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Periodic parabolic solitons with differen
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In this paper, a system with controllable parameters for describing the evolution of polarization modes in
nonlinear fibers is studied. Using the Horita’s method, the coupled nonlinear Schrödinger equations are
transformed into the bilinear equations, and the one- and two- bright soliton solutions of system (3) are
obtained. Then, the influencing factors on velocity and intensity in the process of soliton transmission are
analyzed. The fusion, splitting and deformation of the solitons caused by their interactions are discussed.
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Finally, a method for adjusting the inconsistencies of sine-wave soliton transmission is given. The conclu-
sions of this paper may be helpful for the related research of wavelength division multiplexing systems.
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Introduction

In fiber optics, some studies have been conducted on the tradi-
tional optical pulse transmission model [1–10]. With the further
study of fiber optics, scientists have extended the study of the tra-
ditional optical pulse transmission model nonlinear Schrödinger
equation (NLSE) in optical fiber to multi-dimensional NLSE, cou-
pled NLSE (CNLSE) in birefringent fiber, N-coupled NLSE in wave-
length division multiplexing system and variable coefficient NLSE
in non-uniform fiber [11–17]. As one of the basic theoretical mod-
els for describing nonlinear phenomena, the CNLSEs are widely
used in such fields as biophysics, condensed matter physics and
nonlinear optics [18–21]. The classic CNLSE is:

iq1t þ c1q1xx þx q1j j2 þ a1 q2j j2
� �

q1 ¼ 0;

iq2t þ c2q2xx þx a2 q1j j2 þ q2j j2
� �

q2 ¼ 0:
ð1Þ

where q1 and q2 represent slowly varying amplitudes of two fiber
modes, they are complex functions with respect to scale distance
x and time t [22–25]. The System (1) includes both self-phase mod-
ulation and cross-phase modulation, a1 and a2 are cross-phase
modulation coefficients, c1 and c2 are the dispersion coefficients
of the two wave packets, respectively. For System (1), its exact solu-
tions and soliton transmission characteristics have been studied. By
introducing Hirota’s method, the bright soliton and dark soliton
solutions of System (1) have been obtained under the conditions
of c1 ¼ c2 ¼ 1 and a1 ¼ a2 ¼ 1 [26]. The periodic solutions of the
systems extended to the N-components have been expressed, and
the inelastic interactions caused by intensity redistribution and sep-
aration distance have been analyzed [27].

The soliton solution of the high-dimensional CNLEs are more
complicated in structure, so that they can produce more abundant
new physical phenomena. Therefore, the (1 + 1)-dimensional
CNLSEs have been extended to the (2 + 1)-dimensional CNLSEs
[28].

iwt þ cðwxx þ wyyÞ þ r jwj2 þ j/j2
� �

w ¼ 0;

i/t þ cð/xx þ /yyÞ þ r jwj2 þ j/j2
� �

/ ¼ 0:
ð2Þ

System (2) controls the existence and stability of the space vec-
tor solitons, and the solutions of System (2) are derived under the
condition of c ¼ r ¼ 1 parameters, and the elastic and inelastic
interactions between two parallel bright solitons have been ana-
lyzed [28]. In reference [29], N-components (2 + 1)-dimensional
CNLSEs have been discussed, which describe the evolution of
polarization modes in nonlinear fibers. However, in the process
of practical application, some special phenomena such as local
defects and damages cannot be explained by constant coefficient
system model in optical fiber, which always have an important
impact on the optical soliton transmissions and dynamic behavior
[30]. Therefore, the variable coefficient CNLSEs have much practi-
cal significance and research value. When c and r develop into
cðtÞ and rðtÞ respectively, the bright and dark analytic soliton solu-
tions of the changed System (2) and their related properties have
been reported [30,31].
Further, the higher the dimension of the nonlinear equation, the
more accurately the equation can describe the actual physical phe-
nomenon, so that the CNLSE is extended from (2 + 1) dimension to
(3 + 1) dimension [32]. Not only that, finding the exact solutions of
the variable coefficient CNLES, especially the soliton solutions, has
always been a topic of great interest to mathematicians and physi-
cists. Consider the above factors, we will focus on the following
(3 + 1)-dimensional variable coefficient system model [32–35],

