Skip to main content
Log in

Numerical and experimental investigation on snow accumulation on bogies of high-speed trains

高速列车转向架积雪的数值与试验研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

This paper reviews the current status of investigation on snow accumulation on the bogies of high-speed trains (HSTs) running in snowy region. First, the background of the snow issue occurring to the HST and the contra-measures for the snow issue proposed in the past decades are provided by reviewing previous studies. Next, the methodology for investigating the snow issue developed by High-Speed Train Research Center of Central South University is introduced, including the numerical simulation research platform and the experimental devices for two-phase flow wind tunnel tests. Then, effective anti-snow flow control schemes for guiding the underbody airflow and their impact on the motion and accretion of snow in the installation region of the bogies are presented. Finally, the remaining investigating challenge for the snow issue of HST and the future research with respect to the challenge are provided from an engineering application viewpoint.

摘要

本文综述了降雪区域高速列车转向架积雪问题研究的现状。首先,通过回顾前人研究,调研了 高速列车积雪问题产生的背景和近几十年来提出的应对措施。其次,介绍了中南大学高速列车研究中 心关于积雪结冰问题的研究方法,包括针对连续相和两相流风洞试验的数值模拟研究平台和实验装 置。在此基础上,提出了引导车体底部气流的有效防积雪流动控制方案及其对转向架安装区域积雪运 动和累积的影响。最后,从工程应用的角度,提出了高速铁路积雪结冰问题尚待解决的问题与挑战和 展望。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ALLAIN E, PARADOT N, RIBOURG M. Experimental and numerical study of snow accumulation on a high-speed train [C]// International Symposium of Applied Aerodynamics. Lille: French Aeronautics and Space Society 2014: FP18-2014-ALLAIN.

    Google Scholar 

  2. CAO Y, HUANG J, YIN J. Numerical simulation of three-dimensional ice accretion on an aircraft wing [J]. International Journal of Heat & Mass Transfer, 2016, 92(3): 34–54. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.027.

    Article  Google Scholar 

  3. GIAPPINO S, ROCCHI D, SCHITO P. Cross wind and rollover risk on lightweight railway vehicles [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2016, 153: 106–112. DOI: https://doi.org/10.1016/j.jweia.03.013.

    Article  Google Scholar 

  4. KLOOW L. High-speed train operation in winter climate [D]. Stockholm, Sweden: KTH Railway Group and Transrail 2011.

    Google Scholar 

  5. CASA X D L, PARADOT N, ALLAIN E. A numerical modelling of the snow accumulation on a high-speed train [C]// International Conference in Numerical and Experimental Aerodynamics of Road Vehicles and Trains. Bordeaux, 2014.

  6. BETTEZ M. Winter technologies for high speed rail [D]. Trondheim: Norwegian University of Science and Technology 2011.

    Google Scholar 

  7. LIU M, WANG J, ZHU H. KRAJNOVIC S, GAO G. A numerical study of snow accumulation on the bogies of high-speed trains based on coupling improved delayed detached eddy simulation and discrete phase model [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233(7): 715–730. DOI: https://doi.org/10.1177/0954409718805817.

    Google Scholar 

  8. HUANG Z W, FENG Y H, GAO G J, WANG J B, ZHANG Y. Numerical research of the snow and ice accumulation on the brake calipers of the high-speed trains [J]. Journal of Railway Science and Engineering, 2017, 14(3): 437–444. DOI: https://doi.org/10.19713/j.cnki.431423/u.2017.12.002.

    Google Scholar 

  9. WANG J B, GAO G, ZHANG Y, HE K, ZHANG J. Anti-snow performance of snow shields designed for brake calipers of a high-speed train [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233(2): 121–140. DOI: https://doi.org/10.1177/0954409718783327.

    Article  Google Scholar 

  10. THOMAS J. De-icing solution [J]. International Railway Journal, 2009, 49(1): 24–25.

    Google Scholar 

  11. WANG J B, GAO G, LIU M, XIE F, ZHANG J. Numerical study of snow accumulation on the bogies of a high-speed train using URANS coupled with discrete phase model [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 183: 295–314. DOI: https://doi.org/10.1016/j.jweia.2018.11.003.

