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Abstract—Peak to average power ratio (PAPR) reduction of
OFDM signals has extensively been studied in the literature. Tone
Reservation (TR) is one of the most famous algorithms and has
already been included in some digital television standards such
as DVB-T2 and ASTC3.0. However, the literature is still lacking
theoretical analysis and performance bounds for the PAPR re-
duction of OFDM signals, especially using TR algorithms. For the
first time, this paper provides fundamental results establishing
the links between TR-PAPR reduction and the remaining signal
distortions at the output of a non-linear high power amplifier
(HPA) with and without memory effects. We first derive a
generic EVM expression relying on the statistical characteristics
of the samples composing the time domain signal and for
any PAPR reduction technique. Computing these moments in
the case of the quadratically constrained quadratic problem
(QCQP) algorithm known as the optimal solution to the TR-
PAPR reduction problem allows us to get the lower bound of
the EVM of OFDM signals after TR-PAPR reduction and non-
linear HPA. As a reference, we also provide the EVM expression
using a clipping-based PAPR reduction method. The obtained
EVM expressions have direct practical meaning since they are
in function of the input power back-off (IBO) applied to the
signal before the HPA. They also consist in a general analytical
framework for OFDM PAPR reduction since they can be further
exploited to analyze the performance of sub-optimal TR-based
PAPR reduction algorithms.

Index Terms—Clipping, EVM, OFDM, PAPR reduction, Prob-
ability Density Function, Tone Reservation

I. INTRODUCTION

MULTI-CARRIER transmission techniques and espe-
cially orthogonal frequency division multiplexing

(OFDM) were adopted by several standards as Long-term
evolution (LTE) [1] (and recently adopted in [2] dealing with
the fifth mobile generation (5G)), Digital Video Broadcasting
- Second Generation Terrestrial (DVB-T2) [3] and Advanced
Television Systems Committee 3.0 (ATSC3.0) standard [4] for
their capability to efficiently combat multi-path propagation on
selective channels.

However, a major drawback of multi-carrier modulations
remains the high peak to average power ratio (PAPR) of the
time domain signal generated from the summation of indepen-
dent signals carried on different tones. As a matter of fact, the
non-linear behaviour of practical high power amplifiers (HPA)
makes it difficult to amplify signals with such strong fluctua-
tions without introducing in-band and out-of-band distortions.
The latter are measured by the error vector magnitude (EVM),
and the adjacent channel power ratio (ACPR) respectively.
To cope with this problem, an input power back-off (IBO)

is commonly applied to the signal however leading to strong
power efficiency loss. Hence, transmitting signals with high
PAPR imposes a compromise between the power efficiency
and the linearity of the system.

This brings challenges for researchers on two main strate-
gies. The first is to linearize the HPA itself by means of
predistortion techniques [5]. The second is to reduce the PAPR
of the baseband signal in order to exploit the HPA at an
operating point closer to the saturation region where its power
efficiency is maximized. Many PAPR reduction algorithms
have been introduced in the literature like clipping [6], tone
reservation (TR) [7], active constellation extension (ACE) [8]
and complement block coding (CBC) [9]. TR is classified
within the so-called distortionless PAPR reduction techniques
and needs no side information at the receiver. It was adopted
in standards such as DVB-T2 and ATSC3.0.

TR consists in adding a kernel signal, built upon some
peak reserved tones (PRT) in the frequency domain, to the
original time domain signal in a way to reduce the PAPR of the
resulting signal. This added signal is orthogonal to the original
signal such that it can be removed at the receiver without mod-
ifying this latter. Hence, any TR algorithm essentially consists
in computing the kernel signal with a certain trade-off between
PAPR reduction efficiency and computation complexity. The
optimal algorithm that gives the upper limit of PAPR reduction
level affordable through the TR strategy solves a quadratically
constrained quadratic problem (QCQP) [7]. Many algorithms
have been proposed in the literature aiming at calculating the
kernel in a more simple but sub-optimal way (see [10] and
references therein). The fact remains that QCQP provides the
theoretical limit of PAPR reduction based on the TR approach.

During the past years, researchers have been interested in
the performance evaluation of the different PAPR reduction
methods (see [11] and references therein). However, the ma-
jority of these studies have been led throughout simulations
and did not consider the analytical performance assessment.
In this study, we emphasize on the derivation of theoretical
performance metrics of in-band distortions which are required
for rigorous optimization of the system design.

Generally speaking, the performance evaluation on PAPR
reduction is led according to two main axes. The first one
consists in the evaluation of the PAPR complementary cumu-
lative distribution function (CCDF) of the signal before and
after applying PAPR reduction in order to appraise the strength
of the different techniques to reduce PAPR. The authors in
[12] summarized the previous contributions on PAPR CCDF
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evaluation and extended them for a low number of subcarriers,
useful in the case of narrowband internet of things (NB
IoT) systems. A general expression of PAPR distribution is
provided for any number of subcarriers and any oversampling
ratio. The proposed expression can be used to calculate the
PAPR distribution when the PAPR reduction techniques are
applied. The authors of [13] approximated the distribution
of PAPR for carrier-aggregated OFDM signal using peaks
distribution. In [14] the PAPR CCDF was derived for an
OFDM systems with unequal power allocation to different
subcarriers based on extreme value theory.

The second axis is based on the evaluation of the signal
distortions due to the HPA non-linearities that reflects the
performance of the different PAPR reduction techniques. Ac-
cordingly, the authors in [15] provided an upper bound of the
EVM for the PAPR clipping method. In [16]–[19] the authors
independently calculated the EVM due to clipping without
considering the HPA impact. Moreover, the authors of [18],
[20] considered that EVM is a Gaussian distributed random
variable. They evaluated the EVM phase noise expectation and
the distortion due to the HPA when no PAPR reduction is
applied on the signal assuming a polynomial HPA model. This
last result was also independently derived in [21]. Aiming at
studying a combined scheme of clipping and SLM technique,
the authors of [22] evaluated the simulated probability density
function (PDF) of the time domain signal after applying
clipping, SLM and the combined techniques respectively, in
order to visualize the distortions caused by PAPR reduction
methods. Also, they proposed an empirical model of the
average distortion power expression due to clipping while
using the combined techniques based on the distortion power
calculated in [17]. All those results enlightened the importance
of the analytical evaluation of distortions. However, they are
still far from the real evaluation of the total signal distortion
taking into account the complete system with both PAPR
reduction and HPA distortions. In this scope, the authors of
[21] evaluated the EVM of the signal taking into account
the distortions caused by the whole system, using a memory
polynomial HPA model however limiting the study to the
simple case of clipping.

Although PAPR CCDF is a popular figure of merit for
OFDM system performance, it only relies on the measure of
the highest peak within an observation window and gives no
information on the number of distorted samples in this win-
dow. Also, it doesn’t take into account the possible distortions
caused by the used PAPR reduction techniques. On the other
hand, EVM depends on the energy of the whole distorted sig-
nal and reflects the non-linear and memory effects of the HPA
jointly with the impact of the used PAPR reduction techniques.
EVM is thus very useful for the design and specification of the
system parameters. The application guidelines of several stan-
dards like DVB-T2, ATSC3.0 and LTE have already defined
their requirements in terms of EVM 1. Another importance
of EVM is that it can be translated into BER measurement
according to the demodulation process [23]. Thus, EVM is an
essential figure of merit that can also extend the performance

1or equivalently Mean Error Ratio (MER) in the broadcasting community

evaluation to different levels of analysis. Nevertheless, it turns
out that the literature is lacking mathematical and theoretical
results on EVM for OFDM with PAPR reduction. To the best
of the authors’ knowledge, no research has been yet conducted
on the analytical evaluation of the distortions for most of the
PAPR reduction techniques. In this paper we aim at providing
such kind of results for TR PAPR reduction using the optimal
QCQP algorithm. Despite its complexity, the QCQP yields the
optimal system performance and could be used as a benchmark
for comparison with other algorithms.

It is important to note here that many studies of the PAPR
reduction problem are based on memoryless HPA models.
However, many HPAs such as those equipping wireless base
stations exhibit strong memory effects [24]. These effects
become even more severe for wideband multicarrier systems
such as OFDM as the bandwidth increases. Hence, a more
comprehensive approach to reveal the exact behavior of HPAs
in a communication chain is to use memory models. For this
purpose, we consider a memory polynomial model of the HPA.

