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Abstract

This paper tackles the slowness issue of the well-known Expectation-Maximization

(EM) algorithm in the context of Gaussian Mixture Models. To cope with this slowness

problem, an Exact Line Search scheme is proposed. It is based on exact computation of

the step size required to jump, for a given search direction, towards the final solution.

Computing this exact step size is easily done by only rooting a second-order polynomial

computed from the initial log-likelihood maximization problem. Numerical results using

both simulated and real dataset showed the efficiency of the proposed exact line search

scheme when applied to the conventional EM algorithm as well as the Anti-Annealing

based acceleration techniques based on either the EM or the Expectation Conjugate

Gradient algorithm.
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1. Introduction

The Expectation Maximization (EM) algorithm initially proposed in [1] stands for

the utmost popular algorithm in applied statistics notably for finding the maximum

likelihood or maximum a posterior estimates in the presence of missing/hidden data

given a set of available measurements and also for data clustering. Gaussian Mixture5

Models (GMMs) [2] is a powerful tool for data clustering which is of widespread

applications such as in pattern recognition [3], feature selection/extraction [4], image

segmentation [5], information retrieval [6], data mining [7] and in signal processing

[8, 9]. GMMs-based analysis consists in modelling the dataset at hand as a linear mixture

of Gaussian distributions. Identifying the GMM parameters, i.e. means and covariance10

matrices of those Gaussian distributions together with its related mixing coefficients

is mandatory and efficiently performed using the EM algorithm. This is thanks to its

simplicity and its proved convergence property (e.g. monotone convergence in likelihood

values) [10, 11]. Despite these attractive properties, the convergence of the EM algorithm

is still very slow in some clustering situations where (i) some mixing coefficients are15

small compared to other ones [12] and/or (ii) the data are relatively poorly-separated

into distinct clusters [13]. To cope with the EM slowness, a number of studies have been

conducted and a variety of solutions have been proposed [12, 13, 14, 15, 16, 17] to cite

a few. While authors in [13, 14, 15, 16] employ the conventional optimization theory

by resorting to either Newton or quasi-Newton approaches, authors in [17, 18] adopt20

for a hybrid EM wherein the EM algorithm is used in an early stage of the iterative

process and the (quasi-)Newton scheme is employed later for a faster convergence.

However, despite the efficiency of Newton-type and hybrid approaches, their use in

practice is still moderate due to their high computational complexity with respect to

the conventional EM method [1]. Therefore, simpler approaches have been proposed25

such as the Expectation Conjugate Gradient (ECG) approach [15] in which model

parameters are estimated based on a gradient ascent scheme with the gradient of the

log-likelihood exactly computed. Furthermore, an annealing strategy and an Anti-

Annealing one were, respectively, proposed in [19] and [12], in the context of GMM

with unbalanced coefficients. The key idea of the latter resides in the fact that the30
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posterior probability distribution is simply parametrized by a temperature parameter

and a maximization of the log-likelihood is performed at each considered temperature.

Beyond the aforementioned approaches, the convergence speed of the EM algorithm

can be further improved using a simple but very efficient line search-based scheme.

Line Search (LS) scheme is extensively used in the optimization theory [20],35

especially for tensor optimization [21, 22] or for tensor decomposition [23] to cite

a few. It finds its useful applicability for example when the question of accelerating

the EM algorithm is addressed. The well-known Aitken acceleration procedure can be

considered as a LS-like approach [24] where the partial derivatives of an appropriate

mapping in the parameter domain are to be computed as a step size through a predefined40

search direction. Despite its efficiency, this approach requires, at each iteration, the

computation of derivatives of some function which is often prone to computational

issue. Furthermore, some LS-like approaches are based on the computation of either the

inverse of the Hessian matrix of the objective function (e.g. the Newton approaches)

or the inverse of its approximation (i.e. the Jacobian matrix) [14]. However, the latter45

are well-known to be numerically unstable for example in case of highly overlapped

clusters. To cope with this instability issue, authors in [25] proposed a LS-like scheme

where the search direction is defined as the difference between two successive estimates

of the model parameters. As far as the step size is concerned, it is estimated as the mean

of the ratio of the differences between individual parameter estimates obtained from50

the two most recent iterations [25]. More details regarding this approach are given in

Section 2.3.

In this paper, an Exact LS (ELS) scheme is proposed to accelerate the convergences

speed of the EM algorithm. Inspired from [21, 26] where the ELS is introduced in a pure

deterministic framework, the proposed ELS procedure in this paper is applied after the55

E-step of the EM algorithm. The proposed ELS scheme leads to an exact computation

of the step size for a given direction. This is simply done by rooting a second order

polynomial computed from the considered objective function. The performance of the

proposed approach is evaluated in the context of GMMs in situations where the EM

algorithm suffers from slow convergence due to either unbalanced mixing coefficients or60

relatively high overlapped clusters. The behaviour of the proposed approach is compared
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with the ones of simple but very efficient methods to accelerate the EM algorithm such

as the ECG [15], the λ-EM method [25] and the Anti-Annealing based [12] algorithms.

2. Background

Let {x1,x2, ...,xn, ...,xN} be a data set of N D-dimensional independent and

identically distributed observation vectors xn, 1 ≤ n ≤ N . Under the GMM, xn

is modelled as a linear superposition of K Gaussian distributions with the following

likelihood:

p (xn|θ) =
K∑
k=1

αkp(xn |µk,Σk ), s. t. αk ≥ 0,
K∑
k=1

αk = 1 (1)

where αk, µk and Σk stand for the mixing coefficient, mean vector and positive definite

covariance matrix of the k-th Gaussian component. θ = [θ1
T, ...,θK

T]
T is the global

vector of parameters whose k-th component, θk =
[
αk,µk

T, vec (Σk)
T
]T

(vec(.) is

the matrix-to-vector transform), is the local vector of parameters associated to the k-th

Gaussian distribution. Note that p(xn|µk,Σk) in Eq. (1) is given by:

p(xn|µk,Σk) = 1
(2π)D/2det(Σk)

1/2 exp
{
− 1

2 (xn − µk)TΣ−1k (xn − µk)
}

(2)

where det(Σk) is the determinant of the matrix Σk. Identifying the GMM consists in

estimating its vector of parameters θ. Estimating the latter is performed by maximizing

the likelihood of the observed data with respect to θ. However, for sake of clarity

and computation facility, since the logarithm function is an increasing function, the

log-likelihood formulation is used instead. Then, given the observation matrix X =

[x1,x2, ...,xN ] of size (D ×N ), the optimization problem to be solved is defined as

follows:

θ̂ = arg max
θ

L (θ) s.t. αk > 0,
K∑
k=1

αk = 1. (3)

with the log-likelihood function L (θ) defined by:

L (θ) = log p(X|θ) = log
N∏
n=1

p (xn|θ) =
N∑
n=1

log(
K∑
k=1

αkp(xn|µk,Σk)). (4)
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The EM algorithm stands for the most common used algorithm to solve equation65

(3). This is due to its simplicity, efficiency and convergence property. Despite

these attractive properties, the slowness of this algorithm is well-known in cases

of unbalanced mixing coefficients and/or weakly separated clusters, as mentioned

previously. Among the different algorithms proposed to cope with such drawbacks,

the Expectation Conjugate Gradient (ECG) [15], the λ-EM method [25], the Anti-70

Annealing EM (AAEM) algorithm [12] and the Anti-Annealing ECG (AAECG) one

can be considered as discussed in this paper. This is since the latter algorithms enjoy

a simple structure from numerical point of view together with efficient performance,

compared to other proposed solutions (the reader can refer to [14] for more details).

Note that due to the simplicity of both the Anti-Annealing (AA) and the ECG methods,75

the AAECG method is a straightforward combination that we suggest in this paper

between these two strategies. Description of the algorithms considered in this paper is

given hereafter.

2.1. The EM algorithm

The EM algorithm, initially proposed in [1], deals easily with the optimization

problem in Eq. (3) by considering the mixing coefficients αk as prior probabilities for

the GMM components. That is to say p(zn = k) = αk where zn is a label variable

indicating which Gaussian component is being considered for which data point. Thus,

the log-likelihood in Eq. (4) can be rewritten using the complete data representation as:

L (θ) =
N∑
n=1

log(
K∑
k=1

p(xn, zn = k|µk,Σk)) =
N∑
n=1

log(
K∑
k=1

p(zn = k)p(xn|µk,Σk))

=
N∑
n=1

log(
K∑
k=1

αkp(xn|µk,Σk)).