    Article  Google Scholar 

  12. PAULUKUHN L, WU X. The low temperatures technology concepts and operational experience in Russian high-speed train velaro RUS [J]. Foreign Rolling Stock, 2012, 49(3): 16–19.

    Google Scholar 

  13. ANDERSSON E. Concept proposal for a Scandinavian high-speed train [R]. KTH Railway Group, 2012: 44–53.

  14. BAKER C, JOHNSON T, FLYNN D, HEMIDA H, QUINN A, SOPER D, STERLING M, Train aerodynamics: Fundamentals and applications [M]. Amsterdam: Elsevier Inc, 2019.

    Google Scholar 

  15. MASSO E, PARADOT N, ALLAIN E. The numerical prediction of the aerodynamic noise of the TGV POS highspeed train power car [C]// Noise and Vibration Mitigation for Rail Transportation Systems. Japan, 2012: 437–444.

  16. XIE F, ZHANG J, GAO G. Study of snow accumulation on a high-speed train’s bogies based on the discrete phase model [J]. J Appl Fluid Mech, 2017, 10: 1729–1745. DOI: https://doi.org/10.18869/acadpub.jafm.73.243.27410.

    Article  Google Scholar 

  17. OKAZE T, MOCHIDA A, TOMINAGA Y, NEMOTO M, SATO T, SASAKI Y, ICHINOHE K. Wind tunnel investigation of drifting snow development in a boundary layer [J]. J Wind Eng Ind Aerod, 2012, 104: 532–539. DOI: https://doi.org/10.1016/j.jweia.2012.04.002.

    Article  Google Scholar 

  18. SMEDLEY D J, KWOK K C S, KIM D H. Snow drifting simulation around Davis Station workshop, Antarctica [J]. J Wind Eng Ind Aerod, 1993, 50(93): 153–162. DOI: https://doi.org/10.1016/0167-6105(93)90070-5.

    Article  Google Scholar 

  19. UEMATSU T, NAKATA T, TAKEUCHI K. Three-dimensional numerical simulation of snowdrift [J]. Cold Reg Sci Technol, 2010, 20(1): 65–73. DOI: https://doi.org/10.1016/0165-232X(91)90057-N.

    Article  Google Scholar 

  20. BEYERS M, WAECHTER B. Modeling transient snowdrift development around complex three-dimensional structures [J]. J Wind Eng Ind Aerod, 2008, 96(10): 1603–1615. DOI: https://doi.org/10.1016/j.jweia.2008.02.032.

    Article  Google Scholar 

  21. TSUCHIYA M, TOMABECHI T, HONGO T. Wind effects on snowdrift on stepped flat roofs [J]. J Wind Eng Ind Aerod, 2002, 90(12–15): 1881–1892. DOI: https://doi.org/10.1016/S0167-6105(02)00295-7.

    Article  Google Scholar 

  22. ANSYS Inc. Fluent user’s guide [M]. Canonsburg: Ansys Inc. 2011.

    Google Scholar 

  23. WANG J B, GAO G J, ZHANGY, XIE F. Numerical simulation of snow accumulation on a bogie of a high-speed train [C]// 2nd International Conference on Industrial Aerodynamics. Qingdao: DEStech Transactions on Engineering and Technology Research, 2017: 771–778. DOI: https://doi.org/10.12783/dtetr/icia2017/15701.

    Google Scholar 

  24. ZHANG Y N, GAO G J. Investigation of the crosswind influence on the snow on train bogie based on discrete phase [C]// 2nd International Conference on Industrial Aerodynamics. Qingdao: DEStech Transactions on Engineering and Technology Research, 2017: 922–931. DOI: https://doi.org/10.12783/dtetr/icia2017/15716.

    Google Scholar 

  25. PAZ C, SUAREZ E, GIL C. Numerical study of the impact of windblown sand particles on a high-speed train [J]. J Wind Eng Ind Aerod, 2015, 145(1): 87–93. DOI: https://doi.org/10.1016/j.jweia.2015.06.008.

    Article  Google Scholar 

  26. ZHOU H, FLAMANT G, GAUTHIER D. Numerical simulation of the turbulent gas-particle flow in a fluidized bed by an LES-DPM model [J]. Chem Eng Res Des, 2004, 82(7): 918–926. DOI: https://doi.org/10.1205/0263876041596788.

