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Abstract: Exclusive rare decays mediated by b → s`` transitions receive contributions

from four-quark operators that cannot be naively expressed in terms of local form factors.

Instead, one needs to calculate a matrix element of a bilocal operator. In certain kine-

matic regions, this bilocal operator obeys some type of Operator Product Expansion, with

coefficients that can be calculated in perturbation theory. We review the formalism and,

focusing on the dominant SM operators O1,2, we perform an improved calculation of the

NLO matching for the leading dimension-three operators. This calculation is performed

completely analytically in the two relevant mass scales (charm-quark mass mc and dilep-

ton squared mass q2), and we pay particular attention to the analytic continuation in the

complex q2 plane. This allows for the first time to study the analytic structure of the

non-local form factors at NLO, and to calculate the OPE coefficients far below q2 = 0,

say q2 . −10 GeV2. We also provide explicitly the contributions proportional to different

charge factors, which obey separate dispersion relations.
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1 Introduction

Exclusive b→ s`` decays such as B → K(?)`` and Bs → φ`` have been on the focus point

of theorists and experimentalists for some time, due to the potential they provide for tests

of the Standard Model (SM). While the interest for such decays dates back to the era of

the B-factories (which provided some of the first measurements), a renewed interest has

been triggered by the measurements at the LHC, most prominently the ones by the LHCb

collaboration. Starting with the “P ′5 Anomaly” [1, 2], and followed by a larger pattern

of “tensions” of different degrees in the landscape of angular and dilepton-mass-squared

distributions in B(s) → {K(?), φ}µ+µ− modes [3, 4], these measurements (in inseparable

association with theoretical work) have guided the community during the LHC era. More

precise experimental studies are part of the programs for the LHC upgrade [5] and Belle-

II [6], and there is little doubt they will lead to new discoveries. The question is whether

these discoveries will involve Beyond-the-SM (BSM) or QCD/hadronic physics. While this

is subject to the personal inclination of the reader, both outcomes are truly interesting.

The exclusive b→ s`` decays belong to the class of “rare” FCNC transitions which are

loop-, CKM- and GIM-suppressed in the SM. This leads to branching fractions of the order

of 10−6, and which could be easily altered by BSM physics lifting any of such suppression

mechanisms. However, it is increasingly evident that large deviations with respect to the

SM are not present, and as such, rare decays are no longer smoking guns of BSM physics.

Thus we need to test SM predictions more precisely. This is now possible due to the large

statistics collected at the LHC (with more than 2K selected B → K?µµ events in Run 1

by LHCb), but it also implies that theory predictions with uncertainties below ∼ 10% are

necessary, with model dependence reduced to the minimum.

Theory predictions for B →M`+`− observables depend on non-perturbative hadronic

matrix elements of two types: “local” and “non-local” form factors (e.g. [7]). Contributions

to the amplitude from semileptonic ([s̄Γb][¯̀Γ′`]) or dipole ([s̄σµνPRb]F
µν) operators are

exactly factorizable and proportional to local form factors — matrix elements of local

fermionic currents — to all orders in QCD (but to the leading order in QED effects). These

local form factors are known relatively well and can be calculated with Light-Cone Sum

Rules (LCSRs) or Lattice QCD (LQCD) methods, both agreeing well with each other [8–

13]. On the contrary, contributions from four-quark operators such as [s̄γµPLc][c̄γ
µPLb] are

proportional to non-local form factors, more precisely, the matrix elements of time-ordered

products of a four-quark operator and an electromagnetic current. The calculation of these

non-local form factors is highly non-trivial and relies inevitably on some type of operator-

product expansion (OPE) [14–16]. In this way, the complicated non-local form factors can

be written in terms of simpler hadronic matrix elements, multiplied by coefficients that can

be determined though a perturbative matching calculation. These simpler hadronic matrix

elements are either local form factors, or matrix elements of bi-local operators defined on

the light-cone, which can be expressed in terms of meson light-cone distribution amplitudes.

The matching to the leading (dimension-three) operators in the OPE can be extracted

from the perturbative partonic calculation of the matrix element, which has been known

up to order αs (two loops) for some time [17–19], albeit not in full analytic form in the
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two relevant variables: q2 (the dilepton squared invariant mass) and mc (the charm-quark

mass). Only recently the necessary analytic calculation of the two-loop master integrals

involved has been achieved [20], and applied to the problem at hand [21].

We have repeated the full analytic two-loop calculation independently, and checked

the results of ref. [20], which we confirm. The explicit and independent check of this

calculation is the first result of this paper. But we have done the calculation in a way

that lays out the analytic structure of the results more explicitly, and imposing an analytic

continuation which is more convenient for the dispersive analysis (see refs. [7, 22]). The

results in this form allow us to study the branch cut discontinuities and compare them with

the expectations derived from unitarity, as well as to test all the analytic singularities of the

two-loop amplitude by explicitly checking a dispersion relation. This is the second result

of this paper. Finally, the dispersion relation formalism is an important tool to extend

consistently the calculations in the LCOPE region (negative q2) to the physical region at

q2 > 0. Under certain simplifying assumptions, this dispersion relation can be separated in

pieces multiplying difference quark charge factors. For that purpose the NLO contributions

to the OPE coefficients must also be separated in this way, but this separation has not yet

been given explicitly. We do give separate contributions to the OPE coefficients to be used

in the separated dispersion relations, which is the third result of this paper.

We start in section 2 by reviewing the theoretical framework and fixing the conventions

and the notation. In section 3 we give the details of the analytic NLO matching calculation.

In section 4 we address the issue of the numerical evaluation of the NLO functions, which

requires some care due to the presence of Generalized Polylogarithms (GPLs) up to weight

four. We also compare our results with the ones in the literature, and provide explicit

numerical results at various kinematic points in the LCOPE region. In section 5 we discuss

the analytic properties of the results and prove the structure of singularities by means of

a dispersion relation. We then explain how to separate the NLO matching coefficients into

the two contributions proportional to different charge factors. We conclude in section 6.

The various appendices include additional information on: A. The attached Supplementary

material files which contain all our results in electronic form as well as codes for numerical

evaluations; B. The list of the relevant Master Integrals that appear in the calculation of

the two-loop diagrams; C. The list of different weights appearing in the GPLs in the results;

and D. A few examples on fixing the integration constants that arise in the calculation of

the two-loop Master Integrals.

