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Abstract
The advantages of multidisciplinary design are well understood, but not yet fully 
adopted by the industry where methods should be both fast and reliable. For such 
problems, minimum computational cost while providing global optimality and 
extensive design information at an early conceptual stage is desired. However, such 
a complex problem consisting of various objectives and interacting disciplines is 
associated with a challenging design space. This provides a large pool of possible 
designs, requiring an efficient exploration scheme with the ability to provide suf-
ficient feedback early in the design process. This paper demonstrates a generalized 
optimization framework with rapid design space exploration capabilities in which a 
Multifidelity approach is directly adjusted to the emerging needs of the design. The 
methodology is developed to be easily applicable and efficient in computationally 
expensive multidisciplinary problems. To accelerate such a demanding process, Sur-
rogate Based Optimization methods in the form of both Radial Basis Function and 
Kriging models are employed. In particular, a modification of the standard Kriging 
approach to account for Multifidelity data inputs is proposed, aiming to increasing 
its accuracy without increasing its training cost. The surrogate optimization problem 
is solved by a Particle Swarm Optimization algorithm and two constraint handling 
methods are implemented. The surrogate model modifications are visually demon-
strated in a 1D and 2D test case, while the Rosenbrock and Sellar functions are used 
to examine the scalability and adaptability behaviour of the method. Our particular 
Multiobjective formulation is demonstrated in the common RAE2822 airfoil design 
problem. In this paper, the framework assessment focuses on our infill sampling 
approach in terms of design and objective space exploration for a given computa-
tional cost.
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List of symbols

Greek symbols
�	� Radial Basis Functions parameters vector
�	� Gram matrix used in Radial Basis Function models
�	� Correlation matrix used in Kriging models
�	� Correlation vector used in Kriging predictor
𝜃l	� Optimum Kriging shape parameter provided by the training of the model
�	� Likelihood estimation function
�	� Mean of Kriging model
�2	� Variance of Kriging model
r	� Gram matrix vector
�2
e
	� Variance of the error surrogate model

�	� Radial Basis Functions shape parameter
Φ(x)	� Cumulative distribution function
rij	� Element of the gram matrix
�(x)	� Probability density function
�ij	� Element of the correlation matrix

Latin symbols
�	� Vector of error training data
�	� Vector of objective function values
D	� Design space
e	� Low fidelity tool error
fHF	� High fidelity function result
fLF	� Low fidelity function result
p	� Radial Basis Functions smoothing parameter
p̂l	� Optimum Kriging smoothness parameter provided by the training of the 

model
ŝ2	� Mean squared error of the Kriging model
ŝ2
e
	� Mean squared error of the error surrogate model

ŷ	� Surrogate model predictor
yHF	� Objective function value of the high fidelity tool
y∗
i
	� The objective function value of a member of the pareto set

yLF	� Objective function value of the low fidelity tool
ymin	� Minimum objective function value found
y	� Objective function value

Abbreviations
ALPSO	� Augmented Lagrangian Particle Swarm Optimization
ASO	� Asymmetric Subspace Optimization
BFGS	� Broyden–Fletcher–Goldfarb–Shanno algorithm
EI	� Expected Improvement
FEIC	� Feasible Expected Improvement Criterion
GEK	� Gradient Enhanced Kriging
HF	� High Fidelity
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LF	� Low Fidelity
LHS	� Latin Hypercube Sampling
MDA	� Multidisciplinary Analysis
MDF	� Multidisciplinary Feasible
MDO	� Multidisciplinary Design Optimization
MF	� Multifidelity
MO	� Multiobjective
MoE	� Mixture of Experts
MOPSO	� Multiobjective Particle Swarm Optimization
MSE	� Mean Squared Error
N-M	� Nelder-Mead Non-Linear Simplex Method
OF	� Objective Function
PF	� Probability of Feasibility
PI	� Probability of Improvement
RBF	� Radial Basis Functions
SBO	� Surrogate Based Optimization
TD	� Training Data
TR	� Trust Region
XDSM	� EXtended Design Structure Matrix

1  Introduction

Following several decades of continuous development, the aerodynamic design of 
conventional aircraft configurations has matured; seemingly reaching a plateau. 
Development is achieved through many small and slow disciplinary improvements 
while—still as a typical industrial practice—a leading discipline dictates the design 
of the rest of them. However, this approach results to an inferior performance in 
terms of efficiency of the subsystems (due to the dominant discipline constraints) 
but in terms of overall system performance as well. Surpassing the current perfor-
mance plateau requires a re-definition of the way conceptual and preliminary design 
is performed in order to take advantage of the synergy between the disciplines. An 
improvement is achieved when the subsystems are developed in parallel under a 
multidisciplinary formulation, guided by one or multiple global merits. A demon-
stration of this is found in the superiority of aerostructural wing design over aerody-
namic wing design Chittick and Martins (2009).

Problems like the aerostructural wing design can be quite complex and costly, 
providing the application ground for techniques like surrogate modelling Liem 
et  al. (2015). Surrogate modelling is typically used to decrease the computational 
expenses associated with a High Fidelity (HF) analysis, or/and guide the design 
Kipouros et al. (2007) as in Surrogate Based Optimization (SBO) problems. In this 
sense, LeGresley LeGresley and Alonso (2000) used a POD method to approxi-
mate the pressure distribution within an airfoil design application, while Mauery 
and Korte Simpson et al. (2001) used a Kriging model for aerospike nozzle design. 
Parr et al. (2012) used Kriging to guide the design of a constrained satellite boom 
and a wingbox. A combination of metamodelling and adjoint methods that provide 
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reasonably inexpensive sensitivity information, allows the efficient development 
of Gradient Enhanced Kriging (GEK) or Co-Kriging approximations Chung and 
Alonso (2002).

The high potential of the metamodelling-based approach led to an effort of 
improving the accuracy of the established methods, as in the case of the Radial Basis 
Functions (RBF) Mullur and Messac (2005) and Co-Kriging Han et al. (2012). An 
improvement can be attained by dividing the design space to create local metamod-
els. Following this idea, Liem Liem et al. (2015) applied the concept of Mixture of 
Experts Jacobs et al. (1991); Masoudnia and Ebrahimpour (2014)(MoE) using Krig-
ing, GEK and RBF, trained locally in different design space subregions defined by 
clustering algorithms. Nelson et al. (2007) proposed their Kriging model that uses 
Low Fidelity (LF) and High Fidelity simulations within a TreedGaussianProcess 
partitioning. The use of Multifidelity (MF) numerical tools is another promising way 
of accelerating a complicated optimization problem. This idea has been extensively 
explored in recent years and good examples of formulations have been developed 
(Bandler et  al. 1994; Jarrett and Ghisu 2012; Alexandrov et  al. 2001, 1998) and 
applied Choi et al. (2008); Chung and Alonso (2002); Rumpfkeil and Beran (2017). 
Multifidelity methods are of course not applied only within a Surrogate Based Opti-
mization framework and can be successfully integrated in Gradient-Based method-
ologies as well. An example of this can be found in the work by Bryson and Rump-
fkeil (2018) where Multifidelity results are used to approximate the Hessian matrix 
within a BFGS Trust Region (TR) based optimizer. Other applications include 
Multidisciplinary optimization Rodríguez et al. (2001), aircraft stability Park et al. 
(2017) and uncertainty optimization which is closely linked to Multifidelity tech-
niques and surrogate modelling Peherstorfer et al. (2018); Chaudhuri et al. (2018).