iwt þ bðtÞ wxx þ wyy þ wzz

� �þ dðtÞ jwj2 þ j/j2
� �

w ¼ 0;

i/t þ cðtÞ /xx þ /yy þ /zz

� �þxðtÞ jwj2 þ j/j2
� �

/ ¼ 0;
ð3Þ

where bðtÞ; dðtÞ; cðtÞ and xðtÞ are all perturbed real functions. When
they are all constants, the bright soliton solutions of the constant
coefficient ð3þ 1Þ-dimensional CNLSE has been solved in Ref. [33].
Subsequently, the dark soliton solutions have been derived under
the constraints of dðtÞ ¼ xðtÞ ¼ �bðtÞ ¼ �k and cðtÞ ¼ bðtÞ ¼ k in
Ref. [34]. The variable-coefficient dark solitons of the system (3)
with the constraints b tð Þ ¼ c tð Þandd tð Þ ¼ x tð Þ, and their different
transmission structures have recently been reported [35]. However,
after investigation, we found that the bright solitons and the effect
of perturbation functions on the soliton transmission process con-
trolled by this variable coefficient (3 + 1)-dimensional CNLSEs have
not been studied.

The composition of this paper is divided into the following sec-
tions: The derivation of the bilinear forms and the bright analytical
solutions of System (3) will be presented in the second part. In the
third part, the intensity, velocity and phase during the soliton
transmission process on the planes in different directions are ana-
lyzed. Further, the influences of perturbation variable parameters
on the soliton transmission process and the special phenomena
will be explored. Finally, in the fourth part, the final conclusion is
drawn.

Material and methods

The bilinear forms of system (3)

It is difficult to directly solve nonlinear equations, so that the
following rational transformations are introduced to convert the
above System (3) into the bilinear forms:

w ¼ g
f
;/ ¼ h

f
: ð4Þ

And then substituting the transformations (4) into System (3),
we can get the following expressions:

i Dtg�f
f 2

þ bðtÞ D2
x g�fþD2

y g�fþD2
z g�f

f 2
� g

f
D2
x f �fþD2

y f �fþD2
z f �f

f 2

h i
þ dðtÞ g

f
gg�þhh�

f 2

h i
¼ 0;

i Dth�f
f 2

þ cðtÞ D2
x h�fþD2

yh�fþD2
z h�f

f 2
� h

f
D2
x f �fþD2

y f �fþD2
z f �f

f 2

h i
þxðtÞ h

f
gg�þhh�

f 2

h i
¼ 0:

ð5Þ
here f is a real function, while g and h are both complex with the
variables of x; y; z and t. } � } represents the conjugate symbol.
And the D operator knowns as the bilinear derivative operator in
the above, which is defined as follows [36,37]:
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Dl
xD

m
t gðx; tÞ � f ðx; tÞ

¼ @l

@al
@m

@bm
g xþ a; t þ bð Þf x� a; t � bð Þ

���
a¼0;b¼0

l;m ¼ 0;1;2; � � �ð Þ: ð6Þ

By setting D2
x þ D2

y þ D2
z

� �
f � f ¼ l gg� þ hh�ð Þ (l is a positive

constant) we can obtain:

i Dtg�f
f 2

þ bðtÞ D2
x g�fþD2

yg�fþD2
z g�f

f 2

h i
þ ½d tð Þ � lb tð Þ� gf gg�þhh�

f 2

h i
¼ 0;

i Dth�f
f 2

þ c tð Þ D2
x h�fþD2

yh�fþD2
z h�f

f 2

h i
þ ½x tð Þ � lc tð Þ� hf gg�þhh�

f 2

h i
¼ 0:

To balance the dispersion terms and nonlinear terms, we have
the constraints dðtÞ ¼ lbðtÞ and xðtÞ ¼ lcðtÞ. Since the denomina-

tor f 2 cannot be 0, we can get:

iDtg � f þ b tð Þ½D2
xg � f þ D2

yg � f þ D2
z g � f � ¼ 0;

iDth � f þ c tð Þ½D2
xh � f þ D2

yh � f þ D2
z h � f � ¼ 0

From the above process, the bilinear forms of system (3) are:

iDt þ bðtÞðD2
x þ D2

y þ D2
z Þ

h i
g � f ¼ 0;

iDt þ cðtÞðD2
x þ D2

y þ D2
z Þ

h i
h � f ¼ 0;

D2
x þ D2

y þ D2
z

h i
f � f � l gg� þ hh�ð Þ ¼ 0:

ð7Þ
The One-soliton solutions of System (3)

Next, the bright one-soliton solutions of System (3) will be
derived according to the expansions of g and f with respect to for-
mal parameter n.

g ¼ ng1 þ n3g3 þ n5g5 þ � � � ;
h ¼ nh1 þ n3h3 þ n5h5 þ � � � ;
f ¼ 1þ n2f 2 þ n4f 4 þ n6f 6 þ � � � :

ð8Þ

when deriving the one-soliton solutions, the above expansions need
to be truncated into g ¼ ng1;h ¼ nh1 and f ¼ 1þ n2f 2. Making
assumptions that
g1 ¼ Aeg;h1 ¼ Beg; f 2 ¼ m1egþg

�
;g ¼ vxþ myþ fzþ kðtÞ, and substi-

tuting the assumptions and the truncated expansions into the bilin-
ear Eq. (7), the following relationships can be yielded:

bðtÞ ¼ c tð Þ; k tð Þ ¼ R
i v2 þ m2 þ f2
� �

b tð Þdt;

m1 ¼
jAj2 þ jBj2

� �
l

2½ vþ v�ð Þ þ mþ m�ð Þ2 þ fþ f�ð Þ2�
:

For convenience, make the assumption that n ¼ 1, so the one-
soliton solutions of System (3) canbewritten in the following forms:

w ¼ Aeg

1þ jAj2þjBj2ð Þl
2½ vþv�ð Þþ mþm�ð Þ2þ fþf�ð Þ2 � e

gþg�
;

/ ¼ Beg

1þ jAj2þjBj2ð Þl
2½ vþv�ð Þþ mþm�ð Þ2þ fþf�ð Þ2 � e

gþg�
:

ð9Þ
The two-soliton solutions of System (3)

When deriving the two-soliton solutions, the expansions (7)
should be truncated to g ¼ ng1 þ n3g3; h ¼ nh1 þ n3h3 and
f ¼ 1þ n2f 2 þ n4f 4. Then, g1 and h1 are set to g1 ¼ C1eg1 þ C2eg2

and h1 ¼ A1eg1 þ A2eg2 , respectively. Here, gj ¼ vjxþ mjyþ
fjzþ kjðtÞ; j ¼ 1;2ð Þ. Taking the above assumptions into the bilin-
ear equations (7), we can acquire the following results:
bðtÞ ¼ c tð Þ;kj tð Þ ¼ R
i v2

j þm2j þ f2j

� �
b tð Þdt j¼ 1;2ð Þ;

g3 ¼ B1eg1þg2þg
�
1 þB2eg1þg2þg

�
2 ;h3 ¼ F1eg1þg2þg

�
1 þ F2eg1þg2þg

�
2 ;

f 2 ¼M1eg1þg
�
1 þM2eg1þg

�
2 þM3eg2þg

�
1 þM4eg2þg

�
2 ; f 4 ¼ n1eg1þg2þg

�
1þg�2 ;

where

v2 ¼ v�
1 f2 � f1ð Þ þ v1 f�1 þ f2

� �
f1 þ f�1

; m2 ¼ m�1 f2 � f1ð Þ þ m1 f�1 þ f2
� �

f1 þ f�1
;