2 Theoretical framework

2.1 Set-up: Weak Effective Theory and conventions

B decay amplitudes are calculated within the Weak Effective Theory (WET) where the

SM particles with EW-scale masses have been integrated out. The WET lagrangian then

contains QCD and QED interactions, and a tower of higher dimensional local operators

which is typically truncated at dimension six [23, 24]. The part of the WET Lagrangian

– 3 –
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which is relevant for the contributions discussed in this paper is:

LWET = LQCD + LQED +
4GF√

2
V ∗tsVtb

[
C1O1 + C2O2 + C7O7 + C9O9 + C10O10

]
(2.1)

where

O1 = (s̄γµPLT
ac)(c̄γµPLT

ab) , O2 = (s̄γµPLc)(c̄γ
µPLb) ,

O9 =
α

4π
(s̄γµPLb)(¯̀γµ`) , O7 =

e

(4π)2
mb(s̄σµνPRb)F

µν , (2.2)

O10 =
α

4π
(s̄γµPLb)(¯̀γµγ5`) ,

We use the following conventions: PR,L = (1 ± γ5)/2, σµν ≡ (i/2)[γµ, γν ], the covariant

derivative is given by Dµq = (∂µ + ieQqAµ + igsT
AGAµ )q, and mb = mb(µ) denotes the MS

b-quark mass. In our calculation of NLO corrections from O1,2, the scheme dependence of

mb is a higher order effect. We will neglect the strange quark mass throughout the paper.

2.2 Local and non-local form factors in exclusive b→ s`+`−

To the leading non-trivial order in QED, the effective theory amplitude for the exclusive

decay B̄ →M`+`−, with M an undetermined meson (or hadronic state in general [13]), is

given in terms of local and non-local form factors [7, 13, 25]:

A(B̄ →M`+`−) =
GF αV

∗
tsVtb√

2π

[
(C9 L

µ
V + C10 L

µ
A) Fµ −

LµV
q2

{
2imbC7FTµ +Hµ

}]
, (2.3)

up to terms of O(α2). Here q2 is the invariant squared mass of the lepton pair and Lµi
are leptonic currents, LµV (A) ≡ ū`(q1)γµ(γ5)v`(q2). In this amplitude we have neglected

contributions from other local semileptonic and dipole operators that are not relevant

in the SM, as well as higher order QED corrections, but it is exact in QCD. All non-

perturbative effects are contained in the “local” and “non-local” form factors F (T )µ
i and

Hµ, with

Fµ = 〈M(k)|s̄γµPL b|B̄(q + k)〉 , FTµ = 〈M(k)|s̄σµνqνPR b|B̄(q + k)〉 . (2.4)

This paper deals with the non-local form factors Hµ(q, k), defined by the following matrix

element:

Hµ(q, k) = 16π2 i

∫
d4x eiq·x 〈M(k)|T

{
jµem(x), (C1O1 + C2O2)(0)

}
|B̄(q + k)〉 , (2.5)

where jµem =
∑

q Qq q̄γ
µq, with q = {u, d, s, c, b}. This corresponds to the matrix element

of the non-local operator:

Kµ(q) = 16π2 i

∫
d4x eiq·x T

{
jµem(x), (C1O1 + C2O2)(0)

}
, (2.6)

which is the focus of the following discussion.
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2.3 Operator Product Expansion for non-local form factors

A reliable calculation of Hµ(q, k) is very important for phenomenology and a challenge for

theory. At low hadronic recoil, q2 ∼ m2
b , the dx integral in eq. (2.6) is dominated by the

region x ∼ 1/mb, and a local OPE exists for the operator Kµ(q) [15, 16]:

KµOPE(q) = ∆C9(q2)
(
qµqν − q2gµν

)
s̄γνPLb+ ∆C7(q2) 2imb s̄σ

µνqνPRb+ · · · (2.7)

where we have indicated the contribution of operators of dimension three (according to

the counting in ref. [16]), and the ellipsis denotes contributions of operators of higher

dimension d > 3, with OPE coefficients that are suppressed by m3−d
b ∼ (

√
q2)3−d. This

equation defines the OPE coefficients ∆C7,9.

At large hadronic recoil, and below the on-shell branch cuts, q2 . 0, the dx integral

in eq. (2.6) is instead dominated by the region1 x2 ∼ 1/(4m2
q − q2), which allows for a

light-cone OPE (LCOPE), where local operators with an arbitrary number of covariant

derivatives along the relevant light-cone direction contribute at the same order [14]. The

structure of the LCOPE coincides with the local OPE at dimension three, and there-

fore eq. (2.7) is also true at q2 . 0. The power corrections are, however, different. Power

corrections to both OPE expansions have been discussed in e.g. refs. [14, 16, 22].

Given eq. (2.7), the non-local form factors (2.5) are determined by the OPE coefficients

and the local form factors:

HµOPE(q2) = ∆C9(q2)
(
qµqν − q2gµν

)
Fν + 2imb ∆C7(q2)FTµ + · · · , (2.8)

with the ellipsis denoting contributions from subleading terms in the (LC)OPE. Thus, the

effect of the non-local contribution Hµ in the amplitude (2.3) at this order in the OPE

expansion can be absorbed into “effective” Wilson coefficients Ceff
7,9(q2) = C7,9 + ∆C7,9(q2).

These effective Wilson coefficients are scheme and scale independent. The same structure

arises to all orders in QCD in the “factorization approximation”, where all interactions

between the charm loop and the constituents of the external mesons are neglected. However

the OPE formalism beyond the leading order includes all non-factorizable contributions,

which appear to be phenomenologically very relevant [26].

2.4 Structure of the OPE matching calculation

The OPE coefficients ∆C7,9(q2) are calculable order by order in perturbation theory

through a matching calculation. The easiest way to perform this matching is to equate the

matrix elements of partonic states at each order in αs:

Mµ(q) ≡ 〈s(k)|Kµ(q)|b(q + k)〉 !
= 〈s(k)|KµOPE(q)|b(q + k)〉 ≡ Mµ

OPE(q) . (2.9)

We shall refer to the matrix element Mµ(q) in the left-hand side as the “QCD amplitude”

and the one in the right-hand side Mµ
OPE(q) as the “OPE amplitude”. A perturbative

calculation of the QCD amplitude leads to an expression of the form:

Mµ(q) = f (9)(q2)
(
qµqν − q2gµν

)
ūsγνPLub + f (7)(q2) 2imb ūsσ

µνqνPRub , (2.10)

1Here mq refers to the mass of the quark responsible for the partonic qq̄ branch cut in the variable q2.
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which defines the functions f (7,9)(q2). At the leading order (after renormalization),

f
(7)
LO(q2) = 0 ,

f
(9)
LO(q2) =

2Qc(CFC1 + C2)

3

{
2

3
+ iπ +

4z

s
+ log

4µ2

m2
b

+ 2 log x− log (1− x)− log (1 + x)

+
1− 3y2

2y3

[
log (1 + y)− log (1− y)

]}
. (2.11)

Here we have defined

z =
m2
c

m2
b

, s =
q2

m2
b

, x =
1√

1− 4z
, y =

1√
1− 4z/s

. (2.12)

The same calculation for the OPE side in eq. (2.9) is written as:

Mµ
OPE(q) =h(9)(q2)∆C9(q2)

(
qµqν−q2gµν

)
ūsγνPLub+h

(7)(q2)∆C7(q2)2imb ūsσ
µνqνPRub

+ next order in the OPE expansion , (2.13)

where, to leading order,

h
(9)
LO(q2) = h

(7)
LO(q2) = 1 . (2.14)