Hence, the main contributions of this paper can be summa-
rized as follows:

1) A general expression of EVM considering HPA non-
linearities and memory effects for TR PAPR reduction
technique is derived. This new expression involves the
moments of the time domain signal amplitude distribu-
tion before amplification and can in such be applied to
any TR PAPR reduction technique.

2) The time domain signal amplitude with TR-QCQP is
shown to follow a bimodal distribution, i.e. a superpo-
sition of two unimodal distributions that are adequately
modeled. Its moments are calculated considering suit-
able approximations.

3) The EVM expression for TR PAPR reduction technique
using QCQP algorithm is derived and validated by
proper simulations, with and without memory effects. As
QCQP is an optimal algorithm, this analytical result is
the EVM lower bound associated to TR PAPR reduction.

4) Based on these analytical expressions, a comparative
analysis of clipping and TR PAPR reduction techniques
is led with a particular focus on power constraint.

The remainder of the paper is organized as follows. Section II
presents the system model and the background of the PAPR
problem as well as the memory HPA model. In section III,
a simplified integral expression of EVM that can be applied
for any PAPR reduction technique is developed in function of
the system parameters and is directly applied to the clipping
case. Section IV deals with TR case. The general expression of
EVM for TR is given in function of the moments of the time
domain signal amplitude distribution. This expression is then
applied, using the evaluation of the amplitude distribution of
the time domain signal, to the case of TR-QCQP algorithm. In
section V, these expressions are validated by numerical simu-
lations. A comparison of the clipping and TR PAPR reduction
schemes is led according to the corresponding equations with
an analysis of the impact of different parameters for each case.
Section VI concludes this work. Main proofs are given in
Appendix to maintain the flow of the paper.
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Fig. 1: OFDM transmission chain

II. SYSTEM MODEL AND BACKGROUND

A. System Model

1) OFDM transmission chain model: The baseband repre-
sentation of the studied OFDM transmission chain is depicted
in Fig. 1, where the original time domain OFDM signal is
subject to PAPR reduction and then amplified by the non-
linear memory HPA at an operation point determined by the
chosen IBO. A normalization factor Fn is considered in order
to provide equal energy levels of the reference and output
signal when evaluating the EVM. In this paper, clipping and
TR PAPR reduction schemes are considered for comparison
purpose. Without loss of generality, the DVB-T2 frequency
domain frame structure [3] with N subcarriers is considered
taking the same PRT indices. It should be noted that the same
conclusions can be drawn on ATSC3.0 as it uses the same PRT
ratio equal to 1% PRT of the total number of subcarriers.

Let x, s, sin, zout ∈ CN be the original time domain OFDM
signal, the signal after PAPR reduction, the backed-off signal
- input of the HPA - and the amplified signal - output of
the HPA, respectively. Let us denote Px , Ps , Pin and Pout

their respective power expectations. sref and z are the reference
signal and the normalized output signal for EVM evaluation,
respectively.

Our aim is to derive the EVM expressions of the transmitted
signal after power amplification for both clipping and TR-
QCQP algorithms.

2) HPA model: In this work, we consider a non-linear
memory HPA which characteristic function, response to an
input signal sin, is defined by the following polynomial model:

HHPA(r0, ..., rQ, θ0, ..., θQ) =
Q∑
q=0

Hq(rq) e jθq (1)

where rq = |sin(k − qTs)| and θq = ∠sin(k − qTs), k is the
time index, Ts the sampling delay parameter, Q the amplifier
memory depth, and Hq(rq) the instantaneous amplitude to
amplitude response of the qth memory order defined as:

Hq(rq) =
{∑L−1

l=0 bq,2l+1r2l+1
q rq 6 Ain,satq

Aout,satq rq > Ain,satq
(2)

with L is the order of the HPA polynomial model and bq,2l+1
its complex coefficients (the odd order 2l + 1 is due to band-
pass assumption [25, p. 160]). The HPA model adopted therein
is due to the fact that the polynomial expression is valid until
a certain input amplitude Ain,satq after which the polynomial
response starts diverging, where the actual HPA saturates to a
constant output Aout,satq . Hence, the output amplitude model
of the HPA is extended for r > Ain,satq such that it saturates

to Aout,satq . The latter is chosen in a way to maintain the
continuity of the HPA response at each memory level.

In this paper, we consider two types of HPAs. The first
- Model I - is the memory HPA whose coefficients bq,2l+1
are taken from [5] where they are extracted from an actual
class AB HPA. The second - Model II - is the special case
without memory (Q=0) for which the coefficients b0,2l+1 have
been derived by identification of the amplitude to amplitude
characteristic of the Rapp’s solid state HPA [26], [27] with
a knee factor of 6 that reveals the smoothness of transition
from the linear region to the saturation region. A high-order
polynomial coefficient (L = 6) is considered in order to
achieve a satisfactory fitting accuracy.

Due to HPA non linearity, the signal power at the input
of the HPA is backed off according to the linearity-power
efficiency trade-off. The power input back-off is defined as
follows.

Definition 1. The input back-off (IBO) ρ
I BO

of the HPA is
defined as the ratio between its input 1 dB compression point
P1dB and the expected input power Pin:

ρ
I BO
=

P1dB
Pin

(3)

In order to guarantee a given input back-off ρ
I BO

, the
expected input power Pin should be equal to P1dB

ρI BO
. So, sin

is obtained by multiplying s, of expected power Ps , by:

FIBO =

(
Pin

Ps

)1/2
=

(
P1dB

ρIBO Ps

)1/2
(4)

The HPA coefficients are chosen in a way to have an
amplifier gain G. However, due to the non-linearity of the
HPA, Pout is lower than GPin. Due to this fact, Pout is
calculated in the rest of the paper according to the HPA model.
Note that as long as the HPA operating point approaches the
linear zone, Pout approaches GPin.

B. PAPR reduction techniques

1) PAPR definition: The PAPR of a signal x is defined as
the ratio between the peak and the average power of the signal
over one OFDM symbol duration, expressed as:

PAPRx =
| |x| |2∞
E[| |x| |22]

(5)

where E[.] denotes the expected value, | |.| |∞ the infinity norm
and | |.| |2 the Euclidean norm.

2) Clipping PAPR reduction: Clipping is undoubtedly the
simplest PAPR reduction techniques and has been widely
studied. It consists in clipping the original time domain signal
amplitude |x(k)| to a given threshold Aclip . The clipped time
domain signal is given by:

sclip(k) =
{

x(k) if |x(k)| 6 Aclip

Aclipe j∠x(k) if |x(k)| > Aclip ,
(6)

The clipping ratio is defined as Λ =
A2
clip

Px
. Despite its sim-

plicity, clipping gives rise to potential high signal distortions
depending on the clipping threshold Aclip .
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3) TR PAPR reduction: The TR technique is based on
adding a kernel signal based on reserved pilots to the OFDM
signal. These pilots are orthogonal to the data carried by the
other sub-carriers. Let c be the kernel signal added to x by TR
PAPR reduction such that s = x + c . A given tone reservation
algorithm computes c trying to compromise between PAPR
reduction efficiency and computation complexity. From the
literature [7], [10], it is known that the QCQP algorithm
converges to the optimal computation of the reserved tones
yielding the highest PAPR reduction level. It is based on
solving the QCQP convex optimization problem defined as:

min τ

subject to | |x + c| |2∞ 6 τ
(7)

Usually, standards as DVB-T2 add a power constraint on PRT
to limit the amount of power dedicated to PAPR reduction. Let
ζ = 10

∆Pb
10 be the ratio between the maximum allowed power

of each of the PRT and the mean power of one data carrier
Px

N , with ∆Pb the value of this power boost in dB. Thus, the
following condition adds, where F is the fast Fourier transform
matrix:

| |Fc| |2∞ 6 ∆Pb +
Px

N
(8)

C. EVM expression

Definition 2. EVM is a metric that measures the in-band
distortion of the signal. It is the amount of deviation of the
constellation points Z with reference to the original frequency
domain signal X. Since an N points IFFT is considered at
nominal sampling rate, and due to Parseval’s theorem, EVM
can be evaluated on time domain samples, where the received
signal zout is compared to a reference signal sre f at the
transmission. It is defined as:

EV M =

√
E(|z − sref |2)
E(|sref |2)

(9)

The EVM expression relies on the reference signal sre f
that should be adequately selected to keep a fair comparison
between the input and output signals. In general, the reference
signal depends on the PAPR reduction method and should
consider the following points.
• For the clipping PAPR reduction technique, the reference

signal is the original time domain signal x to which
the final received signal zout will be compared. So,
calculating zout in function of r = |x| will include
clipping and HPA effects that both include distortions.