M1 ¼
l jA1j2 þ jC1j2
� �

2½ v1 þ v�
1

� �2 þ m1 þ m�1
� �2 þ f1 þ f�1

� �2� ;

M2 ¼ l A1A
�
2 þ C1C

�
2

� �
2½ v1 þ v�

2

� �2 þ m1 þ m�2
� �2 þ f1 þ f�2

� �2� ;

M3 ¼ l A�
1A2 þ C�

1C2
� �

2½ v�
1 þ v2

� �2 þ m�1 þ m2
� �2 þ f�1 þ f2

� �2� ;

M4 ¼ lðjA2j2 þ jC2j2Þ
2½ v2 þ v�

2

� �2 þ m2 þ m�2
� �2 þ f2 þ f�2

� �2� ;
B1 ¼ �C2M1r1 þ C1M3r2;B2 ¼ �C2M2r3 þ C1M4r4;

F1 ¼ �A2M1r1 þ A1M3r2; F2 ¼ �A2M2r3 þ A1M4r4;

n1 ¼ �2M1M4K1�2M2M3K2þlK4
2K3

,

r1 ¼ ðv1 þv�
1Þðv1 �v2Þþ ðm1 þm�1Þðm1 �m2Þþ ðf1 þ f�1Þðf1 � f2Þ

ðv1 þv�
1Þðv�

1 þv2Þþ ðm1 þm�1Þðm�1 þm2Þþ ðf1 þ f�1Þðf�1 þ f2Þ
;

r2 ¼ ðv�
1 þv2Þðv1 �v2Þþ ðm�1 þm2Þðm1 �m2Þþ ðf�1 þ f2Þðf1 � f2Þ

ðv1 þv�
1Þðv�

1 þv2Þþ ðm1 þm�1Þðm�1 þm2Þþ ðf1 þ f�1Þðf�1 þ f2Þ
;

r3 ¼ ðv1 þv�
2Þðv1 �v2Þþ ðm1 þm�2Þðm1 �m2Þþ ðf1 þ f�2Þðf1 � f2Þ

ðv1 þv�
2Þðv2 þv�

2Þþ ðm1 þm�2Þðm2 þm�2Þþ ðf1 þ f�2Þðf2 þ f�2Þ
;

r4 ¼ ðv1 �v2Þðv2 þv�
2Þþ ðm1 �m2Þðm2 þm�2Þþ ðf1 � f2Þðf2 þ f�2Þ

ðv1 þv�
2Þðv2 þv�

2Þþ ðm1 þm�2Þðm2 þm�2Þþ ðf1 þ f�2Þðf2 þ f�2Þ
;

K1 ¼ v1 þv�
1 �v2 �v�

2

� �2 þ m1 þm�1 �m2 �m�2
� �2 þ f1 þ f�1 � f2 � f�2

� �2
;

K2 ¼ v1 �v�
1 �v2 þv�

2

� �2 þ m1 �m�1 �m2 þm�2
� �2 þ f1 � f�1 � f2 þ f�2

� �2
;

K3 ¼ v1 þv�
1 þv2 þv�

2

� �2 þ m1 þm�1 þm2 þm�2
� �2 þ f1 þ f�1 þ f2 þ f�2

� �2
;

K4 ¼ B�
2C1 þB2C

�
1 þB�

1C2 þB1C
�
2 þA�

2F1 þA2F
�
1 þA�

1F2 þA1F
�
2:

Without loss of generality, assumingn ¼ 1, then the expressions
of the bright two-soliton solutions are as follows:

w ¼ g1 þ g3

1þ f 2 þ f 4
;/ ¼ h1 þ h3

1þ f 2 þ f 4
ð10Þ
Results discussion

To explore the traits of the velocity and intensity in solitons
transmission process controlled by this model, for intuitive analy-
sis, the above-mentioned one-soliton solutions (9) are transformed
as follows:

w ¼ g1
1þf 2

¼ A
2 e

iImðgÞe�
lnm1
2 sech ReðgÞ þ lnm1

2

h i
;