Thus, the leading order matching gives

∆C7(q2) = O(αs) ; ∆C9(q2) = f
(9)
LO(q2) +O(αs) . (2.15)

Beyond the leading order, we write,

f (7,9)(q2) = f
(7,9)
LO (q2) +

αs
4π
f

(7,9)
NLO(q2) + · · · , (2.16)

h(7,9)(q2) = h
(7,9)
LO (q2) +

αs
4π
h

(7,9)
NLO(q2) + · · · , (2.17)

which leads to the following NLO matching equations,

∆C7(q2) =
αs
4π
f

(7)
NLO(q2) +O(α2

s) , (2.18)

∆C9(q2) = f
(9)
LO(q2) +

αs
4π

[
f

(9)
NLO(q2)− f (9)

LO(q2)h
(9)
NLO(q2)

]
+O(α2

s) . (2.19)

As it should be, these coefficients are infrared-finite. In particular, while f
(9)
NLO and h

(9)
NLO

are separately infrared-divergent, the divergence cancels in the difference. The various

prefactors in the definition of f (7,9) in eq. (2.10) have been chosen such that the contribution

from O1,2 to the b→ s`` partonic amplitude is

〈s``|C1O1 + C1O2|b〉 = f (9)(q2) 〈O9〉tree + f (7)(q2) 〈O7〉tree (2.20)

to all orders in QCD. This makes contact with the notation of ref. [17],

f
(7)
NLO(q2) = −C1F

(7)
1 (q2)− C2F

(7)
2 (q2) ,

f
(9)
NLO(q2)− f (9)

LO(q2)h
(9)
NLO(q2) = −C1F

(9)
1 (q2)− C2F

(9)
2 (q2) . (2.21)
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In ref. [17] the functions F
(7,9)
i (q2) were calculated at low q2 and the results were represented

as expansions in the small parameters q2/m2
b , z ≡ m2

c/m
2
b and q2/(4m2

c). In ref. [18] the

functions F
(7,9)
i (q2) were calculated for the high q2 range and the results were given as an

expansion in z. In section 3 we describe the calculation of these NLO functions F
(7,9)
i (q2)

in a fully analytic form for z and q2. The full results are discussed in section 3.7.

2.5 Analytic structure and dispersion relations

In order to discuss the analytic structure of the non-local form factors, it is convenient to

perform a Lorentz decomposition and focus on invariant functions:

Hµ(q, k) =
∑
λ

Hλ(q2) ηµλ (2.22)

where ηµλ are a set of orthogonal Lorentz vectors depending on q and k and Hλ(q2) are a

set of invariant non-local form factors (see e.g. ref. [7]).

Once the non-local matrix elements Hλ(q2) are known in the OPE regions of the q2

plane, it remains to use this information to extrapolate the results to the physical regions of

interest, within the range 0 ≤ q2 ≤ (MB−MM )2. For this we need some information about

the properties of the functions Hλ(q2) in the complex q2 plane. The most important of

such properties is the analytic structure (the structure of their analytic singularities), that

is, the presence of poles and branch cuts. Assuming the principle of maximum analyticity,

these singularities are fully determined by the on-shell cuts of the matrix elements (see

e.g. ref. [7]).

The first thing to note is that, independently of the value of q2, the functions Hλ(q2)

are complex-valued due to on-shell intermediate states in the p2 channel, e.g. B → DDs →
Mλ γ

∗. The singularity structure associated with the variable q2 will then apply separately

to the real and imaginary parts of Hλ(q2): H(re)
λ (q2) and H(im)

λ (q2). Each of these two

functions are then real for q2 < 0, but develop imaginary parts due to on-shell states in the

q2 channel, for q2 > 0. All these on-shell states must have the (QCD-conserved) quantum

numbers of the e.m. current, which means that (in full QCD) they are necessarily multi-

particle states. Therefore the singularities are branch cuts, one for each multiparticle state:

B → MλX
1−− → Mλγ

∗, with X1−− = {ππ, πππ,KK, · · · , DD,DD∗, · · · }. Each of these

branch cuts starts at its corresponding threshold sth = {4m2
π, 9m

2
π, 4m

2
K , · · · , 4m2

D, (mD +

mD∗)2, · · · }.
Given the analytic structure of the functions Hλ(q2), one can write a dispersion relation

to relate the values of these functions at specific points to an integral over the branch-cut

discontinuity [22]:

Hλ(q2) = Hλ(q2
0) + (q2 − q2

0)

∫ ∞
sth

dt
ρλ(t)

(t− q2 − iε)(t− q2
0)
, (2.23)

where

ρλ(t) =
Hλ(t+ iε)−Hλ(t− iε)

2πi
(2.24)

is the discontinuity along the cut (the spectral function). The spectral function ρλ(t)

may, in certain approximations, contain poles below the multiparticle threshold, and thus

– 7 –
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in such cases the parameter sth is assumed to lie below such poles. The subtraction at

q2
0 is implemented to ensure the convergence of the dispersion integral [22]. While this

dispersion relation is completely general, we assume that q2
0 is within the OPE region (thus

Hλ(q2
0) = HOPE

λ (q2
0)), and q2 can be on the physical range, and thus the iε prescription in

the denominator is chosen such that for (real) q2 > sth, the pole in the integrand is above

the real axis. This prescription can be ignored if q2 is away from the branch cut.

One can now separate the different contributions to the e.m. current in eq. (2.5),

and write three different dispersion relations for Hλ,sb, Hλ,c and Hλ,ud [22]. These three

dispersion relations are equivalent to eq. (2.23), but with two qualifications: (1) the spectral

densities also depend on the channel, ρλ,sb, ρλ,c and ρλ,ud, and (2) the OPE functions

HOPE
λ,x (q2

0) correspond to the terms in HOPE
λ (q2

0) proportional to Qs/b, Qc, Qu/d for x =

sb, c, ud. The reason that the terms with Qs and Qb are not separated is because they

are not separately gauge invariant (see section 3.3), while the terms with Qu and Qd do

not receive contributions from the two-loop matching corrections discussed in this paper,

and will also depend on the charge of the decaying B meson. The explicit separation

into terms with different charge factors Qs/b and Qc is one of the results in this paper

that was not available before. The two-loop contributions to HOPE
λ,sb (q2

0) and HOPE
λ,c (q2

0) will

come respectively from diagrams {a, b}, and {c, d, e} in figure 2. Other contributions from

CKM-suppressed operators (with u, d, s loops) will contribute to HOPE
λ,ud (q2

0) and HOPE
λ,sb (q2

0).

These corrections are simpler than the ones discussed in this paper (since they contain one

fewer mass scale) and can be found in analytical form elsewhere [27].