• For the TR PAPR reduction technique, the received signal
zout , is followed by removing the TR added signal. Let
z′ be the so obtained signal (this cannot be done in
the case of clipping). Due to orthogonality between the
kernel signal and data signal in the frequency domain, the
distortion of the TR PAPR technique is only due to the
HPA non-linearities. Due to this fact, conserving adequate
normalization, for a sufficiently large number of samples,
EVM can equivalently be evaluated by comparing either
the final signal z′ with the original signal x or the
intermediate signals zout with s. The former needs a

closed form expression of the added kernel resulting from
the convex problem convergence in (7). This has however
no analytical expression and has only an algorithmic
solution. The latter rather reduces the problem to the
evaluation of the PDF of s after applying the TR PAPR
reduction technique.

• Independently of the reference signal, zout should be re-
scaled to the same power level as sre f , Pre f , in order
to evaluate the EVM according to the same constellation
point centers. Thus, Fn multiplies the signal at the output
of the HPA, with expected power Pout , in order to obtain
the normalized signal z such that:

Fn =

(
Pre f

Pout

)1/2
(10)

It is clear that (9) is hard to derive. Hence, we propose
changing to polar coordinates. Let rq and θq ∀ q ∈ {1, ...,Q}
represent respectively the independently distributed amplitudes
and phases of the reference signals sre f (t − qTs), and frefq (rq),
grefq (θq) their respective probability distributions. EVM can
thus be expressed as:

EV M =
1

P1/2
re f

E
(��z(r0, ..., rQ, θ0, ..., θQ) − r0e jθ0

��2)1/2

=

(
E(ε)
Pre f

)1/2
, (11)

E(ε) =
∫ ∞

0
...

∫ ∞

0

∫ 2π

0
...

∫ 2π

0
ε fref0 (r0)...frefQ (rQ)

gref0 (θ0)...grefQ (θQ)dr0...drQdθ0...dθQ (12)

Note that since sre f (t) follows a stationary random process,
frefq (r) = fref0 (r) and grefq (θ) = gref0 (θ) ∀ q ∈ {1, ...,Q}. In the
sequel, we simplify their notations resp. to fref(r) and gref(θ).

D. Useful mathematical definitions

In this section, some useful mathematical notations are
defined for the rest of the paper.

Definition 3. ms(n, t) and Ms(n, t) are defined respectively as
the lower and upper incomplete raw moments (i.e. centered to
0) of order n to a limit t of a distribution fs(r) such that:

ms(n, t) =
∫ t

−∞
rn fs(r) dr (13)

Ms(n, t) =
∫ ∞

t

rn fs(r) dr (14)

Note that Ps , the expected power of fs(r), is the complete raw
moment of order 2 of fs(r).

Definition 4. The PDF of a Rayleigh distribution is defined
as:

fRay(r; P) = 2r
P

e−r
2/P ; r > 0 (15)

where P is the power parameter of the distribution.
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Definition 5. The PDF of a Generalised Extreme Value (GEV)
distribution is defined as [28]:

fGEV(r; µ, σ, k) = 1
σ

G(r)k+1e−G(r); r ∈ D (16)

with G(r) =
(
1 + k

( r − µ
σ

))−1/k
(17)

where µ, σ > 0 and k are the respective location, scale and
shape parameters of the distribution. Starting with the peaks
distribution, the case where k < 0 is used in this paper. D is
thus defined as D = [rmin; rmax] =

(
−∞, µ − σ

k

]
. The CDF of

the GEV distribution is expressed by FGEV(r) = e−G(r) over D.

III. GENERAL EVM EXPRESSION - APPLICATION TO
CLIPPING PAPR REDUCTION

As previously explained, the EVM may be computed from
the knowledge of the PDF of the reference signal. In this part,
we provide an expression of the EVM for the general case of
any PAPR reduction method in function of fref(r). A simple
application to the clipping PAPR reduction technique is then
considered.

A. General EVM expression

The EVM expression in (11) is re-stated by applying the
introduced system model to r , i.e. the HPA characteristics and
power gain as:

z(r0, ..., rQ, θ0, ..., θQ) =

√
Pre f

Pout

Q∑
q=0

Hq

(
FI BO s(rq)

)
e jθq (18)

where Pout and Pre f can also be expressed by:

Pre f = E(|sre f (r0)|2) =
∫ ∞

−∞
r2
0 fref0 (r0)dr0 (19)

Pout = E(|zout (r0, ..., rQ, θ0, ..., θQ)|2) (20)

By replacing these expressions in (11), using the expectation
definition in (12), developing the squared term and adequately
simplifying terms, we obtain the EVM expression introduced
in the following lemma.

Lemma 1. In the general case, using a memory polynomial
HPA model, EVM can be simplified to the following form:

EV M =
√

2
(
1 − T1

Pout
1/2

)1/2
(21)

T1 =
1

P1/2
re f

∫ ∞

−∞

1
2

r0 Re
(
H0

(
FI BO s(r0)

) )
fref(r0)dr0 (22)

Pout =

Q∑
q=0

∫ ∞

−∞

���Hq

(
FI BO s(rq)

)���2fref(rq)drq (23)

Proof. See Appendix A. �

An important conclusion that can be driven from this lemma
is that the multiple integrals in (12) along amplitudes and
phases of different memory orders reduce to a simple integral
based only on the amplitude distribution of the stationary
reference signal.

r

0 0.5 1 1.5 2 2.5 3

f
(r
)

0

1

2

3

4

fx(r)

fclips (r)

Fig. 2: Example of the PDF of the amplitude of the time
domain signal with and without clipping at Λ = 2 and Px = 1

B. Application to clipping PAPR reduction

As stated in the introduction, the EVM expression with
the clipping PAPR reduction technique using memory poly-
nomial HPA model was already introduced in [21]. However,
aiming at proper comparison and analysis for different PAPR
reduction techniques, this equation is re-derived here with a
focus on normalization factors. Compared to the results in
[21], the resulting EVM expression is more generic and takes
into account tuned normalization and IBO.

1) Time domain signal distribution: Considering the clip-
ping PAPR reduction technique, the reference signal distribu-
tion fx(r) is that of an OFDM signal, and it follows, due to
central limit theorem, for a number of sub-carriers valid down
to several tens [29], a Rayleigh distribution:

fx(r) = fRay(r; Px) if r > 0 (24)

and 0 elsewhere. It is however worth to note that the amplitude
distribution after clipping, fclip

s (r), can be simply calculated
from (24) using (6) as in the following lemma.

Lemma 2. The amplitude distribution after the clipping op-
eration can be expressed by [21]:

fclip
s (r) =

{
fx(r) if r < Aclip

P{r > Aclip}δ(r − Aclip) if r > Aclip ,
(25)

where δ(r) is the dirac delta and P{r > Aclip} is the
probability that the amplitude of x(k) exceeds Aclip:

P{r > Aclip} =
∫ ∞

Aclip

fx(r)dr = e−Λ. (26)

Thus, the expected power of the time domain signal after
clipping is simply equal to the second order moment of fclip

s (r)
and can be expressed, using the integral property in [30, Sec.
8.35, p. 899], by:

Pclip
s = (1 − e−Λ)Px . (27)

Fig.2 depicts both distributions fx(r) and fclip
s (r).

2) EVM expression: The amplitude at the input of the HPA
is considered such that it doesn’t exceed Ain,satq for any of the
Q HPA memory components, and thus the HPA model in (2)
reduces to its first part (

∑Lp−1
l=0 bq,2l+1r2l+1

q ). For the case where
the amplitude exceeds Ain,satq , clipping has no real impact
on EVM expression because the HPA saturation takes action
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before the clipping level. In this case, EVM expression is
equivalent to that in the upcoming Theorem 2 where no PAPR
reduction is applied2. The only difference is that the IBO factor
FIBO, expressed in (3), includes Ps instead of Px so that a
small shift is present due to an expected power of Ps instead
of Px while tuning the IBO. Using the EVM expression in
Lemma 1, while substituting s(r) by the clipping expression in
(6), Pre f by Px and fref(r) with fx(r), a closed form expression
of EVM in the case of clipping can be obtained as stated in
the following theorem.