(5)

Note that the knowledge of the latent variables zn allows for an easy way to maximize the

above log-likelihood function. Since the latter are unknown, their posterior probability

distributions given the observed data point and the current estimate of θ can however

be computed. The EM algorithm [1] is an iterative process in which the algorithm

alternates until convergence between two main steps: (i) The E-step where the posterior
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probability distribution of the latent variables is computed:

E− step :

h
(it)
k (n) =

α
(it)
k p(xn|µ(it)

k ,Σ
(it)
k )

K∑
r=1

α
(it)
r p(xn|µ(it)

r ,Σ
(it)
r )

(6)

and (ii) the M-step where an update of the model parameters is performed, at the (it+1)-

th iteration, as a result of maximizing the expectation of the complete log-likelihood

function, noted here by Q
(
θ
∣∣θ(it) ) = E

[
N∑
n=1

log(αkp (xn |µk, Σk)))

]
h
(it)
k (n)

, under

the posterior probability distributions, h(it)k (n), computed from the E-step:

M− step :

for k = 1, ...,K

α
(it+1)
k = 1

N

N∑
n=1

h
(it)
k (n)

µ
(it+1)
k =

N∑
n=1

xnh
(it)
k (n)

N∑
n=1

h
(it)
k (n)

Σ
(it+1)
k =

N∑
n=1

(
xn−µ(it+1)

k

)(
xn−µ(it+1)

k

)
Th

(it)
k (n)

N∑
n=1

h
(it)
k (n)

end

(7)

Regarding the stop condition, the EM algorithm stops when a maximal number of

iterations is reached or when the relative change (in absolute value) of L(θ) between

two successive iterations exhibits a value that is smaller than a predefined threshold, τ :

|L(θ(it+1))− L(θ(it))|
L(θ(it+1))

< τ (8)

2.2. The ECG algorithm80

Essentially proposed to deal with the EM slowness in the case of highly overlapped

clusters, the ECG algorithm [15] employs the conjugate gradient method to maximize the

log-likelihood in Eq. (4). The key idea underlying the ECG approach is the established

link between the step in the parameter space and the gradient of the log-likelihood

function, at each iteration of the EM algorithm [11]. This link is characterized by the
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so-called parameter-dependent projection matrix, denoted here by P which is a positive-

definite matrix. Indeed, as the gradient computation of the log-likelihood function of

the observed data is required for the optimization process, authors in [15] proposed an

exact computation of this gradient based on the knowledge of both the partial derivative

of the complete data probability distribution together with the posterior of the hidden

variables given the observation and the current estimate of the model parameters (see

[15] for more details). The ECG update rule is then defined by:

θ̃(it+1) = θ̃(it) + P
(
θ̃(it)

) ∂L
∂θ̃

∣∣
θ̃=θ̃(it) (9)

where θ̃ = Πθ with Π is a permutation matrix defined such that the Z-th (Z = K(1 +

D+D2)) dimensional vector θ̃ = [α1, ..., αK ,µ1
T, ...,µK

T, vec(Σ1)T, ..., vec(ΣK)T]
T,

where θ̃(it) is the estimate of the vector of parameters θ̃ at the it-th iteration, and:
P
(
θ̃(it)

)
=



P
(
α(it)

)
0 · · · 0 0 · · · 0

0 P
(
µ

(it)
1

)
· · · 0 0 · · · 0

...
...

. . .
...

...
...

...

0 0 · · · P
(
µ

(it)
K

)
0 · · · 0

0 0 · · · 0 P
(
vec
(
Σ

(it)
1

))
· · · 0

...
...

...
...

...
. . .

...

0 0 · · · 0 0 · · · P
(
vec
(
Σ

(it)
K

))


denotes a square block diagonal matrix of size (Z × Z) and:

∂L

∂θ̃
|θ̃=θ(it) =[(
∂L
∂α
|α(it)

)
T;
(
∂L
∂µ1
|
µ

(it)
1

)
T, ...,

(
∂L
∂µk
|
µ

(it)
k

)
T;
(

∂L
∂vec[Σ1]

|
Σ

(it)
1

)
T, ...,

(
∂L

∂vec[Σk]
|
Σ

(it)
k

)
T
]T
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with [27]:

P
(
α(it)

)
= 1

N

[
diag

(
α(it)

)
−α(it)

(
α(it)

)
T
]

P
(
µ

(it)
k

)
=

Σ
(it)
k

N∑
n=1

h
(it)
k

(n)

P
(
vec

(
Σ

(it)
k

))
= 2

N∑
n=1

h
(it)
k

(n)

Σ
(it)
k ⊗Σ

(it)
k

∂L
∂α
|α(it) =


N∑
n=1

h
(it)
1 (n)

α
(it)
1

, ...,

N∑
n=1

h
(it)
K

(n)

α
(it)
K


T

∂L
∂µk
|
µ

(it)
k

=
N∑
n=1

h
(it)
k (n)

(
Σ

(it)
k

)−1 (
xn − µ(it)

k

)
∂L

∂vec
(
Σ

(it)
k

) |
Σ

(it)
k

= − 1
2

N∑
n=1

h
(it)
k (n)

(
Σ

(it)
k

)−1 (
Σ

(it)
k −

(
xn − µ(it)

k

)(
xn − µ(it)

k

)
T
)(

Σ
(it)
k

)−1

2.3. The λ−EM algorithm (Jacobian eigenvalue based acceleration)

According to Taylor series expansion for an appropriate function, f(θ), in the

parameter space where it governs the transition between two successive parameter

estimates, the following update rule holds valid:

θ(it+1) − θ(it) = J (it)
(
θ(it) − θ(it−1)

)
(10)

where J (it) = ∂f(θ)
∂θ |θ=θ(it) . It turns out that the left side of the above equation tends

for sufficiently high number of iterations, it, to the eigenvector associated to the largest

eigenvalue of J [24]. In other words, as long as it is distinct, the largest eigenvalue of J ,

for it→∞, dominates the convergence speed of this iterative algorithm. Based on this

remark, authors in [25] proposed a step lengthening algorithm based on a multivariate

form of the well-known Aitken acceleration approach to improve the convergence speed

of the EM algorithm. As it is well-known for any iterative process where errors decrease

proportionally through iterations, as it is the case for the EM algorithm, estimation

errors between successive parameter estimates are proportionally linked such that:

θ(it) − θ(it−1) = λ
(
θ(it−1) − θ(it−2)

)
(11)

For λ < 1, the above resembled fixed-point iterations are convergent [24]. Authors in

[25] proposed to compute the step size λ at each iteration as a function of the current
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and the previous two parameters estimates as follows:

λ(it) =
1

Z

Z∑
i=1

(
θ
(it)

i − θ(it−1)

i

)
(
θ
(it−1)

i − θ(it−2)

i

) (12)

According to Eq. (11) and Eq. (12), authors proposed to use the following update rule

of θ:

θ(new) = θ(it) + λ(it)
(
θ(it) − θ(it−1)

)
(13)

It is noteworthy that θ(new) will replace θ(it) if the former increases the log-likelihood

function being maximized [25]. This acceleration approach, when applied to accelerate

the EM algorithm, is called the λ-EM method hereafter.85

2.4. The Anti-Annealing based EM approach

The Anti-Annealing based EM (AAEM) approach is essentially inspired from the

Annealing EM (AEM) one. As discussed previously, AEM is proposed in [19] as

an efficient way to avoid local maxima during the optimization of the log-likelihood

function for the EM algorithm. Recall that the key idea underlying the AEM approach

is the parametrization of the posterior probability distribution by a temperature-related

parameter, denoted here by β controlling the annealing process. Indeed, the Annealing

scheme tracks the optimum of the log-likelihood function from high temperature wherein

the log-likelihood is smoothed (i.e. it has one global optimum) to low temperature

wherein the shape of the log-likelihood gradually approaches the one of the original

log-likelihood. In this way, one guarantees a good initial guess through successive

temperature parameters. In other words, the AEM algorithm modifies the posterior

probabilities with the temperature-related parameter β in the E-step of the EM algorithm

as follows:

h
(it)
k (n) =

(
α
(it)
k p(xn|µ(it)

k ,Σ
(it)
k )

)β
K∑
r=1

(
α
(it)
r p(xn|µ(it)

r ,Σ
(it)
r )

)β (14)

In the M-step, the local vector of parameters θ(it+1)
k is updated using this posterior

value as shown in Eq. (7). Typically, the AEM algorithm starts at βmin ' 0 and
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slowly increases towards one in such a way the initial guess of the vector θ, for a

given β, in the EM algorithm is equal to its estimate computed under the previous β.90

Authors in [12] proposed a variant of the AEM approach called the AAEM method that

considerably improves the convergence speed of the AEM and consequently the EM

algorithm. Contrary to the AEM method wherein the temperature-related parameter

β varies from very small value upwards to one, the AAEM algorithm applies a hybrid

schedule, where it starts with βmin < 1, then the parameter slowly increases upwards to95

βmax > 1 and finally it is decreased downwards to β = 1. It is worth noting that the

temperature-related parameter should be slow enough while dealing with complicated

data with a large number of clusters [12].