Up to this point the discussion is rigorous and exact, relying only on maximum

analyticity and unitarity. The separation into different charge factors has been per-

formed to implement a simplifying assumption when modelling the spectral densities, based

on OZI suppression [7, 22]. Up to OZI-suppressed effects, the QCD spectral densities

ρλ,sb, ρλ,c and ρλ,ud receive separable contributions from intermediate states {φ,KK̄, . . . },
{J/ψ, ψ(2S), DD̄ . . . } and {ρ, ω, ππ, . . . }, respectively [7, 22]. Therefore the dispersion

relation can be divided into three separate ones [22]:

Hλ,x(q2) = HOPE
λ,x (q2

0) + (q2 − q2
0)

∫ ∞
sth

dt
ρλ,x(t)

(t− q2 − iε)(t− q2
0)
, (2.25)

with x = {c, sb, ud}, and

ρλ,c(t) =
2

3
fJ/ψA

J/ψ
λ δ(t−M2

J/ψ) +
2

3
fψ(2S)A

ψ(2S)
λ δ(t−M2

ψ(2S)) + · · · , (2.26)

ρλ,sb(t) = −1

3
fφAφλ δ(t−M

2
φ) + · · · , (2.27)

ρλ,ud(t) =
1√
2
fρAρλ δ(t−M

2
ρ ) +

1

3
√

2
fωAωλ δ(t−M2

ω) + · · · . (2.28)

For consistency with the adopted approximation we have assumed that the resonances

below the multi-particle thresholds in each channel are stable, and indicated only these

poles in the spectral densities. The ellipses denote the subsequent continuum contributions

with open flavors (e.g. DD̄,D∗D̄, · · · in ρλ,c(t)). The flavor separation of the dispersion

relations has some phenomenological advantages [7, 22].
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Figure 1. Left: Contribution to the OPE function h
(7,9)
NLO. Since ∆C7 = O(αs), h

(7)
NLO does not

contribute to the NLO matching. Right: Contribution to f
(9)
NLO which is equal to f

(9)
LO h

(9)
NLO. The

contribution of this diagram to f
(7)
NLO vanishes (since f

(7)
LO = 0).

3 OPE matching calculation at NLO

3.1 OPE functions at NLO and cancellation of IR divergencies

The NLO functions h
(7,9)
NLO arise from the diagram in figure 1 (left). According to the

matching equations (2.18), (2.19), only h
(9)
NLO is needed for the NLO matching. On the

other hand, the contribution to the function f
(9)
NLO given in figure 1 (right) is equal to

f
(9)
LO h

(9)
NLO, since the LO matching expression ∆C9,LO = f

(9)
LO ensures that the charm loop

can be replaced by KµOPE at this order in the perturbative expansion. Thus, the two

contributions will cancel in the combination
[
f

(9)
NLO(q2) − f (9)

LO(q2)h
(9)
NLO(q2)

]
in eq. (2.19).

This cancellation is important because these are the only two contributions which are IR

divergent. As a result, the NLO contributions in eq. (2.21) are obtained by evaluating the

five classes of diagrams in figure 2.

3.2 Two loop contributions to the QCD amplitude

The contribution to the QCD amplitude from any given set of Feynman diagrams in figure 2

can be written as

〈s(k)|Kµ(q)|b(q + k)〉|diagrams (i) = ūs(p− q)PRV µ
(i)(q

2)ub(p) . (3.1)

Conservation of the e.m. current implies that V µ
(i) has the structure of eq. (2.10):

V µ
(i)(q

2) =
1

16π2

{
f

(9)
(i) (q2)

(
qµqν − q2gµν

)
γν + 2f

(7)
(i) (q2) imb σ

µνqν

}
, (3.2)

which is a consequence of the Ward Identity to be checked from the calculation. In the

calculation of V µ
(i), we use the EOM for the quark spinors (keeping mb 6= 0 but setting

ms = 0 here) to remove all factors of /p and /q, and we set p2 = m2
b and (p− q)2 = m2

s → 0.

At the end one finds that V µ
(i) has the form:

V µ
(i)(q

2) = A(i) q
µ +B(i) p

µ + C(i) γ
µ (3.3)
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Figure 2. The five classes of two-loop diagrams that contribute to the functions F
(7,9)
1,2 . Crosses

denote insertion of the EM current, which are numbered for proper reference. The two diagrams of

type (e) labeled as ‘0’ vanish.

where A(i), B(i) and C(i) are scalar functions of mb, mc and q2. On dimensional grounds,

A(i), B(i) ∼ m and C(i) ∼ m2. From these coefficients one can read off the functions

f
(7,9)
(i) (q2) and check the Ward Identity. From A(i) and B(i) one has:

f
(7)
(i) =

4π2

mb
B(i) , f

(9)
(i) =

16π2

mb

(
A(i) +

B(i)

2

)
, (3.4)

and the Ward Identity is respected if and only if the coefficients C(i) satisfy:

C(i) = − q
2

mb
A(i) −

m2
b + q2

2mb
B(i) . (3.5)

This condition applies to gauge-invariant combinations and not to single diagrams. We

will detail which are the gauge-invariant combinations below.

We evaluate scalar quantities A(i), B(i), C(i) for all the two-loop diagrams listed in fig-

ure 2, grouped in different classes i = {a, b, c, d, e}, as detailed in the figure. The results for

the functions A(i), B(i), C(i) are given in terms of dimensionless two-loop scalar integrals of

the type:

j[i;ni1 , ni2 , ni3 , ni4 , ni5 , ni6 , ni7 ] = (2π)−2d

∫
(m2

b)
Ni−4(µ̃2)2ε dd` ddr

P
ni1
i1

P
ni2
i2

P
ni3
i3

P
ni4
i4

P
ni5
i5

P
ni6
i6

P
ni7
i7

(3.6)

where the numbers ni are integers (positive or negative), with Ni =
∑7

j=1 nij , the objects

Pi are propagators (see below), and the indices {i1, . . . , i7} depend on the class. In addition,

d = 4 − 2ε, and µ̃2 ≡ µ2eγE/4π, with µ the MS scale. Our choice of momentum routings

fixes the first five propagators in each class, and the other two are chosen to be linear in

loop momenta and such that the seven propagators form a linearly-independent set. The
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complete set of propagators needed is:

P1 = (`+ q)2 −m2
c P5 = (r + p− q)2 P9 = ` · q

P2 = `2 −m2
c P6 = r · q P10 = (r + p− q)2 −m2

b

P3 = (`+ r)2 −m2
c P7 = ` · (p− q) P11 = (r + p)2 −m2

b (3.7)

P4 = r2 P8 = (r + p)2 P12 = (`+ r + q)2 −m2
c

P13 = r · (p− q)

and the scalar integrals for each class are:

j[a;n2, n3, n4, n5, n8, n7, n9] , j[d;n1, n2, n12, n4, n11, n6, n7] ,

j[b;n2, n3, n4, n10, n11, n7, n9] , j[e;n1, n2, n3, n4, n12, n7, n13] , (3.8)

j[c;n1, n2, n3, n4, n5, n6, n7] .