Theorem 1. The EVM expression of a clipped and amplified
multicarrier signal assuming a memory polynomial model of
the HPA in function of the IBO ρ

I BO
can be expressed by:

EV Mclip =
√

2
(
1 − ηclip

)1/2
with (28)

ηclip =

∑L−1
l=0 u ρ−(α1− 1

2 )
I BO

(
γ (α1 + 1,Λ) + Λα1− 1

2 Γ( 32,Λ)
)

(∑Q
q=0

∑L−1
l,l′=0 v ρ−α2

I BO

(
γ (α2 + 1,Λ) + Λα2 e−Λ

) ) 1
2

where γ(n, a) and Γ(n, a) are respectively the lower and upper
incomplete gamma functions of order n to the limit a, P1dB is
the input 1dB saturation point of the HPA of non-linearity or-
der L and memory depth Q, {bq,2l+1}06q6Q,06l6L−1 its com-
plex coefficients, Λ the clipping ratio, α1 = l+1, α2 = l+l ′+1,

u = b0,2l+1

(
P1dB

1−e−Λ

)α1− 1
2

and v = bq,2l+1bq,2l′+1

(
P1dB

1−e−Λ

)α2
.

Proof. See Appendix B. �

Thus, the EVM expression in the case of clipping only de-
pends on the IBO, the clipping ratio and the HPA parameters,
it is independent of Px .

IV. EVM EXPRESSION IN THE CASE OF TR-QCQP

In this section, the EVM expression is derived in the case
of the TR-QCQP PAPR reduction technique. The derivation
starts from the generic expression introduced in Lemma 1.

First, a generic expression is given in function of the
moments of the time domain amplitude distribution after
TR PAPR reduction. As a simple application example, this
equation is then used in the case without PAPR reduction
as it is a particular TR scheme where the added signal is
0. The more challenging application case of the TR-QCQP
algorithm is then investigated. In that perspective, the time
domain amplitude distribution after TR-QCQP PAPR reduc-
tion algorithm is first depicted. As this distribution is complex
to integrate, a proper approximated expression is sought. More
precisely, the impact of different approximations on the EVM
computation is analyzed aiming at selecting the one leading to
an adequate trade-off between the complexity of the expression
and the precision of calculations. From this analysis, the EVM
expression with the QCQP algorithm is calculated.

According to the DVB-T2 and ATSC3.0 standards which
propose TR PAPR reduction techniques as an option, without

2note that in real systems, clipping is usually used to avoid amplifier burning
due to high peaks, not to reduce EVM

loss of generality, the following parameters have been selected
to derive the EVM results in the rest of the paper:

- OFDM mode of 1K and 8K subcarriers,
- an amount of 1% PRT of the total subcarriers, using DVB-

T2 frame structure for PRT positions,
- a power boost ∆Pb applied to PRT subcarriers compared

to data subcarriers is typically set to 5, 10 dB or without
constraint.

A. General expression of EVM with TR PAPR reduction

In order to evaluate the EVM expression for the TR PAPR
reduction technique, in Lemma 1, fref(r) is substituted by fs(r),
Pre f by Ps and s(r) by r since s(r) in this case is the reference
signal itself. Then, using the HPA model of Eq. (2), the EVM
equation is obtained, in function of the time domain signal
distribution, as in the following lemma.

Lemma 3. The EVM expression for TR PAPR reduction can
be expressed, in function of the incomplete raw moments of
the reference signal distribution as:

EV MTR =
√

2
(
1 − ηTR

)1/2
with (29)

ηTR =

∑L−1
l=0 u ρ−(α1− 1

2 )
I BO

M1,q + Ain,satq M3,q(∑Q
q=0

(∑L−1
l,l′=0 v ρ−α2

I BO
M2,q + Ain,satq

2 M4,q

)) 1
2

with u = bq,2l+1 P
α1− 1

2
1dB ; v = bq,2l+1bq,2l′+1 Pα2

1dB;
α1 = l + 1 ; α2 = l + l ′ + 1 (30)

and Mi,q =
1

Pαi
s

mTR
s (2αi, ϕq); i = {1, 2} (31)

M3,q =
1

P1/2
s

MTR
s (1, ϕq) (32)

M4,q = MTR
s (0, ϕq) (33)

where ϕq =

√
Ps

Pin
Ain,satq (34)

Proof. See Appendix C. �

Lemma 3 essentially shows that the computation of the
EVM involving a TR algorithm relies on the knowledge of
the moments of the PDF of the signal amplitude after PAPR
reduction. Please note that these moments also depend on the
value of the IBO implicitly in the expression of ϕq . It is worth
noting that the reference signal power has to be normalized
in order to have a fair comparison depending on different
parametrizations of the TR PAPR reduction (for instance
varying ∆Pb or the number of subcarriers). Consequently, a
proper usage of Lemma 3 should consider normalized PDFs,
i.e. setting the second order moment of the PDF to 1. Such
normalization is respected in the EVM expression in Eq. (29)
for any signal power due to tuned IBO factor ρIBO which
depends on signal power Ps .

Note also that if the reference signal amplitude is limited to
a certain maximum rmax such that fs(r > rmax) = 0, then, after
a certain limit of the IBO, there will be no samples at the input
of the HPA exceeding Ain,sat . In this particular case, the HPA
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model reduces to its polynomial part. Consequently, M1,q and
M3,q become complete moments while M2,q and M4,q reduce
to 0. Compared to the EVM expression in Theorem 1, one
can finally see that Gamma functions in the expression of
the clipping-based EVM can be substituted as γ(α + 1,Λ) =

1
Pαx

mx(2α, Aclip) and Γ(α+1,Λ) = 1
Pαx

Mx(2α, Aclip), ∀ α ∈ R.
Comparing these EVM expressions, a major difference be-
tween clipping and TR-based EVM is that the upper moments
for the clipping case are due to clipping itself whereas for the
TR case they are due to the HPA response when operating
in its saturation zone. However, when high IBO is used and
the HPA is operating in its linear region, the upper moments
for TR reduce to 0 which is not the case for clipping. This
reveals from the analytical expressions the well-known fact
that clipping, compared to TR, has an important impact on
EVM when used and causes distortions by itself.

B. Application - EVM without PAPR reduction

The transmitting of a signal without PAPR reduction is
equivalent to applying TR with null power on the reserved
tones. So, x = s and thus fs(r) = fx(r) as expressed in (24).
Thus, the incomplete raw moments of fx(r) can be easily
obtained. Using Lemma 3, EVM expression is given by the
following theorem.

Theorem 2. The EVM expression of an amplified multicarrier
signal without PAPR reduction, assuming a memoryless
polynomial model of the HPA, can be expressed as in (29) in
Lemma 3 with there defined ϕq , u, v and:

M1,q = γ

(
l + 2,

ϕ2
q

Px

)
(35)

M3,q = Γ

(
3
2
,
ϕ2
q

Px

)
(36)

M2,q = γ

(
l + l ′ + 2,

ϕ2
q

Px

)
(37)

M4,q = Γ

(
1,
ϕ2
q

Px

)
= e−

ϕq
2

Px (38)

Proof. Using the integral property in [30, Sec. 8.35, p. 899],
the incomplete raw moments of fx(r) and thus M1−4,q can be
easily obtained. �

Please note that [21] and [18] derived the EVM without
PAPR reduction. However, the proposed expressions don’t take
into consideration proper normalization and are not expressed
in function of the IBO. In addition, our proposed expression
is presented and developed equivalently to the general case
which thoroughly helps for further comparison and analysis.

