Skip to main content
Log in

Quantification of Brominated Polycyclic Aromatic Hydrocarbons in Environmental Samples by Liquid Chromatography Tandem Mass Spectrometry with Atmospheric Pressure Photoionization and Post-column Infusion of Dopant

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A sensitive method for the quantification of brominated polycyclic aromatic hydrocarbons (BrPAHs) in environmental samples is yet to be developed. Here, we optimized the analytical conditions for liquid chromatography tandem mass spectrometry with atmospheric pressure photoionization and post-column infusion of dopant (LC-DA-APPI-MS/MS). We then compared the sensitivity of our developed method with that of conventional gas chromatography high-resolution MS (GC-HRMS) by comparing the limits of quantification (LOQs) for a range of BrPAHs. Finally, to evaluate our developed method, 12 BrPAHs in sediments and fish collected from Tokyo Bay, Japan, were analyzed; 9 common PAHs were also targeted. The LOQs of the developed analytical method were 14–60 times lower than those of GC-HRMS for the targeted BrPAHs. The developed analytical method is a sensitive approach for determining the concentrations of BrPAHs in sediment and fish samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Ohura, K.-i. Sawada, T. Amagai, and M. Shinomiya, Environ. Sci. Technol., 2009, 43, 2269.

    Article  CAS  PubMed  Google Scholar 

  2. Y. Lv, X. Zhao, L. Yang, X. Zhang, and Y. Bai, Anal. Sci., 2018, 34, 421.

    Article  CAS  PubMed  Google Scholar 

  3. H. Morisaki, S. Nakamura, N. Tang, A. Toriba, and K. Hayakawa, Anal. Sci., 2016, 32, 233.

    Article  CAS  PubMed  Google Scholar 

  4. S. Sakurai and T. Uchimura, Anal. Sci., 2014, 30, 891.

    Article  CAS  PubMed  Google Scholar 

  5. I. Ueta, M. Onikata, K. Fujimura, T. Yoshimura, S. Narukami, S. Mochizuki, T. Sasaki, and T. Maeda, Anal. Sci., 2017, 33, 1175.

    Article  CAS  PubMed  Google Scholar 

  6. H. Cao, S. Chao, L. Qiao, Y. Jiang, X. Zeng, and X. Fan, Sci. Total Environ., 2017, 575, 692.

    Article  CAS  PubMed  Google Scholar 

  7. Y. Chen, F. Zhang, J. Zhang, M. Zhou, F. Li, and X. Liu, Ecotoxicol. Environ. Saf., 2018, 162, 647.

    Article  CAS  PubMed  Google Scholar 

  8. N.-D. Dat and M. B. Chang, Sci. Total Environ., 2017, 609, 682.

    Article  CAS  PubMed  Google Scholar 

  9. Q. Li, M. Kim, Y. Liu, and C. Yoo, Sci. Total Environ., 2018, 618, 430.

    Article  CAS  PubMed  Google Scholar 

  10. Q. Wang, Y. Miyake, M. Tokumura, T. Amagai, Y. Horii, K. Nojiri, and N. Ohtsuka, Sci. Total Environ., 2018, 625, 633.

    Article  CAS  PubMed  Google Scholar 

  11. Y. Miyake, M. Tokumura, Q. Wang, T. Amagai, Y. Horii, and K. Kannan, Environ. Sci. Technol., 2017, 51, 14100.

    Article  CAS  PubMed  Google Scholar 

  12. Y. Miyake, M. Tokumura, Q. Wang, T. Amagai, and Y. Horii, J. Environ. Sci., 2017, 61, 91.

    Article  CAS  Google Scholar 

  13. T. Ohura, H. Sakakibara, I. Watanabe, W. J. Shim, P. M. Manage, and K. S. Guruge, Environ. Pollut., 2015, 196, 331.

    Article  CAS  PubMed  Google Scholar 

  14. R. Jin, G. Liu, X. Jiang, Y. Liang, H. Fiedler, L. Yang, Q. Zhu, Y. Xu, L. Gao, and G. Su, Sci. Total Environ., 2017, 593, 390.

    Article  PubMed  Google Scholar 

  15. Y. Horii, T. Ohura, N. Yamashita, and K. Kannan, Arch. Environ. Contam. Toxicol., 2009, 57, 651.

    Article  CAS  PubMed  Google Scholar 

  16. N. Yamashita, K. Kannan, T. Imagawa, D. L. Villeneuve, S. Hashimoto, A. Miyazaki, and J. P. Giesy, Environ. Sci. Technol., 2000, 34, 3560.