Once all the two-loop scalar integrals j[i; {ni}] are known, the problem of calculating the

invariant functions f
(7,9)
(i) is solved. In the following we describe the analytic calculation of

the two-loop scalar integrals.

3.3 IBP reduction and Master Integrals

At this point, the result of each diagram is a function of many scalar integrals with many

different tuples {ni1 , . . . , ni7} in its class. We can now use integration-by-parts identi-

ties (IBPs) to reduce the set of scalar integrals appearing in each class to a small set of

Master Integrals (MIs). For this purpose we use the Mathematica code LiteRed [28]. Af-

ter reduction, the total number of two-loop MIs in each class is mi = {7, 9, 9, 15, 5} for

i = {a, b, c, d, e}, respectively. These MIs are listed in appendix B, and collectively denoted

by Ji,k, with i = {a, b, c, d, e}, and k = 1 . . .mi for each i.

With the functions A(i), B(i), C(i) written in terms of MIs one can check the Ward

Identity by verifying eq. (3.5), which holds analytically and explicitly in terms of the

unevaluated MIs. This does not happen individually for each diagram, but for the following

combinations: a1, a2 + a3, b1 + b2 + b3 (only if Qs = Qb), c1 + c2, d1 + d2, and e1 + e2 + e3,

according to the numberings in figure 2.

We now perform some simplifying operations on the master integrals. First, we express

the integrands themselves in terms of the invariant variables on which the scalar integrals

depend, which we choose to be

s ≡ q2/m2
b , z ≡ m2

c/m
2
b . (3.9)

For this purpose we note that there always exist two light-like vectors k1,2 (k2
1 = k2

2 = 0)

such that p = k1 + k2 and q = k1 + s k2. Then p − q = (1 − s) k2, and the condition

(p − q)2 = 0 is automatically satisfied. In addition, k1 · k2 = m2
b/2. Thus, expressing

the integrands in terms of k1,2 instead of p, q leads to the (dimensionless) scalar integrals

j[i; {ni}] as explicit functions of (s, z).

Second, in order to be able to do a rational transformation to a canonical basis of

master integrals (as explained below), for each set of diagrams (i) we make a change of
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variables (s, z) 7→ (xi, yi), with xi = xi(s, z) and yi = yi(s, z) a set of functions that will

be specified later. In terms of these new variables the dimensionless MIs are written as

Ji,k(ε, xi, yi).

3.4 Differential equations in canonical form and iterative solution

For each set of diagrams, we construct the system of differential equations:

∂x Ji,k(ε, x, y) = ak`i,x(ε, x, y) Ji,`(ε, x, y) , ∂y Ji,k(ε, x, y) = ak`i,y(ε, x, y) Ji,`(ε, x, y) , (3.10)

where ai,x, ai,y are mi×mi matrices depending on ε, x and y. The derivatives of the MIs Ji,k
are performed by differentiating the integrands, which produce new scalar integrals, and

then applying the IBP reduction again on these scalar integrals to express the derivatives

∂x,y Ji,k themselves in terms of the MIs Ji,k. One can then read off the matrices ai,x and ai,y.

A basis of Master Integrals is said to be “canonical” [29] if ax,y(ε, x, y) = εAx,y(x, y),

with Ax(x, y) and Ay(x, y) two N ×N matrices independent of ε. Given a canonical basis
~M , the differential equations have the form:

∂x ~M(ε, x, y) = ε Ax(x, y) ~M(ε, x, y) ; ∂y ~M(ε, x, y) = ε Ay(x, y) ~M(ε, x, y) . (3.11)

Although not explicitly used in the following, we note that there is a matrix Ã(x, y) such

that ∂xÃ(x, y) = Ax(x, y) and ∂yÃ(x, y) = Ay(x, y).

Once a canonical basis is found, the system of differential equations can be solved

automatically order by order in ε. To keep the notation as simple as possible in this

section, we will assume that all the master integrals in the canonical basis are regular in

ε (if not, we redefine them by multiplying all of them with the same appropriate power of

ε). We then write the ε-expansion for the master integrals

~M(ε, x, y) =
∞∑
n=0

εn ~Mn(x, y) (3.12)

and the differential equations read:

∂x,y ~Mn(x, y) = Ax,y(x, y) ~Mn−1(x, y) . (3.13)

We first construct the general solution of the differential equation containing the derivative

with respect to y. Using partial fraction decomposition, Ay can be written in the form

Ay(x, y) =
∑
j

Ajy
y − wj(x)

, (3.14)

where Ajy a set of constant matrices, and the quantities wj(x) are called the “x-dependent

weights” (see appendix C). These differential equations can be solved iteratively due to the
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structure of (3.13):

~M0(x,y) = ~C0(x) ,

~M1(x,y) =
∑
j1

[
Aj1y G(wj1(x);y)

]
~C0(x)+ ~C1(x) ,

~M2(x,y) =
∑
j2,j1

[
Aj2y A

j1
y G(wj2(x),wj1(x);y)

]
~C0(x)+

∑
j2

[
Aj2y G(wj2(x);y)

]
~C1(x)+ ~C2(x) ,

~M3(x,y) = · · · (3.15)

etc., in terms of Generalized Polylogarithms (GPLs) [30], defined iteratively as [31]

G(w1, . . . , wn; y) =

∫ y

0

dt

t− w1
G(w2, . . . , wn; t) ; G(; y) = 1 ; G(~0n;x) =

logn x

n!
,

(3.16)

where ~0n denotes n consecutive zeroes. In each step of the iteration, integration constants

(with respect to the y integration) are added, which however depend on the variable x;

they are denoted as ~Cn(x).

Using the fact that the GPLs in the above equations either tend to zero in the limit

y → 0 or to logn x
n! (when all n weights are zero), it is straightforward to derive ordinary

differential equations for the ~Cn(x) quantities, obtaining

∂x ~Cn(x) = Ax(x, y = 0) ~Cn−1(x) . (3.17)

The matrix Ax evaluated at y = 0 has, after partial fraction decomposition, the form

Ax(x, y = 0) =
∑
k

Akx
1

x− wk
, (3.18)

where Akx is again a set of constant matrices, and the quantities wk are now constant

weights (see appendix C). The solutions of the differential equations for ~Cn(x) again are

determined iteratively:

~C0(x) = ~C0 ,

~C1(x) =
∑
k1

[
Ak1x G(wk1 ;x)

]
~C0 + ~C1 ,

~C2(x) =
∑
k2,k1

[
Ak2x Ak1x G(wk2 , wk1 ;x)

]
~C0 +

∑
k2

[
Ak2x G(wk2 ;x)

]
C1 + ~C2 ,

~C3(x) = · · · (3.19)

where ~Cn on the right-hand side are constants with respect to both variables.