/ ¼ h1
1þf 2

¼ B
2 e

iImðgÞe�
lnm1
2 sech ReðgÞ þ lnm1

2

h i
:

ð11Þ

where ReðgÞ and ImðgÞ represent the real and imaginary parts of g,
respectively. The characteristic-line equation (12) is introduced in
the soliton transmission process to convey the expression of trans-
mission speed [38].

Re gð Þ þ 1
2
lnm1 ¼ const: ð12Þ
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Assuming v ¼ X11 þ iX12, m ¼ Y11 þ iY12, f ¼ Z11 þ iZ12;X1j;Y1j,
Z1j are real constants and j ¼ 1;2, then substituting them into
Eq. (12), the following relationship is obtained:

X11xþ Y11yþ Z11z� 2 X11X12 þ Y11Y12 þ Z11Z12ð ÞZ
b tð Þdt þ 1

2
lnm1 ¼ const: ð13Þ

Differentiate on both sides of Eq. (13), therefore, the soliton
transmission velocity in the x� t, y� t, and z� t planes are
inferred:

vx�t ¼ 2ðX11X12 þ Y11Y12 þ Z11Z12ÞbðtÞ
X11

;

vy�t ¼ 2ðX11X12 þ Y11Y12 þ Z11Z12ÞbðtÞ
Y11

;

vz�t ¼ 2ðX11X12 þ Y11Y12 þ Z11Z12ÞbðtÞ
Z11

:

It is shown that the transmission speed of the soliton is affected
by wave numbers v; m; f and disturbance coefficientbðtÞ. What’s
more, under the same parameter conditions, the larger the real
value of the wave numbers of each plane, the smaller the velocity
of the plane. As can be seen from Fig. 1(a) and (b), in the x� t plane,
the soliton transmission velocity does not increase or decrease for
the changes about the values of y and z, but its transmission posi-
tion is shifted to the right. It is because the values of y and z will
affect the initial phase of the soliton in the x� t plane transmis-
sion. On the other hand, comparing the soliton transmission vole-
city on different planes from Fig. 1(a), (b) and (c), as the real part
values of v; m, and f are 0:5;1, and 1:5, respectively, we can see that
the speed of Fig. 1 (a) is the largest, and Fig. 1 (c) is the smallest,
which confirms the expressions of vx�t; vy�t and vz�t from the
image aspect.

Next, we continue to discuss some special phenomena caused
by the effects of perturbation parameters bðtÞ on soliton transmis-
sion. When bðtÞ takes a constant, the solitons are linear on the cor-
responding plane in Fig. 1, but once bðtÞ takes different functions, it
will have different shapes on the corresponding plane. For
instance, in the x� t plane, when bðtÞ takes 0:5et or t2, the solitons
appear parabolic in Fig. 2(a) and (b). But if we suppose
bðtÞ ¼ ktanðqtÞ, there will be a periodic parabolic soliton with dif-
ferent energies in Fig. 2(c) and (d). Not only that, the purpose of
changing the period and span of the parabolic solitons can be
achieved by adjusting the parameters k and n. bðtÞ can take various
functions, when bðtÞ is taken as t2, 0:2sinð2tÞ, sechð5tÞ, 0:05t2sinðtÞ,
respectively, cubic (Fig. 2(e)), sine (Fig. 2(f)), hyperbolic sine (Fig. 2
(g)) and periodic increased amplitude(Fig. 2(h)) solitons are
obtained.
Fig. 1. The velocity comparison on different planes of one-soliton solitons,
m ¼ 1þ I; f ¼ 1:5þ I; að Þy ¼ 0; z ¼ 0; bð Þy ¼ 2; z ¼ 1; cð Þx ¼ 0; z ¼ 0; dð Þx ¼ 0; y ¼ 0:
According to Eq. (11), the intensities of w and / are as follows:

jwj2 ¼ jAj2
4m1

sech2½ReðgÞ þ 1
2 lnm1�;

j/j2 ¼ jBj2
4m1

sech2 ReðgÞ þ 1
2 lnm1

� �
:

Because sechðxÞ � 1, there is

jwj2max ¼ jAj2
4m1

¼ vþv�ð Þþ mþm�ð Þ2þ fþf�ð Þ2

2 1þjBj2
jAj2

� �
l

;

j/j2max ¼ jBj2
4m1

¼ vþv�ð Þþ mþm�ð Þ2þ fþf�ð Þ2

2 1þjAj2
jBj2

� �
l

:

The above equations show that the intensity of the soliton is not
related to the constraint parameter bðtÞ, but is related to X;Y; Z, the
phase constant A and B, and the parameter l. Further, when j AB j
increases, the intensity of w increases but / decreases.

Next, we will concentrate on discussing the interactions of the
two-solitons in System (3). From Eq. (11), we know that the differ-
ence between w and / is only proportional to the energy, so the fol-
lowing discussion about the soliton’s interactions is only for w. As
we can see, under certain parameters values, by adjusting the wave
number parameters vj, mj and fj, solitons appear to merge, split and
deform in the process of interaction. In Fig. 3 (a), the two solitons
are fused into a single soliton with greater intensity and wider
wave width. However, when the parameters values become
Z1 ¼ 1:2� 0:38I;Y1 ¼ �0:91þ 0:5I, the two solitons do not merge.
Instead, one of the solitons absorbed the energy of the other soli-
ton, and the intensity and wave width increased, on the other
hand, the energy and wave width of the other soliton are reduced
in Fig. 3 (b). The energy and waveform of the solitons have changed
after the interaction, which is an inelastic interaction caused by
energy redistribution. Further, by adjusting the values of Y1 and
Z1, the two-solitons are split, and side wave appear. A new soliton
is formed between the two solitons, and its energy is greater than
that of the two solitons in Fig. 3 (c). Fig. 3 (d) is the cases where the
two-solitons split into four waves. This kind of interaction that will
generate new solitons may be beneficial to quickly improve the
efficiency of optical communications. In addition to fusion and
splitting, the two- solitons of System (3) will undergo severe defor-
mation in the area of interaction in Fig. 3(e) and (f). This phe-
nomenon will reduce the accuracy of information transmission
and is also a problem that must be solved to improve the transmis-
sion efficiency of optical fibers.

Finally, parameters mj and fj can also modulate the synchroniza-
tion of soliton transmissions. The propagation of optical soliton in a
dispersion-graded fiber is similar to a sinusoidal curve. Therefore,
bðtÞ is taken as a sine function to simulate the transmission process
of a soliton in a dispersion graded fiber. As can be seen in Fig. 4 (a),
corresponding parameters are: b tð Þ ¼ 0:3;l ¼ 1;A ¼ 1þ I;B ¼ 1þ I;v ¼ 0:5þ I;



Fig. 2. The different shapes of solitons generate on the x� t plane by bðtÞ: A ¼ �2þ I;B ¼ 1þ I;v ¼ 1þ I; m ¼ 0:5þ I; f ¼ 1þ I; y ¼ 0; z ¼ 0; (a) b tð Þ ¼ 0:5et ;l ¼ 1;
(b) b tð Þ ¼ t;l ¼ 1; (c) b tð Þ ¼ 0:1tan 2tð Þ;l ¼ 1:5; (d) b tð Þ ¼ 0:2tan 0:5tð Þ;l ¼ 1; (e) b tð Þ ¼ t2;l ¼ 1; (f) b tð Þ ¼ 0:2sin 2tð Þ;l ¼ 1; (g) b tð Þ ¼ sech 5tð Þ;l ¼ 1;
(h) b tð Þ ¼ 0:05t2sin 4tð Þ;l ¼ 1.