    Article  CAS  Google Scholar 

  17. S.-S. Cai, J. A. Syage, K. A. Hanold, and M. P. Balogh, Anal. Chem., 2009, 81, 2123.

    Article  CAS  PubMed  Google Scholar 

  18. M. Tokumura, M. Seo, Q. Wang, Y. Miyake, T. Amagai, and M. Makino, Chemosphere, 2019, 226, 316.

    Article  CAS  PubMed  Google Scholar 

  19. Y. Miyake, M. Tokumura, H. Nakayama, Q. Wang, T. Amagai, S. Ogo, K. Kume, T. Kobayashi, S. Takasu, and K. Ogawa, Sci. Total Environ., 2017, 601, 1333.

    Article  PubMed  Google Scholar 

  20. M. Martinefski, N. Feizi, M. L. Lunar, and S. Rubio, Chemosphere, 2019, 237, 124525.

    Article  CAS  PubMed  Google Scholar 

  21. Y. Guo, K. Senthilkumar, H. Alomirah, H.-B. Moon, T. B. Minh, M. A. Mohd, H. Nakata, and K. Kannan, Environ. Sci. Technol., 2013, 47, 2932.

    Article  CAS  PubMed  Google Scholar 

  22. L. Hollosi and T. Wenzl, J. Chromatogr, A, 2011, 1218, 23.

    Article  CAS  PubMed  Google Scholar 

  23. K. A. Hanold, S. M. Fischer, P. H. Cormia, C. E. Miller, and J. A. Syage, Anal. Chem., 2004, 76, 2842.

    Article  CAS  PubMed  Google Scholar 

  24. I. Marchi, S. Rudaz, and J.-L. Veuthey, Taianta, 2009, 78, 1.

    Article  CAS  Google Scholar 

  25. N. Itoh, Y. Aoyagi, and T. Yarita, J. Chromatogr, A, 2006, 1131, 285.

    Article  CAS  PubMed  Google Scholar 

  26. C. Hutzler, A. Luch, and J. G. Filser, Anal. Chim. Acta, 2011, 702, 218.

    Article  CAS  PubMed  Google Scholar 

  27. X. Zheng, K. T. Dupuis, N. A. Aly, Y. Zhou, F. B. Smith, K. Tang, R. D. Smith, and E. S. Baker, Anal. Chim. Acta, 2018, 1037, 265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. N. M. Tue, S. Takahashi, G. Suzuki, T. Isobe, P. H. Viet, Y. Kobara, N. Seike, G. Zhang, A. Sudaryanto, and S. Tanabe, Environ. Int., 2013, 51, 160.

    Article  PubMed  Google Scholar 

  29. N. M. Tue, A. Sudaryanto, T. B. Minh, T. Isobe, S. Takahashi, P. H. Viet, and S. Tanabe, Sci. Total Environ., 2010, 408, 2155.

    Article  CAS  PubMed  Google Scholar 

  30. A. I. Moukas, N. C. Maragou, N. S. Thomaidis, and A. C. Calokerinos, Anal. Lett., 2018, 51, 96.

    Article  CAS  Google Scholar 

  31. L. Wang, C. Li, B. Jiao, Q. Li, H. Su, J. Wang, and F. Jin, Sci. Total Environ., 2018, 616, 288.

    Article  PubMed  Google Scholar 

  32. D. R. Smith, D. B. Robb, and M. W. Blades, J. Am. Soc. Mass Spectrom., 2009, 20, 73.

    Article  CAS  PubMed  Google Scholar 

  33. I. Takeuchi, N. Miyoshi, K. Mizukawa, H. Takada, T. Ikemoto, K. Omori, and K. Tsuchiya, Mar. Pollut. Bull., 2009, 58, 663.

    Article  CAS  PubMed  Google Scholar 

  34. Y. Liang, M. Tse, L. Young, and M. H. Wong, Water Res., 2007, 41, 1303.

    Article  CAS  PubMed  Google Scholar 

  35. A. U.-K. Wickrama-Arachchige, T. Hirabayashi, Y. Imai, K. S. Guruge, T. S. Dharmaratne, and T. Ohura, Environ. Pollut., 2019, 113487.

    Google Scholar 

  36. R. Jin, M. Zheng, G. Lammel, B. A. M. Bandowe, and G. Liu, Prog. Energy Combust. Sci., 2020, 76, 100803.

    Article  Google Scholar 

  37. J.-L. Sun, H. Zeng, and H.-G. Ni, Chemosphere, 2013, 90, 1751.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by JSPS KAKENHI Grant Number JP16H05891.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuichi Miyake or Takashi Amagai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masuda, M., Wang, Q., Tokumura, M. et al. Quantification of Brominated Polycyclic Aromatic Hydrocarbons in Environmental Samples by Liquid Chromatography Tandem Mass Spectrometry with Atmospheric Pressure Photoionization and Post-column Infusion of Dopant. ANAL. SCI. 36, 1105–1111 (2020). https://doi.org/10.2116/analsci.20P025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.20P025

Keywords

Navigation