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Abstract
Luck is considered a crucial ingredient to achieve impact in all creative domains,
despite their diversity. For instance, in science, the movie industry, music, and art, the
occurrence of the highest impact work and a hot streak within a creative career are
very difficult to predict. Are there domains that are more prone to luck than others?
Here, we provide new insights on the role of randomness in impact in creative careers
in two ways: (i) we systematically untangle luck and individual ability to generate
impact in the movie, music, and book industries, and in science, and compare the
luck factor between these fields; (ii) we show the surprising presence of randomness
in the relationship between collaboration networks and timing of career hits. Taken
together, our analysis suggests that luck consistently affects career impact across all
considered sectors and improves our understanding in pinpointing the key elements
in driving success.
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Research in developmental psychology has studied careers of prominent artists and sci-
entists for decades, advocating the importance of chance for the successful unfolding of
careers in various creative domains [1–4]. In recent years, the availability of big databases
on scientific publications [5] and artistic records, from books to movies [6–8], has made
it possible to test a number of previously suggested hypotheses on a large scale. For in-
stance, in previous work [9, 10], the analysis of thousands of creative careers has shown
that the biggest hit of an individual occurs randomly within an individual’s career, a finding
named equal-odds-rule [3] or random impact rule [9]. This rule explains the variability in
the occurrence of creative individuals’ best hits. Yet, career hits are not only the results of
luck but also of other individual and team properties [11–17]. While previous literature
suggests that luck and individual ability are both necessary to excel in art and science [18–
21], a quantification of the role of luck across different creative domains is still lacking. In
which creative fields are individuals more likely to go from rags to riches and vice-versa?
How is the network position of an individual related to the occurrence of a career hit?

In this work, we quantify luck fluctuations in impact across creative careers from film,
music, literature, and science, and create a framework to compare the broad observed dif-
ferences in impact [7, 22]. Do these random fluctuations have the same magnitude across
careers? To address this question, we build on the mathematical framework known as the
Q-model proposed in Ref. [9] to untangle the impact into two components, one encoding
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fluctuation that can be interpreted as luck, and another depending only on the individual.
We show that this model is consistent with the classical test theory [23], also known as the
true score theory [24], stating that the measured value of a certain measurable attribute
consists of the sum of its true – error-free – score, and a stochastic error term. We find
that the value of such randomness varies depending on the creative fields. By comparing
this stochastic term to the typical impact score associated with each artist and scientist,
we identify creative domains where the impact of single creative products are the most
exposed to luck and fluctuate the most within individual careers. The pronounced role
of randomness in achieving success in creative careers is confirmed by the unpredictable
relation between the position of an individual in her collaboration network, captured by
a number of network measures, and the timing of the hit of her career. To carry out these
analyses, we rely on a large-scale data set covering more than four million individuals from
c. 1902 up until 2017.

The outline of this paper is the following. First, we test the validity of the requirements
of the Q-model proposed in Ref. [9]. Second, we use the Q-model impact decomposition
method to factor impact in creative careers. Third, we apply the classical test theory to
quantify the role of luck within each field and discuss the observed differences across fields.
Finally, we construct the collaboration network within each domain and compare the time
of the best hit of creative individuals to the time at which they reach their highest score in
network centrality.

1 Data
We compiled four data sets of individual careers across the movie, music, and book indus-
tries, and across scientific fields, covering overall 28 different types of creative careers:

1 We mined the Internet Movie Database (IMDb [25]) and compiled a data set of
803,013 individuals in the movie industry working as movie directors, producers, art
directors, soundtrack composers, and scriptwriters, altogether contributing to
1,297,275 movies.

2 By using the Discogs [26, 27] and LastFM [28] platforms, we constructed a database
of 379,366 musicians released 31,841,981 songs in the genres of electronic, rock, pop,
funk, folk, jazz, hip-hop, and classical music.