In this paper, we present a methodology originally developed to cover the needs 
of single and multiobjective multidisciplinary optimization Kontogiannis et  al. 
(2017). However, thanks to its generalized formulation, its application range extends 
well beyond the limits of aerospace design and it should in fact prove efficient to any 
design process associated with computationaly demanding performance analysis. 
In our aerospace design applications, as in any industrial application, the potential 
hidden in multidisciplinary interaction is maximized once the optimization frame-
work is applied early in the design stage. As such, extensive conceptual design space 
exploration is offered while providing reliable engineering feedback to guide the rest 
of the design and fine-tuning optimization studies. To satisfy such exploration and 
global optimality requirements, our tool uses the Expected Improvement (EI) cri-
terion Jones (2001). Under this SBO plan, the trained model is not used directly 
to find the minimum since this would be the optimum of a poor representation of 
the actual design space. Instead, EI indicates the design point to be sampled next, 
given its value and uncertainty predictions, therfore guiding the optimization. The 
EI method requires the use of a Gaussian Process model like Kriging or Co-Kriging. 
Here, a modification of Kriging was developed to accommodate MF data points. 
Although Co-Kriging can be used as an MF version of Kriging, it was avoided due 
to the complexity and cost increase associated with the tuning of the additional 
hyperparameters. A use of a global optimizer is necessary for the solution of the 
EI optimization subproblem, as it is acknowledged that the EI space is multimodal 
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Jones et al. (1998). Two solutions of different fidelities are defined for the infill anal-
ysis. Selecting the appropriate analysis method uses a criterion which depends on 
the design space representation and can be directly adjusted by the engineer. As a 
result, this method can be used in different stages of the design focusing either in 
very rapid conceptual tradeoff studies or in a more detailed design study.

Before proceeding to applying the method to aerostructural design problems, the 
performance and characteristics of our methodology are examined. In this paper, 
simple 1D and 2D test cases are used to visually demonstrate the fundamental devel-
opments of the freamework, while the scalable Rosenbrock function Rosenbrock 
(1960) provides an overview on the scalability attributes of the approach. The for-
mulation of the Multidisciplinary Design Optimization (MDO) problem as imple-
mented in our methodology, is assessed using the popular Sellar function MDO test 
case Sellar et al. (1996). As a typical industrial design example, the RAE2822 case 
is being used to test our Multiobjective (MO) formulation, with a focus on our infill 
sampling approach.

In Sects. 2 and 3 the methodology of the framework is described in more detail: 
information regarding the surrogate generation and its modification into a MF SBO 
plan, details regarding the suboptimization process, as well as the handling of the 
constraints are provided. Section  4 displays the framework through well-known 
1D and 2D test cases used to validate the work. The methodology is applied to the 
Rosenbrock and the Sellar MDO test function in Sect. 5, which describes the case 
set up formulations and the respective results. Section 6 reviews the impact of our 
parallel infill sampling approach in a MO RAE2822 airfoil problem and a summary 
outlining the conclusions from this work as well as the future work is provided in 
Section 7.

2 � Methodology

The proposed methodology constitutes the core of the optimization framework 
aiming towards MDO problems.1 Since multiple disciplines are typically associ-
ated with conflicting objective functions, it is developed so that it can handle MO 
problems.

2.1 � Surrogate modelling and SBO in an MF context

Recent state of the art MF approaches suggest using the results from LF and HF 
tools, yLF and yHF respectively, to follow the relationship below Forrester and Keane 
(2009),

(1)yHF(�) = yLF(�) + e(�)

1  Its generalized formulation however makes it relevant to any such design problem associated with a 
computationally challenging analysis.
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A typical application of this decomposition within an SBO framework Jones (2001) 
is the trust region Demange et  al. (2016a, b), Jarrett and Ghisu (2015) approach 
involving the generation of a locally accurate error surrogate (typically generated by 
an RBF model) to correct the LF value according to eq.1. However, such an optimi-
zation methodology is not appropriate for our needs for two main reasons. It does not 
offer the exploration characteristics required during a conceptual design stage study. 
Furthermore, it demands a high number of LF analyses as the LF tool is directly 
called by the optimizer during the suboptimization stage. Such an approach, even for 
low cost LF tools, becomes prohibitively expensive for an MO MDO study. To mini-
mize the suboptimization costs we are using metamodels as their occasional train-
ing is cheaper—for a reasonable number of training data points. The optimizer then 
calls a surrogate model predictor which is of course cheaper than an LF tool. There-
fore, in the global SBO methodology that we present, MF information is directly 
implemented in the surrogate model generated. A popular metamodelling technique 
for MF SBO is Co-Kriging Forrester et al. (2007) which, unlike Kriging, uses both 
LF and HF point correlation to compose a unified MF covariance matrix. However, 
such an approach includes the tuning of additional hyperparameters, increasing the 
likelihood estimation cost quadratically to the order of the matrix. We therefore con-
sider that Co-Kriging covariance matrix operations make it too expensive for real 
industrial MDO applications at which we aim.

Instead, to reduce computational expenses while aiming for global HF optimality, 
we propose a novel MF modified Kriging based model (MF modKriging). The compu-
tationally efficient RBF model cannot provide global exploration within an SBO frame-
work Forrester et al. (2008). In the next paragraphs, we present how we modify ordi-
nary Kriging so it can accommodate MF information and be used instead of the more 
expensive Co-Kriging model.

Throughout this work—as typical in most MF research efforts, only HF results are 
considered to be accurate within the numerical framework. LF simulations are inaccu-
rate, do not provide additional information Kennedy and O’Hagan (2000) and despite 
being efficiently used to guide the optimization process, they are associated with a 
non constant error e(�) defined in Eq. 1. Therefore, to guide towards HF optima, our 
modified Kriging model should be an interpolation through HF points and a regres-
sion through LF ones; according to the associated error of the latter. This error is either 
estimated by a simple RBF Forrester and Keane (2009) or a Kriging model using Eq. 1, 
given a sampling of both LF and HF points. For this, the space filling Latin Hypercube 
Sampling (LHS) method with a Morris-Mitchell maximin approach Morris and Mitch-
ell (1995); Johnson et al. (1990) is used. The sampling requires m points analyzed only 
by the LF tool at �LF , and n new points analyzed with both the LF and HF tool at �HF . 
As such, we define the complete objective value vector � , and the Error vector � con-
sisting of n data, derived by Eq. 1
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If RBF is used to model the Objective Function (OF) error, then in matrix form we have,

When Gaussian kernel functions are used, the Gram matrix � consists of elements 
of the form,

where the smoothness parameter p is set to p = 2 . Alternatively, to the author’s 
experience Mátern functions provide an accurate and robust choice [40]. The param-
eters vector � is found by a Cholesky decomposition and back-substitution. The 
error associated with the use of the LF tool can be now calculated in any design 
point. Below, we show how the error estimation is used in MF modKriging. Initially, 
consider the standard ordinary Kriging, that uses the correlation matrix,

The elements of this matrix estimate the correlation of the data points by modelling 
the function as a Gaussian process:

Here, d is the number of the design variables and �l and pl are the shape and smooth-
ing parameters respectively, that need to be defined.

We generate the Kriging predictor by optimizing the set of � , �2 , �l , pl param-
eters. The mean � and variance �2 are easily optimized in a deterministic manner 

(2)� =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

y
(1)

LF
(�

(1)

LF
)

y
(2)

LF
(�

(2)

LF
)

⋮

y
(m)

LF
(�

(m)

LF
)

y
(m+1)

LF
(�

(1)

HF
)

y
(m+2)

LF
(�

(2)

HF
)

⋮

y
(m+n)

LF
(�

(n)

HF
)

y
(m+n+1)

HF
(�

(1)

HF
)

y
(m+n+2)

HF
(�

(2)

HF
)

⋮

y
(m+n+n)

HF
(�

(n)

HF
)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, � =

⎛
⎜
⎜
⎜
⎜
⎝

e(1)(�
(1)

HF
)

e(2)(�
(2)

HF
)

⋮

e(n)(�
(n)

HF
)

⎞
⎟
⎟
⎟
⎟
⎠

(3)�� = �

(4)rij = exp−(�‖�� − ��‖)
p

(5)� =

⎛
⎜
⎜
⎜
⎝

Corr[y(�1), y(�1)] Corr[y(�1), y(�2)] … Corr[y(�1), y(�n)]

Corr[y(�2), y(�1)] … … Corr[y(�2), y(�n)]

⋮ ⋮ ⋱ ⋮

Corr[y(�n), y(�1)] Corr[y(�n), y(�2)] … Corr[y(�n), y(�n)]

⎞
⎟
⎟
⎟
⎠

(6)Corr[y(��), y(��)] = exp

�

−

d�

l=1

�l‖xj,l − xi,l‖
pl

�



730	 S. G. Kontogiannis, M. A. Savill 

1 3

Forrester et al. (2008). Finding the optimum shape and smooth parameter ( 𝜃l and 
p̂l ) however, requires a stochastic optimization process aiming at maximizing the 
Likelihood Estimation function � given by,