C. EVM with TR-QCQP

1) Time domain signal distribution with TR-QCQP: The
EVM derivation for TR-QCQP needs to first examine the
time domain amplitude distribution of the signal after PAPR
reduction. This simulated distribution, normalized to a power

r

0 0.5 1 1.5 2 2.5 3

f
s
(r
)

0

0.2

0.4

0.6

0.8

1

Without PAPR reduction

With TR-QCQP, ∆Pb = 10 dB

With TR-QCQP, no power constraint

2 2.5

0

0.1

0.2

Fig. 3: PDF of the amplitude of the time domain signal with
and without TR-QCQP PAPR reduction, with and without
power constraint – 1K subcarriers

of 1, is depicted in Fig. 3 for different values of ∆Pb . As
evident from this representation, the obtained empirical PDF,
denoted fQCQP

s (r), is a bimodal distribution whose parameters
depend on the power boost ∆Pb . Indeed, as analyzed in
details in [31], fQCQP

s (r) can be modeled as a superposition
of two different, but dependent, distributions. This model can
be explained from the behaviour of the QCQP algorithm as
follows. From Eq. (7), one understands that the TR-QCQP
algorithms finds, for a particular OFDM symbol, a minimum
amplitude level τ corresponding to a maximum amplitude
Rmax for the samples composing that OFDM symbol. This
means that the amplitude distribution of an OFDM symbol
after QCQP processing becomes equivalent to the distribution
of a clipped OFDM signal as depicted in Fig. 2. However,
compared to a simple clipping approach which ensures a fixed
maximum amplitude value for every OFDM symbol, QCQP
yields a different value at each new symbol. Hence, each
OFDM symbol after QCQP processing is composed of two
subsets of samples. The first one is the set of the samples at
the maximum amplitude value τ = Rmax of this symbol found
by the QCQP algorithm. The second is the set of samples with
amplitude lower than Rmax . The separation of these two kinds
of samples explains the origin of the bimodality.

Consequently, it is adequate to model fQCQP
s (r) as a mixture

of two distributions. The first one, grouping the set of samples
at the maximum amplitude Rmax , is conveniently modeled by
a GEV distribution known to typically model the maximum
of independent identically distributed sequences. The second,
grouping the rest of samples, though modified by TR-QCQP,
still follows a Rayleigh distribution, truncated at each symbol
at a different value Rmax . As detailed in [31], using marginal
distributions, this leads to a Rayleigh PDF multiplied by the
CDF of Rmax , that is also, in turns, modeled by a GEV
distribution. The comparison led in [31] between the modeled
distribution and the simulation results shows a sharp fitting of
fQCQP
s that validates this analysis. fQCQP

s can thus be modeled
as in the following proposition.
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Proposition 1. The time domain signal distribution with TR-
QCQP algorithm can conveniently be modeled by:

fQCQP
s (r) = (1 − p) fs1(r) + p fs2(r) , where: (39)

fs1(r) =
{

1
p′ fRay(r; PRay)(1 − Fs11(r)) if r ∈ R+

0 elsewhere
(40)

fs2(r) =
{

fGEV(r; µ2, σ2, k2), if r ∈ D2

0 elsewhere
(41)

Fs11(r) =
{

FGEV(r; µ′, σ′, k ′) if r ∈ D′

1 elsewhere
(42)

with p is a fitted parameter defining the expected ratio between
the samples at the maximum amplitude value of a symbol
and the total number of samples, and p′ is a normalization
factor that ensures

∫
fs1(r) = 1. fRay(r), fGEV(r) and FGEV(r)

are the distributions defined in Definition 4 and 5. PRay , µ2,
σ2, k2 < 0 and µ′, σ′, k ′ < 0 are their respective fitted
parameters and R+, D2 = [rmin2; rmax2] =

(
−∞; µ2 − σ2

k2

]
and D′ =

(
−∞, µ′ − σ′

k′
]

their respective domains of definition
as defined in 4 and 5.

The parameters of the GEV distributions in Proposition 1
may be computed using the probability weighted moments
(PWM) estimation method [32] [33].

2) Simplification by approximation of the time domain
signal distribution: The introduced expression of fs(r) in
Proposition 1 should now be integrated in order to calculate its
incomplete moments. This integration turns out to be tricky,
especially for the factor fRay(r)FGEV(r). We hence propose to
investigate two main approximations of Fs11(r).

The first proposed approximation consists in replacing the
GEV CDF Fs11 by a Gaussian CDF (it should be noted that
these two distributions can be equivalent in some cases). As
detailed in [31], Fs11 controls the way how the Rayleigh
distribution is progressively truncated. Another approximation
of Fs11 may consist in a step function. This approximation
amounts to model a sharp truncation of the Rayleigh distri-
bution and leads to much more tractable derivations. Fig. 4
shows, by means of numerical integration, the impact of these
two approximations on the EVM calculated value, without loss
of generality, for 1K mode and ∆Pb = 10 dB using the HPA
Model I, with memory as well as Model II, without memory
effects. From this figure, it turns out that both approximations
have negligible impact on the calculated EVM values. Since
it highly simplifies the integration of the EVM (for the other
modes and values of ∆Pb the same effect is observed), the
step function approximation is thus considered for the PDF
model of the amplitude of OFDM signals with TR-QCQP
PAPR reduction, as stated in the following proposition.

Proposition 2. The distribution of the time domain signal with
TR-QCQP algorithm in Proposition 1 can be approximated,
without significant impact on EVM. Fs11(r) is approximated as
a step function at rstep such that FGEV(rstep; µ′, σ′, k ′) = 0.5

ρIBO [dB]
4 6 8 10 12

E
V
M

[%
]

0

5

10

15

20
No approximation

Fs11(r) = FGauss(r)

Fs11(r) = u(r − rstep)

HPA Model I

HPA Model II

Fig. 4: EVM by numerical integration for different approxima-
tions of Fs11(r), for 1K subcarriers with ∆Pb = 10 dB, using
both HPA models with and without memory.

and thus:

Fs11(r) = u(r − rstep) ,

with rstep = µ′ +
σ′

k ′

(
(ln(2))−k′ − 1

)
(43)

where ln(a) is the natural logarithm of a.

The fitted parameters of the distributions of the proposed
fs(r), normalized to its power Ps , are shown in Table I for
different values of ∆Pb , for 1K and 8K subcarriers.

3) Moments of fs1(r) and fs2(r): In a step towards evaluat-
ing the EVM expression for the TR-QCQP algorithm based on
Lemma 3, the moments of the proposed fs1(r) and fs2(r) are
calculated in this section as reported in the following lemma.

Lemma 4. The respective lower and upper incomplete raw
moments of order n to a limit ϕ of fs1(r) and fs2(r) can be
expressed by:

ms1(n, ϕ) =


wn γ

(
n
2 + 1, ϕ2

PRay

)
if ϕ 6 rstep

wn γ

(
n
2 + 1, r

2
step

PRay

)
if ϕ > rstep

(44)

Ms1(n, ϕ) = (45)
wn

(
γ

(
n
2 + 1, r

2
step

PRay

)
− γ

(
n
2 + 1, ϕ2

PRay

))
if ϕ 6 rstep

0 if ϕ > rstep

ms2(n, ϕ) = (46)
∑

p1+p2+p3=n
w′p{1−3} Γ(−k2p1 + 1,G(ϕ)) if ϕ 6 rmax2∑

p1+p2+p3=n
w′p{1−3} Γ(−k2p1 + 1) if ϕ > rmax2

Ms2(n, ϕ) = (47)
∑

p1+p2+p3=n
w′p{1−3} γ(−k2p1 + 1,G(ϕ)) if ϕ 6 rmax2

0 if ϕ > rmax2
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TABLE I: Parameters of the time-domain signal amplitude distribution for TR-QCQP, normalized with reference to Ps .

mode ∆Pb p PRay/Ps rstep/
√
Ps µ2/

√
Ps σ2/

√
Ps k2

1K
5 dB 0.0059 1.0045 2.2901 2.2113 0.1054 −0.0718
10 dB 0.0113 1.0104 2.1346 2.0865 0.0816 −0.1091
no limit 0.0188 1.0303 1.9881 1.9634 0.0664 −0.1836

8K
5 dB 0.0035 1.0033 2.3837 2.3491 0.0578 −0.1322
10 dB 0.0083 1.0068 2.2064 2.1875 0.0398 −0.1798
no limit 0.0162 1.0072 2.0709 2.0609 0.0280 −0.2367

with wn =
1
p′

Pn/2
Ray

and w′p{1−3} =

(
n

p1, p2, p3

)
(−1)p2

(
σ2
k2

)p1+p2

µ
p3
2 (48)

where rstep and rmax2 = µ2 − σ
k2

are the respective maximum
amplitudes of fs1(r) and fs2(r).

Proof. See Appendix D and E. �

4) Proposed expression of EVM in the case of TR-QCQP:
From Lemma 3 and 4, a closed form expression of the EVM
for TR-QCQP PAPR reduction algorithm can be obtained,
depending on the IBO value. The final result is given by the
following theorem.

