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Abstract
Cellular heterogeneity is revolutionizing the way to study, monitor and dissect complex diseases. This has been possible with 
the technological and computational advances associated to single-cell genomics and epigenomics. Deeper understanding of 
cell-to-cell variation and its impact on tissue function will open new avenues for early disease detection, accurate diagnosis 
and personalized treatments, all together leading to the next generation of health care. This review focuses on the recent dis-
coveries that single-cell genomics and epigenomics have facilitated in the context of human health. It highlights the potential 
of single-cell omics to further advance the development of personalized treatments and precision medicine in cancer, diabetes 
and chronic age-related diseases. The promise of single-cell technologies to generate new insights about the differences in 
function between individual cells is just emerging, and it is paving the way for identifying biomarkers and novel therapeutic 
targets to tackle age, complex diseases and understand the effect of life style interventions and environmental factors.

Introduction

Recently, efforts have been made to highlight the importance 
of moving translational genomic findings to the clinic for 
the overall improvement of human health (Cho et al. 2016; 
Regev et al. 2017; Zeggini et al. 2019). Accordingly, these 
would include the translation of, but are not limited to the 
experimental discovery of results, the analysis and func-
tional interpretation of results, the generation of large-scale 
data and the utilization of advanced computational software 
to handle result output and lastly, the application of result 
findings in a clinical setting (Behjati et al. 2018; Haghverdi 
et al. 2016; Zeggini et al. 2019). These applications, in com-
bination with the approval of multiple other ethical, legal, 
social, economic and political factors could be used to ulti-
mately combat disease, detect early onsets of disease, moni-
tor disease progression and potentially facilitate preventative 
treatments (Behjati et al. 2018; Gomes et al. 2019; Regev 
et al. 2017; Zeggini et al. 2019). Although this approach has 
been successfully applied in some monogenic disorders and 

in rare disease cases where precision medicine techniques 
are used as a specific or preventative treatment (June et al. 
2018; Karczewski and Snyder 2018; Zeggini et al. 2019), the 
implementation of this comprehensive translational genom-
ics approach to complex chronic diseases in humans is yet to 
be achieved (Grouse 2015; Regev et al. 2017).

While the analysis of multiple “omic” (genomic, tran-
scriptomic, proteomic and metabolomic) molecular profiles 
in bulk have been well established to study cellular homeo-
stasis and disruptions as a consequence of disease (Hasin 
et al. 2017; Karczewski and Snyder 2018; Sun and Hu 2016), 
most genetic and epigenetic mechanisms are yet to be probed 
with single-cell resolution. To understand the finer details 
at the level of a singular cell, sophisticated genomic and 
epigenomic next-generation sequencing (NGS) technologies 
have increased the potential for research output immensely 
(see Clark et al. 2018; Clark et al. 2016; Kelsey et al. 2017; 
Macaulay et al. 2017; Stuart and Satija 2019). These would 
include whole-genome profiling techniques of RNA, DNA, 
proteins, epigenetic modifications, chromatin accessibility 
and chromosome conformations on the level of an individ-
ual cell (described in Clark et al. 2016; Kelsey et al. 2017; 
Macaulay et al. 2017; Mincarelli et al. 2018; Nagano et al. 
2017; Svensson et al. 2018; Wagner et al. 2016). In this 
review, we will provide a concise description of the impact 
of single-cell technologies in the context of human health 
and disease, while technical development and computational 
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analysis required for the near-future translational applica-
tions of the single-cell genomic discoveries are reviewed 
elsewhere (see Birnbaum 2018; Luecken and Theis 2019; 
Song et al. 2019; Tang et al. 2019; Wang and Song 2017). 
The harmonization and standardization of single-cell tech-
nologies will lead to unprecedented discoveries and trans-
lational applications from bench to bed (Shalek and Benson 
2017; Strzelecka et al. 2018; Wang and Song 2017).