Therefore, the problem of optimizing the hyperparameters is defined by,

Finally, the Kriging predictor takes the form,

where � is the correlation vector associated with the point to be predicted.
The Kriging predictor is not used directly since we apply the Kriging model to pro-

vide the next sampling point under the EI Jones (2001) plan. This approach can lead to 
global optimality without a prohibitively costly design space exploration and requires 
information regarding the metamodel’s Mean Squared Error (MSE). This is given by,

MSE is zero in training data points and it increases between them due to value 
uncertainty. The above formulation is used to construct an estimator of the expected 
improvement of the objective function in any design space point, given the current 
minimum value ymin . In any point where ŝ(�) ≠ 0 , this is expressed as,

where Φ is the cumulative distribution function,

and � is the probability density function,
In Eq. 11, erf is the error function expressed as,

The infill point x∗ ∈ D ⊂ Rd is then the solution of the suboptimization problem,

So far, we have presented the ordinary Kriging, used extensively in the literature. 
However, this cannot accommodate data resulting from MF analyses. Our MF 

(7)𝜆 = −
n

2
log(𝜎̂2) −

1

2
log |�|

�̂l, p̂l = argmin
�,�

𝜆
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+ ŝ(�)𝜙

(
ymin − ŷ(�)
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Kriging modification uses a simple way to superimpose LF and HF information 
within the model. Specifically, we want to include this MF information in the Krig-
ing predictor (Eq. 15) and MSE (Eq. 17) expression, therefore transforming the EI 
into an MF EI.2

For MF modKriging, we define the correlation matrix to use only the LF training 
data of our MF vector � , so that:

The Kriging predictor ŷ now takes the following form:

where 𝜇̂ is the Kriging optimized mean value calculated as,

The HF information is recovered by e(�) , which is a surrogate prediction of the LF 
tool error, defined by Eq. 1. Therefore, Kriging predictor now interpolates HF points 
and fits LF ones depending on their predicted error. However, since the EI estima-
tion is also dependent on the MSE, complete HF information recovery demands the 
alteration of the MSE equation as:

where the model variation �2 is given by,

with n being the number of sampling data points. In Eq. 17, the ŝ2
e
 term is the MSE 

of the error metamodel, essentially expressing the uncertainty that arises from the 
LF tool correction model. The MSE quantity is typically provided by Kriging mod-
els through Gaussian based correlation matrix operations, as above. Therefore, ŝ2

e
 is 

formulated in a straightforward way if a Kriging model is used for the LF error pre-
diction. However, as it is frequently stated in this paper, the optimization framework 
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2  A Kriging model can also incorporate MF data by adding the error prediction for each LF point in the 
correlation matrix diagonal, functioning as a regularization parameter, similarly to fitting a noisy signal. 
Physically, this means that we consider the inaccuracy of the LF model to be inducing noise in the objec-
tive function space. However, despite being successful in improving the objective function approxima-
tion, such an approach is numerically unstable in high error values. This leads to failure in calculating the 
MSE and cannot be used in a EI SBO context.
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should have the minimum computational costs. As such, we often use RBF for the 
LF error prediction. In this case, by using a Gaussian kernel we can relate the Gram 
matrix to the Correlation matrix used in Kriging models. By comparing Eqs. 4 and 
6 we observe that Gram matrix is identical to the Correlation matrix in the spe-
cial case that: (1) we define the training data points to be correlated with each other 
in the same way for all design coordinates (isotropic model), and (2) this correla-
tion coincides with the correlation defined in the Gaussian RBF kernel through the 
constant shape parameters � and p. Namely, for a case where � = �1 = �2,⋯ �d and 
p = 2 , the following holds,

This essentially implies that the RBF model used to express the error of the LF tool 
is equivalent to a Kriging model which has the aforementioned correlation charac-
teristics. Therefore, we can use it to predict a distribution of the MSE, with exactly 
the same “assumptions” used in an RBF interpolation model (that is, isotropic shape 
parameter). As such, ŝ2

e
 can now be calculated as,

where the variance of the error model �2
e
 can be calculated using eqs.17,18, by set-

ting � = � and � = r.
In the generic case where a Kriging model has �1 ≠ �2,… �d , its predicted MSE 

distribution will divert from the one similarly predicted by RBF. Nevertheless, such 
a prediction disagreement is of exactly the same nature as the disagreement between 
an RBF and a trained Kriging model value predictor.

The importance of using Eqs. 17 and 20 lies in the fact that they restore a zero 
MSE value to the HF data points and a non-zero finite value to the LF ones. Apart 
from performing regression on the LF data according to their predicted errors—and 
interpolation through HF data—the method can now distinguish between the uncer-
tainty characteristics of the LF/HF points in terms of MSE, and eventually EI (which 
is our value of interest). The loss of LF/HF data correlation (as exploited in Co-
Kriging) is compensated by the reduction of the overall model training costs.

2.2 � MF infill sampling plan

As shown, our use of existing MF tools deviates from other popular methods like 
trust region and space mapping (Alexandrov et al. 1998; Leifsson and Koziel 2010). 
Furthermore, contrary to typical EI practice, our infill points are not always sam-
pled using the HF tool. Here, we are using a straightforward plan which allows the 
engineer to adapt the method to his needs and to the stage of the design process. 
The solution of the suboptimization problem leads to a potential LF or HF infill 
analysis. If the error predicted on the infill point is lower than an error threshold 
defined by the engineer, then the LF tool is considered to be “accurate enough” and 
a LF analysis is performed. Hence, computational expenses are avoided for points 
for which the LF tool is reliable enough for the purpose of the design stage, as LF 
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and HF tools would show no significant difference. Nevertheless, when a predefined 
number of consecutive LF infill samplings is surpassed, both HF and LF infill sam-
pling is performed. It is critical to ensure that the error estimation model is updated 
frequently enough to allow for reliable predictions in all interesting areas. Failure 
in updating the error surrogate would lead to an excessive number of LF infill sam-
plings, as the predicted error may be very low in unexplored areas.3 Furthermore, 
bad error prediction significantly deteriorates the reliability of the y predictor, trick-
ing EI into exploring fictionally promising points.4

This method is appropriate for an industrial environment due to its error and iter-
ation limits, which allow the engineer to use it either for a conceptual or a more 
detailed design. High error threshold and iterations limits lead to a quick optimum 
tradeoff study in a conceptual design stage. The inverse would be preferable in later 
design stage studies.

2.3 � Optimizer

In our implementation, for an MO problem involving p objectives the suboptimiza-
tion problem is expressed explicitly as,

Therefore, a pareto front of this cheap MO optimization problem—which is solved 
by standard MO optimizers as discussed in the next paragraph— provides k infill 
points which can be then sampled in parallel. Obtaining multiple infill points in a 
such a cheap manner more than compensates any potential—limited—expenses due 
to the MO search. Such an explicit MO suboptimization process approach is not typ-
ical in MO SBO methods Forrester and Keane (2009); Kontogiannis (2018), how-
ever we have found that it is this explicit formulation that guarantees a wide pareto 
front, while offering the advantage of parallel infill analyses.

For MO cases, the suboptimization problem is solved by our own Multi Objective 
Particle Swarm Optimization (MOPSO) code.5 This is an MO version Alvarez-Ben-
itez et al. (2005) of the PSO algorithm which when applied in the suboptimization 
process, provides the dominant points based on the maximum EI of each objective. 
The leader of the swarm is selected using the concept of pareto dominance classify-
ing it as a Pareto Dominance MOPSO type (see Durillo et al. (2009) for an overview 
of other approaches). In our implementation, a selection method is added to the ones 
already proposed in Alvarez-Benitez et  al. (2005), able to provide a point to pro-
mote diversity and guarantee a wide and uniformly distributed EI pareto front. The 
optimizer was validated using the Fonseca and Fleming function to ensure pareto 

�∗
�
, �∗

�
… �∗

�
= arg

(
max
�∈D

(
EI1(�) ,EI2(�) , … , EIp(�)

))

3  This is true in RBF models with kernel functions of asymptotic behaviour. It does not hold in linear or 
cubic kernel cases.
4  A poor error model can deceive the EI plan, leading to inefficient exploration or convergence to LF 
optimality.
5  As demonstrated later, for single objective problems ALPSO is used.