3 We extracted data from Goodreads [29] and built a data set containing information
about 2,069,891 book authors and 6,604,144 books.

4 We used the Web of Science database [5] to reconstruct the scientific careers of
1,204,688 scientists from the fields of chemistry, mathematics, physics, applied
physics, space science and astronomy, zoology, geology, agronomy, engineering,
theoretical computer science, biology, environmental science, political science, and
health science, altogether authoring approximately 87,4 million papers.

See further details about the data sets and the data collection in SI Section S1.1.
To measure the impact of movies, songs, books, and articles, we use their cumulated

impact on large audiences, as captured by the rating counts for movies and books, the
play counts for songs, and the number of citations received within the first ten years after
publication for scientific papers [30] (SI Section S1.2). The existence of these cumulative
impact measures in all data sets allows us to reconstruct individual careers consistently
across domains by building the historical time series of each person. In Fig. 1a–d, we il-
lustrate career examples in the four different databases: movie director Stanley Kubrick,
pop singer Michael Jackson, writer Agatha Christie, and mathematician Paul Erdős. To en-
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Figure 1 Career examples and rescaled impact distributions in four creative domains. (a) The career
trajectory of Stanley Kubrick. On the horizontal axis, we show the release year of his movies, while on the
vertical axis we show the impact of each movie, captured by the number of ratings received from IMDb users.
(b) The career of Michael Jackson. We show the release year of his songs and the song impact captured by the
total play count on the music provider LastFM. (c) The career of Agatha Christie. We report her books’
publication dates and the book impact, captured by the number of ratings they received on Goodreads.
(d) Publication history of Paul Erdős, mathematician and graph theorist, based on his record in the Web of
Science database. The paper impact is measured by the number of total citations 10 years after publication.
(e–h) The rescaled cumulative impact distribution P(pi,α ), where pi,α = Si,α/Qi for (e) movies of directors,
(f) tracks of musicians active in pop music, (g) books of authors, and (h) papers of mathematicians. The panels
show that when we rescale the impact value of each product of an individual by his/her Q parameter, their
distribution collapses onto roughly the same aggregated curve, marked by continuous colored lines. The
distribution of 50 randomly chosen individuals is visualized by light grey lines

sure that impacts are comparable across fields, we used a previously introduced rescaling
method [31] (SI Eq. (2)).

We also found that cumulative impact measures, like rating counts for movies, show
high correlations with other cumulative measures, indicating that the impact patterns do
not depend on the chosen cumulative measure. However, cumulative impact measures
show low correlations to averaged measures, like the average movie rating, possibly due to
the different nature of the social processes generating them. This finding might also reflect
imbalances between popularity and quality, which have been found and discussed across
several domains in the literature. For instance, recent work highlighted a pronounced dif-
ference between performance (following a normal distribution) and popularity (following
heavy-tailed distributions) of tennis players [32]. Similarly, discrepancies between quality
and popularity have been reported in controlled experiments in an artificial music market
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[33], and in a social media platform where the quality of uploaded photos does not predict
their popularity [34]. For further details, see SI Section S1.3.

2 The Q-model: decomposing luck and individual ability in impact
Kubrick’s highest impact movie was released 30 years after his career start, while Michael
Jackson had his biggest hit earlier in his career. These anecdotal examples suggest that a
career’s biggest hit can occur at any time. Indeed, a rigorous analysis of our data sets indi-
cates that any work in a career has an equal chance to be the highest impact work, following
the so-called random-impact-rule, consistently with what was previously found for large
data sets of artists and scientists [9, 10] (SI Section S2.1 for a replication of this analysis).
The magnitude of a career impact is not random though: individual impact distributions
differ broadly from each other. These broad differences are reproduced and explained by
several models, such as a cumulative advantage-based approach by Simkin et al. [35], and
the so-called Q-model, a mechanistic stochastic model approach by Sinatra et al. [9] (SI
Section S2.2). According to the Q-model, the impact Si,α of a work α created by an indi-
vidual i can be decomposed as the product of two independent factors Si,α = Qipi,α , where
Qi is an individual variable, depending only on the career history of individual i (and is
robust throughout creative careers, as shown in SI Section S2.5), and pi,α is a stochastic
variable, independently drawn for every work from a field-specific distribution. The val-
ues of Qi and pi,α are obtained by maximizing a likelihood function which takes as input
all the impact S of all products of all creative careers in a given field [9, 36].