The individuality of cells

Epigenetic programs are decisive for cell fate decisions, 
cell identity and cell state (Borsos and Torres-Padilla 2016; 
Fischer et al. 2019; Trapnell 2015). When RNA transcripts 
and components of the epitranscriptome initiate a cascade 
of events in cells, in response to extrinsic or intrinsic stim-
uli, single-cell genomics and epigenomics can be used to 
effectively quantify and monitor those dynamic or discrete 
changes (Clark et al. 2018; Goldman et al. 2019; Mincarelli 
et al. 2018; Tritschler et al. 2019). This approach is espe-
cially important in a seemingly homogenous population of 
cells, where in most cases, cells are isolated from the same 
tissue and epigenomic signatures underlying disease are 
often concealed in bulk samples (Kelsey et al. 2017; Str-
zelecka et al. 2018; Tritschler et al. 2019; Wang et al. 2018). 
Additionally, distinguishing the precise intercellular differ-
ences is challenging when considering thousands of cells 
simultaneously. Often, only the most frequent or the most 
abundant molecular feature is the one detected on average 
in a given cell population. (Goldman et al. 2019; Haghverdi 
et al. 2016; Trapnell 2015). Although cellular heterogeneity 
is essential to the survival of a population, where increased 

diversity in cells allows increased adaptation to changes in 
the surrounding milieu (Goldman et al. 2019), increases in 
cell-to-cell variability have also been associated to age and 
age-related diseases (Enge et al. 2017; Hernando-Herraez 
et al. 2019; Martinez-Jimenez et al. 2017). Moreover, a deep 
understanding of cellular variability and the impact of this 
variability in tissue function will allow us to understand how 
changes in cellular dynamics can influence the entire organ-
ism and even lead to cancer, diabetes, metabolic disorders 
and accelerated ageing (Cheung et al. 2018; Ecker et al. 
2018; Enge et al. 2017; Hurria et al. 2016).

To effectively capture and observe the morphological 
and phenotypical differences of cells in a healthy and dis-
eased state using single-cell approaches, the concept of 
‘cell identity’ should be more concisely understood (see 
Fig. 1). Although no standardized method for defining 
‘cell identity’ exists (Morris 2019), elucidation on these 
definitions can be given to make accurate functional-
based assumptions on what changes a cell might undergo 
until it reaches its final destination or ‘cell fate’ (Kelsey 
et al. 2017; Morris 2019; Trapnell 2015; Tritschler et al. 
2019). Briefly, cell identity can be deconvolved into a ‘cell 
type’ and a ‘cell state’ within a spatiotemporal manner 
(Camp et al. 2019; Haghverdi et al. 2016; Treutlein et al. 
2014). A cell type or sub-type refers to an observable, 
functional change within a population where properties 
vary distinctly in response to extrinsic factors, while a 
cell state refers to a dynamic change that alters the phe-
notype and function of the cell in a continuous manner 
and is often regulated intrinsically (see Camp et al. 2019; 
Chen et al. 2018; Mincarelli et al. 2018; Morris 2019; 
Trapnell 2015). For instance, the hematopoietic stem cell 
(HSC) is a well-elaborated example, where a cell type has 
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Fig. 1   Single-cell omics is advancing the development of personal-
ized treatments. Precision medicine utilizes genetic information from 
all levels of cellular organization (cell, tissue, organism) obtained 
from patient data, to tailor treatments. These novel technologies 
investigate how cells from a healthy, seemingly homogenous popu-

lation of cells can lead to a population with different cellular states, 
triggering tissue dysfunction and systemic effects (highlighted in 
grey). The translational applications of single-cell omics will impact 
on preventive measures, early detection and disease monitoring, lead-
ing to the next generation of health care (highlighted in blue)
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the ability to undergo various functional states in order to 
achieve mature blood and immune cell proliferation after 
transplantation in a continuous manner, through its multi-
lineage potential and the ability to self-renew (Becker 
et al. 1963; Mincarelli et al. 2018; Velten et al. 2017). 
In a nutshell, within the context of health and disease, if 
we know where a cell comes from, its inherent function 
and how these functions and states change accordingly to 
various stimuli, we could predict its fate, with the goal of 
anticipating the development of a disease or monitoring 
its progression and outcome (Fig. 1).

These thoughts are echoed by a consortium of research-
ers who have come together to generate a Human Cell 
Atlas (Regev et al. 2017), which is an initiative to identify 
and map all the different cell types in the human body 
(much like an atlas) for referral of healthy and diseased 
cells, tissues, organs and systems (Regev et  al. 2017; 
Rozenblatt-Rosen et al. 2017; Strzelecka et al. 2018). The 
project aims to have a comprehensive composition of all 
the cell types and identities in the human body, allowing 
the identification of patterns and interactions at various 
levels of resolution and to facilitate a functional start-
ing point for researchers when trying to answer relevant 
health-related questions (Regev et al. 2017; Rozenblatt-
Rosen et al. 2017). Subsequently, the next step moving 
forward with a fully annotated and functional human cell 
atlas would be to concentrate on reducing disease dam-
ages, develop methods of preventative treatment, improve 
disease diagnostics and advance personalized medicine 
(Strzelecka et  al. 2018). Accordingly, these goals are 
aligned with those of the LifeTime Initiative (https​://lifet​
ime-fetfl​agshi​p.eu/), a unified research initiative to under-
stand the cause and biological mechanisms behind dis-
ease, monitor and track disease changes and progression 
and ultimately, treat individual human cells affected by 
disease.

