

=
konStotal⇢E

kSo↵L

L/�ES

sinh(L/�ES)
cosh

✓
L� x

�ES

◆

= ⇢1
ES

⇥ L/�ES

sinh(L/�ES)
cosh

✓
L� x

�ES

◆
. (S15)

The x-dependence through the cosh(·) function suggests that the complex density is the highest at the leftmost
boundary and lowest at the rightmost boundary, with the degree of complex localization dictated by the length scale
parameter �ES . Notably, this localization of complexes does not alter their total number, since the average complex
density is conserved, that is,

h⇢ESi =
Z L

0
⇢ES(x) dx

= ⇢1
ES

⇥ L/�ES

sinh(L/�ES)
⇥ 1

L

Z L

0
cosh

✓
L� x

�ES

◆
dx

= ⇢1
ES

⇥ L/�ES

sinh(L/�ES)
⇥ �ES

L
sinh(L/�ES)

= ⇢1
ES
. (S16)

Eq. S15 for the complex profile can be alternatively written in terms of the di↵usion time scale ⌧D = L2/D and

the substrate o↵-rate kSo↵. Noting that L/�ES =
q
L2kSo↵/D =

q
⌧DkSo↵ and introducing a dimensionless coordinate

x̃ = x/L, we find

⇢ES(x) = ⇢1
ES

⇥

q
⌧DkSo↵

sinh
⇣q

⌧DkSo↵

⌘ cosh

✓q
⌧DkSo↵(1� x̃)

◆
. (S17)

The above equation is what was used for generating the plots in Fig. 3b of the main text for di↵erent choices of the
di↵usion time scale.

3. Fidelity in low and high substrate localization regimes

Let us now evaluate the fidelity of the model in the two limiting regimes discussed earlier. In the poor substrate
localization case, which corresponds to an equilibrium setting, the fidelity can be found from Eq. S14 as

⌘eq =
r⇢1

ER

r⇢1
EW

=
kWo↵
kRo↵

, (S18)
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where we have employed the assumption about the right and wrong substrates having identical density profiles. This
is the expected result for equilibrium discrimination where no advantage is taken of the system’s spatial structure.
In the regime with high substrate localization, the enzyme–substrate complexes have a nonuniform spatial distri-

bution. What matters for product formation is the complex density at the rightmost boundary (x̃ = 1), which we
obtain from Eq. S17 as

⇢ES(L) = ⇢1
ES

⇥

q
⌧DkSo↵

sinh
⇣q

⌧DkSo↵

⌘ . (S19)

Substituting the above expression written for right and wrong complexes into the definition of fidelity, we find

⌘ =
r⇢ER(L)

r⇢EW(L)

= ⌘eq ⇥

s
kRo↵
kWo↵

sinh
⇣q

⌧DkWo↵

⌘

sinh
⇣q

⌧DkRo↵

⌘

=
p
⌘eq

sinh
⇣q

⌧DkWo↵

⌘

sinh
⇣q

⌧DkRo↵

⌘ . (S20)

This is the result reported in Eq. 5 of the main text. To gain more intuition about it and draw parallels with
traditional kinetic proofreading, let us consider the limit of long di↵usion time scales where proofreading is the most

e↵ective. In this limit, the hyperbolic sine functions above can be approximated as sinh(
q
⌧DkSo↵) ⇡ 0.5 e

p
⌧DkS

off ,
simplifying the fidelity expression into

⌘ =
p
⌘eq

e
p

⌧DkW
off

e
p

⌧DkR
off

=
p
⌘eqe

p
⌧DkW

off�
p

⌧DkR
off

=
p
⌘eqe

p
⌧DkR

off(
p
⌘eq�1), (S21)

where we have used the definition of equilibrium fidelity (Eq. S18). In traditional proofreading, a scheme with n
proofreading realizations can yield a maximum fidelity of ⌘/⌘eq = ⌘neq. The value of n for the original Hopfield model,
for instance, is 1. It would be informative to also know the e↵ective parameter n for the spatial proofreading model.
Dividing Eq. S21 by ⌘eq, we find

⌘

⌘eq
=

1
p
⌘eq

e
p

⌧DkR
off(

p
⌘eq�1) = ⌘neq,

e
p

⌧DkR
off(

p
⌘eq�1) = ⌘

n+ 1
2

eq ,
q
⌧DkRo↵

�p
⌘eq � 1

�
=

✓
n+

1

2

◆
ln ⌘eq )

n+
1

2
=

p
⌘eq � 1

ln ⌘eq

q
⌧DkRo↵. (S22)

This exact result can be simplified into an approximate form when di↵usion is slow and ⌘eq � 1, yielding the expression
reported in Eq. 7 of the main text, namely,

n ⇡
p
⌘eq

q
⌧DkRo↵

ln ⌘eq

=

q
⌧DkWo↵

ln ⌘eq
. (S23)
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4. Fidelity in an intermediate substrate localization regime

The generic expression for complex density at the rightmost boundary (x = L) can be written using Eq. S13 as