Next, we assumed that the covariance σ 2
QN between the distributions of the productivity

N (number of creative products an individual has) and the parameter Q is negligible com-
pared to the variance of the p and N distributions – an assumption we verify and validate
in SI Sections S2.2–S2.3. Thanks to this assumption, we can write a simple approximated
formula for Qi:

Qi = e〈log Si,α〉–μp , (1)

where μp is the mean of the p distribution within a given field. Equation (1) indicates that
the exponent of Qi is the average of the order of magnitude of the impact of i’s works,
minus a constant equal for all individuals in a field. To establish whether the Q-model re-
produces the individual impact distributions in our data sets, we first check the hypothesis
that both S and N follow log-normal distributions (SI Section S2.3). We then estimate the
parameters associated with the distributions of p and Q, finding that within each creative
domain Qi and pi,α are both log-normally distributed (SI Section S2.3.3).

The measured negligible covariances σ 2
pN and σ 2

pQ predict that the individual rescaled
impact, pi,α = Si,α/Qi, should follow a universal distribution, independent of Qi. We use this
prediction to validate the model in our data sets: we measure the distribution pi,α = Si,α/Qi

and show that it collapses roughly on a single curve for different careers (Figs. 1e–h). Since
this rescaled distribution is independent of any individual variables like Ni and Qi, we
can interpret p as a “luck factor” driving impact [9]. Finally, we compare the data with
the scaling of the highest impact work with productivity as predicted by the Q-model,
and show that the Q-model gives significantly better results than the random model (SI
Section S2.4).
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A single high impact work in a career is not sufficient to have a high Qi; rather an individ-
ual needs to perform consistently well throughout her career. For instance, the movie di-
rector with the highest Qi, Christopher Nolan, has a Qi = 1719.3, due to his many high im-
pact movies like “Inception” or “Interstellar”. In contrast, one-hit wonders, who achieved
fame with a single song or movie, and whose success was neither anticipated nor repeated
throughout their career with many high impact works, are typically characterized by lower
values of Qi. An example is Michael Curtiz (1886–1962), director of the all-time classic
Casablanca, who has only a modest Qi = 4.8 as he did not direct any other movies with
outstanding impact. In this case, the large impact of their career’s biggest hit is explained
by a lucky draw of a high p, rather than being due to the individual ability to consistently
produce work of high impact, encoded in a high Q. Taken together, the Q-model repro-
duces well the career impact of individuals in our data sets.

3 From the Q-model to classical test theory to compare luck across different
domains

Here we introduce a quantitative approach, based on the Q-model, to compare the fluctu-
ations in luck and variations in the typical impact across different creative fields. Recalling
the impact decomposition Si,α = Qipi,α presented in Sect. 2, we can write:

Ŝi,α = Q̂i + p̂i,α , (2)

where Ŝi,α = log Si,α , Q̂i = log Qi and p̂i,α = log pi,α . Because p and Q are log-normally dis-
tributed (SI Section S2.3.3), p̂ and Q̂ are normally distributed. In addition, the covariance
σ 2

pQ ≈ 0, then σ 2
p̂Q̂

≈ 0. Therefore, Eq. (2) takes the form proposed by classical test theory
[24, 37–41] for decomposing the measured value of a certain quantity. Namely, according
to this theory, the measurable value of an observed attribute, in this case Ŝ, can be de-
composed as the sum of two uncorrelated variables both following normal distributions.
One of these two variables encodes the true score of the quantity, in this case, Q̂, and the
other variable encodes a random error term, p̂ (Fig. 2a). The two normal distributions of
the variables Q̂i and p̂i,α are in line with previous studies, suggesting that individual based
quantities, such as skill and ability [42, 43], and global ones such as luck, are typically nor-
mally distributed [20, 23, 40–42, 44].