Theorem 3. The EVM of an amplified multicarrier signal pre-
ceded by TR-QCQP PAPR reduction, assuming a memoryless
polynomial model of the HPA, can be expressed as in (29) in
Lemma 3 substituting the expressions of {Mi,q}16i64; 06q6Q

by:

Mi,q =
1

Pαi
s

(
(1 − p) w2αi γ

(
αi + 1,

t2
1,q

PRay

)
(49)

+p
∑

p1+p2+p3=2αi

w′p{1−3}Γ
(
−k2p1 + 1,G(t2,q)

) )
, i = {1, 2}

M3,q =
1

P
1
2
s

(
(1 − p)w1

(
γ

(
3
2
,

r2
step

PRay

)
− γ

(
3
2
,

t2
1,q

PRay

))
+p

∑
p1+p2+p3=1

w′p{1−3}γ
(
−k2p1 + 1,G(t2,q)

) )
(50)

M4,q =
1 − p

p′

(
e
−

r2
step

PRay − e
−

t21,q
PRay

)
+ p

(
1 − e−G(t2,q )

)
(51)

where the couple (t1,q, t2,q) is defined, ∀ q ∈ {0, ...,Q},
depending on the value of the IBO as: (ϕq , ϕq) if ρ

I BO
∈(

− ∞; λq
r2
step

Ps

)
, (rstep , ϕq) if ρ

I BO
∈

[
λq

r2
step

Ps
; λq

r2
max2
Ps

)
and (rstep, rmax2) if ρ

I BO
∈

[
λq

r2
max

Ps
;∞

)
, with ϕq , u, v, α1,

α2 defined in Lemma 3, wn, w′n defined in Lemma 4 and
λq =

P1dB

Ain,satq
2 .

Proof. See Appendix F. �

Note that Theorem 3 gives a generic expression of the
EVM, for all the IBO ρ

I BO
values. However, one can think

about simplified expressions depending on the range consid-

ered for ρ
I BO

. In particular, if ρ
I BO
∈

[
λq

r2
step

Ps
; λq

r2
max

Ps

[
,

t2
1,q

PRay
reduces to

r2
step

PRay
hereby cancelling the difference terms

involving incomplete Gamma and exponential functions in
M3,4. Also, if ρ

I BO
∈

[
λq

r2
max

Ps
;∞

)
, then G(t2,q) = 0.

Hence, additionally to the previous simplifications, the upper
incomplete gamma functions Γ involved in M1,2 become
complete gamma functions and M3,4 both reduce to 0. In fact,
this last case corresponds to the interesting range for analysis
since practical IBO values are expected to be relatively high
to ensure acceptable levels of EVM. The EVM expression
becomes much simpler since only M1,2 have to be computed
and become independent of the IBO value and of the memory
coefficients.

V. RESULTS ANALYSIS

The EVM expression introduced in Theorem 3 is very
useful for the optimization of the parameter setting of an
OFDM transmission system with TR-QCQP PAPR reduction,
especially in a range of relatively medium to high IBO.
The related equations are easily implemented and could be
evaluated in very short time, contrarily to the algorithmic
simulations. We should notice for instance that, with the fitted
distribution parameters in Table I, and the equations derived
in the paper, the EVM can be instantaneously computed for
any value of the IBO. In the sequel, we validate through
simulations the derived theoretical expressions of the EVM
which are then exploited for EVM performance analysis.

A. Results validation

In order to validate the analytical expression of the EVM
provided in Theorem 3, Fig. 5 compares the simulated and
analytical EVM results in function of the IBO. The latter are
obtained using the fitted parameters defined in Table I. Without
loss of generality, the plotted curves have been obtained for
OFDM waveforms with 1K, 8K subcarriers and a power
boost ∆Pb = 10 dB, for both HPA models with and without
memory effects. As evident from these curves, a good match is
obtained between simulated and theoretical EVM results. This
validates our derivations and again confirms the accuracy of
the model proposed for the time-domain signal distribution
given in Proposition 2.

It is worth noting here that memory effects add distorsions
to the transmitted signal. This can indeed be observed from
the EVM curves in Fig. 5 where the EVM with HPA Model
I, with memory effects, has important values relatively to the
case without memory.

B. EVM results analysis

In this section, we exploit the derived theoretical EVM
expressions to compare the results between the TR-QCQP
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Fig. 5: Theoretical and simulated EVM versus IBO with TR-
QCQP algorithm – 1K and 8K subcarriers, ∆Pb = 10 dB using
both amplifier models with and without memory.

and clipping algorithms. In the sequel, we consider the HPA
Model II without memory in order to assess the distorsions
due to the HPA non-linearity independently from the memory
effects. Fig. 6 shows the theoretically obtained EVM curves
in function of the IBO. The case without PAPR reduction is
also plotted as reference. With clipping, two thresholds are
considered at Λ = 6 and 7 dB. With TR-QCQP, three power
constraints on PRT are experimented, ∆Pb = 5, 10 dB and
without constraint. A zoom on the IBO range between 4 and
12 dB is also provided, corresponding to practical IBO values.

1) TR vs clipping: It can be seen that for high IBO, the
EVM using TR-QCQP converges to 0% whereas it reaches a
certain floor when clipping is used. This is due to the fact that
clipping by itself includes distortions to the signal, while TR
is distortionless. As a consequence, at high IBO, i.e. when the
distortions caused by the non-linearities of the HPA vanish,
a high difference between the two approaches appears. This
is consistent with the EVM equations provided in Theorem 1
and Lemma 3.

In fact, with TR at high IBO, the EVM equation reduces to
complete moments, or in other words, the HPA simplifies to its
polynomial part in Eq. (2). Moreover, asymptotically at high
IBO, for limited maximum amplitude rmax , the HPA output is
equal to its input, i.e. HHPA(r) = r . Hence, from the generic
EVM expression of Lemma 1, by using (20) and (22), T1 and
Pout can be expressed for high IBO as:

T1 =
1

P1/2
s

∫ rmax2

−∞
r

(√
Pin

Ps
r

)
fref(r)dr ; (52)

Pout =

∫ rmax2

−∞

(√
Pin

Ps
r

)2

fref(r)dr (53)

Now, using the definition of Ps in Eq. (19), it can be deduced
that T1/Pout = 1. Thus the EVM in Eq. (21) for TR-QCQP is
asymptotically equal to 0.

On one other hand, in the clipping case, the incomplete
moments come from the clipping itself and not from the HPA
saturation. So, even though at high IBO the HPA does not
include any distortion, the distortion due to clipping in the
equation persists. This translates into the observed perfor-
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Fig. 6: Theoretical EVM vs IBO for different PAPR reduction
schemes for 1K subcarriers, considering the HPA Model II.

mance floor which level depends on the clipping threshold.
The lower the threshold, the higher the EVM floor is. For
low IBO, the EVM in the case of clipping is equivalent to
that with no PAPR reduction. This is due to the fact that the
amplifier saturation takes action before clipping, as per the
derived equations.

2) Impact of power constraint: As observed from Fig. 6,
the TR-QCQP algorithm improves the EVM compared to the
case without PAPR reduction, whatever the IBO value is. This
is because TR-QCQP changes the signal distribution at the
input of the HPA without creating signal distortion contrarily
to the clipping approach. Also, the EVM improvement depends
on the power constraint applied to the PRT. The higher the
∆Pb , the lower the EVM is. This reflects the capability of
the TR approach to convert the amount of energy allocated
to the PRT into PAPR reduction. The added power allows
to change the time domain signal distribution as shown in
Fig. 3 so as to concentrate the energy of the samples under
a certain value hereby reducing the tail of the distribution.
The efficiency of the PAPR reduction is revealed by the
strength of such concentration effect. More precisely, the
contribution of the second mode which appears in the signal
distribution is more significant when the power constraint is
weak. On one hand, if no power is allocated to the PRT,
the signal distribution is unchanged (no second mode) and
we obtain the EVM results without PAPR reduction. On the
other hand, if no power constraint is applied, the tail of the
distribution is reduced as much as possible and the related
EVM results constitute a lower bound. This can be claimed as
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such since TR-QCPQ gives the optimal solution to the PAPR
reduction problem. Finally, using various power constraints
∆Pb as shown in Fig. 6 leads to intermediate performance.
But more importantly, any TR PAPR reduction algorithm
should indeed yield performance results in between the two
situations discussed above. Please note that similar results and
conclusions can be derived for other parameters of the HPA
and especially for HPA Model I with memory and for other
values of the knee factor.