⇢ES(L) =
kon⇢S(0)⇢E

kSo↵
�
1� �2

ES
/�2

S

�
✓

�ES

�S sinh(L/�ES)


cosh

✓
L

�ES

◆
e�L/�

S � 1

�
+ e�L/�

S

◆
. (S24)

For the system to proofread, substrates need to be su�ciently localized (�S < L) and di↵usion needs to be su�ciently
slow (⌧DkSo↵ > 1 or, �ES < L). Under these conditions, the substrate profile can be approximated using Eq. S3
as ⇢S(x) ⇡ ��1

S
Stotale�x/�

S , while the hyperbolic sine and cosine functions used above can be approximated as

sinh(L/�ES) ⇡ cosh(L/�ES) ⇡ 0.5 eL/�
ES . With these approximations, the complex density expression simplifies into

⇢ES(L) =
konStotal⇢E

kSo↵�S

�
1� �2

ES
/�2

S

�
✓
�ES

�S

h
e�L/�

S � 2e�L/�
ES

i
+ e�L/�

S

◆

=
konStotal⇢E

kSo↵(�
2
S
� �2

ES
)

⇣
(�S + �ES)e

�L/�
S � 2�ESe

�L/�
ES

⌘
. (S25)

Now, depending on how �S compares with �ES , there can be two qualitatively di↵erent regimes for the complex
density, namely,

⇢ES(L) = ⇢1
ES

⇥

8
>><

>>:

2L

�ES

e�L/�
ES , if �S ⌧ �ES

⇣
L/�S �

q
⌧DkSo↵

⌘

L

�S

e�L/�
S , if �ES ⌧ �S

⇣q
⌧DkSo↵ � L/�S

⌘ (S26)

where we used the equilibrium complex density ⇢1
ES

defined in Eq. S14.
Notably, the first regime e↵ectively corresponds to the case of ideal sequestration where complex density is inde-

pendent from the precise value of �S . The dimensionless number
q
⌧DkSo↵ sets the scale for the minimum L/�S value

beyond which ideal sequestration can be assumed. Conversely, the second regime corresponds to the case where the
distance traveled by a complex before dissociating is so short that the complex profile is dictated by the substrate
profile itself. Because of that, the complex density reduction from its equilibrium limit is independent from the precise
values of ⌧D and kSo↵, as long as the condition �ES � �S is met.

The scheme yields its highest fidelity when both right and wrong complex densities are in the first regime (ideal
sequestration). When both densities are in the second regime, fidelity is reduced down to its equilibrium value ⌘eq
(Table S1). The transition between these two extremes happens when the density profiles of right and wrong complexes
fall under di↵erent regimes. Fidelity can be navigated in the transition zone by tuning the substrate gradient length
scale �S . This is demonstrated in Fig. S1 for three di↵erent choices of ⌘eq. In all three cases, the dimensionless

numbers
q
⌧DkRo↵ and

q
⌧DkWo↵ set the approximate range in which the bulk of fidelity enhancement occurs, as stated

in the main text.

�S ⌧ �ER �S � �ER

�S ⌧ �EW

�EW

�ER

e
L
⇣
��1
EW

���1
ER

⌘

-

�S � �EW

2�S

�ER

e
L
⇣
��1
S

���1
ER

⌘

⌘eq

TABLE S1. Fidelity of the scheme in di↵erent regimes of right and wrong complex densities. The upper–right cell is empty

because the two conditions on �S cannot be simultaneously met, since �ER > �EW by construction (follows from kR
o↵ < kW

o↵).
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p
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o↵ and

p
⌧DkW

o↵. ⌧D values chosen for the demonstration were 60,

40, and 20 (in 1/kR
o↵ units) for the three di↵erent choices of ⌘eq, respectively.
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APPENDIX B: ENERGETICS OF THE SCHEME

We start this section by deriving an analytical expression for the minimum dissipated power, which was used in
making Fig. 4 of the main text. Then, we calculate the upper limit on fidelity enhancement available to our model
for a finite substrate gradient length scale and compare this limit with the fundamental thermodynamic bound. We
end the section by providing an estimate for the baseline cost of setting up gradients and compare this cost with the
maintenance cost reported in the main text. Similar to our treatment of Appendix A, here too our calculations are
based on the ⇢E ⇡ constant assumption to allow for intuitive analytical results.

1. Derivation of dissipated power

As stated in the main text, we calculate the minimum rate of energy dissipation necessary for maintaining the
substrate profiles as

P =
X

S=R,W

Z L

0
jS(x)µ(x)dx, (S27)

where jS(x) = kon⇢S(x)⇢E � kSo↵⇢ES(x) is the net local substrate binding flux and µ(x) = µ(0) � kBT · ln(x/�S) is
the local chemical potential. Substituting the analytical expression for ⇢ES(x) found earlier (Eq. S13) into jS(x) and
performing a somewhat cumbersome integral, we obtain