Building on Eq. (2), on the properties of normal distributions and on the measured prop-
erties of the Q and p variables in our data sets, we can express the variances of Ŝi,α , σ 2

Ŝ
,

as:

σ 2
Ŝ = σ 2

Q̂ + σ 2
p̂ , (3)

where σ 2
p̂ and σ 2

Q̂
are the variance of the distributions of p̂ and Q̂, respectively. This decom-

position allows us to measure the relative importance of the luck component compared to
the individual component in determining impact. Building on previous work [40, 41], we
define the randomness index R capturing the share of luck in the overall impact variance
as:

R =
σ 2

p̂

σ 2
Q̂

+ σ 2
p̂

=
σ 2

p̂

σ 2
Ŝ

. (4)
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Figure 2 Fluctuations of impact, luck and Q. (a) According to the classical test theory, the normal distribution
of an observed variable (green in the example) can be decomposed as the sum of the distributions of the true
score (blue) and the error term (red). (b) Distribution of p̂ and of Q̂ for two different, fictional fields. In Field
A the distribution of p̂ has a low variance compared to Q̂, therefore randomness has a negligible role (R→ 0).
Field B exhibits the opposite behavior, with a narrow Q̂ and broad p̂ distribution meaning that the individual’s
luck dominates impact (R→ 1). (c) We show the studied 28 creative fields on the (σ 2

Q̂
,σ 2

p̂ ) plane, marking

fields from different data sets with different colors. We denoted a fitted line by continuous black line and
added the diagonal as a continuous grey line as a reference. The gradient-coloring of the background
changes in a diagonal direction, illustrating that the points being on the same off-diagonal lines have the
same σ 2

Ŝ
. (d) The table shows the values of the R randomness index for the different fields

When individuals in a domain have a similar ability, captured by a narrow Q̂ distribution,
differences in impact are mainly driven by luck, and we have that R → 1. In contrast, when
p̂ has a low variance compared to S, then R → 0, and luck plays only a small role. This index
allows us to compare the role of randomness across 28 different creative fields (Fig. 2b).

4 Randomness in creative careers
In which creative domains are inequalities driven more by luck than by individual ability?
Using the Q-model, we measure σ 2

Q̂
and σ 2

p̂ for 28 types of creative careers in the movie,
music, and book industries, and in science (Fig. 2c). We also report the linear regression
between σ 2

p̂ and σ 2
Q̂

(black dashed line on Fig. 2c). This figure offers a number of findings.
First, we observe that all the fields are placed above the diagonal line (σ 2

p̂ > σ 2
Q̂

), indicating
that within each domain fluctuations in luck are broader than those in the typical career
impact. Second, we do not observe any domain-specific clustering on the (σ 2

Q̂
,σ 2

p̂ ) plane,
which suggests that the studied four domains do not differ from each other in the magni-
tude of the effects of random fluctuations. Third, we report that the linear regression has a
slope (s ≈ 0.7) lower than one; therefore, it intercepts the diagonal for high σ 2

Q̂
. Also, the re-

gression slope due to simple geometric reasons is equal to the ratio σ 2
p̂ /σ 2

Q̂
. Consequently,

the values of σ 2
p̂ increase slower as the values of σ 2

Q̂
(symmetric increase is illustrated by
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the shading on Fig. 2c). Hence large fluctuations in impact are dominated by larger fluc-
tuations in the individual ability, captured by Q, in comparison to fluctuations in luck.