Since the AAEM algorithm significantly outperforms the AEM one [19], only the

AAEM algorithm is considered hereafter. Since both the gradient and the projection100

matrices, in the ECG algorithm, are basically computed using the posterior probability

density as shown previously, applying the AA to ECG is straightforward and gives rise

to the AAECG approach.

3. The proposed ELS scheme

As it is well-known, in case of GMM with unbalanced mixing coefficients (resp.

overlapped clusters), the EM algorithm suffers from super linear convergence cycles,

called “swamps” wherein the algorithm spends, for a given direction, a high number

of iterations to get the final solution. To cope with this situation and inspired from the

works in [21] and [26], an Exact Line Search (ELS) scheme is employed, giving rise

to the ELS-EM algorithm. The latter is based on a linear interpolation of the unknown

parameter θk(new) as follows:

θk
(new) = θk

(it−1) + diag
(
ρ
(it)
k

)
G

(it)
θk

(15)

where θ(it−1)k denotes the estimation of θk at the (it − 1)-th iteration, ρ(it)k =[
ρ
α

(it)
k

, ρ
µ

(it)
k

, ρ
Σ

(it)
k

]T
stands for the vector of relaxation factors (step sizes) associated

to GMM mixing coefficients, αk, cluster means, µk, and covariance matrices, Σk,

computed at the it-th iteration, respectively. G(it)
θk

= θk
(it)−θk(it−1) denotes the given
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search direction at the current iteration. Since θk = [αk,µk, vec (Σk)]
T, we can write:

α
(new)
k = α

(it−1)
k + ρ

α
(it)
k

G
(it)

αk

µ
(new)
k = µ

(it−1)
k + ρ

µ
(it)
k

G
(it)

µk

Σ
(new)
k = Σ

(it−1)
k + ρ

Σ
(it)
k

G
(it)

Σk

(16)

where G
(it)

αk
= α

(it)
k − α

(it−1)
k , G

(it)

µk = µ
(it)
k − µ(it−1)

k and G
(it)

Σk
= Σ

(it)
k −

Σ
(it−1)
k . Contrary to Σ

(it)
k , Σ

(new)
k is not guaranteed to be positive semi-definite.

Consequently, the semi-positive definiteness property of Σ
(new)
k should be verified

at each iteration. If this property is violated, then Σ
(new)
k is set to Σ

(it)
k (in this

situation, no further improvement can be expected for the covariance at the current

iteration). The ELS scheme consists in exactly computing the step size vector,

ρ
(it)
k ,∀k ∈ {1, ...,K} in an algebraic manner. This is by looking for the optimal

step size ρ(it)k maximizing the expectation of the complete log-likelihood function,

Q
(
θ(new)

∣∣θ(it) ) = E

[
N∑
n=1

log
(
αk

(new)p
(
xn

∣∣∣µ(new)
k , Σ

(new)
k

))]
h
(it)
k (n)

, under

the posterior probability distribution, h(it)k (n), such that:

arg max
ρ
(it)
k

{
Q
(
θ(new)

∣∣θ(it) )}
= arg max

ρ
(it)
k

{
N∑
n=1

K∑
k=1

{
log
(
α
(new)
k p(xn|µ(new)

k ,Σ
(new)
k )

)}
h
(it)
k (n)

}

= arg max
ρ
(it)
k


N∑
n=1

K∑
k=1



log
(
α
(it−1)
k + ρ

α
(it)
k

G
(it)

αk

)
− D

2 log 2π

− 1
2 log det

(
Σ

(it−1)
k + ρ

Σ
(it)
k

G
(it)

Σk

)
− 1

2

(
xn −

(
µ

(it−1)
k + ρ

µ
(it)
k

G
(it)
µk

))T

×
(
Σ

(it−1)
k + ρ

Σ
(it)
k

G
(it)

Σk

)−1
×
(
xn −

(
µ

(it−1)
k + ρ

µ
(it)
k

G
(it)

µk

))


h
(it)
k (n)


s.t.

K∑
k=1

(α
(it−1)
k + ρ

α
(it)
k

G
(it)

αk
) = 1, α

(it−1)
k + ρ

α
(it)
k

G
(it)

αk
≥ 0.

(17)

The above optimization problem with respect to ρ(it)k =
[
ρ
α

(it)
k

, ρ
µ

(it)
k

, ρ
Σ

(it)
k

]T
with

ρ
α

(it)
k

6= ρ
µ

(it)
k

6= ρ
Σ

(it)
k

is the optimal way to proceed. However, computing ρ
µ

(it)
k

and

ρ
Σ

(it)
k

(ρ
µ

(it)
k

6= ρ
Σ

(it)
k

) requires to solve a system of equations in ρ
µ

(it)
k

and ρ
Σ

(it)
k

at

each iteration which is relatively of high numerical complexity. To alleviate this issue,
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an alternative suboptimal but feasible solution ρ
µ

(it)
k

= ρ
Σ

(it)
k

= ρ(it),∀k ∈ {1, ...,K}
is to be considered instead. Then, Eq. (17) becomes:

argmax
ρ
(it)
k

{
Q
(
θ(new)

∣∣∣θ(it) )}

= arg max
ρ
α
(it)
k

, ρ(it)


N∑
n=1

K∑
k=1



log
(
α
(it−1)
k + ρ

α
(it)
k

G
(it)

αk

)
− D

2
log 2π

− 1
2
log det

(
Σ

(it−1)
k + ρ(it)G

(it)

Σk

)
− 1

2

(
xn −

(
µ

(it−1)
k + ρ(it)G

(it)
µk

))T

×
(
Σ

(it−1)
k + ρ(it)G

(it)

Σk

)−1

×
(
xn −

(
µ

(it−1)
k + ρ(it)G

(it)

µk

))


h
(it)
k (n)


s.t.

K∑
k=1

α
(it−1)
k + ρ

α
(it)
k

G
(it)

αk = 1, α
(it−1)
k + ρ

α
(it)
k

G
(it)

αk ≥ 0.

(18)

The above optimization problem can be solved by alternating, at each iteration, between

the following two optimization sub-problems:

P1 : arg max
ρ
α
(it)
k

{
Q
(
θ(new)

∣∣θ(it) )}
= arg max

ρ
α
(it)
k

{
N∑
n=1

K∑
k=1

{
log
(
α
(it−1)
k + ρ

α
(it)
k

G
(it)

αk

)}
× h(it)k (n)

}
s.t.

K∑
k=1

(
α
(it−1)
k + ρ

α
(it)
k

G
(it)

αk

)
= 1, α

(it−1)
k + ρ

α
(it)
k

G
(it)

αk
≥ 0

(19)

and:

P2 : arg max
ρ(it)

{
Q
(
θ(new)

∣∣θ(it) )}

= arg max
ρ(it)


N∑
n=1

K∑
k=1



− 1
2 log det

(
Σ

(it−1)
k + ρ(it)G

(it)

Σk

)
− 1

2

(
xn −

(
µ

(it−1)
k + ρ(it)G

(it)
µk

))T

×
(
Σ

(it−1)
k + ρ(it)G

(it)

Σk

)−1
×
(
xn −

(
µ

(it−1)
k + ρ(it)G

(it)

µk

))


h
(it)
k (n)


(20)
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The constrained optimization problem P1 is solved by maximizing the Lagrangian

function associated to P1 and given by:

L
(
ρ
α

(it)
k

, ξ
)

=
N∑
n=1

K∑
k=1

{
log
(
α
(it−1)
k + ρ

α
(it)
k

G
(it)

αk

)}
h
(it)
k (n)

+ ξ

{
K∑
k=1

(α
(it−1)
k + ρ

α
(it)
k

G
(it)

αk
)− 1

} (21)

where ξ stands for Lagrange multiplier. The solution of maximizing the above equation

is given by:

ρ
α

(it)
k

=

(
N∑
k=1

h
(it)
k (n)

N
− α(it−1)

k

)
/G

(it)

αk
(22)

Details regarding the maximization of Eq. (21) are given in Appendix A. To solve P2,

the optimal relaxation factor is easily performed by setting ρ(it) = ρ
µ

(it)
k

= ρ
Σ

(it)
k

and

rooting the following second order polynomial in ρ(it):

y2
(it)
(
ρ(it)

)2
+ y

(it)
1 ρ(it) + y

(it)
0 = 0 (23)

where the coefficients y(it)2 , y(it)1 and y(it)0 are given in Appendix B.105

It is noteworthy that the ELS scheme is inserted after the E-step once the computed