734	 S. G. Kontogiannis, M. A. Savill 

1 3

Fig. 1   Flowchart describing the suggested MF SBO methodology
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uniformity and global optimality. The complete optimization methodology is sum-
marized in Fig. 1.

3 � Constraints

The effect that the constraint handling methods have to the methodology’s conver-
gence behaviour might be critical for industrial applications. Such design problems 
are typically dominated by constraints, and their computational cost demands a good 
understanding on the way convergence and feasibility is achieved. This is especially 
the case in optimization studies with limited budget where both final result but also 
feasibility during the optimization convergence is desired.

In this sense, two methods have been implemented to handle the constraints6 
within the suboptimization process, being summarised in Fig. 5. The first approach 
falls in the general category of penalty methods, specifically applied within an SBO 
environment. A penalty is applied to points for which the surrogate model estima-
tion of the constraint value violates the constraint limit. A penalty can be applied in 
various forms Forrester and Keane (2009), but experience has showed that penal-
izing the point by simply setting EI to zero is effective. This way, the suboptimiza-
tion process is steered to design vectors that are feasible according to the current 
metamodel predictions. On the downside, this method depends a lot on the initial 
constraint surrogate accuracy. Suppose a simple RBF or Kriging constraint model 
which is not accurate due to limited or badly distributed training data points: the 
SBO plan will gradually sample points to the area currently believed to contain the 
optimum. In this case, unexplored areas will be under-sampled leading to inaccurate 
constraint estimations with no mechanism enforcing a sampling in the unexplored 
region.7 This condition will sustain itself: during the suboptimization process, points 
that should not be penalized might be penalized (or the opposite) and a potentially 
promising yet unexplored design space region will not be visited. Therefore, the 
local knowledge of the constraint function in this area will not be improved. This 
increases the initial sampling requirements, which translates to cost.

The second approach requires a Kriging surrogate for the constraint function, 
allowing the calculation of probability of improvement (PI) within the suboptimiza-
tion process. By using the constraint limit instead of the current minimum value in 
the probability of improvement formulation, one can create the probability of fea-
sibility (PF) Forrester and Keane (2009). Therefore, the infill plan can be altered to 
create the Feasible Expected Improvement Criterion (FEIC) simply by multiplying 

6  This discussion focuses on inequality constraints. Equality constraints can be similarly tackled by 
transforming them into inequality ones using tolerance parameters.
7  Since the penalty method simply uses the constraint value prediction and not any information from the 
MSE of the model, it effectively and fundamentally lacks the mechanism to allow a more global search. 
Undersampled areas will have randomly accurate constraint predictions, making the success of the infill 
sampling (constraint-wise) random as well. This is in contrast with the alternative method presented, 
which since using the MSE of the constraint model itself, it fundamentally ’tries’ to improve the global 
accuracy of the constraint model while of course trying to improve the objective as well.
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PF with EI as shown in Eq. 21. Hereafter, to avoid any abbreviation-related confu-
sion, this method is simply referred to as “Feasibility”.

where the probability of feasibility for an inequality constraint problem of g(�) ≤ gc 
and the MF-corrected MSE ŝ2 is expressed as,

The infill point is the one maximizing this combined criterion and the improve-
ment is steered towards regions that are predicted to be feasible and promising. The 
drawback discussed in the penalty method approach is not present in the feasibility 
method, as PF uses information from the MSE of the model itself. This is a mecha-
nism that enforces the sampling of unexplored regions, in which the constraint func-
tion is not sufficiently accurate. The result is a constraint metamodel that not only 
favours global search, but—being more accurate—also leads to feasible infill sam-
pling designs during the optimization process. This approach has shown to be robust 
and effective, however there is a cost associated with the mandatory generation of a 
Kriging model for the constraint.

It should be also noted, that in the cases where the constraint values result from 
MF tools, the constraint metamodel should be able to accommodate MF data. 
Therefore, MF modRBF8 or MF modKriging should be used instead RBF or ordi-
nary Kriging.

4 � Framework demonstration

The presented methodology is assessed and fine-tuned on a 1D and 2D test case 
commonly presented in the literature. The 1D case demonstrates the attributes of the 
modified surrogate model. The 2D case uses the Branin function to illustrate the MF 
modKriging ability in providing global optimality under the selected SBO plan even 
in a sparse sampling.

4.1 � 1D ‑ Test case

The simple 1D problem is described by the following analytical function, which acts 
as the HF function we want to approximate.

(21)�∗ = argmax
�∈D

PF × EI

(22)PF(�) =
1

2

�

1 + erf

�
gc − g(�)

ŝ(�)
√
2

��

(23)f (x) = (6x − 2)2 sin(12x − 4)

8  Although not presented in this paper, the RBF model can be easily modified to an additive MF 
modRBF, similarly to the way MF modKriging was modified.
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This test function allows us to visualize the effect of the error model and its shape 
parameter near the LF points. We also illustrate how the EI distribution changes 
when the MF modified Kriging is used. Fig. 3a, b simply showcase how ordinary 
Kriging cannot be used when MF tools are being used; the proposed modification 
leads to a more accurate representation of the design space as well as a more “effi-
cient” EI distribution. Evidently, the ordinary Kriging cannot distinguish between 
LF and HF points since no MF information is provided, hence interpolating both. 
In our modified version however, only the HF points are interpolated while the LF 
points are fitted, providing a better estimation of the design space. The effect of 
the shape parameter is also apparent in that figure. For too low � values, the ker-
nel function tends to be very wide. In these cases, the error information is highly 
diffused and may decrease the predictor accuracy. However, in high dimensionality 
problems, this is rarely the case as the design points are not quite dense. Therefore, 
the usage of even very low shape parameters in the error model would lead to an 
impact radius of the basis function which will not be significantly larger than the 
average euclidean distance between the design points in the multidimensional space 
(examples of radial basis functions definitions can be found in [40]). In fact, the only 
condition under which a local error prediction would significantly affect and reduce 
the value predictor accuracy (through the linear superposition of Eq. 1) would be the 
the HF sampling is not being “space filling” enough.9 Moreover, an appropriate � 
value can be a priori determined (or when Kriging is used for the error correction it 
is automatically calculated).

The LF values were defined by us so to correspond (percentage-wise) to errors 
of LF models typically observed in engineering design. Furthermore, to emphasize 
the error model effect, the LF and HF points were deliberately selected by us in an 
“unlucky” manner so that they both underestimate and overestimate the HF results 
in order to lead to a challenging non-monotone error distribution. In low x regions, 
the LF tool underestimates the true values but the opposite happens in high regions. 
Despite that, the surrogate exploits the error information successfully.

Figure 3b describes the improved EI as a function of the shape parameter. MF 
modKriging increases the dominance of the global optimum versus the local ones 
in this multimodal EI space. This accelerates the convergence of a global stochastic 
optimizer like the one employed in this framework. We explain the above statement 
by acknowledging the effect of the error MSE in the EI space. The objective value 
predictions affect the MSE estimation (as can be seen from Eq. 17). However, the 
same equation implies how the MSE also uses information inherent to the correla-
tion matrix Ψ . This is done through the parameters �LF , pLF that help define the 
matrix, which uses only LF results and as such, the correlation matrix itself Ψ in 
MF modKriging does not include LF/HF correlation information. Therefore, infor-
mation regarding the uncertainty of LF points could only be provided through the 
additional error MSE term as discussed in the previous section. This additional error 
MSE term includes the uncertainty of the error model itself (that is the model of the 
HF/LF value difference) in a similar fashion; through the corresponding correlation 

9  Using LHS sampling in this work does not allow such a condition.
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matrix. Hence, as intended, when the error MSE term is used in Eq. 17, the MSE 
of a LF point is no longer zero, since in reality the LF analysis—deterministic—is 
associated with an error. This corrected MSE of Eq. 17 corrects the EI space through 
Eq. 10, so that LF points have now a finite EI value as shown in Fig. 3b.