Thus far, such progressive atlas initiatives have been 
achieved in the model organism Mus musculus through an 
initiative of the Tabula Muris Consortium (Tabula Muris 
et al. 2018), where information from a transcriptomic analy-
sis of more than 100 000 cells collected from 20 organs and 
tissues was collated to establish a foundation for an atlas 
in mouse (Tabula Muris et al. 2018). In humans, the effect 
would be far more complex as each and every person is dif-
ferent and each and every organ or tissue is affected dif-
ferently in diseased situations. Furthermore, for complex 
chronic diseases known to affect human health and expedite 
the ageing process, single-cell genomic and epigenomic 
techniques have become necessary for early disease detec-
tion, accurate diagnosis and prognosis, monitoring disease 
progression in tissues and systemically, to facilitate person-
alized treatment and achieve next-generation health care (see 
Fig. 1). Here we review recent key findings.

The influence of single‑cell approaches

Cancer

To date, tumour-biology studies have represented one of 
the biggest challenges in improving targeted cancer thera-
pies (Levitin et al. 2018; Strzelecka et al. 2018). Moreo-
ver, because tumours are an elaborate, complex mix of 
different cell types and states arising from a single cell 
that has progressed and diversified through somatic muta-
tions to form distinct subpopulations (Qian et al. 2017; 
Sierant and Choi 2018; Suvà and Tirosh 2019), intercel-
lular heterogeneity is critical for both accurate diagnosis 
and personalized treatment (Qian et al. 2017; Sant et al. 
2017). The accurate profiling of cellular variability at the 
single-cell level within a tumour environment where both 
malignant and immune cells are present (amongst others) 
could locate the correct gene sequences (biomarkers) for 
targeted treatment and improve treatment efficiency, spe-
cifically through administration of the appropriate drugs to 
prevent or reduce cancer relapse (Qian et al. 2017; Sierant 
and Choi 2018; Wagner et al. 2019). This is especially 
important when only a specific part of the tumour is tar-
geted and proliferation is still possible even from a minute 
proportion of cells, often concealed in bulk analyses (Qian 
et al. 2017; Tirosh and Suvà 2019). For example, in studies 
investigating lung adenocarcinomas, accurate profiling of 
tumours for targeted treatment remains challenging due 
to increased tumour heterogeneity (Zhang et al. 2019). 
While mutations of the epidermal growth factor recep-
tor (EFGR) in non-small cell lung cancers (NSCLC) have 
been widely employed as biomarkers for lung carcinogen-
esis (Harrison et al. 2019; Zhang et al. 2019), resistance 
to the well-established EGFR tyrosine kinase inhibitors 
has been frequently reported, most likely due to EGFR 
T790M resistance mutations (Del Re et al. 2018; Rexer 
et al. 2009; Sullivan and Planchard 2016). Although clas-
sical histomorphologic evaluation of a malignant tumour 
is argued to be the most significant diagnostic, prognos-
tic and predictive biomarker with the greatest impact on 
patient treatment (Radpour and Forouharkhou 2018), in-
depth single-cell RNA sequencing in combination with 
protein profiling of primary human tumours has been pro-
posed to be highly effective in discerning cell types and 
subtypes within tumour cells and for detection of distinct 
functional states of proliferation (Tirosh and Suvà 2019).