θ(new) in Eq. (16) guarantees an increased log-likelihood function compared to its

value at θ(it). Note that since both AAEM and AAECG algorithms are based on the

computation of the posterior probability density of the latent variables given the observed

data and the current estimate of the vector of parameters θ(it), their convergence speed110

can be also improved using the ELS scheme, giving rise to ELS-AAEM and ELS-

AAECG methods. The performance of the two latter variants will be also considered in

our numerical simulations. Algorithm 1 provides a pseudo-code of the proposed ELS-

EM, ELS-AAEM and ELS-AAECG algorithms. Regarding the numerical complexity

per iteration of the considered methods in this section, it is given in Table 1 and expressed115

in numerical flop. Note that a numerical flop is defined as a multiplication followed by

addition. But, since, in practice, the number of multiplications is often larger than the

number of additions, only the number of multiplications is reported in Table 1.
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Algorithm 1 ELS-EM, ELS-AAEM, ELS-AAECG algorithms
Repeat until the convergence or a maximum number of iterations is reached.
E-step: calculate h(it)k (n) from θ(it) in Eq. (6) for ELS-EM, or in Eq. (14) for
ELS-AAEM and ELS-AAECG.
ELS-step:

(a) Compute ρα(it) from Eq. (22) and compute ρ(it) by rooting Eq. (23);
(b) Find θ(new)

k ,∀1 ≤ k ≤ K from Eq. (16) and then set θ = [θ1
T, · · · ,θKT]T;

(c) if L(θ(new)) > L(θ(it)) then
Set h(it)k (n) = h

(new)
k (n) computed from Eq. (6) for ELS-EM or from

Eq. (14) for ELS-AAEM and ELS-AAECG
else
Go to the M/CG-step.

end
M/CG-step: update the model parameter vector θ(it+1) using Eq. (7) for ELS-EM
and ELS-AAEM or using Eq. (9) for ELS-AAECG.
End

Table 1. The computational complexity is calculated per iteration for different
methods, T (E) = O(NK(2D2 + 2)), T (M) = O(NK(2D2 + D + 1)), T (CG) =
O(NK(4D2 + 1)), T (ELS) = O(NK(4D2 + 2D + 2)), where N is the number of
data points, D is the dimension of each data point and K is the number of Gaussian
distributions in GMM.

Method Numerical Complexity
EM T (E) + T (M) = O(NK(4D2 +D + 3))

ECG T (E) + T (CG) = O(NK(6D2 + 3))

λ-EM 2T (E) + T (M) = O(NK(6D2 +D + 3))

ELS-EM T (E) + T (ELS) + T (M) = O(NK(8D2 + 2D + 5))

AAEM T (E) + T (M) = O(NK(4D2 +D + 3))

AAECG T (E) + T (CG) = O(NK(6D2 + 3))

ELS-AAEM T (E) + T (ELS) + T (M) = O(NK(8D2 + 2D + 5))

ELS-AAECG T (E) + T (ELS) + T (CG) = O(NK(10D2 + 3D + 5))

4. Results

This section is devoted to show to what extent the proposed ELS scheme can120

improve the convergence speed of the conventional EM algorithm and also that of

its variants, i.e. the AAEM and the AAECG methods. Besides, the proposed ELS

scheme (when applied) is compared to two very efficient schemes accelerating the

EM algorithm, namely the ECG method [15] and the λ-EM [25]. This comparative

study is first conducted in the context of GMMs with unbalanced mixing coefficients125
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(two- and four-component GMMs are considered), poorly-separated clusters (only a

two-component GMM is considered). Then, the efficiency of the proposed ELS scheme

is investigated in the context of handwritten digits ‘4’ and ‘8’ classification using the

MNIST dataset (available online http://yann.lecun.com/exdb/mnist).

The estimation quality of the GMM parameters is evaluated based on symmetric

Kullback divergence between the true and the estimated GMM components as well as

the average log-likelihood function, as follows [12]:

e(it) = 1
R

R∑
r=1

K∑
k=1

KL
(r)
S

(
N
(
x
∣∣∣µ(it)
k ,Σ

(it)
k ,θ

(r)
0

)
,N (x |µπk ,Σπk )

)
L
(it)

= 1
R

R∑
r=1

L(θ(it)|θ(r)0 )

(24)

where e(it) stands for the mean estimation error and L
(it)

stands for the average log-

likelihood at the it-th iteration, R denotes the number of random and independent

initialization points θ(r)0 , {πk}Kk=1 is the one-to-one mapping estimated by minimum

weight bipartite graph matching [12], and KL(r)
S is the symmetric Kullback divergence

when the r-th initial point is considered and defined as:

KL
(r)
S

(
p(r), q

)
= KL

(
p(r), q

)
+KL

(
q, p(r)

)
, ∀1 ≤ r ≤ R

⇒ KL
(r)
S

(
N
(
x
∣∣∣µ(r)
i ,Σ

(r)
i

)
,N (x |µj ,Σj )

)
= 1

2
Tr

((
Σ

(r)
i

)−1

Σj +Σ−1
j Σ

(r)
i

)
+ 1

2

(
µ

(r)
i − µj

)T
((

Σ
(r)
i

)−1

+Σ−1
j

)(
µ

(r)
i − µj

)
−D

(25)

where Tr(.) is the trace of its matrix argument. Besides, considering the stop condition,130

the maximal number of iterations was set to 2000 for all the algorithms. As far as the

value of the threshold τ in Eq. (8) was considered, it was set to 10−10 for all the methods

except for the Anti-Annealing based ones where it was set to 10−6 as suggested in [12].

Indeed, the authors argued that the Anti-Annealing based approaches did not require a

conservative tolerance since they were able to speed up convergence at later stages.135

4.1. Initialization strategy

As indicated in [1, 19], the EM algorithm is highly sensitive to initialization.

Indeed, too close initial guess can lead to slowness or to sub-estimation ( i.e. trend to

15

Acc
ep

ted
 m

an
us

cri
pt



Fig. 1. Illustration of the proposed initialization strategy in the case of two-component
GMM model with N1 = N2 = 2 × 105. Ellipse associated to the data covariance
matrix is shown in bold, the others being its dilated and contracted versions. Points
a, b, c and a′ are four possible initializations of the means µ1 or µ2. The impact of the
initialization on the convergence of the EM algorithm is evaluated using three possible
initializations couples of (µ1,µ2): (a, b), (a, c) and (a,a′). Reported results show that
the EM algorithm stops, respectively, after 3, 82 and 27 iterations with GMM estimation
error of 12.19, 3.83× 10−5 and 3.83× 10−5.

identify only one-component instead of K-component GMM model). For instance, let’s

consider the identification of a 2-D two-component GMM model shown in Fig. 1. For140

initialization, all mixing coefficients are set to 1/K (K = 2 in this example). Besides,

initial values of the covariance matrices Σ1 and Σ2 can be chosen to be equal to the

covariance matrix of the observed data points. Regarding the initial values of the means

µ1 and µ2, a wise selection strategy is to be used in order to avoid sub-estimation and

slowness issues. To illustrate this fact, let a, b, c and a′ be four different possible initial145

points for the two means µ1 and µ2. The latter four points can be figured out on the

same imaginary ellipse associated with the observed data covariance matrix, as shown

in Fig. 1. When the chosen initial points for µ1 and µ2 are too close (i.e. case of points

a and b), the EM algorithm suffers from sub-estimation as reported in our conducted
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simulations. More precisely, the algorithm stops very early (only three iterations) with150

high estimation error e = 12.19. Now, this error is considerably decreased for relatively

well separated initial points (i.e. cases of (a, c) and (a,a′)). Indeed, while the EM

algorithm requires, in the case of the (a, c), 82 iterations to converge with estimation

error e = 3.83× 10−5, it requires 27 iterations with estimation error e = 3.83× 10−5

for the couple (a,a′). In order to span different well separated initial points for µ1155

and µ2, the ellipse related to the computed observation covariance matrix is dilated

three times with factors 1.5, 2 and 2.5, respectively and contracted once by a factor of

0.5. This leads to five center ellipses in the observation plan, as shown in Fig. 1. Next,

10 points are randomly selected in each ellipse. For each point on a given ellipse, its

symmetrical point with respect to the center is taken. Consequently a set of 10 couples160

of possible well separated initial points for µ1 and µ2 is obtained. Finally, the behaviour

of the considered algorithms was averaged over those 50 couples of possible initial

points. The generalization of this strategy to the case of four-component GMM model

considered in this study is, without a loss of generality, straightforward.

4.2. A two-component GMM165

A two-component GMM is considered hereafter to evaluate the performance of the

proposed ELS scheme when applied to the EM algorithm and its variants, the AAEM,

the AAECG and the λ-EM approaches. Regarding the AA based approaches in this

configuration, the temperature-related parameter β takes successively the following

values 0, 8, 1.0, 1.2 and 1.0 [12]. Three possible two-component GMM situations are170

investigated hereafter: (i) GMM with balanced and slightly overlapped components,

(ii) GMM with unbalanced and slightly overlapped components and (iii) GMM with

balanced and highly overlapped components.