4.2 � 2D ‑ Test case

4.2.1 � Problem formulation

The performance of the MF modified Kriging model in optimization is assessed 
using the multimodal 2D Branin Forrester et al. (2008) function described by:

The above test function represents the LF tool, and features three global minima, an 
attribute which makes it appropriate for testing the convergence of the method. Its 
value is doubled so that it scales with the modified Branin function below, which we 
use as a HF tool:

This function features a wider global optimum area, allowing a direct comparison of 
how the design space topology affects the optimization convergence.

The LF analysis introduces multimodality which serves to showcase how the 
MF modified Kriging properly exploits LF data while avoiding getting stuck in a 
local minimum or an LF global minimum instead of the HF one. To demonstrate the 
methodology’s behaviour in high dimensionality problems with sparse sampling, a 
total of five HF and 16 LF points were used in our sampling. This analogy therefore 
aims to simulate a high dimensionality problem by using a ’training data (TD) over 
number of dimensions ratio’ similar to the ones found in such complex problems. Of 
course, it maintains our purpose of clear visualization, validation as well as low cost 
suitable for code development.

4.2.2 � Kriging modification effect on design space prediction

The error model success in capturing the error trends is vital for the success of the 
methodology as well. Hence, Fig. 4 displays that even a simple RBF model using 
five Training Data (TD) suffices in predicting a smooth error distribution of accurate 
patterns. A close match between our metamodel trend and the OF analytical func-
tion is also observed. The LF information is effectively exploited so that the model 

(24)

f (x1, x2) = 2

⎛
⎜
⎜
⎝

�
x2 − 5.1x2

1

4�2
+ 5

x1

�
− 6

�2

+ 10

�
1 −

1

8�

�
cos(x1) + 10

⎞
⎟
⎟
⎠
, x1 ∈ [−5, 10], x2 ∈ [0, 15]

(25)

f (x1, x2) =

(
x2 −

5.1x2

4�2
+ 5

x1

�
− 6

)2

+ 10

(
1 −

1

8�

)
cos(x1) + 5x1 + 1, x1 ∈ [−5, 10], x2 ∈ [0, 15]



739

1 3

A generalized methodology for multidisciplinary design…

representation is close to the analytical HF function, not displaying any LF associ-
ated minima.

4.2.3 � Fine tuning the parameters of the methodology

Multiple optimization studies were performed to assess the methodology and the use 
of the error MSE term within the EI calculation as well as to fine-tune the subproc-
ess and hyperparameters tuning optimizer details. Each case was executed 200 times 
to ensure reliability since factors like “sampling luck” had to be cancelled out. For 
clarity, fewer results are shown.

Fig. 2   Constraint handling methods, acting during the suboptimization process

Fig. 3   MF mod Kriging characteristics: design space and expected improvement space



740	 S. G. Kontogiannis, M. A. Savill 

1 3

Tuning the Kriging hyperparameters requires a gradient free Toal et al. (2008) 
optimizer to locate the global maximum of the likelihood function. The required 
costs for a reasonably accurate Kriging representation are high but not prohibitive 
for small or even mid dimensionality problems. However, in a highly dimensional 
problem with many training data points, extensive exploration should be avoided 
as training becomes a significant cost of the SBO. Out of four pyOpt Perez et al. 
(2012) optimizers examined and the SciPy implementation of the Nelder-Mead 
Non-Linear Simplex algorithm (N-M), N-M and Mixed Integer Distributed Ant 
Colony Optimization (MIDACO) proved to be the most robust and efficient. Both 
methods were efficient in terms of computational expenses compared to other 
gradient free methods. Despite not being strictly speaking a global optimizer, 
the N-M algorithm was consistent in finding effective hypertuning solutions and 
given its slight cost advantage over MIDACO, it was selected for tuning the MF 
modKriging model.

The suboptimization process requires a global optimizer since the EI evalua-
tion cost is negligible and the maximum EI point is sought in a multimodal space. 
It was found that the ALPSO and MIDACO algorithms were the most effective 

Fig. 4   Modified Branin function contours, acting as the high fidelity function and its approximation 
using MF modKriging. The low fidelity function error is also compared to the RBF model prediction. 
Four high fidelity (square) and 16 low fidelity (triangle) points are used
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exploration algorithms leading to the best infill design points sharing similar 
computational expenses. For the remaining of this work, ALPSO is used.

Within the MF modified Kriging, HF information (which in industry is con-
sidered to be information from a later design stage) is introduced earlier in the 
design stage by the error model. This leads to a more efficient infill sampling 
process, and a faster convergence, confirmed by the findings of Fig. 2. Regardless 
of the initial objective function value (which depends on the “luck” of the initial 
sampling), the modified Kriging was proved to be more robust in the infill sam-
pling process, providing promising design points consistently. MF modKriging 
using 5 HF/16 LF training points was more efficient than the MF method using 
ordinary Kriging with 21 HF training points. Referring again to Figs. 3b, 4 the 
optimizer knows more about the design space, has less uncertainty in some of its 
areas, reduces the respective MSE, which in turn makes the EI distribution more 
accurate. In most cases, as the one shown, the MF methodology equipped by 
MF modKriging could reach almost HF optimality in fewer infill iterations. Co-
Kriging is similarly effective, having fewer but more drastic reductions in the OF. 
However, this simple 2D case is not appropriate to reliably compare it against MF 
modKriging since the major cost source of both methods lies in the tuning of the 
hyperparameters in higher dimensionality problems. More insight is provided in 
the next test case. The MF infill plan described previously leads to wider plateaus 
in convergence history as only a HF infill is accepted as a reliable improvement. 
Despite that, since the number of HF infill points is reduced, the total elapsed 
time is decreased even if the infill iterations required for optimality are increased.

The effect of the error MSE term is displayed in Fig.  5 as well. Evidently, 
introducing the “artificial” MSE term is not critical for the convergence of the 
method. However, if introduced it provides extra information regarding the uncer-
tainty of the LF error correction model, leading to faster convergence.

Fig. 5   Optimization convergence versus total number of sampling iterations (including LF infill sam-
pling) in 2D Branin function case
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5 � Analytical test cases

Before progressing to aerostructural design applications, two analytical test cases 
are being used to provide the necessary feedback for the efficient implementation of 
the framework to such multidisciplinary problems. The first case is the Rosenbrock 
function which is useful in the development of an optimization methodology as:

•	 In its original 2-Dimensional form, it provides a challenging problem with the 
optimum located in a narrow flat valley.

•	 In its extended form, it can be used to examine the scalability characteristics 
of the optimization framework. This is especially important for a surrogate 
based optimization methodology, which is very sensitive to the dimensionality 
of the problem.

The second case is the Sellar MDO test function, which features the characteris-
tics of a true multidisciplinary problem, involving global and local design vari-
ables, state variables and constraints. This makes it perfect for the development 
and assessment of different MDO formulations and their implementations in a 
new optimization methodology.

5.1 � Framework scalability using Rosenbrock function

A multidisciplinary problem, such as the aerostructural design of a wing, is by 
definition associated with an increase in the number of design variables. The 
application of this optimization framework—conceptual design introducing pre-
liminary design information—and most importantly the use of Surrogate Based 
Optimization (SBO) techniques, fundamentally limit the problem’s dimension-
ality. Therefore, before applying the method to an MDO problem directly, it is 
important to assess what can realistically be achieved through the method while 
maintaining its efficiency in its application range.

The extended Rosenbrock function is appropriate for this role due to its scal-
ability characteristics and is thereafter used as the HF function:

Since the methodology requires multifidelity analyses, a LF “version” of this func-
tion needs to be defined. This should not change the main characteristics and trends 
of the original one but must be inaccurate in terms of value. This is achieved with 
the use of scaling coefficients.

(26)fHF =

N−1∑

i=0

100(xi+1 − x2
i
)2 + (1 − xi)

2

(27)fLF =

N−1∑

i=0

105(1.05xi+1 − 0.98x2
i
) ∗ (0.95xi+1 − 1.03x2

i
) + 1.0044(1 − xi)

2
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The challenges of the Rosenbrock function are twofold:

•	 It features a flat and narrow valley leading to the global optimum. The reduced 
objective functions values and the small function gradients makes it difficult for 
optimization methods to descend to the optimum point.