To elaborate, an integrated analysis of cancer cells has 
been shown in hepatocellular carcinoma (HCC) where 
time-of-flight mass cytometry (CyTOF) and single-cell 
RNA sequencing were used to show an immunosuppres-
sive gradient of immune cells in a tumour microenvi-
ronment, non-tumour microenvironment and peripheral 

https://lifetime-fetflagship.eu/
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blood with the goal of describing the phenotypical char-
acteristics of the T-cell subsets (Chew et al. 2017). The 
authors describe the enrichment of regulatory T-cells, 
CD8+ T-cells and natural killer cells in the tumour micro-
environment in conjunction with the expression of multi-
ple markers for T-cell exhaustion, when compared to T-cell 
subsets in the non-tumour microenvironment (Chew et al. 
2017). In high-grade serous ovarian cancer (HGSOC), 
CyTOF was employed with un-supervised computational 
analysis for an in-depth phenotypical characterization of 
both dominant and rare cell phenotypes linked to surface 
markers, intracellular signalling proteins, transcription 
factors and cell-cycle proteins active in the malignancy 
(Gonzalez et al. 2018). Recently, a pilot study involving 
human bone marrow cells has been subjected to combina-
torial single-cell RNA sequencing, multiparameter flow 
cytometry and mass cytometry to show diversity across 
human samples over the full range of adulthood and to 
act as a reference for different cell populations (Oetjen 
et al. 2018).

For further investigation of solid tumours, the invasive 
human epidermal growth factor 2 (HER2) protein part of 
the ERBB pathway is active in numerous cancers includ-
ing pancreatic, ovarian, breast, gastric, lung, glioma/glio-
blastoma, colorectal, in the central nervous system, and is 
one of the most well-studied oncogenes (Masoud and Pagès 
2017; Townsend et al. 2018). In particular, the cancer-related 
HER2 mutation is often used as a biomarker for 15–20% 
of all breast cancer tumours (Rye et al. 2018) and has been 
successfully targeted for gene therapy (Chung et al. 2017; 
Masoud and Pagès 2017). Moreover, the oncogene has been 
extensively studied with single-cell RNA sequencing, par-
ticularly to show extensive intratumoral heterogeneity (Cho 
2019; Chung et al. 2017; Wang et al. 2019a, b). Recently, 
Cho (2019) showed triple-negative breast cell populations 
identified by three subtyping marker genes (ERBB2 also 
known as HER2, ESR1 and PG), while immune landscape 
cell populations, consisting of subclasses of both tumour and 
non-tumour (immune) cells, were shaped by distinctive gene 
expression signatures inferred from copy number alterations 
within the tumour microenvironment by Chung et al. (2017). 
Subsequent single-cell RNA sequencing investigations of 
HER2+ with the monoclonal antibody, Trastuzumab (Her-
ceptin), successful in targeting HER2+ breast cancer cells 
(Wang et al. 2019b), re-affirmed previously highlighted gene 
sequences such as CLU and SEPP1 genes in trastuzumab-
treated patients and indicated new gene signatures of inter-
est such as the chemokine ligands CXCL1 and CXCL8 that 
were significantly downregulated under trastuzumab treat-
ment (Wang et al. 2019a). In addition, further single-cell 
RNA sequencing of trastuzumab resistance patients has also 
been performed (Wang et al. 2019b), where studies have 
shown that perhaps a combination of inhibitors targeting 

CDK4/6 inhibitor-resistant tumours are required, specifically 
those targeting a immunosuppressive immature myeloid cell 
(IMC) population in resistant tumours (Wang et al. 2019b).

The KRAS mutation has been reported to be the most 
frequently mutated oncogene in human tumours and has 
been the investigative target in many cancer studies specifi-
cally in colorectal, pancreatic and in non-small lung cancers 
(Kim et al. 2018; Kuboki et al. 2019; Roerink et al. 2018; 
Román et al. 2018). The extensive mutation rate of the KRAS 
oncogene has played detrimental roles in cancer initiation, 
propagation and maintenance and thus could be highlighted 
as a therapeutic target for specific treatment (Cox et al. 2014; 
Kim et al. 2018). Recently, the CRISPR-Cas9 system has 
been employed as a proof of concept study, where guide 
RNAs specific to targeted gene sequences present on mutant 
KRAS alleles were employed with the goal of removing gene 
sequences known to cause malignancies (Kim et al. 2018). 
Although, the study proved successful in targeting mutant 
gene sequences for manipulation, the authors conclude that 
the technique alone is not enough to induce tumour remis-
sion, but could be considered as a gene therapy to reduce 
tumour volume by blocking tumour growth in vivo before 
surgery (Kim et al. 2018).