4.2.1. Case of balanced and slightly overlapped components

The performance of the considered algorithms is evaluated here in the case of two-175

component GMM with components that are assumed to be balanced (i.e. α1 = α2) and

slightly overlapped. This performance study is performed as a function of the size of

observed data set with the assumption that the latter are equally divided between the
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Table 2. Mean number of iterations ± standard deviation, mean error ± standard
deviation computed at the mean number of iterations and mean elapsed CPU time
per iteration ± standard deviation, over 50 randomly and independently chosen initial
points, for the EM, ECG, λ-EM, AAEM, AAECG algorithms, the proposed ELS-EM,
ELS-AAEM and ELS-AAECG algorithms in the case of two balanced-component
GMM as a function of the number of data points with N2 = N1.

Method Mean iteration±std
N1 = 2×102 N1 = 2×103 N1 = 2×104 N1 = 2×105

EM 53.9±39.2 77.7±116.8 87.1±158.5 123.0±297.6
ECG 92.7±36.8 111.9±148.8 119.6±191.4 182.1±342.1
λ-EM 35.8±24.1 50.9±72.3 56.7±97.8 78.3±184.7

ELS-EM 24.8±9.4 30.0±35.5 33.9±51.3 46.6±111.5
AAEM 72.0±20.8 30.3±25.4 27.0±4.7 27.6±3.0
AAECG 75.3±5.7 24.1±1.9 24.0±1.9 23.9±2.0

ELS-AAEM 34.9±7.1 17.2±1.4 17.3±1.3 17.3±0.9
ELS-AAECG 39.1±2.7 16.9±0.8 16.9±0.6 17.0±0.7

Method Mean error±std
N1 = 2×102 N1 = 2×103 N1 = 2×104 N1 = 2×105

EM 2.8071±4.5388 2.5798±4.9074 2.5486±4.7803 2.4059±4.6275
ECG 0.7781±2.5774 2.5231±4.8344 2.5486±4.8656 2.6552±4.8460
λ-EM 2.6464±4.4556 2.5753±4.8995 2.4993±4.7792 2.3932±4.6095

ELS-EM 0.7205±2.4813 2.2893±4.6325 2.2727±4.6057 2.0325±4.3945
AAEM 0.2500±0.8664 9.6060±5.1515 10.1560±4.8070 11.4134±3.4001
AAECG 0.0458±0.0100 12.3095±0.0661 12.3731±0.0631 12.3979±0.0544

ELS-AAEM 0.0428±0.0021 9.6264±5.1618 10.1617±4.8095 11.4144±3.4005
ELS-AAECG 0.0429±0.0024 12.3281±0.0651 12.3892±0.0616 12.4153±0.0519

Method Mean CPU time±std
N1 = 2×102 N1 = 2×103 N1 = 2×104 N1 = 2×105

EM 0.0008±0.0003 0.0018±0.0007 0.0108±0.0016 0.1654±0.0242
ECG 0.0017±0.0007 0.0025±0.0006 0.0123±0.0020 0.2014±0.0314
λ-EM 0.0018±0.0009 0.0029±0.0009 0.0160±0.0030 0.2506±0.0495

ELS-EM 0.0028±0.0013 0.0043±0.0014 0.0229±0.0045 0.3765±0.0714
AAEM 0.0008±0.0003 0.0016±0.0005 0.0099±0.0015 0.1533±0.0263
AAECG 0.0016±0.0006 0.0024±0.0008 0.0114±0.0020 0.1862±0.0336

ELS-AAEM 0.0023±0.0009 0.0030±0.0011 0.0169±0.0034 0.2706±0.0559
ELS-AAECG 0.0031±0.0014 0.0041±0.0014 0.0189±0.0032 0.3118±0.0513

two GMM components (i.e. N1 = N2). Therefore, a mixture of two 2-D Gaussian

distributions Ni(µi,Σi), i ∈ {1, 2} is generated with µ1 = [0, 0]
T
,µ2 = [50, 0]

T and180

Σ1 = Σ2 = [102 0; 0 102]. Note that coefficients αi, i ∈ {1, 2} are defined here as

αi = Ni
N1+N2

such that the constraint α1 + α2 = 1 (see Eq. (3)) is respected. Under the

assumption N1 = N2, we then have α1 = α2 = 0.5. Reported results in terms of (i)

the mean number of iterations required by the algorithm to reach the final solution, (ii)

the mean estimation error and (iii) the mean elapsed CPU time, are given in Table 2 for185

different sizes of data points (i.e. N1 = N2 = 2× 102, 2× 103, 2× 104 and 2× 105).
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According to the latter table, an increase in the convergence speed (expressed

here in terms of the mean number of iterations required by the algorithm to reach the

final solution) of the EM, the AAEM and the suggested AAECG algorithm is to be

noticed when the proposed ELS scheme is employed, whatever the size of observed190

data points is. Besides, all considered algorithms except the AA-based algorithms

require higher number of iterations to reach its respective final solutions as the number

of data points increases. As shown in Table 2, employing the ELS scheme is still

advantageous especially in difficult situations where the algorithm under study suffers

from convergence issue. For instance, forN1 = N2 = 2×105, the ELS scheme reduces195

dramatically (around 60%) the number of iterations required by the EM algorithm to

reach its final solution. Besides, regarding the AA-based methods, the proposed ELS-

AAEM and ELS-AAECG algorithms, globally outperform the AAEM and AAECG

approaches when N1 = N2 = 2× 102. The aforementioned results are also confirmed

in terms of the mean error taken at the computed mean number of iterations, as given200

in Table 2. Indeed, the proposed ELS-AAEM and ELS-ECG algorithms show lower

mean error values compared to the AAEM and the AAECG ones for relatively small of

observations size (i.e. N1 = N2 = 2× 102). However, a clear lack of convergence of

the AA-based algorithms is to be noticed for higher data size as confirmed by the high

error values depicted in Table 2. We note also from the latter table that the proposed205

ELS-EM outperforms the ECG, the λ-EM and the EM algorithms whatever the size of

observed data points is.

Above mentioned results can be further confirmed as depicted in Figs. 2 and 3

where the former concerns the case of relatively small number of data points (i.e.

N1 = N2 = 2× 102) and the latter is for relatively high observations size (i.e. N1 =210

N2 = 2 × 105). Fig. 2 (b,c) and Fig. 3 (b,c) show that the ELS scheme, when

employed, helps considerably in reducing the number of iterations and in providing

better estimation quality as reflected by the values of the mean error corresponding

to the obtained mean number of iterations. In addition to the superiority of the ELS-

EM over the conventional EM method, higher performance of the former compared215

to the ECG and to the λ-EM methods are also shown in Fig. 2 (b) and Fig. 3 (b).

Indeed, the proposed ELS-EM algorithm reaches faster its maximum log-likelihood
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Fig. 2. Performance of the EM, ECG, λ-EM, AAEM, AAECG algorithms compared to
the proposed ELS-EM, ELS-AAEM and ELS-AAECG ones in the case ofN1 = 2×102.
(a) A two-component GMM with small overlap, (b, c) mean estimation error, (d, e)
averaged log-likelihood.

solution compared to the other considered methods in this study as shown in Fig. 2

(d) and Fig. 3 (d). As far as the performance of AA-based algorithms is concerned, a

smaller number of iterations is generally required for the proposed ELS-AAEM and220

ELS-AAECG algorithms compared to the AAEM and AAECG ones to get the final

solution. However, this fact holds true only in the case of relatively small data points

(i.e. N1 = N2 = 2× 102), as shown in Fig. 2 (c). In fact, as mentioned previously, a

lack of convergence of the AA-based methods is to be noticed for higher number of

data points (i.e. 2× 103, 2× 104 and 2× 105). For the lack of space, only results for225

(N1 = N2 = 2× 105) are reported and shown in Fig. 3 (c). This lack of convergence

is due to the fact that AA-based methods tend probably to underestimate the GMM
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Fig. 3. Performance of the EM, ECG, λ-EM, AAEM, AAECG algorithms compared to
the proposed ELS-EM, ELS-AAEM and ELS-AAECG ones in the case ofN1 = 2×105.
(a) A two-component GMM with small overlap, (b, c) mean estimation error, (d, e)
averaged log-likelihood.

parameters and tend to identify only one Gaussian component instead of two. This is

regardless the non-monotonic behaviour of the log-likelihood maximization using the

AA-based approaches. Indeed, this non-monotonic behaviour is probably induced by230

the permanent change of h(it)k (n) in Eq. (14) with the temperature-related parameter, β