•	 In high dimensions, the property of unimodality vanishes Shang and Qiu (2006), 
as local minima appear.

The scalability attribute of the framework is assessed by successively increasing the 
dimensionality of the extended Rosenbrock function, through varying N from N = 2 
to N = 64 . The quantification of the method’s scalability is based on the value of 
the optimum identified and the HF calls required.10 Since this SBO approach is 
non-deterministic, the standard deviation of the required computational costs is also 
taken into account. Due to the non-deterministic elements of the method as well 
as its explorative behaviour, the accurate identification is not guaranteed, especially 
in high dimensions. Therefore, the method is assessed based on the number of HF 
calls required to reach a specific reduction ratio, given the maximum value of each 
dimensional case. For the needs of this analysis, given the challenging flat nature of 
the high dimensionality design space as well as our verification studies using stan-
dalone off-the-self gradient free optimizers, two levels of reduction ratios are set as 
“good enough”, fopt∕fmax = 2 × 10−3 and fopt∕fmax = 5 × 10−4 . Although the euclid-
ean distance from the optimum is calculated in addition to the required number of 
HF calls, the former is only used as a reference. The euclidean distance cannot simi-
larly be considered as a figure of merit since (as shown) it is not representative of 
the quality of the final result which of course also depends on the local gradient of 
the design space in the vicinity of the points. Increasing the dimensionality demands 
more HF calls to reach the reduction threshold as expected, as well as locating a 
point further away from the actual minimum. However, achieving a finer reduction 
ratio—in low dimensionality—does not result to an observed reduction in the dis-
tance from the optimum, confirming the reasoning that euclidean distance is not a 
reliable criterion for optimization convergence.

The methodology is compared against an ALPSO based optimization, an HF EI 
approach and a Co-Kriging based MF EI process. The effect of the error correc-
tion model (RBF or Kriging) is also assessed. Each problem is solved 200 times to 
minimize the impact of the stochastic elements of the method, with the variation of 
the number of HF calls being depicted in the error bands around the mean value in 
Fig. 6a and c. For each case, the number of HF points in the initial sampling is equal 
to the dimensionality, with the LF points used being triple than the HF ones. The 
sampling cost is included in the analysis.

10  In these test functions used to develop the methodology, we implicitely make the same assumption 
frequently made in the MF literature; that the cost of the LF tool is negligible compared to the HF one. 
As such, we only assess the cost using HF calls. This assumption is valid in most of the realistic prob-
lems we have solved and presented with this methodology. However, in industrial problems where this 
condition does not hold, the LF cost is included in the total cost of the process and presented explicitely. 
This is not the case in this journal paper.
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From Fig. 6.a it is evident that when the dimensionality is higher than 8-D, a very 
low function value cannot be obtained, and hence Fig. 6.b is limited to a dimension-
ality of 8. In fact, especially when Co-Kriging is used as the MF surrogate model, 
the method fails in cases more complicated than 2-D. The rest of the methods depict 
an almost linear increase of the required HF calls, with the HF EI approach requir-
ing more computational resources in the 4-D than in the 2-D case. ALPSO can ulti-
mately locate the optimum in all problems, but its cost is prohibitive even for low to 
middle fidelity MDO purposes.

The increase of the dimensionality leads to an increase of the maximum devia-
tion of the required cost observed by our multiple runs. This is a direct result of the 
methods searching until the minimum is successfully located.

When a lower improvement is considered sufficient for our exploration needs, as 
in Fig. 6c, then the interest is focused in finding the design trends. In this case, all 

Fig. 6   Scalability analysis using Rosenbrock function
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methods except for MF EI Co-Kriging, can locate a satisfying improvement. Here, 
a few interesting observations can be made. Low dimensionality problems require a 
cost that may be similar or even a bit higher than the one of middle dimensionality 
cases. This unexpected trend results from the methods exploiting the initial sam-
pling after a low number of infill samplings. When converged though, they reduce 
the OF to a value significantly lower than the limit set—which is not the case in 
higher dimensions. High dimensionality is associated with a linear cost increase. 
The reason behind this consistent convergence behaviour, is that the respective sam-
pling can provide sufficient information about the trends of the function. Therefore, 
with the function being smooth and having a flat hypersurface, one infill sampling 
is enough to lead to the satisfying improvement of fopt∕fmax = 2 × 10−3 . Following 
this improvement however, and despite the fact that all following infill samplings 
are robust in providing low values, a reduction ratio of 5 × 10−4 cannot be achieved . 
The inherent exploration attribute of the EI method, although necessary for MF con-
ceptual studies, dictates a continuous search through the high dimensional design 
space.11 As such, following a few infill samplings, an exploitation oriented method 
would be more efficient, taking advantage of the trends near the optimum point. 
Nevertheless, if the interest is to identify design trends with a reduced uncertainty 
early in the design stage, then this approach consistently satisfies this requirement. 
Furthermore, this linear cost increase trend makes the prediction of the problem’s 
total cost a straightforward process, which in turn suggests a feasible and efficient 
parameterization strategy. For instance, given a typical computational budget for an 
early stage tradeoff study, the above analysis suggests that our particular multidisci-
plinary problem should not exceed 40 design variables.

The average distance in terms of normalized euclidean metric for each case is 
shown in Fig. 6b and d. As a general trend, with the increase of the dimensionality 
the distance between the resulting points and the optimum is also increased. This 
is not observed in very low dimensionality. There is no direct correlation between 
the HF calls required, the minimum value found and the distance from the global 
optimum. A small euclidean norm does not imply a similarly low value, as this cor-
relation depends on the topology of the design space. Therefore, in such complex 
non-linear (and potentially multimodal Shang and Qiu (2006)) design spaces, this 
norm cannot be used as reliable performance metric in future studies.

5.2 � Sellar MDO test case

The Sellar function is designed to resemble a typical MDO problem, including 
attributes such as disciplinary variables, state variables, global variables and of 
course objective function and constraints. The Sellar problem used in this work is 
described by:

11  Of course such an exploration will never be complete, since dense exploration in high dimensions is 
infeasible due to the curse of dimensionality.
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The LF variation of this problem is generated by slightly altering the discipline sub-
problems through the introduction of scaling coefficients. Therefore, the LF discipli-
nary problems become:

In this problem, the global design variables are z1 and z2 , with the local variable 
being x1 , affecting only discipline 1.

The difference between the Sellar problem used12 and the original one lies in the 
objective function. In this version, it is the local variable x1 used in the nonlinear 
deisgn variable term of the objective function. In the original problem from Sellar 
et  al. (1996), the global variable z1 was used for the respective term. The various 
formulations should be treated with caution, as different authors also use different 
notation. Here, the OpenMDAO notation is used. In the problem formulation that 
we tackle, the global minimum value is f = 3.18339 and in the optimum point the 
constraint associated with discipline 1 is active.

The Sellar function is used as a template to examine how disciplinary interac-
tion affects—or not—the behaviour of the methodology. The latter is developed and 
implemented in a flexible way so that any HPC workflow—single disciplinary or 
multidisciplinary—can be attached to it. This is essential especially for big multina-
tional industrial environments, in which distributed MDO architectures are appropri-
ate. As such, industrial disciplinary tools are completely autonomous and any design 
framework should be able to treat them as a black box. To examine how the optimi-
zation methodology is affected by the multidisciplinary formulation of the problem, 
Multidisciplinary Feasible (MDF) and Asymmetric Subspace Optimization (ASO) 
architectures are implemented and compared in terms of computational cost. These 
processes are extensively described in Fig. 7 using the concept of XDSM diagrams 
Lambe and Martins (2012), developed specifically for MDO problems.