C. BER results

EVM measures the amount of distorsion caused by the HPA
non-linearities. As mentioned in the introduction, EVM figures
can be translated into BER results when incorporating the
demapping process at different signal to noise ratio (SNR).
To illustrate this fact, Fig. 7 shows BER results in function of
the SNR considering an AWGN channel and an N = 1024
OFDM signal loaded with 64-QAM constellation symbols,
without PAPR reduction and with TR PAPR reduction with
∆Pb = 10 dB. Without loss of generality, IBOs of 2, 4, 6
and 12 dB are considered. The respective corresponding EVM
values from Fig. 6 are depicted in Table II.

As can be seen, at an IBO of 12 dB without PAPR reduction
the EVM is approximately equal to 0 since the HPA is working
in its linear region and does not induce any distorsions.
Hence, the BER curves at such IBO are fully explained from
the background Gaussian noise level compared to the useful
transmitted power. In particular the performance loss observed
when comparing the cases with and without TR algorithm at
an IBO of 12 dB is simply explained from the additional power
allocated to PRTs for PAPR reduction. At constant transmitted
power, this implies less power assigned to data sub-carriers,
and thus lower receiver sensitivity. Reminding the percentage
κ = 1% of PRTs, for ∆Pb = 10 dB, the receiver sensitivity
loss is given by:

ν = 10log10
(100 − κ) + κ × 10∆Pb/10

100
(54)

The maximum receiver sensitivity loss is thus equal to
0.43 dB. However, as QCQP doesn’t use the maximum al-
lowed power boost for all the PRTs. The measured mean data
carrier power boost is actually equal to ∆Pb = 9.227 dB,
which induces a power loss of 0.36 dB as observed from the
obtained BER curves.

On the other side, low IBO values corresponding to EVM
above 16% lead to high error rates for the 64-QAM constella-
tion due to significant distortion levels. This can be seen by the
saturated BER values both with and without PAPR reduction
for an IBO of 2 dB. The expected impact of TR in reducing
the amplifier distorsions appears significantly for an IBO equal
to 4 and 6 dB. At this level, the EVM is in a range where it
makes the constellation points near to the decision borders of
the QAM demapping. Indeed, TR reduces the BER due to
the reduction of the EVM. For example, at an IBO of 6 dB,
TR doesn’t only compensate the receiver power loss, but also
offers an additional SNR gain of 2 dB for a BER of 10−4.

Similar results have been obtained for higher constellation
orders. With higher constellation orders however, the impact
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Fig. 7: BER in function of the SNR for different IBO values
with and without TR

TABLE II: EVM values in % for different IBOs with and
without TR

IBO 12 dB 6 dB 4 dB 2 dB
without PAPR reduction 0.073 6.559 12.97 20.29

TR, ∆Pb = 10dB 0 2.782 9.165 16.79

of TR appears significantly for higher IBO. As expected, in-
creasing the constellation order means an increasing sensitivity
to EVM, and thus an increasing interest in processing PAPR
reduction.

VI. CONCLUSION

This paper provides a generic framework for the analytical
derivation of the EVM of OFDM signals in function of the
IBO for any TR PAPR reduction algorithm. The expression
of the EVM versus IBO was derived in function of the mo-
ments of the time domain signal amplitude distribution, such
distribution being directly dependent on the used TR PAPR
reduction technique. The proposed generic EVM expression
has been exploited to get the theoretical EVM in the case of
TR PAPR reduction based on the optimal QCQP algorithm,
thus providing a lower bound of EVM for TR PAPR reduction.
Owing to appropriate analysis and approximation, a tight
model has been proposed for the PDF of the amplitude of
OFDM signals after TR-QCQP algorithm. This has led to
express the EVM in function of the key design parameters
of the TR system model (number of reserved tones, power
constraint), hereby allowing for an optimized tuning of such
parameters. In particular, the proposed EVM expressions are
very simple to use in practice due to their direct relation with
the IBO. They can for instance be utilized to find an acceptable
trade-off between the system power efficiency and the signal
distortion.

Finally, as the proposed general expression of the EVM is
only stated as a function of the moments of the time domain
distribution of the output signal, it can be exploited for any TR
PAPR reduction algorithm of the literature, in order to optimise
the parameter setting of these algorithms. This can be achieved
without intrinsically modeling the algorithm behaviour but
rather analyzing its effect on the output signal distribution.
Eventually, it should be noted that the same methodology
of this paper can be followed for any other PAPR reduction
technique.
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APPENDIX A
PROOF OF LEMMA 1

Let rinq = FI BO s(rq). Replacing z(r0, ..., rQ, θ0, ..., θQ) in
(11) with its expression in (18) and developing the squared
term as |ε |2 = ε ε∗ leads to:

EV M =
1

P1/2
re f

E

(���Fn

∑Q

q=0
Hq

(
rinq

)
e jθq − r0e jθ0

���2) 1
2

=
1

P1/2
re f

(
Pre f

Pout
E

(���∑Q

q=0
Hq

(
rinq

)
e j(θq )

���2)︸                                ︷︷                                ︸
Pout

−2
Pre f

P1/2
out

1
P1/2
re f

1
2
E

(
r∗0

∑Q
q=0 Hq(rinq )e j(θq−θ0)

+r0
∑Q

q=0 Hq
∗(rinq )e j(θ0−θq )

)
︸                                                    ︷︷                                                    ︸

T1

+

∫
r2fref(r)dr︸          ︷︷          ︸
Pre f

)1/2

=
√

2

(
1 − T1

P1/2
out

)1/2

(55)

We start by simplifying Pout . Let |ε1 |2 =���∑Q
q=0 Hq

(
rinq

)
e j(θq )

���2 =
∑Q

q,q′=0 ξ(q, q
′)e j(θq−θq′ ) with

ξ(q, q′) = Hq(rinq )H∗q′(rinq′ ), using the fact that phases and
amplitudes are independent random variables and that ξ(q, q′)
is independent of θ we get:

Pout =

∫ ∞

0
...

∫ ∞

0

∫ 2π

0
...

∫ 2π

0
|ε1 |2 fref0 (r0)...frefQ (rQ)

gref0 (θ0)...grefQ (θQ)dr0...drQdθ0...dθQ

=

Q∑
q=0

( ∫ ∞

0
...

∫ ∞

0
ξ(q, q′) fref0 (r0)...frefQ (rQ)dr0...drQ∫ 2π

0
...

∫ 2π

0
e j(θq−θq′ )gref0 (θ0)...grefQ (θQ)dθ0...dθQ︸                                                             ︷︷                                                             ︸

δ(q−q′)

)
(56)

where the last term is equal to δ(q−q′) since
∫

e jθqgrefQ (θQ) =
0 and

∫
grefQ (θQ) = 1 and thus Pout reduces to the form as in

lemma 1. In the same way for T1, noting that r = r∗, the first
expectation term is simplified by:

E
©­«r∗0

Q∑
q=0

Hq(rinq )e j(θq−θ0)ª®¬ =
Q∑

q,q′=0

( ∫ ∞

0
...

∫ ∞

0
r0 Hq(rinq ) fref0 (r0)...frefQ (rQ)dr0...drQ∫ 2π

0
...

∫ 2π

0
e j(θq−θ0)gref0 (θ0)...grefQ (θQ)dθ0...dθQ︸                                                            ︷︷                                                            ︸

δ(q)

)
(57)

The same concept applies to the second expectation term in T1.
Thus, all the memory ordered terms turn to 0 and T1 simplifies
to the memoryless response. Noting that H0(rin0 )+H∗0 (rin0 ) =
2Re[H0(rin0 )] and adequately rearranging terms, T1 and Pout

can be expressed as in Lemma 1.