�P = Jbind
X

S=R,W

1

1� �2
S
/�2

ES

✓
�ES

�S

tanh (L/2�ES)

tanh (L/2�S)
� 1

◆
, (S28)

where ��1 = kBT , and Jbind = konStotal⇢E is the net binding rate of each substrate. Fig. 4 in the main text was made
using this expression for power.
To get additional insights about this result, let us consider the case where substrates are highly localized (�S ⌧ L)

and di↵usion is slow (�ES ⌧ L) – conditions needed for e↵ective proofreading. Under these conditions, the hyperbolic
tangent terms become 1 and the expression for the power expenditure simplifies into

�P = Jbind
X

S=R,W

�2
ES

�S(�ES + �S)
. (S29)

The monotonic increase of power with �ES suggests that energy is primarily spent on maintaining the concentration
gradient of right substrates. This is not surprising, since typically right complexes travel a much greater distance into
the low concentration region of the compartment before releasing the bound substrate (i.e., �ER � �EW). Therefore,
neglecting the contribution from wrong substrates and considering the range of �S values where the bulk of power–
fidelity trade-o↵ takes place (�ER > �S > �EW), we further simplify the power expression into

�P ⇡ Jbind�ER

�S

=
Jbind · ��µq

⌧DkRo↵

, (S30)

where we used the identities ��µ = L/�S and �ER = L/
q
⌧DkRo↵. This simple linear relation suggests that in order to

maintain the exponential substrate profile, the minimum energy spent per substrate binding event should be at least

�µ/
q
⌧DkRo↵ > 1 kBT .

2. Limits on fidelity enhancement

The error reduction capacity of the spatial proofreading scheme improves with a greater di↵erence in substrate
o↵-rates, as was demonstrated in Fig. 2 of the main text. At the same time, Fig. 3c showed that the finite length
scale of substrate localization (or, finite driving force) sets an upper limit on fidelity enhancement for substrates with
fixed o↵-rates. It is therefore of interest to consider these two features together to find the absolute limit on fidelity
enhancement available to our model and then compare it with the fundamental bound set by thermodynamics.
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Intuitively, fidelity will be enhanced the most if the density of right complexes does not decay across the compart-
ment, while that of wrong complexes decays maximally. The first condition can be met if di↵usion is fast or if the
unbinding rate of right substrates is low, in which case we have

⇢ER(L) ⇡ ⇢1
ER

, (S31)

where ⇢1
ER

is the equilibrium density of right complexes. Conversely, when the unbinding rate of wrong substrates
is very large, the density of wrong complexes is maximally reduced at the rightmost boundary and can be obtained
from Eq. S24 by taking the �ES ! 0 limit, namely,

⇢EW(L) ⇡ kon⇢E⇢S(0)e
�L/�

S

kWo↵

=
kon⇢EStotale�L/�

S

�S

�
1� e�L/�

S

�
kWo↵

=
kon⇢EStotal

kWo↵L
⇥ Le�L/�

S

�S

�
1� e�L/�

S

�

= ⇢1
EW

⇥ ��µ e���µ

1� e���µ
. (S32)

Here ⇢1
EW

is the equilibrium density of wrong complexes, and ��µ = L/�S is the e↵ective driving force of the scheme.
Taking the ratio of Eqs. S31 and S32, we obtain the largest fidelity enhancement of the scheme for the given driving
force, namely,

⌘ =
⇢ER(L)

⇢EW(L)
=

⇢1
ER

⇢1
EW|{z}
⌘eq

⇥e��µ � 1

��µ
) (S33)

(⌘/⌘eq)
max = (e��µ � 1)/��µ. (S34)

When ��µ & 1 (or, �S . L), the limit above gets further simplified into

(⌘/⌘eq)
max ⇡ e��µ/��µ. (S35)

Now, thermodynamics imposes an upper bound on fidelity enhancement by any proofreading scheme operating with
a finite chemical potential �µ. This bound is equal to e��µ and is reached when the entire chemical potential is used
to increase the free energy di↵erence between right and wrong substrates [1]. Comparing it with the result in Eq. S35,
we can see that fidelity enhancement in the spatial proofreading model has the same exponential scaling term, but
with an additional linear factor. Since the dominant contribution comes from the exponential term (as captured also
in Fig. S2), we can claim that our proposed model can operate very close to the fundamental thermodynamic limit.
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FIG. S2. Fidelity enhancement as a function of the e↵ective driving force for varying choices of kW
o↵. The red dashed line

indicates the thermodynamic bound given by e��µ
. The black dashed line corresponds to the model’s upper limit on fidelity

enhancement given by Eq. S34.
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3. Energetic cost to set up a concentration gradient

Earlier in the section, we calculated the rate at which energy needs to be dissipated to counteract the homogenizing
e↵ect that enzyme activity has on the substrate gradient. In addition to this cost, however, there is also a baseline
cost for setting up a gradient in the absence of any enzyme. Here, we calculate this cost in the case where the gradient
formation mechanism needs to work against di↵usion that tends to flatten the substrate profile.
As before, we consider an exponentially decaying substrate gradient with a decay length scale �S and a total number

of substrates Stotal. We write the minimum power PD required for counteracting the di↵usion of substrates as