Thus, the problem of calculating the MIs is reduced to find a canonical basis and to

fix the integration constants, which is a much more tractable challenge. In order to find a

canonical basis for each set Ji,k of MIs, we use the mathematica program CANONICA [32].
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This code is able to look for transformations that involve rational functions of the argu-

ments. For this reason, the right set of variables (xi, yi) must be found for each case before

using this program. Starting from our original variables s = q2/m2
b and z = m2

c/m
2
b , we

define, for each diagram set i, the variables xi and yi:

xa = xc = xe =
1√

1− 4z
, xb = xd =

√
4z −

√
4z − 1 ,

ya =
1√

1− 4z
1−s

, yb =
1√

1− 4
s

, yc = yd = ye =
1√

1− 4z
s

. (3.20)

In terms of these variables and with the help of CANONICA, we are able to find linear

transformations

Mi,k = (T−1
i )k`(ε, xi, yi) Ji,` (3.21)

such that the MIs Mi,k constitute a canonical basis for each set i = {a, c, d, e}. For set

b, the situation is somewhat more complicated: There is a linear transformation involving

rational functions of the arguments xb and yb for the MIs Jb,1−6 and this six-dimensional

block can be treated in a straightforward way, but the complete nine-dimensional problem

contains complicated square roots of these variables in the transformation matrix to the

canonical basis and in the matrices Ax and Ay which define the differential equations in

this basis. Similar as after eq. (4.46) of ref. [20], we introduced the variables tb and vb to

rationalize these roots:

tb =

−4x2
b + 4x2

byb + 2
√

2x2
b(1 + yb)

√
2x4b−x

2
byb+2x4byb−x

6
byb+x2by

2
b+4x4by

2
b+x6by

2
b

x4b(1+yb)2

−1 + 6x2
b − x4

b + yb + 2x2
byb + x4

byb
,

vb =

−4x2
b − 4x2

byb + 4
√

2x2
b(1− yb)

√
2x4b+x2byb−2x4byb+x6byb+x2by

2
b+4x4by

2
b+x6by

2
b

x4b(1−yb)2

1− 6x2
b + x4

b + yb + 2x2
byb + x4

byb
. (3.22)

For this reason the results for the MIs Jb,7, Jb,8, and Jb,9 involve GPLs with arguments tb
and/or vb.

We stress that the chosen variables xi have the properties that they tend to zero when

z goes to infinity. Similarly, the variables yi (as well as tb and vb) go to zero for s → 0

(when i = b, c, d, e) and for s → 1 (when i = a), independently of the value of z. In these

limits, the functions G(. . . ;xi), G(. . . ; yi), G(. . . ; tb) and G(. . . ; vb) can be expanded in a

straightforward way for the small values of xi, yi, tb and vb, respectively. This turns out

to be very useful when fixing the integration constants in the following section, because

we will heavily make use of the asymptotic properties of the originals integrals Ji,k in the

limit where xi and/or yi, tb, vb go to zero.

3.5 Fixing integration constants and analytic continuation

Once the canonical basis is found and the general solution of the differential equations in

this basis is constructed, we have to fix the integration constants. To this end we transform
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in a first step the MIs back to the original basis by making use of the transformation

matrices Ti (i.e. eq. (3.21)). The constants are then determined by either computing the

MIs Ji,k in the various classes i at a particular kinematical point for which the calculation

is simple, or by using asymptotic properties in the limit z → ∞. These properties follow

in a straightforward way from the heavy mass expansion (HME) of a given integral [33].

We explain this in some detail for the nine MIs in class c: it turns out that only

the integral Jc,1, which is simply a product of two one-loop tadpole integrals, has to be

calculated explicitly. In the limit for large mc (mc � mb) the other eight integrals can

be naively Taylor expanded in the external momenta and in mb. Note that in the present

situation the only subdiagrams in the sense of the HME are just the full diagrams (i.e. the

full MIs) and therefore the naive Taylor expansion is justified. The leading power n in the

mc-expansion of a given integral J is then identical to the mass dimension of the integral,

where the mass dimension is an even integer; the structure of J is

J = Kmn
c P (q2/m2

c ,m
2
b/m

2
c) , (3.23)

where K is a constant prefactor and P is a polynomial of the indicated arguments.

The GPLs in the general solution for the MIs (from the differential equations) can

be easily expanded for large z and small s in class c. Very often, the expanded solution

for a given integral contains higher powers in mc than that determined from the HME

argumentation. The requirement that these terms are absent allows to determine some

of the integration constants. From the HME structure it is also clear that only even

powers of mc can be present; this fact fixes the remaining integration constants. It is

worth emphasizing that all constants can be fixed by the explicit knowledge Jc,1 in class

c and the structure of the powers in mc. The explicit HME evaluation of the MIs is not

even necessary.

For classes {b, d, e} the fixing of the integration constants is done in the same way as in

class c: only a small number of simple one-loop integrals have to be calculated explicitly;

again the GPLs in the results for the MIs (from the differential equations) can be easily

expanded for large z and small s and all constants can be fixed. A few examples on the

fixing of integration constants in classes c and e are given in appendix D.

We now turn to class a. Due to the variable ya = 1/
√

1− 4z/(1− s), we need to use

the behavior of the solutions of the MIs near s = 1 (not at s = 0 as in the other classes)

and again for z → ∞. Apart from heavy mass expansion arguments (which are the same

as in the other classes), we need to calculate directly the three integrals Ja,1, Ja,4 and Ja,5
(which all factorize into two one-loop integrals), in order to fix the integration constants.

Among them, only Ja,4 depends on s. The explicit result reads

Ja,4 =
e2εγE

(4π)4

Γ(ε− 1)Γ(ε)Γ(1− ε)2

Γ(2− 2ε)
(µ/mb)

4εz1−ε(−s)−ε . (3.24)

When expanding this result in ε, log(−s) appears where s is understood to have a small

positive imaginary part in order to properly represent the original Feynman integral. The

result (3.24) is therefore just the analytic continuation of the Feynman integral onto the
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complex plane cut along the positive real s-axis, having a discontinuity on this axis. How-

ever, when expanding the GPLs in the solution of the differential equations for Ja,4 around

s = 1, we find a regular behavior, which is due to the fact that the solution in terms of

GPLs with argument ya represents a different analytic continuation. In order to obtain an

analytic continuation with the branch cut along the positive real s-axis (see sections 2.5

and 5) we need to consider the differential equations for the upper and the lower s-half

planes separately. In particular, we have to fix the integration constants for the two pieces

separately. In this way, the branch cuts in all classes appear along the positive real axis,

starting at s = {0, 4z, 4}, depending on the class. These branch cuts will be analyzed in

detail in section 5.

Our final results for all MIs in the Feynman region have been checked numerically

using Sector Decomposition as implemented in SecDec [36, 37].

3.6 Counterterm contributions

For the renormalization we will follow closely ref. [17], and therefore we prefer to stick to

the notation of that paper within this section:

O1,2 ≡ O1,2 ; Õ7,9 ≡ O7,9 ; O7,9 ≡
4π

αs
O7,9 . (3.25)

In ref. [17] the final results were written as linear combinations of the tree-level matrix

elements of Õ7 and Õ9. In this section we generalize the formulas of ref. [17] to hold for

arbitrary values of the squared momentum transfer q2 and write the results in terms of

〈O7〉tree and 〈O9〉tree, as in eq. (2.20).