[12]. Regarding the mean CPU time per iteration, Table 2 shows, as expected, higher

values for the ELS-EM, the ELS-AAEM and the ELS-AAECG compared to the EM,

the AAEM and the AAECG, respectively. This is mainly due to the fact that the use of

the supplementary exact line search steps has been employed in the latter methods (see235

Algorithm 1). However, this computation time is not crippling since less iterations and

lower estimation error are expected when the ELS scheme is employed.
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4.2.2. Case of unbalanced and slightly overlapped components

Hereafter, the performance of the considered algorithms is evaluated here in the

case of unbalanced but slightly overlapped two Gaussian components. To this end,240

N1 = 2 × 105 data points were simulated from the first Gaussian component with

mean µ1 = [0, 0]
T and covariance matrix Σ1 = [102 0; 0 102]. Regarding the

second 2-D Gaussian component, the mean vector is set to µ2 = [50, 0]
T and the

covariance matrix Σ2 is chosen such that Σ2 = Σ1. Furthermore, three values of N2

(e.g. N2 ∈ {2× 102, 2× 103, 2× 104) were investigated.245

Table 3. Mean number of iterations ± standard deviation, mean error ± standard
deviation computed at the mean number of iterations and mean elapsed CPU time per
iteration ± standard deviation, over 50 random and independent initial points, for the
EM, the ECG, the λ-EM, the AAEM, the AAECG algorithms and the proposed ELS-
EM, ELS-AAEM and ELS-AAECG ones in the case of two unbalanced-component
GMM as a function of the number of data points, N2 with N1 = 2× 105.

Method Mean iteration±std
N2 = 2×102 N2 = 2×103 N2 = 2×104

EM 905.6±19.4 125.6±2.0 42.3±1.5
ECG 504.2±24.3 89.7±1.7 36.6±1.1
λ-EM 560.2±12.7 78.1±2.7 28.4±1.3

ELS-EM 442.4±7.2 71.4±3.3 25.6±2.4
AAEM 78.6±2.8 131.5±1.9 54.6±1.4
AAECG 59.0±2.6 97.5±1.2 47.6±1.1

ELS-AAEM 49.6±3.9 74.4±2.0 36.5±2.0
ELS-AAECG 39.3±2.0 66.5±1.6 36.3±2.1

Method Mean error±std
N2 = 2×102 N2 = 2×103 N2 = 2×104

EM 0.0718±0.2394 0.0029±0.0000 0.0002±0.0000
ECG 0.3518±0.9339 0.0029±0.0000 0.0002±0.0000
λ-EM 0.0865±0.2929 0.0028±0.0001 0.0002±0.0000

ELS-EM 0.0061±0.0087 0.0028±0.0001 0.0002±0.0000
AAEM 0.0554±0.2237 0.0079±0.0038 0.0003±0.0002
AAECG 0.3014±1.1736 0.0065±0.0023 0.0003±0.0002

ELS-AAEM 0.0942±0.3365 0.0097±0.0049 0.0005±0.0003
ELS-AAECG 0.4267±2.6767 0.0070±0.0036 0.0005±0.0003

Method Mean CPU time±std
N2 = 2×102 N2 = 2×103 N2 = 2×104

EM 0.0646±0.0044 0.0671±0.0051 0.0705±0.0040
ECG 0.0815±0.0051 0.0833±0.0050 0.0887±0.0050
λ-EM 0.1072±0.0055 0.1097±0.0082 0.1127±0.0059

ELS-EM 0.1729±0.0097 0.1657±0.0091 0.1710±0.0098
AAEM 0.0635±0.0049 0.0671±0.0063 0.0700±0.0034
AAECG 0.0779±0.0062 0.0834±0.0058 0.0872±0.0055

ELS-AAEM 0.1423±0.0106 0.1525±0.0098 0.1480±0.0080
ELS-AAECG 0.1530±0.0122 0.1671±0.0123 0.1651±0.0110
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Table 3 shows clearly an increase in the convergence speed of the EM, the AAEM

and the suggested AAECG algorithms when the proposed ELS scheme is employed,

whatever the value of N2. In the most difficult situation, i.e. when N2 = 2× 102, an

increase in the convergence speed of more than 50%, 35% and 30% for the ELS-EM,

the ELS-AAEM and the ELS-AAECG is reported in Table 3 compared to that of their250

conventional counterparts, namely the EM, the AAEM and the AAECG approaches,

respectively. In addition, Table 3 shows the superiority of the proposed ELS-EM

algorithm over the λ-EM one [25] which can be also seen as a line-search based

approach. For example, when N2 = 2 × 102, the ELS-EM outperforms the λ-EM

with an increase of 21% in the convergence speed. Regarding the estimation quality255

(i.e. the mean error computed at the mean number of iteration), the proposed ELS-EM

algorithm shows generally the best performance compared with the other considered

algorithms as shown in Table 3. Besides, the proposed ELS-AAECG and ELS-EM

algorithms, globally outperform the other approaches in the case of unbalanced Gaussian

components and for all considered N2 values. As far as the mean CPU time per iteration260

is concerned, we note again that higher values of the latter are expected when the ELS

scheme is employed. This fact is consistent with the numerical complexity per iteration

given in Table 1 for all considered methods in this paper.

The aforementioned results are assessed in terms of the mean error, e(it) (as depicted

in Fig. 4 (b, c)) and the averaged log-likelihood, L
(it)

(as depicted in Fig. 4 (d, e)).265

In the case of highly unbalanced two-component GMM as considered here (Fig. 4

(a)), e.g. when N2 = 2 × 102, it is obvious that the ELS scheme, when employed,

helps considerably in reducing the number of iterations that the EM, the AAEM and

the AAECG are spending when stacking in swamps produced in such a situation. Thus,

the proposed ELS-EM, ELS-AAEM and ELS-AAECG algorithms get their maximum270

log-likelihood solution in a relatively smaller number of iterations compared to the EM,

ECG, λ-EM, AAEM and AAECG approaches, as depicted in Fig. 4 (d, e).

4.2.3. Case of balanced and overlapped Gaussian components

The convergence speed of the ELS-EM, ELS-AAEM, ELS-AAECG algorithms

compared to the EM, AAEM, ECG, λ-EM and AAECG algorithms is evaluated as a275
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Fig. 4. Performance of the EM, ECG, λ-EM, AAEM, AAECG algorithms, the proposed
ELS-EM, ELS-AAEM and ELS-AAECG algorithms in the case of two unbalanced-
component GMM with N1 = 2 × 105, N2 = 2 × 103 and well separated clusters
(d = 50). (a) A two-component GMM, (b, c) mean estimation error, (d, e) averaged
log-likelihood.

function of the overlap between two balanced GMM components (e.g. α1 = α2 = 0.5).

This overlap is expressed as the distance, denoted by d, between the two cluster centroids,

e.g. µ1 and µ2. To this end, N1 = N2 = 2× 105 and µ1 = [0, 0]
T, µ2 = [d, 0]

T, with

d varying from 10 (see Fig. 5 (a)) to 50 (see Fig. 3 (a)) by a step of 10. As far as the

covariance matrices of the two Gaussian components are concerned, they are kept equal280

such that Σ1 = Σ2 = [102 0; 0 102].

Table 4 confirms that the proposed ELS scheme, when applied, enhances the

convergence speed of the EM algorithm and its variants towards the final solution. More

precisely, for the most difficult case considered in this configuration, e.g. d = 10, the
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Table 4. Mean number of iterations ± standard deviation, mean error ± standard
deviation taken at the mean number of iterations and mean CPU time per iteration ±
standard deviation, over 50 random and independent initial points, for the EM, ECG,
λ-EM, AAEM, AAECG algorithms and the proposed ELS-EM, ELS-AAEM and ELS-
AAECG algorithms in the case of overlapped but balanced (i.e. N1 = N2 = 2× 105)
Gaussian components as a function of the distance, d, between the latter.