Fig. 3. Two-soliton interactions with different constraint coefficients: b tð Þ ¼ et ;l ¼ 2;A1 ¼ �1;A2 ¼ 1;C1 ¼ 1; C2 ¼ 1;v1 ¼ 0:3þ I; f2 ¼ 1þ 0:1I; x ¼ 1; y ¼ 1; (a) f1 ¼
�1:2þ 1:1I; m1 ¼ 1:0þ 0:19I, (b) f1 ¼ 1:2� 0:38I; m1 ¼ �0:91þ 0:5I, (c) f1 ¼ �0:81þ 3:5I; m1 ¼ �0:0663� 2:8I, (d) f1 ¼ 0:81� 4I; m1 ¼ �0:44� 0:38I, (e) f1 ¼ 1:9þ 0:25I;
m1 ¼ 0:13� 3:2I; (f) f1 ¼ 1:6þ 0:13I; m1 ¼ �0:88þ 1:1I.
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Fig. 4. Two-soliton interactions with different constraint coefficients: b tð Þ ¼ sint;l ¼ 2;A1 ¼ �1;A2 ¼ 1;C1 ¼ 1;C2 ¼ 1;v1 ¼ 0:3þ I; f2 ¼ 1þ 0:1; (a) f1 ¼ 2� 3:8I; m1 ¼
�0:94� 2:3I; x ¼ 1; y ¼ 1; (b) f1 ¼ 0:88þ 0:5I; m1 ¼ �1:1� 1:7I; x ¼ �1; y ¼ �1.
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the two solitons are sinusoidal waves under the action of bðtÞ, and
the vibration directions of the two solitons are opposite. However,
with different values of f1 and m1, the vibration directions of the
two solitons become synchronized in Fig. 4 (b). From the previous
analysis in Fig. 1(a) and (b), it is known that only the transmission
positions of the solitons are different on the different planes in the
same direction. Therefore, it can be known from Fig. 4 that the
inconsistencies of the sine-wave soliton can be achieved by adjust-
ing parameters f1 and m1. So that the wave number parameters can
not only manage the shape and energy of the solitons themselves,
but also modulate the coordination of the two-solitons during the
transmissions. At the same time, in Fig. 4, the two solitons only
locally deform in the interaction range, and after the interaction,
the shape does not change. Thus, the interactions are elastic inter-
actions which has less impact on information transmission during
the fiber transmission process.
Conclusion

In this paper, we have investigated a variable coefficient (3 + 1)-
dimensional CNLSE (3) describing circularly polarized waves. The
Horita’s method have been used to transform Eq. (3) into the bilin-
ear forms, and the bright one- and two-soliton solutions have been
derived. After some derivations, the expressions of soliton trans-
mission velocity and intensity have been obtained. It can be known
from the expressions of velocity that in addition to the parameters
v, m, and f, the transmission volecity has been controlled by the dis-
turbance coefficient bðtÞ. Moreover, when bðtÞ has took different
functions, soliton transmission paths of different shapes have
appeared on the corresponding plane. On the other hand, the
intensity of the solitons has been affected by the parameter v, m,
f, and l. Since the parameters v1, m1 and fj affect the speed and
intensity of the solitons, it is inevitable that the interactions of
the solitons would be affected by them in the transmissions. Con-
stantly adjusting the parameters m1 and f1, it was found that the
two solitons had fused, split and deformed. And under certain con-
ditions, the energy of one soliton would be absorbed by the other
soliton. In the process of soliton fusion and splitting, both belong
to inelastic interactions caused by energy redistribution. Finally,
we have found that during the sinusoidal two-soliton transmission,
the parameters m1 and f1 can adjust the vibrations synchronization
of the two-solitons. This shows that the transmission path and
state of the soliton can be controlled by controlling the adjustable
parameters.
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