(28)

min
�∈D

x2
1
+ z2 + y1 + e−y2

with respect toz1, z2, x1

subject tog1(y1) = y1∕3.16 − 1 ≥ 0

g2(y2) = 1 − y2∕24 ≥ 0

− 10 ≤ z1 ≤ 10

0 ≤ z2 ≤ 10

0 ≤ x1 ≤ 10

Discipline 1y1 = z2
1
+ z2 + x1 − 0.2y2

Discipline 2y2 =
√
y1 + z1 + z2

(29)
Discipline 1y1 = 0.95z2

1
+ 1.02z2 + 0.91x1 − 1.15 ∗ 0.2y2

Discipline 2y2 = 1.15
√
y1 + 0.95z1 + 1.02z2

12  It can be found in the OpenMDAO site, http://openm​dao.org/relea​ses/0.13.0/docs/tutor​ials/mdao/intro​
.html.

http://openmdao.org/releases/0.13.0/docs/tutorials/mdao/intro.html
http://openmdao.org/releases/0.13.0/docs/tutorials/mdao/intro.html
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The process begins by an LHS sampling followed by the training of the Krig-
ing model. The suboptimization procedure provides the next infill point; the one 
that maximises the expected improvement. The infill analysis which follows 
(treated as a black box in the industry) is the element which diversifies the two 
formulations. In MDF, disciplines 1 and 2 are iteratively solved within a simple 
MDA whereas in ASO the disciplinary analysis 1 is substituted by an optimiza-
tion with respect to � . This process is sometimes referred to in this work as ASO 
loop (in contrast to the MDA loop).
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Fig. 7   Sellar problem XDSM
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Our interest is to examine the convergence behaviour for both the objec-
tive function as well as the constraints, including an evaluation of the respec-
tive computational costs. For a complete study, we compare our MF EI methods 
against two other approaches: a gradient free optimizer (ALPSO) and the HF EI 
approach. All of the methods act on the system level. In the case of the ASO 
formulation, ALPSO and SLSQP has been employed for the disciplinary opti-
mization in order to examine the effect of this subprocess to the efficiency of the 
formulation (Fig. 8).

It is evident that ALPSO optimizer requires more computational resources 
to locate the minimum, which in the case of MDF cannot be located at all. When 
the SBO methodology is applied, no more than ten HF Multidisciplinary Analy-
sis (MDA) calls are required to reach a satisfactory convergence, regardless of the 
approach or the MDO formulation. In the case of MDF, the HF EI is more efficient 
compared to the MF approach, which still locates the optimum area. The opposite 
is true when ASO is being used, as the MF approach requires almost half of the 
HF MDA called by HF EI. Regarding the MDO formulation, ASO is consistently 
superior over MDF. However, it should be stressed that the above speaks only half 
the truth. When comparing different MDO formulations, the number of required HF 
MDA calls is representative of the true computational cost only in the case that the 
rest of disciplinary calls—or optimizations in the case of ASO—are of negligible 
cost. This is not always the case, but when this criterion is met ASO is indeed more 
efficient than MDF as it improves disciplinary analysis load balance Chittick and 
Martins (2009) in addition to reducing the dimensionality of the system level opti-
mization problem. However, in cases where the discipline optimized in the inner 
disciplinary optimization (in this case discipline 1) is not significantly cheaper to 

Fig. 8   Convergence comparison between MDO formulation and methodology. Results represent the 
mean convergence behaviour of these non-deterministic methods
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analyse than the other disciplines, ASO stops being efficient. In the present case, if 
discipline 1 represents a cheap discipline so that the inner disciplinary optimization 
has a computational cost similar to a discipline 2 analysis, ASO would be superior 
to MDF. This is the case in an aerostructural optimization; a structural analysis is far 
cheaper than an aerodynamic analysis, with the respective disciplinary optimization 
cost being in the order of magnitude of an aerodynamic analysis. Of course, the cost 
of the optimizer in the disciplinary process is also of great importance, affecting 
the total number of disciplinary calls. ALPSO—being a global method—requires 
at least an order of magnitude more disciplinary iterations than SLSQP. In the con-
text of aerostructural optimization, this would make an ALPSO based disciplinary 
optimization inefficient for the ASO formulation. Therefore, it is not surprising that 
local gradient based optimizers are more appropriate for this role, as they require 
fewer iterations while being robust in dimensionality increase (in the case of adjoint 
based methods).

Since this problem is a constrained one, including constraints for each of the dis-
ciplines, it is very important to examine in detail how each of the two different mdo 
formulations tackles constraints to converge to a feasibile solution.

•	 In the case of the MDF architecture, a single optimization process exists: the 
MF EI methodology, acting in the system level. Therefore, the constraints are 
imposed through the expected improvement suboptimization process either using 
penalty or feasibility method, as discussed earlier. The system level therefore 
provides the next infill point which is a point most promising of improving the 
objective and satisfying the constraints at the same time.

•	 In the case of the ASO architecture, the optimization process is split in the sys-
tem and the disciplinary level as displayed in Fig. 7b. The system level suggests 
only a part of the new design, the one affected by the global design variables (in 
this case z1 and z2 ). The rest is defined from the convergence of the disciplinary 
process. Similarly, the system level (acting on the reduced dimensionality design 
space) can only force the satisfaction of the constraint associated with the disci-
pline involving only global variables (in this case discipline 2). The feasibility of 

Fig. 9   MDA convergence comparison for MDF and ASO architectures
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constraint 1 depends on discipline 1, which is optimized with respect to the local 
variable x during the disciplinary process.

To sum this up, in MDF the system level enforces both constraints while in ASO it 
is the disciplinary process who takes care of enforcing constraint 1. Since constraint 
1 is active in the optimum point of this problem, the behaviour of the constraint han-
dling method has a significant effect to the overall performance of the problem. The 
typical convergence of the constraints is presented in Fig. 9 and discussed for the 
two architectures.

5.3 � A note on constraints

MDF formulation typically requires a number of iterations before the challenging 
constraint 1 is satisfied. This is due to the initially inaccurate RBF models and the 
aggressive nature of the penalty method, as discussed above. After satisfying this, 
the RBF models are accurate enough to provide feasible infill points. Following the 
convergence of the objective function, oscillations are present in the constraints’ val-
ues. Since the EI method has provided a significant improvement of the objective 
function (due to its mild exploitation attributes), an exploration is initiated to the rest 
of the design space for further potential solutions. In the ASO case, constraint 1 is 
satisfied directly from the first iteration. This is because it is explicitly calculated in 
the disciplinary level in every MDA iteration. Therefore, the disciplinary variable 
x is chosen so that it optimises the discipline 1 given that in each loop the design 
point satisfies the constraint 1. The constraint 1 value is constant to 0 in every itera-
tion showing that constraint 1 is indeed active in the optimum. With the x variable 
defined and “frozen” by the disciplinary optimization, EI method provides more 
limited exploration as proven by the almost constant value of constraint 2.

It is noted that in this problem, the feasibility method was not examined since it 
requires training a Kriging process to approximate each of the constraint function. 
Since the constraints are linear, Kriging becomes unstable and fails due to matrix 
singularities. The RBF based penalty method is employed instead.

5.4 � A note on the multidisciplinary analysis loop

In Fig. 7a and b, the two different sampling procedures were overviewed. As men-
tioned, MDA is an inherently iterative procedure and its treatment separates the 
MDF and ASO. In ASO, discipline 1 is not analyzed but optimized with respect to 
the local variable x. Nevertheless, the rest of the iterative process is unchanged. Two 
of the most common mathematical approaches to iteratively solve a coupled system 
of functions are the Jacobi and the nonlinear Gauss-Seidel method. Their applica-
tion in MDO problems has been analyzed by Kennedy and Martins (2010) and the 
reader is referred to their work for details of these two solution methods. In short, in 
Jacobi the updates of the state variables follow this progression:
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Here, disciplines 1 and 2 can be solved concurrently since they depend on the previ-
ous iteration n solution of the coupling discipline.

In Gauss-Seidel, the solution of the coupled system takes the form,

In this approach, the solution takes advantage of the existence of the solution of dis-
cipline in the n + 1 step. Updated information is inserted in the system accelerating 
the process. However, this approach demands a sequential iterative procedure. In the 
case of ASO, the yn+1

1
 analysis is simply an optimization given the corresponding 

state variable of discipline 2, yn
2
.

The Sellar function is being used as a test case to gain feedback before pro-
ceeding to a heavy aerostructural optimization. Therefore, in Fig.  10 the 
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Fig. 10   Typical MDA convergence comparison of Jacobi and Gauss-Seidel method for MDF and ASO 
architectures
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performance of these two MDA solution techniques is compared for both MDF 
and ASO architectures.