Up to this point we have calculated the bare two-loop contributions to ∆C7,9 from the

diagrams in figure 2. As the operators O1,2 mix under renormalization, there are additional

contributions at order O(αs) proportional to C1,2. These counterterm contributions arise

from the matrix elements of the operators

12∑
j=1

δZijOj , i = 1, 2 . (3.26)

The set of operators O1–O10 is given in eq. (2) of ref. [17], while O11 and O12 are evanescent,

that is, they vanish in d = 4 dimensions. Although there is certain freedom in the choice

of the evanescent operators (e.g. one may add terms of order ε), it is convenient to use the

same definitions as in ref. [34] in order to combine our matrix elements with the Wilson

coefficients calculated there:

O11 =
(
s̄LγµγνγσT

acL
)(
cLγ

µγνγσT abL
)
− 16O1 , (3.27)

O12 =
(
s̄LγµγνγσcL

)(
cLγ

µγνγσbL
)
− 16O2 . (3.28)

The renormalization constants δZij are written as

δZij =
αs
4π

(
a01
ij +

1

ε
a11
ij

)
+

α2
s

(4π)2

(
a02
ij +

1

ε
a12
ij +

1

ε2
a22
ij

)
+O(α3

s) , (3.29)
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with the relevant coefficients [17, 34]

â11 =

−2 4
3 0 −1

9 0 0 0 0 −16
27 0 5

12
2
9

6 0 0 2
3 0 0 0 0 −4

9 0 1 0

 ,
a12

17 = − 58
243 , a

12
19 = − 64

729 , a
22
19 = 1168

243 ,

a12
27 = 116

81 , a12
29 = 776

243 , a22
29 = 148

81 .

(3.30)

The counterterm contributions to the functions F
(7,9)
i due to the mixing of O1,2 into four-

quark operators are denoted by F
ct(7,9)
i→4 quark, and are related to the one-loop matrix elements

of four-quark operators by∑
j

(αs
4π

) 1

ε
a11
ij 〈s`+`−|Oj |b〉1-loop = −

(αs
4π

) [
F

ct(7)
i→4quark〈O7〉tree + F

ct(9)
i→4quark〈O9〉tree

]
,

(3.31)

where j runs over the set of four-quark operators. Since many entries of â11 are zero,

only the one-loop matrix elements of O1, O2, O4, O11 and O12 are needed. These matrix

elements are needed to order ε1. Compared to ref. [17], we worked out the exact results,

expressed in terms of GPLs.

The counterterm contributions from the mixing of Oi (i = 1, 2) onto O9 are of two

types: The first type corresponds to the one-loop mixing Oi → O9, followed by taking the

one-loop matrix element of O9. This contributes to the renormalization of the diagram on

the right hand side in figure 1 and does not contribute to the functions F
(j)
i . The second

type is due to (a) the two loop mixing of Oi → O9 and (b) the one-loop mixing combined

with the one-loop renormalization of the αs factor in the definition of the operator O9. The

corresponding contributions to the form factors are denoted by F
ct(7,9)
i→9 , and given by [17]

F
ct(7)
i→9 = 0 ; F

ct(9)
i→9 = −

(
a22
i9

ε2
+
a12
i9

ε

)
− a11

i9 β0

ε2
, (3.32)

for which the strong coupling renormalization constant Zgs is needed:

Zgs = 1− αs
4π

β0

2

1

ε
; β0 = 11− 2

3
nf ; nf = 5 . (3.33)

The contributions generated by the two-loop mixing of O1 and O2 into O7 are given by

F
ct(7)
i→7 = −a

12
i7

ε
; F

ct(9)
i→7 = 0 . (3.34)

In addition to the contributions from operator mixing, there is a contribution from the

renormalization of the charm quark mass. This is taken into account by replacing mc with

Zmc ·mc in the one loop contributions given in eq. (2.11). Note that in this paper we are

using the pole mass definition of mc, characterized by the renormalization constant

Zm = 1− αs
4π

CF

(
3

ε
+ 6 log

µ

mc
+ 4

)
. (3.35)

We have checked that the sum of the divergent parts of all these counterterm contri-

butions is identically opposite to that of the unrenormalized matrix elements, thus proving

the cancellation of ultraviolet divergences.
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On the other hand, the finite part of the counterterm contributions, which we denote

by F
ct(j)
i (i = 1, 2; j = 7, 9), contribute to the renormalized NLO functions F

(j)
i . Besides

working out the exact results for the counterterm contributions F
ct(j)
i in terms of GPLs, we

have also separated the different contributions proportional to the different charge factors

Qs,c,b, since they renormalize the different contributions to F
(j)
i with different analytic

structure. It turns out that the only contributions proportional to Qs,b to F
ct(j)
i come from

the mixing Oi → O4, specifically from the one-loop matrix element of O4 with an s- or

b-quark in the loop, and thus these contributions are easy to isolate. In the end, our results

for the counterterm contributions are given by the sum of three pieces:

F
ct(j)
i = F

ct(j)
i,Qs

+ F
ct(j)
i,Qc

+ F
ct(j)
i,Qb

, (3.36)

with i = {1, 2}; j = {7, 9}. All these functions are given separately in electronic form in

the Supplementary material (cf. appendix A.2).

3.7 Results for renormalized matching coefficients at NLO

Collecting all the pieces, the final results for the matching coefficients ∆C7,9(q2) in eq. (2.8)

at NLO are given by

∆C7(q2) = −αs
4π

[
C1F

(7)
1 (q2) + C2F

(7)
2 (q2)

]
+O(α2

s) , (3.37)

∆C9(q2) = f
(9)
LO(q2)− αs

4π

[
C1F

(9)
1 (q2) + C2F

(9)
2 (q2)

]
+O(α2

s) , (3.38)

where f
(9)
LO(q2) is given in eq. (2.11) and the renormalized NLO functions F

(7,9)
1,2 (q2) are

the sum of the contributions from the two-loop diagrams a through e and the counterterm

contributions:

F
(j)
i = F

(j)
i(a) + F

(j)
i(b) + F

(j)
i(c) + F

(j)
i(d) + F

(j)
i(e) + F

ct(j)
i , (3.39)

with i = {1, 2}; j = {7, 9}. The functions F
(j)
1(diag) are related to F

(j)
2(diag) by a simple color

factor, depending on the diagram:

F j1(a,b,c,d) = − 1

2Nc
F j2(a,b,c,d) , F j1(e) = CF F

j
2(e) . (3.40)

The complete analytic results for the functions F
(j)
i(k)(q

2) — with i = {1, 2}, j = {7, 9}

and k = {a, b, c, d, e} —, F
ct(j)
i (q2), and the full F

(j)
i (q2) are given in electronic form in

an ancillary Mathematica package appended as Supplementary material to this paper.