Next, we measure the randomness index R of Eq. (4) to compare the characteristics of
career success across domains (Fig. 2d). The values of R span from a minimum of 0.5 for
classical music, indicating that luck and Q have the same variance, to a maximum of 0.55
for space science and astronomy, indicating that the luck variance is slightly higher than
the variance of Q. To ensure that these small differences in R are statistically significant, we
performed a Mann–Whitney U test on the Q and p distributions of all possible field pairs
(see S2.3.3 and Fig. S7) and found that the differences in R, even if tiny, are significant.

When we observe the R index values within and across fields, we find that on the one
hand, within the movie industry, producers’ careers are the most driven by luck, followed
by composers. On the other hand, being an art director is associated with the lowest R in-
dex, suggesting that achieving high impact as an art director happens less by chance than in
other professions within the movie industry. It is also interesting to compare the random-
ness index of scriptwriters (R = 0.528) and book authors (R = 0.546), due to the apparent
similar nature of these two creative careers. The value of the indices show that writing for
the movie industry is less driven by luck than in the book industry. In music, classical and
hip-hop are the most robust against luck fluctuations with the lowest randomness index of
our data set, R = 0.507. This could be explained by classical music being more dependent
on skills, experience, and musical training. Regarding hip-hop music, we could speculate
that being largely an underground genre, it is less exposed to the rich-gets-richer effect
and leaves more space for rising junior individuals. In contrast, the most popular genres,
namely electronic music (R = 0.546) and rock music (R = 0.530) are on the other side of the
range with the highest R. These two genres contain the largest number of one-hit-wonder
careers; therefore impact has more pronounced fluctuations. Regarding science, we find
a wider range of randomness, with space science and astronomy (R = 0.555) and politi-
cal science (R = 0.546) being the highest R-index fields, and theoretical computer science
(R = 0.517) and engineering (R = 0.523) being among the least influenced fields by luck
fluctuations.

5 The role of collaboration networks
In the previous sections, we have analyzed the randomness and magnitude of impact fo-
cusing on individual careers. However, a movie, a song or a paper is rarely the result of the
work of only one individual. Therefore next we ask: Can collaborations between individu-
als improve our ability to predict the timing of career hits? Previous research suggests that
scientific career impact and network position can be connected, for instance, according
to regressive models on predicting success by using network features. [15, 45–49].

To study network effects, we first reconstruct the temporal aggregated network of movie
directors, pop musicians, and mathematicians to quantify the relationship between their
network positions and impact. We use a yearly time resolution. In these weighted undi-
rected networks, each individual is represented by a node. To compute the weight of each
edge we took the set of products (Pi(T)), e.g. publications or movies, each individual i con-
tributed to up until year T . Then, we defined the weight of the connection between nodes
i and j at year T as wij(T), the Jaccard-index of the sets of works of the two individuals i
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and j:

wij(T) =
|Pi(T) ∩ Pj(T)|
|Pi(T) ∪ Pj(T)| , (5)

that is the number of works both individuals collaborated on, divided by the total number
of works they contributed to until year T . Based on this definition, the final aggregated col-
laboration network of movie directors consists of 8,091,208 links between 184,220 people
active between 1927–2017 (giant connected component only). In the pop music network,
we have 52,366 musicians active between 1926–2017 connected by 8,232,349 links, while
the network of mathematicians consists of 94,755 links between 27,401 mathematicians
during 1944–2016.

For each individual, we measure her degree centrality, PageRank centrality, clustering
coefficient, node strength, betweenness centrality, closeness centrality, network constraint
[50], and coreness centrality [51] in the aggregated network at the time she has produced
her different pieces of works. We note that while some of these measures are highly corre-
lated, some of them are not, encoding different angels of the individuals’ network positions
(details showed in SI Section S3 and SI Figure S14). We then create individual time-series
for each of these network measures, where time points correspond to the works in the
individual careers. Finally we study these network-based time-series together with the
evolution of individual the impact over a career. Our hypothesis is that the dynamics of
the network position and the dynamics of impact are correlated over time, however with
a delay of τ . We measure τ by shifting the network time-series with respect to the impact
time-series, and choose the value for which we obtain the maximum correlation between
the time-series. For further information on the network analysis see SI Section S3.