The literature reported on targeted cancer biomarkers thus 
far is considerable, many of which include Chimeric Antigen 
Receptor (CAR) T-cell therapy that have been successful or 
have been making progress in personalized cancer treatment 
(see Townsend et al. 2018). These genetically engineered 
CAR T-cells have shown immunotherapy action against 
numerous haematological malignancies, some of which 
include the famous CD19 protein for treatment of acute 
lymphoblastic leukaemia and large B-cell lymphoma (Feins 
et al. 2019) and new receptor targets (CD5, CD123, CD33, 
CD70, CD38, and BCMA) that are currently being evaluated 
and have already shown positive results (Townsend et al. 
2018).

Diabetes

The main source of diabetes development and disease pro-
gression has been attributed to disturbances in the regula-
tion and synchronization of the hormone-producing cells in 
the pancreatic islets (Carrano et al. 2017). These cells are 
clusters of at least five different endocrine cell types (alpha, 
beta, delta, gamma and epsilon) that each produce a unique 
hormone to function together in a well-orchestrated man-
ner in controlling and maintaining blood glucose levels (Da 
Silva Xavier 2018). While alpha and beta endocrine cells are 
stimulated to release glucagon and insulin, respectively (Da 
Silva Xavier 2018; Theis and Lickert 2019), discordance in 
both cell types has been shown to increase disease pathogen-
esis in type 1 and type 2 diabetes (Ackermann et al. 2016; 
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Brissova et al. 2018; Tritschler et al. 2017). Moreover, an 
increase in hyperglycaemia has been associated with a loss 
of beta-cell mass, function and organization and is the cell 
type most frequently studied for insulin resistance (Carrano 
et al. 2017; Lawlor et al. 2017b; Segerstolpe et al. 2016; 
Theis and Lickert 2019; Tritschler et al. 2017).

Notably, single-cell transcriptome profiling has been 
utilized in the past few years to discern cellular heteroge-
neity within the islets of Langerhans (Fischer et al. 2019; 
Tritschler et  al. 2019, 2017), particularly for beta cells 
(Baron et al. 2016; Lawlor et al. 2017a; Segerstolpe et al. 
2016; Teo et al. 2018; Xin et al. 2016). Segerstolpe et al. 
(2016) investigated cell-type specific gene expression in 
the pancreas of healthy and type 2 diabetic individuals and 
uncovered major gene expression differences (transcrip-
tional signatures) between exocrine and endocrine cell types, 
including the less abundant cell types such as human delta, 
gamma and epsilon cells. Previously, these cells had been 
difficult to observe due to bulk characterization methods 
(Lawlor et al. 2017a), however, single-cell RNA sequenc-
ing has shed light on the novel roles for each rare cell type 
based on their activated signalling pathways and receptor 
proteins (Lawlor et al. 2017a; Segerstolpe et al. 2016). For 
example, insight into the transcriptome of the minority cell 
type, epsilon cells and its ghrelin-producing capability was 
provided (Segerstolpe et al. 2016), as well as the expression 
of the rare delta and gamma cell types that are prompted by 
hormonal cues from leptin, ghrelin and dopamine signalling 
pathways to facilitate metabolic signalling in the pancreas 
(Lawlor et al. 2017a). Further single-cell RNA investiga-
tions by Xin et al. (2016) showed a total of 245 genes to be 
affected by type 2 diabetes when compared to non-diabetic 
single-cell transcriptomes. Among the common transcript 
expression profiles found between the human islet cells, only 
20 genes (for example, RBP4, DLK1, ADCYAP1, RGS16, 
SOX4, BMP5, TIMP2, TSPAN1, MAFB and TFF3) were 
specific to a certain cell type (Xin et al. 2016). Lastly, a few 
recent reviews have tracked the progress of genes linked 
to specific endocrine cell types in these studies (see Chiou 
et al. 2019; Tritschler et al. 2017), with some going as far 
as to re-analyse the single-cell transcriptome datasets using 
a machine learning approach (Ma and Zheng 2018). The 
in-depth analyses reported on oxidative stress being the per-
petrator to enhance beta-cell dysfunction as a final result, 
together with the potential activation of pathways linked to 
beta-cell apoptosis that may be the resulting cause of an 
insulin gene expression deficit in type 2 diabetes (Ma and 
Zheng 2018).