PD = �
Z L

0
JD(x)µ0(x) dx, (S36)

where JD = �DSr⇢S(x) is the di↵usive flux, with DS being the substrate di↵usion constant. The rationale for writing
this form is that di↵usion moves substrates from a higher chemical potential region into a neighboring lower chemical
potential region. The gradient maintaining mechanism would need to spend at least this chemical potential di↵erence
(�µ = �µ0(x)�x) per each substrate di↵using a distance �x down the chemical potential gradient. Adding up the
contribution from all local neighborhoods with a local di↵usive flux JD(x) results in Eq. S36.
Now, substituting ⇢S(x) ⇠ e�x/�

S for the substrate profile and µ(x) = µ(0) + kBT ln
�
⇢
S
(x)/⇢

S
(0)

�
for the chemical

potential, we obtain

�PD =

Z L

0
DS⇢

0
S
(x) (ln ⇢S(x))

0 dx

= DS

Z L

0

�
⇢0

S
(x)

�2

⇢S(x)
dx

= DS

Z L

0

⇢S(x)

�2
S

dx

=
DSStotal

�2
S

, (S37)

where in the third step we used the relation ⇢0
S
(x) = �⇢S(x)/�S . This suggests that the minimum dissipated power

required for setting up an exponential gradient increases quadratically with decreasing localization length scale �S .
It is informative to also make a comparison between this result and the earlier calculated minimum dissipation

needed to counteract the enzyme’s homogenizing activity. Recall that when substrates were su�ciently localized and
when di↵usion was su�ciently slow, proofreading power could be approximated as (Eq. S29)

�P ⇡ Jbind
�2

ES

�S(�ES + �S)
, (S38)

where Jbind = konStotal⇢E is the total substrate binding flux. Using the identities �ES =
q
D/kSo↵ and KS

d = kSo↵/kon,

we can calculate the ratio of the proofreading power to baseline power as

P

PD
=

konStotal⇢E�
2
ES

DSStotal
⇥

�2
S

�S (�ES + �S)

=
D

DS

⇥ ⇢E

KS
d

⇥ �S/�ES

1 + �S/�ES

. (S39)

Presuming for simplicity that the enzyme and substrate di↵usion constants are the same, we see that two factors
determine the power ratio: 1) the amount of free enzyme in the system (⇢E/K

S
d ), and 2) the substrate localization

length scale relative to the characteristic length scale of complex di↵usion (�S/�ES). Now, recall that the enzymatic
activity on right substrates dominates the proofreading cost (Appendix B1) and that the bulk of fidelity enhancement
takes place when �S . �ER (Appendix A4). Therefore, when tuning �S down, initially the power ratio would only
depend on the amount of free enzyme in the system (⇢E/K

S
d ) and then, with tighter substrate localization, the relative

contribution of the proofreading power would start to decrease.
In the end, we would like to note that spatial gradients can also be set up using an external potential without a

continuous dissipation of energy. In an in vivo setting, gravity can give rise to spatial structures in oocytes [2], while
in an in vitro setting, electric fields can create gradients and power the transport of the complex [3]. We leave the
investigations of such alternative strategies to future work.
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APPENDIX C: STUDIES ON THE VALIDITY OF THE UNIFORM FREE ENZYME PROFILE
ASSUMPTION

In our treatment of the model so far, we have assumed for mathematical convenience that free enzymes are in
excess, which suggested the approximation ⇢E(x) ⇡ constant. Example enzyme density profiles shown in Fig. S3,
however, demonstrate that this assumption does not hold in general. Specifically, there is a depletion of free enzymes
near the substrate localization site and abundance near the catalysis site. Because of this depletion at the leftmost
edge, we expect a reduction in speed in comparison with our earlier treatment where a flat profile was assumed. In
addition, if substrates have a weak gradient, we expect the fidelity to also be reduced, since more enzymes will bind
substrates at intermediate positions, reducing the average travel distance to the catalytic site. In what follows, we
discuss in greater detail the consequences of having a nonuniform free enzyme distribution on the model performance.
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FIG. S3. Example profiles of free and substrate–bound enzymes. Enzyme profiles are normalized so that the sum of areas

under the curves is unity. The substrate profile (rescaled on the y-axis) is shown in transparent gray.

1. E↵ects that relaxing the ⇢E(x) ⇡ constant assumption has on the Pareto front

We begin by studying the e↵ects of relaxing the uniform free enzyme profile assumption on the Pareto front of the
speed–fidelity trade-o↵ (Fig. 3a of the main text). This front is reached in the ideal sequestration limit (�S ! 0).
Though in general enzyme profiles need to be obtained using numerical methods due to the nonlinearity of reaction–
di↵usion equations, in this particular limit (�S ! 0) an analytical solution is available. To obtain it, we write the
reaction–di↵usion equations in the bulk region of space as

@⇢ER

@t
= D

@2⇢ER

@x2
� kRo↵⇢ER (S40)

@⇢EW

@t
= D

@2⇢EW

@x2
� kWo↵⇢EW (S41)

@⇢E

@t
= D

@2⇢E

@x2
+

X

S=R,W

kSo↵⇢ES . (S42)