APPENDIX B
PROOF OF THEOREM 1

For the clipping PAPR reduction case, sre f = x, so, in
Lemma 1, fref(r) is substituted by fx(r) as in (24), Pre f by
Px , Ps by (1 − e−Λ)Px (eq. (27)) and s(r) is replaced by the
clipping expression in (6) that splits the integral according to
the value of r compared to Aclip . Thus:

FIBO =
F ′IBO√

Px

with F ′IBO =

√
Pin

1 − e−Λ
(58)

T1 =

∫ Aclip

0

r0√
Px

Re
[
H0

(
F ′IBO

r0√
Px

)]
fRay(r0; Px)dr0

+

∫ ∞

Aclip

r0√
Px

H0

(
Aclip√

Px

)
fRay(r0; Px)dr0 (59)

+

∫ ∞

Aclip

����Hq

(
F ′IBO

Aclip√
Px

)����2 fRay(rq; Px)drq

]
(60)

Then, the HPA response is replaced by its expression in (2),
taking into consideration only the polynomial part (since for
this theorem the input amplitude is considered below HPA
saturation), so that Hq(r) =

∑L−1
l=0 bq,2l+1r2l+1 ∀ r ∈ R+ and

|Hq(r)|2 is developed as:��Hq(r)
��2 = (∑L−1

l=0
bq,2l+1r2l+1

) (∑L−1

l′=0
bq,2l′+1r2l′+1

)
=

∑L−1

l,l′=0
bq,2l+1bq,2l′+1r2(l+l′+1) (61)

Adequately arranging terms, we get:

T1 =
∑L−1

l=0
Re(bq,2l+1)F

, 2l+1
2

IBO
(I1 + I2) ; (62)

Pout =
∑Q

q=0

∑L−1

l,l′=0
bq,2l+1bq,2l′+1F

,
2(l+l′+1)

2
IBO

(I3 + I4) (63)

with: I1 =

∫ Aclip

0

r
√

Px

(
r
√

Px

)2l+1
fRay(r; Px)dr, (64)

I2 =

∫ ∞

Aclip

r
√

Px

(
Aclip√

Px

)2l+1
fRay(r; Px)dr, (65)

I3 =

∫ Aclip

0

(
r
√

Px

)2(l+l′+1)
fRay(r; Px)dr, (66)

I4 =

∫ ∞

Aclip

(
Aclip√

Px

)2(l+l′+1)
fRay(r; Px)dr . (67)

Using the integral property from [30, Sec. 8.35, p. 899] with
n = 2(l + 1), 1, 2(l + l ′ + 1), 0 respectively for I1−4 to solve
the above integrals. Using the properties of gamma functions,
the above equations simplify. The so obtained T1 and Pout

are then put in the general EVM expression in (21), note that
Pin = P1dBρ

−1
I BO

(eq. (3)), adequately rearranging terms, the
EVM can be expressed as in Theorem 1.

APPENDIX C
PROOF OF LEMMA 3

For the TR PAPR reduction case, sre f = s, so, in (21), fref(r)
is substituted by fs(r) (∀ fs(r) a PDF, according to the used
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TR algorithm), Pre f by Ps and s(r) by r since |s(r)| is the
amplitude of the reference signal itself, thus:

T1 =

∞∫
−∞

r
√

Ps

Hq

(√
Pin

r
√

Ps

)
fs(r)dr; (68)

Pout =

Q∑
q=0

∞∫
−∞

����Hq

(√
Pin

rq√
Ps

)����2 fs(rq)drq (69)

Then, replacing the HPA response by its expression in (2)
which splits the integral into two parts according to the
value of

√
Pin

Ps
r in (−∞; Ain,sat ] or in [Ain,sat ;∞), letting

ϕ =
√

Ps

Pin
Ain,sat and adequately rearranging terms, we get:

T1 =

L−1∑
l=0

b0,2l+1P
2l+1

2
in

ϕ0∫
−∞

r
√

Ps

(
r
√

Ps

)2l+1
fs(r)dr

+ Aout,sat0
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ϕ0

r
√

Ps

fs(r)dr, (70)

Pout =

Q∑
q=0

L−1∑
l,l′=0

bq,2l+1bq,2l′+1P
2(l+l′+1)

2
in

ϕq∫
−∞

(
r
√

Ps

)2(l+l′+1)
fs(r)dr

+ A2
out,satq

∞∫
ϕq

fs(r)dr (71)

Using the incomplete moments expression in Definition 3
for fs(r), the above integrals are substituted by the correspond-
ing incomplete raw moments in order to simplify the above
expressions. Then, the so obtained T1 and Pout are put in the
general EVM expression in (21), reminding Pin = P1dB ρ−1

I BO

(eq. (3)), adequately rearranging terms, the EVM can be
expressed as in Lemma 3.

APPENDIX D
PROOF OF LEMMA 4 - PART I

Since Fs11(r) = u(r − rstep) (eq. (43)), it can be said
that fs1(r), expressed in (40), is equal to 1

q fRay(r; PRay) over
[0; rstep] and 0 elsewhere. So:
• ms1(n, ϕ), defined as the integral of rnfs1(r) over [−∞; ϕ],

is the integral of 1
q rnfRay(r; PRay) over [0; ϕ] if ϕ < rstep

and over [0; rstep] if ϕ > rstep ,
• Ms1(n, ϕ), defined as the integral of rnfs1(r) over [ϕ;∞],

is the integral of 1
q rnfRay(r; PRay) over [ϕ; rstep] if ϕ <

rstep and is equal to 0 if ϕ > rstep .
Using the integral property in [30, Sec. 8.35, p. 899] again
and adequately rearranging terms the moments of fs1(r) can
be expressed as in Lemma 4.

APPENDIX E
PROOF OF LEMMA 4 - PART II

First,
∫ b

a
rnfGEV(r; µ, σ, k)dr with [a; b] ⊂ [rmin; rmax] can

be calculated as:

J =
∫ b

a

rnfGEV(r; µ, σ, k)dr =
∫ b

a

rn
1
σ

G(r)k+1e−G(r)dr

(72)

Considering a substitution of ψ = G(r):

ψ =
(
1 + k

r − µ
σ

)−1/k
;

dψ
dr
= − 1

σ
G(r)k+1 ; (73)

r = µ +
σ

k
(ψ−k − 1) , (74)

then: J =
∫ G(a)

G(b)

(
µ +

σ

k
(ψ−k − 1)

)n︸                    ︷︷                    ︸
T2

e−ψ dψ (75)

Using the binomial theorem [34], T2 can be developed as:

T2 =
(
µ +

σ

k
(ψ−k − 1)

)n
=

∑
p1,p2,p3=n

w′p1−3ψ
−kp1 (76)

with w′p1−3 =

(
n

p1, p2, p3

)
(−1)p2

(σ
k

)p1+p2
µp3 ψ−kp1 (77)

Then J =
∑

p1,p2,p3=n

w′p1−3

∫ G(a)

G(b)
ψ−kp1 e−ψdψ (78)

Thus, using the integral property in [30, Sec. 8.35, p. 899]:

J =
∑

p1,p2,p3=n

w′p1−3

(
γ
(
− kp1 + 1,G(a)

)
− γ

(
− kp1 + 1,G(b)

) )
(79)

For the integral limit conditions, we note for k < 0:

G(rmin) = lim
r→−∞

G(r) = lim
r→−∞

(
1 − |k | r − µ

σ

)+1/ |k |
= ∞ (80)

G(rmax) = G
(
µ − σ

k

)
=

(
1 + k

µ − σ
k − µ
σ

)−1/k
= 0 (81)

We note that G(r) is a strictly decreasing over [rmin; rmax].
Please note that the above results can also be derived using

the characteristic function of the GEV distribution calculated
in [28].

Now reminding that fs2(r) is equal to fGEV(r) over [−∞; µ−
σ
k ] and 0 elsewhere (since for our case k < 0), in the same way
as in Appendix D, using the above obtained integral property
and limit conditions, the moments of fs2(r) can be expressed
as in Lemma 4.

APPENDIX F
PROOF OF THEOREM 3

We remind that:

fQCQP
s (r) = (1 − p) fs1(r) + p fs2(r) (82)

Then, since moments are linear operations, ∀n, ϕ ∈ R:

mQCQP
s (n, ϕ) = (1 − p) ms1(n, ϕ) + p ms2(n, ϕ) (83)

MQCQP
s (n, ϕ) = (1 − p) Ms1(n, ϕ) + p Ms2(n, ϕ) (84)

So, using the calculated moments in Lemma 4 the moments
of fQCQP

s (r) and thus M1−4 for the general EVM expres-
sion in Lemma 1 can be calculated. As can be deduced
from Lemma 4, the three defined intervals for ρ

I BO
corre-

spond to ϕ in [0; rstep], [rstep; rmax2] or [rmax2;∞) (since

rstep < rmax2), with (from (34) and (3)) ϕ =
√

Ps

Pin
Ain,sat =√

Ps

P1dB
ρ
I BO

Ain,sat . Thus, adequately comparing terms, the
three intervals of ρ

I BO
can be derived.
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