Furthermore, there has been a notion that alpha cells 
have the ability to transdifferentiate into beta cells under 
conditions of extreme metabolic tress or when prompted 
under strong metabolic signalling (Ackermann et al. 2016; 
Tritschler et al. 2017). This has been postulated to be 

in part, due to the flexibility in the epigenome of alpha 
cells (Ackermann et al. 2016), where multiple bivalent 
activating and repressing histone marks (H3K4me3 and 
H3K27me, respectively) on gene loci associated with 
alpha and beta cells have been identified (Ackermann et al. 
2016; Bramswig et al. 2013). In addition, more areas of 
open chromatin (~ 75%) in alpha cells, in comparison to 
beta cells have been detected, many of which were asso-
ciated with beta-cell signature genes (Ackermann et al. 
2016; Tritschler et al. 2017). Recently, efforts have been 
made to observe cell-type specific transcriptomes mapped 
to areas of open chromatin to define gene regulatory 
regions, characterize novel gene signatures and highlight 
transcription factors of interest pertaining to diabetes 
pathogenesis (Ackermann et al. 2016; Bysani et al. 2019; 
Chiou et al. 2019; Rai et al. 2019). Most of these studies 
have used the Assay for Transposase Accessible Chroma-
tin Sequencing (ATAC-seq) technique (Buenrostro et al. 
2015; Lareau et al. 2019) for profiling rare and common 
endocrine cell types.

An intriguing study by Chiou et  al. (2019) used a 
sophisticated new approach to obtain ATAC-seq profiles 
from single nuclei (snATAC-seq) to show differentiated 
regions of open chromatin from heterogenous cell types 
and subtypes with the aim of highlighting molecular mech-
anisms linked to genetic risk variants of type 2 diabetes. 
The authors were able to localize 239 fine-mapped type 
2 diabetes risk signals to areas of open chromatin and 
ordered variants in islets at these signals with predicted 
regulatory functions to known target genes such as the 
KCNQ1 locus (Chiou et al. 2019). Further insight into how 
type 2 diabetes alters chromatin organization and allows 
the subsequent affinity for suitable transcription factors 
and thus gene expression in pancreatic islets was provided 
by Bysani et al. (2019). A total of 1078 regions of open 
chromatin corresponding to 898 genes were detected and 
differentially expressed between diabetic and non-diabetic 
islets, many of which were annotated to genes linked to 
islet dysfunction and type 2 diabetes instigators such as 
HHEX, HMGA2, GLIS3, MTNR1B, PARK2 and some 
previously associated single-nucleotide polymorphisms 
(SNPs) (Bysani et al. 2019). Furthermore, a large propor-
tion of ATAC-seq peaks were mapped near to transcrip-
tion start sites for easy manipulation by cis-regulatory 
elements, particularly enhancers and in areas where cell-
type specific transcription factors such as FOXA, MAFB, 
NKX2.2, NKX6.1 and PDX1 for type 2 diabetes bind 
(Bysani et al. 2019). It is important to note that the overall 
goal of observing cell-type expression profiles contribut-
ing to type 2 diabetes is to reveal novel druggable targets 
for pathway manipulation and further approaches to pre-
vent, monitor and treat type 2 diabetes (Chiou et al. 2019; 
Lawlor et al. 2017a; Tritschler et al. 2017).
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Chronic and age‑related diseases

Ageing can be defined as the progressive decline in physi-
ological and cellular functions (Enge et al. 2017; López-Otín 
et al. 2013). Although ageing has not been classified as a 
disease by the World Health Organization (WHO), it is con-
sidered a leading risk factor for all chronic diseases (WHO 
2009). From epidemiological studies and experimental data, 
we know that chronic diseases accelerate the ageing process, 
suggesting that ageing and chronic diseases share common 
molecular mechanisms (Kennedy et al. 2014). For instance, 
the incidence of cancer, diabetes, kidney disease (O’Sullivan 
et al. 2017; Rowland et al. 2018) and non-alcoholic fatty 
liver disease (NAFLD) (Hunt et al. 2019; Ogrodnik et al. 
2017) increases with age. Age-related disease in the kidney 
has been linked to nephrosclerosis, impaired renal function 
and chronic kidney disease (O’Sullivan et al. 2017; Row-
land et al. 2018). In the liver, NAFLD is the most com-
mon chronic liver disease and comprises a range of related 
disorders in which the earliest stage is the accumulation of 
lipids in the liver followed by steatohepatitis that is gener-
ally marked by liver inflammation. Later on, steatohepatitis 
may progress to liver fibrosis and liver failure. Non-alcoholic 
fatty liver and steatohepatitis are reversible in their early 
stages, but ultimately may lead to the development of cir-
rhosis (that is an irreversible state) and hepatocellular car-
cinoma (HCC) (Podrini et al. 2013).