Substrate binding reactions did not enter the above equations, as they occur at the leftmost boundary only. They are
instead accounted for via boundary conditions, which read

�D
@⇢ER

@x

����
x=0

= konStotal⇢E(0), (S43)

�D
@⇢EW

@x

����
x=0

= konStotal⇢E(0), (S44)

�D
@⇢E

@x

����
x=0

= �2konStotal⇢E(0), (S45)

where Stotal is the total amount of free substrate of each kind concentrated at x = 0.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2020. ; https://doi.org/10.1101/2020.05.23.112664doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.23.112664
http://creativecommons.org/licenses/by/4.0/


S11

Relating local enzyme concentrations. Considering the system at steady state, we add Eqs. S40-S42 and obtain

0 = D
d2⇢ER

dx2
+D

d2⇢EW

dx2
+D

d2⇢E

dx2
. (S46)

Diving by D and integrating once, we find

d⇢ER

dx
+

d⇢EW

dx
+

d⇢E

dx
= C1. (S47)

This above relation must hold for arbitrary position x. Choosing x = 0 and noting that from Eqs. S43-S45 the sum
of fluxes should be zero, we can claim that C1 = 0. Integrating for the second time, we obtain

⇢ER(x) + ⇢ER(x) + ⇢E(x) = C2, (S48)

where C2 is now a di↵erent constant. To find it, we perform an integral for the last time across the entire compartment,
namely,

Z L

0

�
⇢ER(x) + ⇢EW(x) + ⇢E(x)

�
dx = Etotal = C2L. (S49)

Here we introduced the parameter Etotal as the total number of enzymes in the system (in free or bound forms). The
constant C2, which we will rename into ⇢0, is then the average enzyme density, i.e.,

⇢0 = Etotal/L. (S50)

Substituting this result into Eq. S48, we find an insightful relation between free and bound enzyme densities at an
arbitrary position, namely,

⇢E(x) = ⇢0 � ⇢ER(x)� ⇢EW(x). (S51)

This relation suggests that whenever the local concentration of bound enzymes is high, the local concentration of
free enzymes should be correspondingly low, as we see reflected in the profiles of Fig. S3.

Deriving the fidelity expression. Next, we consider Eqs. S40 and S41 separately at steady state, written in the form

D
d2⇢ES

dx2
� kSo↵⇢ES = 0. (S52)

The general solution to this ODE reads

⇢ES(x) = CS
1 e

�x/�
ES + CS

2 e
x/�

ES , (S53)

where �ES =
q
D/kSo↵, and CS

1 and CS
2 (S = R,W) are constants which are di↵erent for right and wrong complexes.

The no-flux boundary condition at x = L can be used to relate these constants and simplify the complex profile
expression, namely,

�D
d⇢ES(x)

dx

����
x=L

= � D

�ES

⇣
�CS

1 e
�L/�

ES + CS
2 e

L/�
ES

⌘
= 0 ) (S54)

CS
2 = e�2L/�

ESCS
1 ) (S55)

⇢ES(x) = CS
1 e

�x/�
ES + CS

1 e
�2L/�

ES ex/�ES

= 2CS
1 e

�L/�
ES cosh

✓
L� x

�ES

◆

= C̃S
1 cosh

✓
L� x

�ES

◆
, (S56)

where C̃S
1 = 2CS

1 e
�L/�

ES is a new constant coe�cient introduced for convenience.
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Now, the fidelity of the scheme is the ratio of right and wrong complex densities at x = L. Using the result above,
the fidelity can be written as

⌘ =
⇢ER(L)

⇢EW(L)
=

C̃R
1

C̃W
1

. (S57)

The ratio of these constant coe�cients can be obtained by noting that the di↵usive fluxes of right and wrong complexes
at x = 0 are identical (from Eqs. S43 and S44), that is,

�D
@⇢ER

@x

����
x=0

= �D
@⇢EW

@x

����
x=0

) (S58)

C̃R
1 ⇥ sinh(L/�ER)

�ER

= C̃W
1 ⇥ sinh(L/�EW)

�EW

) (S59)

C̃R
1

C̃W
1

=
�ER

�EW

sinh(L/�EW)

sinh(L/�ER)
. (S60)

Substituting this result into Eq. S57, and recalling the equality L/�ES =
q
⌧DkSo↵, we obtain

⌘ =

q
⌧DkWo↵q
⌧DkRo↵

sinh
⇣q

⌧DkWo↵

⌘

sinh
⇣q

⌧DkRo↵

⌘

=
p
⌘eq

sinh
⇣q

⌧DkWo↵

⌘

sinh
⇣q

⌧DkRo↵

⌘ . (S61)

This expression is identical to that in Eq. S20 which was derived under the ⇢E(x) ⇡ constant assumption, suggesting
that when substrates are highly localized, the shape of the free enzyme profile does not dictate the fidelity.