By analyzing the time-series of movie directors, pop musicians, and mathematicians,
we find that there are two groups of individuals: those for whom the network measures
peak before the highest impact work occurs, and those for whom the peak occurs after.
For example, the director Francis Ford Coppola (τ = 5) belongs to the first category, while
George Lucas (τ = –1) to the second (Fig. 3a). However, there are no significant differences
between these two groups when we consider impact: the two groups have similar distri-
butions of the Q-parameter (Fig. 3b) and of the magnitude of the highest success withing
a career (Fig. 3c). Further details on these findings can be found in SI Figures S11–S12 and
SI Tables S6–S7.

Given the indistinguishable nature of impact in these two groups, we ask whether the
observed shift τ is different from that obtained from reshuffled time-series, where time
correlations are canceled. We measure the distribution of the delay parameter τ and com-
pare it to the distribution of a randomized data set in which the time-series are randomly
reshuffled. The two distributions are closely overlapping, confirmed by the double-sided
Kolmogorov–Smirnov test (Fig. 3d, details about the KS test in SI Section S3 and Table S8).
Taken together, the collaboration network among individuals does not improve our ability
to predict the timing of the biggest hit since it is similarly likely to happen before or after
the network peak, suggesting that chance has much higher importance than the collabo-
ration network to determine the timing of the biggest hit within a career. Our results on
the timing of career hits and network position complement previous work where collab-
orations between authors were positively associated with scientific impact [48, 52].
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Figure 3 Network position and timing of biggest hit for movie directors. (a) We report the impact S of Francis
Ford Coppola illustrating the case when PageRank centrality peaks first (τ = 5), followed by the impact, while
the example of George Lucas illustrates the opposite behavior (τ = +1), where a peak in the impact is
followed by the peak in networking. The figure then shows a comparison between the groups of film
directors for whom success peaks before (colored continuous lines) and after (colored dashed lines) their
network peak. For movie directors, (b) their network position based on their PageRank and their success
measured by their Q parameters, (c) their network position based on their degree and their success measured
as their highest impact, the binned (15 bins) distributions of the two groups do not show any significant
difference based on the Kolmogorov–Smirnov test (ddegree = 0.02, dPageRank = 0.02, p < 0.0001). (d) Shows the
distribution of the shift parameter τ between the directors’ network centrality (PageRank) and impact time
series, coloring the distribution corresponding to the original data by orange, and to the randomized data by
orange (KS test d = 0.27, p < 0.01)

6 Conclusion
In this work, we provided a framework to understand and quantify the role of randomness
in the success of creative fields across different domains. To understand the emergence of
high-impact creative works, we built large-scale data sets and investigated thousands of
careers from the movie, book, and music industries, and science. We built on an exist-
ing model, known as Q-model, to decompose the impact of the individual creative works
into two independent components, one expressing the ability of an individual to have con-
sistently high or low typical impact, captured by the Q-parameter, and one associated to
random fluctuations, capturing the role of luck. We also cast the model into the frame-
work of classical test theory, which aims to disentangle the true score of a variable from
noisy fluctuations.

Using this framework, we found that on average, fluctuations in the impact of single cre-
ative works are more influenced by luck than by individual ability, as all the fields in Fig. 2c
are placed above the diagonal. However, we conclude a change in trends: the fluctuations
in the individual-based parameter are more pronounced for fields with large fluctuations
in impact. The extrapolated linear trend between fluctuations in individual parameters
and luck predicts that when impact fluctuations become large (σ 2

Q̂
≈ 0.7), the fluctuations

in individual parameter become larger than the random ones. In this fictional case, the
fluctuations in impact would be mainly due to individual differences. Moreover, we found
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that sub-disciplines within different do not show spatial clustering on the studied variance
plane of Fig. 2c. This absence of segregation of the studied four creative domains suggests
the magnitude of luck is not a distinctive feature of domains.