Recently, single-cell RNA sequencing has been used to 
study the complex cellular architecture of the kidney and 
investigate how changes in gene expression patterns are 
associated with chronic kidney disease (Chen et al. 2017; 
Der et al. 2017; Lake et al. 2019; Liao et al. 2020; Park et al. 
2019, 2018). The human kidney is a highly complex tissue 
comprised of at least 30 different cell types that function in 
an intricate filtration system to remove nitrogen, water and 
other waste products from the blood, maintain electrolyte 
balance and red blood cell production and regulate blood 
pressure through hormonal secretion (Lake et al. 2019; Park 
et al. 2018; Rowland et al. 2019). Park et al. (2018) profiled 
approximately 58,000 cells isolated from heathy mouse kid-
neys and discovered that 21 homologous genes in humans 
were associated with monogenic inheritance of proteinu-
ria and other complex-trait diseases such as chronic kidney 
disease and nephrolithiasis (Park et al. 2018). Similarly, by 
means of single-nucleus RNA sequencing (snRNA-seq), 
Lake et al. (2019) have shown the power of this technology 
to analyse clinical samples bypassing technical limitations 
in the enzymatic dissociation of the solid tissue and using 
limiting amounts of sample (Lake et al. 2019). Further anal-
ysis of receptor-ligand signalling pathways among cell types 
showed how the dysregulation of expression profiles associ-
ated to integrins in multiple cell types play a major role in 
the development of human kidney disease (Lake et al. 2019).

Likewise, single-cell genomics has emphasized the cel-
lular heterogeneity present in the liver, with regard to the 
liver zonation of hepatocytes (Aizarani et al. 2019; Dobie 
et al. 2019; Halpern et al. 2018, 2017; Ramachandran et al. 
2019) and the variability among non-parenchymal cells dur-
ing chronic liver disease (Krenkel et al. 2020; MacParland 
et al. 2018; Pepe-Mooney et al. 2019; Su et al. 2017; Xiong 
et al. 2019). MacParland et al. (2018) identified 20 distinct 
cell populations of hepatocytes, endothelial cells, cholan-
giocytes, hepatic stellate cells and resident cells from the 
immune compartment. Beyond a liver cell atlas, this work 
identified two different populations of intrahepatic CD68+ 
macrophage populations with inflammatory or immu-
noregulatory properties, respectively (MacParland et al. 
2018). Later on, Aizarani et al. (2019) sequenced CD45+ 
and CD45− cells isolated from hepatocellular carcinomas 
from three patients showing how the gene expression signa-
tures and biomarkers of liver cell types can be monitored in 
human liver disease.

Other chronic liver diseases such as Non-Alcoholic 
SteatoHepatitis (NASH) and liver fibrosis have also been 
investigated at the single-cell level (Dobie et  al. 2019; 
Ramachandran et al. 2019; Xiong et al. 2019). The intercel-
lular signalling between non-parenchymal cells (endothe-
lial cells, Kuppfer cells and cholangiocytes) was analysed 
with single-cell transcriptomics and secretome analysis to 
reveal intercellular cross-talk via ligand and receptor signal-
ling, in diet-induced NASH mice livers (Xiong et al. 2019). 
Comparative studies between mouse and human revealed a 
highly conserved pattern among liver cell types across spe-
cies (Xiong et al. 2019). In addition, a novel NASH-specific 
macrophage population (termed NAM) was identified, sug-
gesting that NASH alters the functional properties of liver 
macrophages populations by increasing Trem2 protein levels 
in a subset of macrophages, therefore increasing liver hetero-
geneity during pathogenesis of NASH (Xiong et al. 2019).

Recently, more than 100,000 cells isolated from healthy 
and cirrhotic human livers were analysed by single-cell RNA 
sequencing to further characterize the fibrotic niche and 
the cross-talk between non-parenchymal cells in the liver 
(Ramachandran et al. 2019). Ramachandran et al. (2019) 
have identified a scar-associated TREM2+ CD9+ subpopu-
lation of macrophages that expands in liver fibrosis with a 
pro-fibrogenic phenotype. Additional endothelial subpopula-
tions characterized by a high expression of PLVAP, CD34 
and ACKR1, and mesenchymal cells expressing PDGFRA 
were also expanded in the pathogenesis of the liver disease 
(Ramachandran et al. 2019). Moreover, the zonation pat-
tern of hepatic stellate cells across the hepatic lobe was also 
altered during liver fibrosis (Dobie et al. 2019). In sum-
mary, the unbiased analysis of the multi-lineage interactome 
between healthy and disease-affected livers will uncover 
novel molecular pathways which are potentially druggable, 
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leading us to a new era of precision medicine (Ramachan-
dran et al. 2019).