Deriving the speed expression. To keep the expression of speed compact while still illustrating the key consequences
of relaxing the ⇢(x) ⇡ constant assumption, we will assume moving forward that the density of wrong complexes is
much lower than that of the right complexes, i.e., ⇢EW(x) ⌧ ⇢ER(x). This allows us to approximate the free enzyme
density from Eq. S51 as ⇢E(x) ⇡ ⇢0 � ⇢ER(x).

The specification of the right complex density profile requires the knowledge of the unknown coe�cient C̃R
1 . To

find this coe�cient, we use the boundary condition in Eq. S43 and the approximation ⇢E(x) ⇡ ⇢0 � ⇢ER(x) to write

D
C̃R

1

�ER

sinh(L/�ER) = konStotal

⇣
⇢0 � C̃R

1 cosh(L/�ER)
⌘
) (S62)

C̃R
1 =

konStotal⇢0
D

�
ER

sinh(L/�ER) + konStotal cosh(L/�ER)

=
konStotal⇢0

�ERk
R
o↵ sinh(L/�ER) + konStotal cosh(L/�ER)

= ⇢0 ⇥

konStotal

kRo↵L

1 +
L

�ER

cosh(L/�ER)

sinh(L/�ER)

konStotal

kRo↵L

⇥ L/�ER

sinh(L/�ER)
. (S63)

With the constant coe�cient known, the right complex density then becomes

⇢ER(x) = ⇢0 ⇥

⇢̄S
KR

d

1 +
L

�ER

cosh(L/�ER)

sinh(L/�ER)

⇢̄S
KR

d

⇥ L/�ER

sinh(L/�ER)
cosh

✓
L� x

�ER

◆
, (S64)

where we used the definitions of the mean substrate density ⇢̄S = Stotal/L and the dissociation constantKR
d = kRo↵/kon.
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To enable a direct parallel between this general treatment and the earlier one with the ⇢E(x) ⇡ constant approxi-
mation, let us introduce ⇢1

ER
as the uniform right complex density when di↵usion is very fast (�ER � L) and calculate

it from Eq. S64 as

⇢1
ER

= ⇢0 ⇥

⇢̄S
KR

d

1 +
⇢̄S
KR

d

. (S65)

Now, using the ⇢1
ER

expression, we rewrite Eq. S64 as

⇢ER(x) =

1 +
⇢̄S
KR

d

1 +
L

�ER

cosh(L/�ER)

sinh(L/�ER)

⇢̄S
KR

d

⇥ ⇢1
ER

⇥ L/�ER

sinh(L/�ER)
cosh

✓
L� x

�ER

◆

=

1 +
⇢̄S
KR

d

1 +
L

�ER

cosh(L/�ER)

sinh(L/�ER)| {z }
�

⇢̄S
KR

d

⇥ ⇢const
ER

(x), (S66)

where ⇢const
ER

(x) is the complex density obtained under the ⇢E(x) ⇡ constant assumption (Eq. S15). The extra
factor that appears on front does not exceed 1 since � � 1, indicating a reduction in speed, as we anticipated
in our more qualitative discussion at the beginning of the section. The presence of the extra factor suggests two
possibilities for the approximation to hold true; first, � ⇡ 1 which happens when �ER & L or when the right complex
does not decay noticeably across the compartment, and second, when � > 1 and ⇢̄S ⌧ ��1KR

d , which is when
right complexes do decay but their fraction is low compared with free enzymes because of low substrate concentration.

Pareto front shift. The previous calculations showed that in the ideal substrate sequestration limit relaxing the
⇢(x) ⇡ constant assumption keeps the fidelity the same while the speed gets reduced. We therefore expect a shift in
the Pareto front which is illustrated in Fig. S4a. To get more intuition about the e↵ect of this shift caused by tuning
the amount of substrates, we consider the e↵ective number of proofreading realizations at half–maximum speed (n50)
and study how this number changes as a function of the fraction of enzymes bound (pbound ⇡ E�1

total

R
⇢ER(x) dx).

Fig. S4b shows this dependence. As can be seen, n50 reduces roughly linearly with pbound; e.g., if 10% of the enzymes
are bound, then a 10% reduction in n50 is expected. This suggests that as long as the fraction of bound enzymes is
low, our findings related to the Pareto front made under the ⇢E ⇡ constant assumption will generally hold true.
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FIG. S4. Consequences of relaxing the ⇢E(x) ⇡ constant assumption on the Pareto front. (a) Pareto fronts in the low and high

substrate concentration limits. (b) Reduction in the e↵ective number of proofreading realizations at half–maximum speed as a

function of the fraction of enzymes bound. ⌘eq = 10 was used in making the plots.
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2. E↵ects that relaxing the ⇢E(x) ⇡ constant assumption has on fidelity in a weak substrate gradient setting

In this section, we study how accounting for the spatial distribution of free enzymes a↵ects our results on the
model’s fidelity in the setting where substrates have a finite localization length scale �S . In this setting, Eqs. (1)-(3)
(in the main text) describing the system’s dynamics become a system of nonlinear equations, which we solve at steady
state using numerical methods.
An example curve of how fidelity changes with tuning di↵usion time scale in a finite �S setting is shown in Fig. S5.