Method Mean iteration±std
d = 10 d = 20 d = 30 d = 40 d = 50

EM 1061.9±498.0 392.3±368.5 278.3±543.5 251.9±505.5 123.0±297.6
ECG 1033.6±560.1 300.7±214.1 262.0±485.3 247.3±471.8 182.1±342.1
λ-EM 685.9±362.6 245.4±229.5 203.1±434.8 158.3±312.1 78.3±184.7

ELS-EM 403.7±254.3 171.2±125.6 127.6±230.1 96.6±190.9 46.6±111.5
AAEM 25.8±1.2 26.0±1.3 26.1±1.8 26.1±1.8 27.6±3.0

AAECG 23.0±1.4 23.0±1.3 23.0±1.2 23.0±1.3 23.9±2.0
ELS-AAEM 18.6±1.0 18.6±1.1 18.5±1.0 18.7±1.1 17.3±0.9
ELS-AAECG 18.6±0.5 18.6±0.5 18.6±0.6 18.7±0.6 17.0±0.7

Method Mean error±std
d = 10 d = 20 d = 30 d = 40 d = 50

EM 0.0965±0.2070 0.2227±0.6105 0.6185±1.5501 1.3867±2.9957 2.4059±4.6275
ECG 0.1223±0.2034 0.4269±0.7373 0.7655±1.6585 1.7334±3.1738 2.6552±4.8460
λ-EM 0.0962±0.2064 0.2227±0.6105 0.6150±1.5416 1.3869±2.9960 2.3932±4.6095

ELS-EM 0.0958±0.2057 0.2141±0.5879 0.6082±1.5250 1.2452±2.8835 2.0325±4.3945
AAEM 0.4936±0.0026 1.9927±0.0043 4.4745±0.0090 7.9796±0.0149 11.4134±3.4001

AAECG 0.4938±0.0025 1.9919±0.0050 4.4737±0.0102 7.9773±0.0174 12.3979±0.0544
ELS-AAEM 0.4951±0.0020 1.9937±0.0049 4.4768±0.0099 7.9823±0.0160 11.4144±3.4005
ELS-AAECG 0.4945±0.0023 1.9933±0.0050 4.4762±0.0097 7.9829±0.0151 12.4153±0.0519

Method Mean CPU time±std
d = 10 d = 20 d = 30 d = 40 d = 50

EM 0.1144±0.0524 0.1421±0.0305 0.1288±0.0287 0.1494±0.0215 0.1654±0.0242
ECG 0.1276±0.0221 0.1733±0.0363 0.1607±0.0356 0.1787±0.0216 0.2014±0.0314
λ-EM 0.1681±0.0374 0.2341±0.0493 0.2105±0.0466 0.2282±0.0297 0.2506±0.0495

ELS-EM 0.2935±0.1026 0.3689±0.0760 0.3287±0.0752 0.3569±0.0520 0.3765±0.0714
AAEM 0.0937±0.0211 0.1270±0.0254 0.1212±0.0282 0.1342±0.0204 0.1533±0.0263

AAECG 0.1112±0.0203 0.1533±0.0346 0.1407±0.0295 0.1557±0.0232 0.1862±0.0336
ELS-AAEM 0.1407±0.0310 0.1922±0.0432 0.1797±0.0407 0.1991±0.0304 0.2706±0.0559
ELS-AAECG 0.1612±0.0308 0.2218±0.0542 0.2049±0.0466 0.2266±0.0333 0.3118±0.0513

ELS-EM approach enjoy around 62% higher convergence speed than the EM algorithm.285

Furthermore, the ELS-EM shows around 61% and 41% higher convergence speed than

the ECG and λ-EM methods, respectively. Similar behaviour can also be noted in cases

of smaller overlaps. As far as the mean error is considered, Table 4 shows that our

proposed ELS-EM algorithm outperforms the EM, the ECG and the λ-EM methods. As

discussed previously, the AA-based methods suffer from a lack of convergence in the290

case of balanced-Gaussian components with high number of observed data points. This

is reflected by the relatively high values of its associated mean error. Besides, reported

results on averaged CPU time confirm again that the ELS scheme increases to some
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Fig. 5. Performance of the EM, ECG, λ-EM, AAEM, AAECG algorithms, the proposed
ELS-EM, ELS-AAEM and ELS-AAECG algorithms in the case of poor-separated
clusters (d = 10). (a) A two-component GMM, (b, c) mean estimation error, (d, e)
averaged log-likelihood.

extent the execution time of the considered algorithms, as shown in Table 4. We stress

again on the fact that such increase is not crippling since the latter scheme leads to a295

higher good identification quality in relatively smaller number of iterations.

The above mentioned results are highlighted in Figures 5 and 3 for which d = 10

and d = 50, respectively. More particularly, Fig. 5 (d) and Fig. 3 (d) show generally a

faster increase in the log-likelihood towards the final solution for the ELS-EM approach

compared to the conventional EM, ECG and λ-EM ones. As far as Fig. 5 (c, e) and300

Fig. 3 (c, e) are concerned, abnormal behaviour in both the mean estimation error and

the log-likelihood maximization can be observed for the AA-based methods. Indeed

an increase in the mean estimation error, e(it), through iterations is reported for all

AA-based methods (Fig. 5 (c) and Fig. 3 (c)). A decrease followed by an increase in
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the log-likelihood value is to be noticed for those AA-based approaches (Fig. 5 (e) and305

Fig. 3 (e)). The case with unbalanced and highly overlapped components has not been

considered since according to our preliminary results no method can deal with such a

challenging situation.

4.3. A four-component GMM

In this experiment, a four-component GMM is considered. For sake of clarity, only310

the case of unbalanced Gaussian mixtures is studied. Therefore, following [12], the

number of data points simulated from the four Gaussian distributions is respectively

equal to N1 = 1.5× 105, N2 = 1× 105, N3 = 5× 104 and N4 = 1.5× 102 (see Fig.

6 (a)). The four Gaussian components have the following parameters: µ1 = [75, 500]
T,

µ2 = [50, 10]
T, µ3 = [700, 10]

T and µ4 = [650, 500]
T; Σ1 = [1002 0; 0 702],315

Σ2 = [852 0; 0 702], Σ3 = [1102 0; 0 902] and Σ4 = [902 0; 0 902].

Regarding the mixing coefficients vector α = [α1, α2, α3, α4]
T, its components are

defined as αi = Ni∑4
i=1Ni

,∀1 ≤ i ≤ 4. As far as the AA-based approaches are

concerned, the temperature-related parameter β takes successively the following values

0.2, 0.4, 0.6, 0.8, 1.0, 1.2 and 1.0 [12].320

Table 5 shows the mean number of iterations as well as the standard deviation

required for the EM, ECG, λ-EM, AAEM, ELS-EM, AAECG, ELS-AAEM and ELS-

Table 5. Mean number of iterations ± standard deviation, mean error ± standard
deviation taken at the mean number of iterations and mean CPU time per iteration ±
standard deviation, over 50 randomly and independently chosen initial points, for the
EM, ECG, λ-EM, AAEM, AAECG algorithms, the proposed ELS-EM, ELS-AAEM
and ELS-AAECG algorithms in the case of four-component GMM.

Method Mean iteration±std Mean error±std Mean CPU time±std
EM 543.7±518.3 24.3877±30.5674 0.1325±0.0388

ECG 329.2±344.4 20.4339±30.1306 0.1671±0.0387
λ-EM 384.9±505.1 22.3899±30.0999 0.2166±0.0715

ELS-EM 202.6±294.1 19.6285±28.4608 0.3428±0.0894
AAEM 89.5±23.2 35.5152±30.5008 0.1253±0.0342

AAECG 80.1±13.5 46.8577±32.7895 0.1594±0.0362
ELS-AAEM 58.3±12.3 45.0653±51.9933 0.2670±0.0688

ELS-AAECG 56.4±11.6 47.3368±37.8952 0.3041±0.0709
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Fig. 6. Performance of the EM, ECG, λ-EM, AAEM, AAECG algorithms, the proposed
ELS-EM, ELS-AAEM and ELS-AAECG algorithms in the case of four-component
GMM. The four components are unbalanced with N1 = 1.5 × 105, N2 = 1 × 105,
N3 = 5× 104 and N4 = 1.5× 102. (a) Four-component GMM, (b, c) mean estimation
error, (d, e) averaged log-likelihood.

AAECG approaches to converge. Obviously, the proposed ELS-based methods (e.g.

ELS-EM, ELS-AAEM and ELS-AAECG) outperform their conventional counterparts

(e.g. EM, AAEM and AAECG). Indeed, an increase around 63%, 35% and 30% in the325

convergence speed is reported for the EM, AAEM and AAECG algorithms, respectively,

when the proposed ELS-scheme is applied. Furthermore, the ELS-EM approach shows

around 47% higher convergence speed compared to the λ-EM which can be seen as a
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line search scheme. Besides, compared to the ECG approach, the ELS-EM shows around

38% higher convergence speed. As a result, compared to the rest of the considered330

algorithms in this study, the proposed ELS-EM provides the lowest mean estimation

error associated to the obtained mean iteration count. This is despite of its relatively

high execution time per iteration, as shown in Table 5.

The aforementioned results are assessed using Fig. 6 where the ELS scheme helps

clearly in reducing the number of iterations required to get the final solution in a given335

search direction compared to the conventional EM, AAEM and AAECG algorithms.