We introduced a synthetic randomness index, defined as the relative ratio of the variance
of the random component to that of success, and investigated its values across different
domains. We found that the randomness index varies in a relatively narrow range, despite
the differences in typical impact within creative professions. This further confirms the lack
of distinct typical scales of random fluctuations associated with the four different domains
investigated in the paper. Finally, in this narrow range of randomness, we found that the
careers with the highest values of luck are those of movie producers, electronic music
artists, book authors, and scientists working in the fields of space science, and political
science. On the other hand, randomness has the lowest influence on hip-hop and classical
music, theoretical computer science, and movie art directors.

Finally, we also studied the temporal relationship between success and centrality in the
collaboration network for movie directors, pop musicians, and mathematicians as a case
study. For each individual, we compared the temporal evolution of their network centrality
to the evolution of their impact. We found that these two are correlated, yet with a delay.
We computed these delay parameters and found two distinct classes of creative careers
regardless of their creative domain. Individuals belonging to the first group produce their
big hit first, and become well-connected in the network only after the occurrence of the
hit, while people falling into the second category first build favorable connections, and
produce their big hit afterward. However, we found no correlation between individual
impact and the social environment the individual belongs to. We also showed that the
delay between the impact and the network time-series follows the same distribution as
randomized data. In conclusion, our analysis revealed that the evolution of the individual
position in the network is random in respect to the timing of the career hits, regardless of
the particular choice of network measures.

Future studies could further untangle the individual Q-parameter and pinpoint what Q
means, for example, in terms of access to resources or early career steps. Also, the vari-
able p, interpreted here as luck, could contain more information than just randomness if
further data is incorporated in the analysis. Nevertheless, its universal distribution across
careers suggests that this information is homogeneously distributed among individuals.
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(2018) Science of science. Science 359(6379):eaao0185

17. Jadidi M, Karimi F, Lietz H, Wagner C (2018) Gender disparities in science? Dropout, productivity, collaborations and
success of male and female computer scientists. Adv Complex Syst 21(03n04):1750011

18. Flugel JC, West DJ (1964) A hundred years of psychology
19. Petersen AM, Jung W-S, Yang J-S, Stanley HE (2011) Quantitative and empirical demonstration of the Matthew effect

in a study of career longevity. Proc Natl Acad Sci 108(1):18–23
20. Pluchino A, Biondo AE, Rapisarda A (2018) Talent vs Luck: the role of randomness in success and failure. arXiv preprint

arXiv:1802.07068
21. Pluchino A, Burgio G, Rapisarda A, Biondo AE, Pulvirenti A, Ferro A, Giorgino T (2019) Exploring the role of

interdisciplinarity in physics: success, talent and luck. PLoS ONE 14(6):e0218793
22. Radicchi F, Fortunato S, Castellano C (2008) Universality of citation distributions: toward an objective measure of

scientific impact. Proc Natl Acad Sci 105(45):17268–17272
23. Crocker L, Algina J (1986) Introduction to classical and modern test theory. ERIC, U.S. Department of Education
24. Lord FM (1965) A strong true-score theory, with applications. Psychometrika 30(3):239–270
25. www.imdb.com. Internet movie database. Date accessed: 2017.02.04
26. www.discogs.com. Discogs music release database. Date accessed: 2017.02.04
27. Hartnett J (2015) Discogs.com. Charlest Advis 16(4):26–33
28. www.last.fm. LastFM. Date accessed: 2017.02.06
29. www.goodreads.com. Goodreads book database. Date accessed: 2017.02.04
30. Garfield E, Merton RK (1979) Citation indexing: its theory and application in science, technology, and humanities,

vol 8. Wiley, New York

https://github.com/milanjanosov/Success-and-randomness-in-creative-careers
https://webofknowledge.com
http://arxiv.org/abs/arXiv:1802.07068
http://www.imdb.com
http://www.discogs.com
http://www.last.fm
http://www.goodreads.com