    Article  Google Scholar 

  27. ZHU J, HU Z, THOMPSON D J. Flow behaviour and aeroacoustic characteristics of a simplified high-speed train bogie [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230(7): 1642–1658. DOI: https://doi.org/10.1177/0954409715605129.

    Article  Google Scholar 

  28. SUN W, ZHONG W, ZHANG Y. LES-DPM simulation of turbulent gas-particle flow on opposed round jets [J]. Powder Technol, 2015, 270: 302–311. DOI: https://doi.org/10.1016/j.powtec.2014.10.039.

    Article  Google Scholar 

  29. CHOI Y, KIM H, YANG S, KIM T. Numerical analysis of particle concentration around the air-inlet of a train in a tunnel by using a discrete phase model [J]. J Mech Sci Technol, 2018, 32(2): 717–722. DOI: https://doi.org/10.1007/s12206-018-0120-6.

    Article  Google Scholar 

  30. WAN F, PENG X Y, XIE Q F. Numerical simulation of atmosphere migration of uranium tailings grit based on DPM [J]. J Saf Environ, 2013, 13(1): 96–101.

    Google Scholar 

  31. MA W, LIU W, LI L. Numerical simulation of unsteady-state particle dispersion in ferroalloy workshop [J]. Indoor Built Environ, 2015, 24(8): 1069–1081. DOI: https://doi.org/10.1080/19942060.2019.1595729.

    Article  Google Scholar 

  32. LANDAZURI A C, BRAUNEIS J, SAEZ A E, BETTERTON E. Discrete phase modeling of atmospheric particulate transport from mine tailings [C]// Aiche Meeting Conference Proceedings. Minneapolis, Minnesota: Curran Associates Inc. 2011.

    Google Scholar 

  33. LAI A C K, CHEN F Z. Comparison of a new Eulerian model with a modified Lagrangian approach for particle distribution and deposition indoors [J]. Atmos Environ, 2007, 41(25): 5249–5256. DOI: https://doi.org/10.1016/j.atmosenv.2006.05.088.

    Article  Google Scholar 

  34. ANSARI V, GOHARRIZI A S, JAFARI S. Numerical study of solid particles motion and deposition in a filter with regular and irregular arrangement of blocks with using lattice Boltzmann method [J]. Comput Fluids, 2014, 108: 170–178. DOI: https://doi.org/10.1016/j.compfluid.2014.11.022.

    Article  MATH  Google Scholar 

  35. PANKAJAKSHAN R, MITCHELL B J, TAYLOR L K. Simulation of unsteady two-phase flows using a parallel Eulerian-Lagrangian approach [J]. Comput Fluids, 2011, 41(1): 20–26. DOI: https://doi.org/10.1016/j.compfluid.2010.09.020.

    Article  MATH  Google Scholar 

  36. ZHOU X, KANG L, GU M. Numerical simulation and wind tunnel test for redistribution of snow on a flat roof [J]. J Wind Eng Ind Aerod, 2016, 153: 92–105. DOI: https://doi.org/10.1016/j.compfluid.2010.09.020.

    Article  Google Scholar 

  37. WANG J B, ZHANG J, ZHANG Y, XIE F, KRAJNOVIC S, GAO G J. Impact of bogie cavity shapes and operational environment on snow accumulating on the bogies of high-speed trains [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 176: 211–224. DOI: https://doi.org/10.1016/j.jweia.2018.03.027.

    Article  Google Scholar 

  38. GAO G J, TIAN Z, WANG J B, ZHANG Y, SU X C, ZHANG J. Optimization of the anti-snow performance of a high-speed train based on passive flow control [J]. Wind and Structures, 2019. (in Press)

  39. WANG J B, ZHANG J, ZHANG Y, LIANG X F, KRAJNOVIC S, GAO G J. Impact of rotation of wheels and bogie cavity shapes on snow accumulating on the bogies of high-speed trains [J]. Cold Regions Science and Technology, 2019, 159: 58–70. DOI: https://doi.org/10.1016/j.coldregions.2018.12.003.