As expected, the nonuniform free enzyme profile leads to a reduction in fidelity. This reduction is not significant when
di↵usion is relatively fast as in that case the free enzyme profile manages to flatten out rapidly. The reduction is not
significant also in the very slow di↵usion limit where binding events that lead to production primarily take place in
the proximity of the activation region and hence, the nonuniform profile of free enzymes across the compartment has
little impact on fidelity. The greatest reduction happens at intermediate di↵usion time scales; in particular, when the
system achieves its peak fidelity.
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FIG. S5. Fidelity as a function of di↵usion time scale calculated with and without making the ⇢E ⇡ constant approximation.

The total number of free substrates is chosen so that ⇢̄S/K
R
d = 3.

To quantify the extent of this highest reduction, we calculated the peak value of the e↵ective number of proofreading
realizations (nmax) for di↵erent free substrate amounts which regulate the fraction of bound enzymes (pbound). The
results obtained for di↵erent choices of �S are summarized in Fig. S6. As can be seen, for the high substrate localization
case (�S/L = 0.04), there is a roughly linear dependence between nmax and pbound. The initial decrease in nmax with
growing pbound is even slower when substrates are less tightly localized (�S/L = 0.10, 0.30).
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FIG. S6. Reduction in the peak e↵ective number of proofreading realizations as a function of pbound. n
low
max represents the peak

value of ne↵ in the limit of low substrate concentration (the maximum of the solid blue curve in Fig. S5).

Taken together, these results suggest that if the substrate concentration is low enough to leave most of the enzymes
unbound, then our proposed scheme will proofread e�ciently. And this requirement on substrate amount will be
further relaxed if di↵usion is fast, or if substrates are not very tightly localized.
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APPENDIX D: PROOFREADING ON A KINASE/PHOSPHATASE-INDUCED GRADIENT

In this section, we introduce the mathematical modeling setup for the kinase/phosphatase–based gradient formation
scheme and describe how its fidelity is calculated numerically. In the end, we discuss the energetics of setting up
the substrate concentration gradient and link our calculations to the lower bound on energy cost obtained earlier in
Appendix B.

1. Setup and estimation of fidelity

In the analysis thus far, we have imposed a gradient of free substrates and analyzed the proofreading capability of
an enzyme acting on this gradient. In a living cell, gradients themselves are maintained by active cellular processes.
However, the action of the enzyme – that is, binding a substrate in one spatial location, di↵using away, and releasing
the substrate elsewhere – can destroy the gradient, and thereby lead to a loss of proofreading. Here, we analyze the
consequences of free substrate depletion and gradient flattening caused by the enzyme.
We model the formation of a substrate gradient by a combination of localized activation and delocalized deactivation.

We suppose that substrates can exist in phosphorylated or dephosphorylated forms, and that only the phosphorylated
form is capable of binding to the enzyme. The substrates are phosphorylated by a kinase with rate kkin = 0.2 s�1,
and dephosphorylated by a phosphatase with rate kp = 5 s�1. Crucially, we assume that phosphatases are found
everywhere in the domain of size L ⇠ 10 mm (a typical length scale in a eukaryotic cell), while kinases are localized
to one end of the domain (at x = 0), as may occur naturally if kinases are bound to one of the membranes enclosing
the domain.
The minimal dynamics of phosphorylated substrates and enzyme–substrate complexes is then given by

@⇢S

@t
= Dr2⇢S � kb⇢S + kSo↵⇢ES � kp⇢S ,

@⇢ES

@t
= Dr2⇢ES + kb⇢S � kSo↵⇢ES , (S67)

augmented by the boundary conditions

Substrate phosphorylation: �Dr⇢S |x=0 = kkin,

No-flux: �Dr⇢S |x=L = �Dr⇢ES |x=L = �Dr⇢ES |x=0 = 0. (S68)

Here, we have supposed that the densities of free enzymes, dephosphorylated substrates, and phosphatases are fixed
and uniform, and have absorbed them into the relevant rate constants (kb = kon⇢E , kkin, and kp, respectively). For
simplicity, we have also assumed that the free substrates and enzyme–substrate complexes have the same di↵usion
coe�cient D = 1 mm2/s.

We numerically solve Eqs. S67 and S68 at steady state. First, the equations of dynamics are made dimensionless
by settings units of length and time by L (x̄ = x/L) and ⌧D ⌘ L2/D (t̄ = t/⌧D), respectively. At steady state, the
dimensionless equations read

r̄2⇢̄S =
�
k̄b + k̄p

�
⇢̄S � k̄So↵⇢̄ES ,

r̄2⇢̄ES = �k̄b⇢̄S + k̄So↵⇢̄ES , (S69)

with boundary conditions

r̄⇢̄S |x̄=0 = �k̄kin,

r̄⇢̄S |x̄=1 = r̄⇢̄ES |x̄=1 = r̄⇢̄ES |x̄=0 = 0, (S70)

where concentrations have been rescaled as ⇢̄ = ⇢L, and kinetic rates as k̄ = k ⌧D.
We discretize the steady state equations on a grid with spacing �x̄ = 0.01, approximating the second derivative as

r̄2⇢̄ ⇡ 1

�x̄2

�
⇢̄(x̄+�x̄) + ⇢̄(x̄��x̄)� 2⇢̄(x̄)