Consequently, the proposed ELS-EM, ELS-AAEM and ELS-AAECG methods get their

maximum log-likelihood solutions in a relatively smaller number of iterations (even in

the case of non-monotonic behaviour of the log-likelihood caused by the permanent

change of h(it)k (n), i.e. Eq. (14), with the temperature-related parameter [12]. The340

performance of the different techniques in terms of the mean error and average log-

likelihood is depicted in Fig. 6 (b, c) and Fig. 6 (d, e), respectively. Obtained results

confirm again how the ELS scheme when employed allows for a faster convergence of

the considered algorithm towards the final solution of a given search direction. Also, as

shown in Fig. 6 (b), the proposed strategy can lead to a better identification accuracy345

since it prevents the algorithms from stacking in swamps and consequently stops before

reaching its final solution.

4.4. Real dataset

The behaviour of the different methods considered in this study was

evaluated with the MNIST handwritten digits dataset (available online350

http://yann.lecun.com/exdb/mnist), which consists of 8-bit grayscale images of

handwritten digits (0-9) where each image is of size (28 × 28). N1 (N1 = 5000)

images of handwritten digit ‘4’ and N2 (N2 = 5000) images of handwritten digit ‘8’

from the training set were randomly selected. Then, these two sets of randomly chosen

images were combined to build an observation matrix X of size ((N1 +N2)× 784),355

whose n-th (1 ≤ n ≤ (N1 + N2)) row stands for the n-th normalized image. The

Principal Component Analysis (PCA) was used next to reduce the dimensionality of the

space ofX by keeping only the two most informative principal components giving rise
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Table 6. Mean number of iterations ± standard deviation, mean error ± standard
deviation taken at the mean number of iterations and mean CPU time per iteration ±
standard deviation, over 50 randomly and independently chosen initial points, for the
EM, ECG, λ-EM, AAEM, AAECG algorithms, the proposed ELS-EM, ELS-AAEM
and ELS-AAECG algorithms related to the MNIST digits ‘4’ and ‘8’ dataset.

Method Mean iteration±std Mean error±std Mean CPU time±std
EM 229.6±18.3 2.7135±3.3686 0.0019±0.0002
ECG 173.3±6.5 1.8639±1.7510 0.0055±0.0007
λ-EM 143.9±11.6 2.7135±3.3686 0.0034±0.0004

ELS-EM 113.8±7.2 2.7131±3.3688 0.0052±0.0006
AAEM 199.6±2.7 1.0727±0.0193 0.0020±0.0005
AAECG 166.0±2.8 1.1354±0.0197 0.0025±0.0003

ELS-AAEM 101.9±2.2 1.0979±0.0272 0.0050±0.0008
ELS-AAECG 98.6±2.5 1.2382±0.0368 0.0052±0.0005

to the transposed matrix X̃ of size (2× (N1 +N2)). Since the labels of data points in X̃

were known, a new unbalanced data set denoted here by Y of size (2×(Ñ1+Ñ2)), with360

Ñ2 << Ñ1, was generated. In fact Ñ1 (Ñ1 = 5000 for digit ‘4’) and Ñ2 (Ñ2 = 250

for digit ‘8’) images from the reduced data set X̃ were randomly chosen.

A two overlapped-component GMM as depicted in Fig. 7 (a) was used to

approximate the density of the obtained dataset. Table 6 shows the mean number

of iterations and the standard derivation for all algorithms considered in our comparative365

study. According to this table, the proposed ELS-based methods (e.g. ELS-EM, ELS-

AAEM and ELS-AAECG) show higher convergence speed towards the final solution

compared to their standard versions (e.g. EM, AAEM and AAECG). Indeed, in terms

of number of iterations required to reach the final solution, the ELS-EM provides an

acceleration around 34% compared to the ECG algorithm while an enhancement around370

21% is noticed compared to the λ-EM algorithm. Regarding the mean error at the

obtained mean number of iterations, the ELS-EM algorithm shows higher performance

compared to the EM and the λ-EM algorithms. However, lower performance of the

ELS-EM is to be noticed in this study compared to the ECG algorithm. In addition,

regarding the AA-based algorithms, they outperform the EM, the ECG, the λ-EM and375

the ELS-EM algorithms in the case of unbalanced Gaussian components with small

dataset. As expected, algorithms employing the ELS scheme require higher execution

time compared to the conventional ones as shown in Table 6. This fact is also assessed
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Fig. 7. Performance of the EM, ECG, λ-EM, AAEM, AAECG algorithms, the proposed
ELS-EM, ELS-AAEM and ELS-AAECG algorithms in the case of MNIST digits ‘4’
and ‘8’ dataset. The two components are unbalanced with Ñ1 = 5000 and Ñ2 = 250.
(a) Dataset Y , (b, c) mean estimation error, (d, e) averaged log-likelihood.

using Fig. 7 (b, c) and Fig. 7 (d, e), which show the performance of the considered

algorithms in terms of the mean error and the average log-likelihood value as functions380

of mean number of iterations, respectively.

5. Conclusion

In this paper, an exact line search scheme has been proposed to accelerate the

convergence speed of the EM algorithm and its variants, the ECG, the AA-EM and the
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AA-ECG methods. The ELS scheme is based on the exact computation, at each iteration,385

of the step size that should be used towards the final solution in a given direction of

the linear search process. The computation of this exact step size is performed by

simply rooting a second-order polynomial computed from the initial log-likelihood

maximization problem. The proposed ELS scheme has been evaluated in the context of

two and four-component GMMs and also in the context of MINST handwritten digit390

dataset. Its behaviour has been analyzed in case of balanced, unbalanced, well-separated

and poorly separated clusters. The numerical results showed the noticeable improvement

in the convergence speed of the aforementioned algorithm when the ELS scheme is

employed. Furthermore, the ELS-based approaches, especially the ELS-EM, showed

generally a higher performance than the conventional ECG and the λ-EM algorithms.395
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Appendix A: solution of Eq. (19)400

The optimal step size ρ
α

(it)
k

maximizing the Lagrangian function, L(ρ
α

(it)
k

, ξ), Eq.

(21) associated to the P1 problem in Eq. (19) is computed as follows:

∂L

(
ρ
α
(it)
k

,ξ

)
∂ρ
α
(t)
k

=
N∑
n=1

1(
α

(it−1)
k +ρ

α
(it)
k

G
(it)
αk

) × h(it)k (n)×G(it)

αk
+ ξ ×G(it)

αk
(26)

Then we set:
∂L

(
ρ
α
(it)
k

,ξ

)
∂ρ
α
(t)
k

= 0 (27)

which implies:

α
(it−1)
k + ρ

α
(it)
k

G
(it)

αk
= −

N∑
n=1

1

ξ
× h(it)k (n) (28)
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On the other hand, we have:

1 =
K∑
k=1

(
α
(it−1)
k + ρ

α
(it)
k

G
(it)

αk

)
= −

K∑
k=1

N∑
n=1

1
ξ × h

(it)
k (n) = −

N∑
n=1

1
ξ = −Nξ

⇒ ξ = −N
(29)

so that:

α
(it−1)
k + ρ

α
(it)
k

G
(it)

αk
= −

N∑
n=1

1
ξ × h

(it)
k (n) =

N∑
n=1

h
(it)
k (n)

N

⇒ ρ
α

(it)
k

=

(
N∑
n=1

h
(it)
k (n)

N − α(it−1)
k

)
/G

(it)

αk

(30)

Appendix B: solution of Eq. (20)

In order to solve P2 in Eq. (20), and based on the following statement:

(Q+ σ2M)−1 ' Q−1 − σ2Q−1MQ−1 [28], we can write:

(Σ
(it−1)
k + ρ(it)G

(it)

Σk )
−1 '

(
Σ

(it−1)
k

)−1

− ρ(it)
(
Σ

(it−1)
k

)−1

G
(it)

Σk

(
Σ

(it−1)
k

)−1

(31)

Then, Eq. (20) can be rewritten as follows:

arg max
ρ(it)

{
Q
(
θ(new)

∣∣∣θ(it)
)}

' arg max
ρ(it)


N∑
n=1

K∑
k=1



− 1
2 log det

(
Σ

(it−1)
k + ρ(it)G

(it)

Σk

)
− 1

2

(
xn −

(
µ

(it−1)
k + ρ(it)G

(it)

µk

))T

×
((

Σ
(it−1)
k

)−1
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(
Σ
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k

)−1
G
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Σk

(
Σ

(it−1)
k
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×
(
xn −

(
µ
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k + ρ(it)G

(it)

µk

))


h
(it)
k (n)
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(32)

33

Acc
ep

ted
 m

an
us

cri
pt



Then, the derivative of Q
(
θ(new)

∣∣θ(it) ) with respect to ρ(it) is given by:
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'
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(33)

Now this derivative can be written as a polynomial in ρ(it) as follows:
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