    Article  Google Scholar 

  40. WANG J B, ZHANG J, XIE F, ZHANG Y, GAO G J. A study of snow accumulating on the bogie and the effects of deflectors on the de-icing performance in the bogie region of a high-speed train [J]. Cold Regions Science and Technology, 2018, 148: 121–130. DOI: https://doi.org/10.1016/j.coldregions.2018.01.010.

    Article  Google Scholar 

  41. GAO G J, ZHANG Y N, ZHANG J, XIE F, ZHANG Y, WANG J B. Effect of bogie fairings on the snow reduction of a high-speed train bogie under crosswinds using a discrete phase method [J]. Wind and Structures, 2018, 27(4): 255–267. DOI: https://doi.org/10.12989/was.2018.27.4.255.

    Google Scholar 

  42. GAO G J, ZHANG Y, XIE F, ZHANG J, HE K, WANG J B, ZHANG Y N. Numerical study on the anti-snow performance of deflectors in the bogie region of a high-speed train using the discrete phase model [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 233: 141–159. DOI: https://doi.org/10.1177/0954409718785290.

    Article  Google Scholar 

  43. WANG J B, ZHANG Y, ZHANG J, LIANG X F, KRAJNOVIĆ S, GAO G J. A numerical investigation on the improvement of anti-snow performance of the bogies of a high-speed train [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019. DOI: https://doi.org/10.1177/0954409719893494.

  44. MIAO X J, HE K. Cause analysis of snow packing in high-speed train’s bogie regions and anti-snow packing design [J]. Journal of Central South University: Science and Technology, 2018, 49(3): 756–763. DOI: https://doi.org/10.11817/j.issn.1672-7207-2018.03.032. (in Chinese)

    MathSciNet  Google Scholar 

  45. ZHANG J, GAO G J, LI L J. Optimization of bottom cover with flow control for CRH380B [C]// 2nd International Conference on Industrial Aerodynamics. Changsha, 2013: 69–76.

  46. GAO G J, CHEN Q R, ZHANG J, ZHANG Y, TIAN Z, JIANG C. Numerical study on the anti-snow performance of deflectors on a high-speed train bogie frame [J]. J Appl Fluid Mech, 2020, 13(5): 1377–1389.

    Google Scholar 

  47. TOMINAGA Y, OKAZE T, MOCHIDA A. CFD modeling of snowdrift around a building: An overview of models and evaluation of a new approach [J]. Build Environ, 2011, 46(4): 899–910. DOI: https://doi.org/10.1016/j.buildenv.2010.10.020.

    Article  Google Scholar 

  48. BEYERS J H M, SUNDSBØ P A, HARMS T M. Numerical simulation of three-dimensional, transient snow drifting around a cube [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2004, 92(9): 725–747. DOI: https://doi.org/10.1016/j.jweia.2004.03.011.

    Article  Google Scholar 

  49. MURAKAMI S, MOCHIDA A, HAYASHI Y. Examining the k-µ model by means of a wind tunnel test and large-eddy simulation of the turbulence structure around a cube [J]. J Wind Eng Ind Aerodyn, 1990, 35: 87–100. DOI: https://doi.org/10.1016/0167-6105(90)90211-T.

    Article  Google Scholar 

  50. OIKAWA S, TOMABECHI T. Daily observation of snowdrifts around a model cube [M]// Snow Engineering. Rotterdam: Balkema, 2000: 369–375. ISBN 90 5809 148 1.

    Google Scholar 

  51. THIIS T K, POTAC J, RAMBERG J F. 3D numerical simulations and full scale measurements of snow depositions on a curved roof [C]// The 5th European & African Conference on Wind Engineering. Florence, Italy, 2009: 4371–4374.

  52. ZHOU X, KANG L, YUAN X, GU M. Wind tunnel test of snow redistribution on flat roofs [J]. Cold Reg Sci Technol, 2016b, 127: 49–56. DOI: https://doi.org/10.1016/j.coldregions.2016.04.006.