Single‑cell genomics and organoids: 
emerging diagnostic tool to understand 
tissue development and human disease

As the scope for human biological research expands, new 
personalized in vitro models are emerging as a diagnostic 
tool to study disease development and progression. These 
three-dimensional tissue cultures, termed organoids, are ini-
tiated from either pluripotent embryonic stem cells, induced 
pluripotent stem cell counterparts or tissue-resident adult 
stem cells (Clevers 2016; Huch et al. 2017; Lancaster and 
Huch 2019). Organoids recapitulate with sufficient complex-
ity, molecular and cellular processes present in the original 
tissue (Camp and Treutlein 2017; Lancaster and Huch 2019). 
Therefore, this powerful system replicates in vitro, some 
level of organ development and disease phenotypes for a 
wide variety of tissues (Camp et al. 2019, 2018; Clevers 
2016; Huch et al. 2017). These attributes make organoid 
models an ideal system to study complex disease pheno-
types and implement personalized therapies in a controlled 
environment (Camp et al. 2019; Camp and Treutlein 2017). 
In addition, human organoids are genetically stable, can be 
long-term expanded in vitro and are composed of a col-
lection of differentiated cell states that mimic the cellular 
composition in the corresponding original organ (Grassi 
et al. 2019; Hu et al. 2018; Huch et al. 2017; Lancaster and 
Huch 2019). For these reasons, the combination of single-
cell omics and organoids has become an exceptional in vitro 
tool to dissect the molecular mechanisms underlying com-
plex human diseases (Camp et al. 2019; Camp and Treutlein 
2017).

At present, single-cell genomics has been applied to orga-
noids modelling several human tissues (Brazovskaja et al. 
2019) including brain (Camp et al. 2015; Kanton et al. 2019; 
Tanaka et al. 2020), kidney (Harder et al. 2019), liver (Camp 
et al. 2017; Huch et al. 2015), lung (Lee et al. 2017; Sachs 
et al. 2019) and intestine (Mithal et al. 2020). This line of 
research has advanced our understanding of the molecular 
pathways involved in the pathogenesis of the disease, for 
instance in glomerular disease of the kidney (Harder et al. 
2019), inflammatory bowel disease in the intestine (Mithal 
et al. 2020) and respiratory viral infection in the lung (Sachs 
et al. 2019). In particular, recent studies have shown the 
translational applications of liver organoids to model hepatic 
steatosis (Kruitwagen et al. 2017), steatohepatitis (Ouchi 
et al. 2019), alcohol liver injury (Wang et al. 2019c) and 
alpha-1 antitrypsin deficiency (Gómez-Mariano et al. 2020). 
Furthermore, combining organoids with gene editing tools 
such as the CRISPR/Cas 9 system has opened up a wealth of 

opportunity, as organoids are highly amendable to genome 
editing (Fujii et al. 2019). For instance, the application of 
organoid models in tumour-biology studies has provided a 
patient-specific functional testing platform for drug admin-
istration and sensitivity, as both phenotypic and genomic 
results can be retrieved, molecular mechanisms can be iden-
tified and personalized treatment strategies can be initiated 
(Clevers 2016; Drost and Clevers 2018; Huch et al. 2017). 
These pioneering works would potentially allow the identi-
fication of biomarkers and further personalized treatments 
(Huch et al. 2017).

Conclusion

Single-cell genomic approaches are changing the concept 
of personalized medicine from early detection to tailored 
treatments. The harmonization and standardization of single-
cell technologies is leading to translational applications from 
bench to bed. The identification of new and rare cell types 
in an early stage, the precise monitoring of their molecular 
changes and their contribution to disease pathogenesis and 
outcome are key stepping stones for implementing these 
technologies in the clinical practice.

Still future efforts will be needed to dissect how complex 
diseases are influenced by lifestyle, dietary interventions and 
ageing. Single-cell multiomics is emerging as a novel tech-
nology to read out multiple layers of genetic and epigenetic 
information simultaneously, aiming to anticipate changes in 
cell fate and cellular function. Overall, single-cell genomics 
is opening a new frontier in the field of personalized medi-
cine leading to the next generation of health care.
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