�
. (S71)

This is ill-defined at the boundaries x̄ = 0 and x̄ = 1, which is addressed by incorporating the boundary conditions.
For illustration, consider the left boundary, x̄ = 0, and suppose that our domain included also a point at x̄ = ��x̄.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2020. ; https://doi.org/10.1101/2020.05.23.112664doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.23.112664
http://creativecommons.org/licenses/by/4.0/


S16

Then, we could approximate the boundary condition r̄⇢̄S |x̄=0 = �k̄kin by a centred di↵erence scheme, and solve out
for the fictional point at x̄ = ��x̄, namely,

r̄⇢̄S |x̄=0 = �k̄kin

) 1

2�x̄

�
⇢̄S(�x̄)� ⇢̄S(��x̄)

�
= �k̄kin

) ⇢̄S(��x̄) = ⇢̄S(�x̄) + 2�x̄ k̄kin,

which, when inserted into Eq. S71, specifies r̄2⇢̄S at x̄ = 0, i.e.,

r̄2⇢̄S |x̄=0 =
1

�x̄2

�
2⇢̄S(�x̄)� 2⇢̄S(0)

�
+

2

�x̄
k̄kin. (S72)

Similar considerations apply for the boundary at the right (x̄ = 1) and for the boundary conditions of ⇢̄ES .
After discretizing, Eq. S69 can be written in a matrix form as

MSz }| {0

BBBBB@

1

�x̄2

0

BBBBB@

�2 2 0 · · · 0
1 �2 1 · · · 0
...

...
...

. . .
...

0 · · · 1 �2 1
0 0 · · · 2 �2

1

CCCCCA
� (k̄b + k̄p)I

1

CCCCCA
~⇢S = �k̄So↵~⇢ES +

~bz }| {0

BBBBB@

� 2
�x̄ k̄kin
0
...
0
0

1

CCCCCA
,

0

BBBBB@

1

�x̄2

0

BBBBB@

�2 2 0 · · · 0
1 �2 1 · · · 0
...

...
...

. . .
...

0 · · · 1 �2 1
0 0 · · · 2 �2

1

CCCCCA
� k̄So↵I

1

CCCCCA

| {z }
MES

~⇢ES = �k̄b~⇢S, (S73)

where ~⇢S, ~⇢ES are column vectors of the nondimensionalized concentration profiles evaluated at the spatial grid points,
i.e., [⇢̄(0), ⇢̄(�x̄), · · · ]T . Solving these matrix equations yields

~⇢S =
�
MS � k̄So↵k̄bM

�1
ES

��1~b,

~⇢ES = �k̄b
�
MSMES � k̄So↵k̄bI

��1~b. (S74)

We compute Eqs. S74 numerically for two substrates: a cognate (‘R’) and a non-cognate (‘W’), which di↵er in their
o↵-rates (kRo↵ = 0.1 s�1 and kWo↵ = 1 s�1, respectively). Having the density profiles, the fidelity of the model becomes
⌘ ⇡ ⇢̄ER(x̄ = 1)/⇢̄EW(x̄ = 1). We calculate the fidelity for di↵erent choices of the first–order rate of enzyme–substrate
binding (kb = kon⇢E); this may be thought of as varying the concentration of free enzyme in the cell. The results are
shown in Fig. 5 of the main text.

2. Energy dissipation

In Appendix B3, we estimated the minimum power that a gradient maintaining mechanism would need to dissipate
in order to set up an exponentially decaying profile of di↵using substrates. Here, we calculate this power for the
kinase/phosphatase–based mechanism and compare it with the lower bound estimated earlier.
Let us assume that phosphorylation and dephosphorylation reactions by kinases and phosphatases are nearly ir-

reversible with associated free energy costs of �"kin and �"phosph per reaction, respectively. The net rate at which
active substrates get dephosphorylated is kpStotal and it needs to be identical to the net phosphorylation rate of
inactive substrates in order for Stotal to remain constant. With the costs of each reaction known, we can write the
rate of energy dissipation Pk/p as

Pk/p = kpStotal(�"kin +�"phosph). (S75)
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Now, when the enzyme activity is very low, the kinase/phosphatase mechanism will create an exponential profile of
active substrates with a decay length scale �S =

p
DS/kp. Expressing the rate of phosphorylation in terms of �S and

DS (i.e., kp = DS/�
2
S
), and substituting it into Eq. S75, we obtain

Pk/p =
DSStotal

�2
S

(�"kin +�"phosph). (S76)

Comparing this result with the lower bound found earlier (Eq. S37), we can note the presence of an extra factor
(�"kin + �"phosph). Since the free energy consumption during ATP hydrolysis is ⇠ 10 kBT , we can say that the
dissipated power of the kinase/phosphatase system for setting up an exponential gradient surpasses the lower limit
roughly by an order of magnitude.
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