Janosov et al. EPJ Data Science             (2020) 9:9 Page 12 of 12

31. Radicchi F, Castellano C (2011) Rescaling citations of publications in physics. Phys Rev E 83(4):046116
32. Yucesoy B, Barabási A-L (2016) Untangling performance from success. EPJ Data Sci 5(1):17
33. Salganik MJ, Dodds P, Sheridan P, Watts DJ, (2006) Experimental study of inequality and unpredictability in an artificial

cultural market. Science 311(5762):854–856
34. Aiello LM, Schifanella R, Redi M, Svetlichnaya S, Liu F, Osindero S (2017) Beautiful and damned. Combined effect of

content quality and social ties on user engagement. IEEE Trans Knowl Data Eng 29(12):2682–2695
35. Simkin MV, Roychowdhury VP (2007) A mathematical theory of citing. J Am Soc Inf Sci Technol 58(11):1661–1673
36. Vásárhelyi G, Virágh C, Somorjai G, Nepusz T, Eiben AE, Vicsek T (2018) Optimized flocking of autonomous drones in

confined environments. Sci Robot 3(20):eaat3536
37. Kristof W (1974) Estimation of reliability and true score variance from a split of a test into three arbitrary parts.

Psychometrika 39(4):491–499
38. Kline T (2005) Psychological testing: a practical approach to design and evaluation. Sage, Thousand Oaks
39. Kean J, Reilly J (2014) Item response theory. In: Handbook for clinical research: design, statistics and implementation,

pp 195–198
40. Mauboussin MJ (2010) Untangling skill and luck: how to think about outcomes—past, present, and future. Legg

Mason Capital Management
41. Mauboussin MJ (2012) The success equation: untangling skill and luck in business, sports, and investing. Harvard

Business Press, Brighton
42. Stewart J (1983) The distribution of talent. Marilyn Zurmuehlen Work Pap Art Educ 2(1):21–22
43. Galton F (1869) Hereditary genius
44. Allen MJ, Yen WM (2001) Introduction to measurement theory. Waveland Press, Mountain View
45. Figg WD, Dunn L, Liewehr DJ, Steinberg SM, Thurman PW, Barrett JC, Birkinshaw J (2006) Scientific collaboration

results in higher citation rates of published articles. Pharmacother J Hum Pharmacol Drug Ther 26(6):759–767
46. Hsu J-W, Huang D-W (2011) Correlation between impact and collaboration. Scientometrics 86(2):317–324
47. Radicchi F (2012) In science “there is no bad publicity”: papers criticized in comments have high scientific impact. Sci

Rep 2:815
48. Sarigöl E, Pfitzner R, Scholtes I, Garas A, Schweitzer F (2014) Predicting scientific success based on coauthorship

networks. EPJ Data Sci 3(1):9
49. Janosov M, Musciotto F, Battiston F, Iñiguez G (2020) Elites, communities and the limited benefits of mentorship in

electronic music. Sci Rep 10(1):1–8
50. Burt RS (2004) Structural holes and good ideas. Am J Sociol 110(2):349–399
51. Seidman SB (1983) Network structure and minimum degree. Soc Netw 5(3):269–287
52. Petersen AM (2015) Quantifying the impact of weak, strong, and super ties in scientific careers. Proc Natl Acad Sci

112(34):E4671–E4680
53. Galton F (1889) Natural inheritance


	Success and luck in creative careers
	Abstract
	Keywords

	Data
	The Q-model: decomposing luck and individual ability in impact
	From the Q-model to classical test theory to compare luck across different domains
	Randomness in creative careers
	The role of collaboration networks
	Conclusion
	Supplementary information
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