    Article  Google Scholar 

  53. TAYLOR D A. Roof snow loads in Canada [J]. Can J Civ Eng, 1980, 7(1): 1–18. DOI: https://doi.org/10.1139/180-001.

    Article  MathSciNet  Google Scholar 

  54. SANT’ANNA F D M, TAYLOR D A. Snow drifts on flat roofs: Wind tunnel tests and field measurements [J]. J Wind Eng Ind Aerodyn, 1990, 34(3): 223–250. DOI: https://doi.org/10.1016/0167-6105(90)90154-5.

    Article  Google Scholar 

  55. SUNDSBØ P A, HANSEN E W M. Modelling and numerical simulation of snow drift around snow fences [M]// Snow Engineering: Recent Advances. Rotterdam: Balkema, 1997: 353–359. ISBN90 54108657.

    Google Scholar 

  56. IVERSEN J D. Comparison of wind-tunnel model and full-scale snow fence drifts [J]. J Wind Eng Ind Aerodyn, 1981, 8(3): 231–249. DOI: https://doi.org/10.1016/0167-6105(81)90023-4.

    Article  Google Scholar 

  57. TOMINAGA Y, OKAZE T, MOCHIDA A. CFD modeling of snowdrift around a building: An overview of models and evaluation of a new approach [J]. Building and Environment, 2011, 46(4): 899–910. DOI: https://doi.org/10.1016/j.buildenv.2010.10.020.

    Article  Google Scholar 

  58. ZHOU X, KANG L, GU M, QIU L, HU J. Numerical simulation and wind tunnel test for redistribution of snow on a flat roof [J]. J Wind Eng Ind Aerodyn, 2016, 153: 92–105. DOI: https://doi.org/10.1016/j.jweia.2016.03.008.

    Article  Google Scholar 

  59. BEYERS J H M, HARMS T M. Outdoors modelling of snowdrift at SANAE IV Research Station, Antarctica [J]. J Wind Eng Ind Aerodyn, 2003, 91(4): 551–569. DOI: https://doi.org/10.1016/s0167-6105(02)00409-9.

    Article  Google Scholar 

  60. BLOCKEN B, STATHOPOULOS T, CARMELIET J, HENSEN J L M. Application of computational fluid dynamics in building performance simulation for the outdoor environment: An overview [J]. J Build Perform Simul, 2011, 4(2): 157–184. DOI: https://doi.org/10.1080/19401493.2010.513740.

    Article  Google Scholar 

  61. MOORE I, MOBBS S D, INGHAM D B, KING J C. A numerical model of blowing snow around an Antarctic building [J]. Ann Glaciol, 1994, 20(1): 341–346. DOI: https://doi.org/10.3189/1994AoG20-1-341-346.

    Article  Google Scholar 

  62. TOMINAGA Y. Computational fluid dynamics simulation of snowdrift around buildings: Past achievements and future perspectives [J]. Cold Regions Science and Technology, 2018, 150: 2–14. DOI: https://doi.org/10.1016/j.coldregions.2017.05.004.

    Article  Google Scholar 

  63. ZHAO L, YU Z X, ZHU F, QI X, ZHAO S C. CFD-DEM modeling of snowdrifts on stepped flat roofs [J]. Wind Struct, 2016, 23(6): 523–542. DOI: https://doi.org/10.12989/was.2016.23.6.523.

    Article  Google Scholar 

  64. KANG L Y, ZHOU X Y, TWANVAN H. CFD simulation of snow transport over flat, uniformly rough, open terrain: Impact of physical and computational parameters [J]. J Wind Eng Ind, 2018, 177: 213–226. DOI: https://doi.org/10.1016/j.jweia.2018.04.014.

    Article  Google Scholar 

  65. ZHOU X Y, ZHANG Y, GU M. Coupling a snowmelt model with a snowdrift model for the study of snow distribution on roofs [J]. J Wind Eng Ind, 2018, 182: 235–251. DOI: https://doi.org/10.1016/j.jweia.2018.09.014.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-jun Gao  (高广军).

Additional information

Foundation item: Project(2016YFB1200404) supported by the National Key Research and Development Program of China; Projects(51605044, U1534210) supported by the National Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Gj., Zhang, Y. & Wang, Jb. Numerical and experimental investigation on snow accumulation on bogies of high-speed trains. J. Cent. South Univ. 27, 1039–1053 (2020). https://doi.org/10.1007/s11771-020-4350-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4350-x

Key words

关键词

Navigation