It is evident that despite its sequential nature, the Gauss-Seidel method is more 
computationally efficient since the updated information drastically accelerates the 
convergence. What is equally interesting, is the effect of the architecture to the 
convergence of the MDA/ASO loop. The disciplinary optimization has a positive 
impact on the convergence of the coupled analysis. However, this cannot be con-
sidered as true for any multidisciplinary problem since it depends on the effect 
of the local variable on the discipline as well as the dependency between the 
disciplines.

6 � Multiobjective optimization

Since the presented methodology constitutes the core of a numerical framework to 
be extended to MDO problems, in which disciplines are also typically associated 
with multiple conflicting objectives, optimization under such a MO formulation 

Fig. 11   RAE 2822 Airfoil. In 
this test case eight active Con-
trol Points are used

Table 1   Physical conditions - 
RAE2822 case

Condition Value Units

Angle of Attack 2.31 deg
Mach Number 0.729 –
Reynolds number 6.5 × 106

Pressure 108987 Pa
Temperature 255.55 K
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should be performed. The MO formulation provides a vast amount of useful infor-
mation for the industry, as several potential optimum configurations are readily 
available in the engineer’s disposal. The pareto front can also feed later-stage local 
tradeoff studies, constituing element very important for decision making.

6.1 � RAE2822 test case

A typical transonic airfoil design problem—as is the popular RAE2822 case—is solved 
to briefly demonstrate the methodology’s capability in tackling an MO problem that 
is more closely related to standard industrial ones. The aim of this work is to initially 
assess the methodology in terms of design and objective space exploration as well as to 
compare our parallel infill sampling approach against standard practice (see Sect. 2.2). 
Detailed information on how our method’s compares against an exploitation optimiza-
tion scheme is provided in Kontogiannis et al. (2020), and a comparison against similar 
exploration approaches (Gradient Free MO optimization, Co-Kriging etc.) is scheduled 
for a follow-up paper.

6.2 � Problem formulation

For this airfoil design problem, Free Form Deformation (FFD) shape parameteriza-
tion Sederberg and Parry (1986) was used. The control points displacement define the 
deformation of the surface in the X,Y direction—as shown through the deformation 
example of a ’random design’—, with the bound values being dependent on the design 
requirements (see Fig. 11). To approach the complexity of industrial applications, eight 
active control points were used creating a 16D design space. The operating conditions 
of this design problem are provided in Table 1.

Fig. 12   Comparison of the 
multiobjective formulations 
of expected improvement as 
presented in section 3.4.7
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The HF analyses are performed using the commercial solver ANSYS Fluent [52], pro-
viding the global aerodynamic coefficients. We use a structured C-type grid, fully resolv-
ing the boundary layer with a y+ value in the order of 1. Special care was also taken to 
ensure grid robustness to geometry changes that arise across the optimization process. 
In terms of LF analyses, in this paper we provide the results arising from a partially con-
verged Forrester et al. (2006) ANSYS Fluent simulation, stopped after 800 iterations and 
using the same numerical setup as the HF tool. More information on this approach as well 
as the impact of additional LF tools are being provided in a follow-up paper.

6.3 � Results

6.3.1 � Comparison of EI infill sampling methodologies

The airfoil design problem described above, allowed to assess how our proposed 
sampling method behaved. This was done through a comparison of the standard 
MO EI methodology for improving the pareto front (see Forrester et al. (2008) and 
Eq. 33 from “Appendix A” for more details), against our parallel infill EI methodol-
ogy of Sect. 2.2. This is within the scope of the demonstration included in this paper; 
further comparisons between our method and other Kriging/Co-Kriging-based ones, 
constraints handling approach and LF tool impact are provided in a follow-up paper.

The methods are compared in Fig.  12 in terms of their respective pareto front 
results, for a defined computational budget. Since the only difference between the 
methods is found in the suboptimization process, the sampling, surrogate training 
and infill analyses costs are identical. Therefore, the comparison is based on the 
number of high fidelity infill analyses.13

The standard infill methodology can locate highly efficient tradeoff points in the 
mid Cl region—close to the datum point. In the low and high Cl objective space 
however, it is evident that this EI formulation does not exhibit the desired explora-
tion characteristics. On the other hand, the proposed parallel formulation develops 
a wide pareto front of efficient configurations especially in the low Cl region. This 
is an expected result as the standard “EI for improving the Pareto Front” method is 
designed to achieve just that, find new dominating designs. This does not necessar-
ily translates to new designs being associated with an extended design or objective 
space exploration, rather than just being dominant over the previous pareto points. 
As such, a more balanced exploitation/exploration behaviour is observed. In our 
newly proposed approach however, the points used for infill sampling are explicitly 
selected to be the ones which are not only promising but also diverse in terms of 
objective function value. Another significant advantage of our method is its inher-
ent characteristic to provide multiple infill points, improving load balancing. In this 
case infill points are set to three, and as such, the effective computational cost to 
introduce this design information is a third of that of the standard method. Having 

13  The suboptimization problem of EI maximization and EI pareto front generation is solved by ALPSO 
and MOPSO algorithms respectively. For this dimensionality, and given the cheap algebraic formulation 
of EI, the observed difference between the two suboptimization processes in terms of elapsed time was 
negligible.
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established the behaviour of both approaches, it should be stated that there is the 
potential for a hybrid methodology using these two in sequence. Within such a con-
cept, the proposed parallel infill can be initially used to satisfy exploration require-
ments followed by the standard method after a “wide-enough” front has been devel-
oped. This will provide a more local refinement, improving the performance of the 
initial pareto front points.

7 � Conclusions

A shift to a multidisciplinary design approach in the aerospace industry is neces-
sary for the efficiency of future aircraft configurations to be improved. However, 
in order for interdisciplinary synergies to be exploited, it is crucial that the pro-
cess is applied in an early design stage where a wide design space is available for 
exploration. We proposed a multiobjective multifidelity surrogate based optimi-
zation framework to achieve fast and reliable multidisciplinary optimization stud-
ies in the conceptual design stage. The paper also introduces a novel modification 
of the ordinary Kriging metamodel, improving the design and Expected Improve-
ment space in the presence of Multifidelity data if Co-Kriging is not used. The 
paper highlights the importance of the low fidelity tool’s capability of captur-
ing the correct trends; hence leading to a smooth error space. Such a space can 
be effectively approximated by metamodels, making the high fidelity correction 
beneficial compared to High Fidelity Expected Improvement method. In view of 
future aerostructural design applications, the extended Rosenbrock function was 
employed to examine the framework’s scaling characteristics. Our method is a 
clear improvement over an indicative gradient free approach in the initial stages 
of the exploration. However, none of the methods is able to find the exact global 
optimum in a reasonable cost. As a rule of thumb, even for exploration cases 
where the exact optimum is irrelevant, the number of design variables should not 
surpass 40. The effectiveness of the method in multidisciplinary problems was 
demonstrated using the Sellar function. Comparing the multidisciplinary feasi-
ble and asymmetric subspace optimization architectures showed the superiority 
of the latter, when an efficient inner disciplinary optimization is available. The 
method is also implemented in a—beneficial for the industry—Multiobjective 
formulation which provides additional information and supports decision making 
and further tradeoff studies. A direct comparison of our infill sampling approach 
and the standard one demonstrates their difference in their design as the latter 
offers a better improvement on the pareto points near the datum point whereas the 
former offers an extended objective space exploration. Furthermore, multiobjec-
tive problem results and analysis are presented in follow-up papers tackling con-
strained aerodynamic and aerostructural design problems.
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Appendix A

Expected improvement for improving the current Pareto front

In this approach used widely by researchers, an expression for the probability P of a 
new sampling point improving I the current pareto front is being used. For example, 
given two objective function values y1 and y2 , and m members of the pareto front 
y∗
1
, y∗

2
… , y∗

m
 , this is provided by:

with Φ being the cumulative distribution function.
The expected improvement is now calculated as,
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− ŷ1(x)

s1(x)

)

+

m−1∑

i=1

{

Φ

(
y
∗(i+1)

1
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