See appendix A.2 for details. The attached program is the same that we have used for all

the numerics in the following sections.

The coefficients ∆C7,9(q2) can also be split in the two different contributions ∆C
(c)
7,9(q2)

and ∆C
(sb)
7,9 (q2) proportional to the charge factors Qc andQs,b respectively, and contributing

to the functions HOPE
λ,c (q2) and HOPE

λ,sb (q2) discussed in section 2.5. For this separation we

refer to section 5 below.
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4 Numerical evaluation of NLO corrections

4.1 Numerical evaluation of GPLs

For the fast numerical evaluation of the GPLs we use the C++ ginac package [35] interfaced

with Mathematica. In particular, we use the ginac multiple polylogarithm G, to evaluate

the GPLs with unit argument and the last weight non-zero:

G(w1, . . . , wn; 1) , with wn 6= 0 . (4.1)

When wn 6= 0, the GPL with arbitrary (non-zero) argument is obtained from the identity

G(w1, . . . , wn;x) = G
(w1

x
, . . . ,

wn
x

; 1
)
, if wn, x 6= 0 , (4.2)

while the GPL with zero argument is zero. This part is implemented by the Mathematica

interface. In order to evaluate the cases with wn = 0 we need to eliminate all the “trailing

zeroes” in the GPLs, which refer to any string of consecutive zeroes at the end of the weight

list, e.g., G(1,−2i, 0, 0 ; 3 + i) has two trailing zeroes. Reexpressing the GPLs in terms of

new GPLs without trailing zeroes is also done by the Mathematica interface, recursively

in the number of trailing zeroes, by means of the following formula:

G(w1, . . . , wn, 0 . . . 0︸ ︷︷ ︸
m

;x) =
1

m

[
log x G(w1, . . . , wn, 0 . . . 0︸ ︷︷ ︸

m−1

;x)−G(0, w1, . . . , wn, 0 . . . 0︸ ︷︷ ︸
m−1

;x)

−G(w1, 0, w2 . . . , wn, 0 . . . 0︸ ︷︷ ︸
m−1

;x)− · · · −G(w1, . . . , wn−1, 0, wn, 0 . . . 0︸ ︷︷ ︸
m−1

;x)

]
. (4.3)

This provides a complete algorithm for the evaluation of any GPL. For convenience, we

provide our C++/Mathematica bundle (with front-end package GPL.m) as an ancillary file

supplementing this paper (see appendix A.1 for details). All our numerical results have

also been reproduced using Maple, which includes a built-in function for GPLs. However,

the evaluation within Maple is significantly slower that the one provided by GPL.m.

In order to properly evaluate our expressions, we consider separately the GPLs with

arguments xi or yi. For GPLs with argument xi, we numerically evaluate xi by adding

a small negative imaginary part to z, typically of order 10−12. For GPLs with argument

yi, on the contrary, we evaluate the xi dependent weights in the limit in which the small

imaginary part on z tends to zero; the arguments yi are calculated by taking z real from

the beginning and by adding a small positive/negative imaginary part (typically of order

10−8) to s, when s lies on the real axis.

4.2 Numerical evaluation of NLO corrections and tests

Once the numerical evaluation of the GLPs has been addressed, the numerical evaluation of

the NLO functions F ji (s, z) is relatively simple. We use the Mathematica package FFNLO.m,

which is appended as Supplementary material to this paper (see appendix A.2 for details).

This program makes a prior list of all the GPLs appearing in the functions to be evaluated,

evaluates them only once using GPL.m, and then substitutes the values in the functions.
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Figure 3. Comparison of our exact results (black circles), with the expanded results of ref. [17] at

low-q2 (solid orange line) and the ones of ref. [18] at high-q2 (dashed purple line). Note that we

have plotted the results of refs. [17, 18] beyond their region of applicability. In these plots we have

set z = (0.29)2 and ε = 10−8.

In addition, it takes into account the sign of Im(s) correctly, as the functions F ji(a) have a

different form in the upper or lower complex-s plane due to the double fixing of boundary

conditions (i.e. section 3.5). The prescription for z is fixed as described above.

We have tested the results against those in refs. [17, 18], finding very good numer-

ical agreement with tables 1 and 2 in both papers. As already mentioned, the results

of refs. [17, 18] apply specifically to the low-q2 and high-q2 regions respectively. In figure 3

we have plotted these results within and beyond their respective regions of applicability

and compared them with the analytic results obtained in this paper. We find an excellent

agreement within the appropriate regions. Deviations with respect to the low-q2 results

occur starting around s . −0.4. Thus, for the calculation of the OPE matching coefficients

in this region it may be advisable to use the results given in the present paper.

4.3 Selected results at different values of s and z

The results for the NLO functions F
(7,9)
1,2 (q2) are intended to be used to calculate the func-

tion Hµ in the OPE region, by means of eqs. (2.8), (3.37) and (3.38). For the determination

of exclusive b → s`` amplitudes at large hadronic recoil, this OPE region corresponds to

the region of negative q2 [7, 22]. For reference we collect, in table 1, numerical values for

the NLO functions at the points s = {−0.6,−0.5,−0.4,−0.3,−0.2,−0.1} for three values
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of the charm mass, z = {(0.25)2, (0.29)2, (0.33)2}. As the mc dependence for these values

of s is mild, a quadratic interpolation of the values at these three points will represent this

dependence accurately enough.

5 Study of the analytic structure at NLO

5.1 Singularities of the NLO functions

The matching coefficients ∆C7,9(q2) will mimic the analytic structure of the non-local

form factors Hλ(q2) discussed in section 2.5. In this case the analytic singularities are due

to on-shell intermediate partonic states in the b → s`` amplitude, producing branch cut

discontinuities in both variables q2 and (q+ k)2. This structure can be observed explicitly

in the analytic results for ∆C7,9(q2) calculated here, where the contribution from each

diagram to each singularity can be checked.

The expected singularity structure is the following. First, the analytic structure of

each of the diagrams as a function of complex s ≡ q2/m2
b can be chosen to have a branch

cut on the positive real line above some specified (perturbative) threshold: s > sth, where

the threshold depends on the diagram. In addition, some diagrams are real on the real line

below the threshold, while some are complex-valued. This is due to the fact that some of

the diagrams (the ones that are complex) contain on-shell cuts in the variable p2
b ≡ (q+k)2,

which we fix to p2
b = m2

b from the start. According to their (expected) analytic structure,

the set of diagrams can be classified in four groups:

1. Diagram b2: Branch cut for s > 4, real for s < 4.

2. Diagrams d and e: Branch cut for s > 4z, real for s < 4z.

3. Diagrams c: Branch cut for s > 4z, complex for s < 4z.

4. Diagram a2: Branch cut for s > 4m2
s/m

2
b ' 0, complex for s < 0.

The rest of the diagrams, a1,3 and b1,3 do not have branch cuts in the variable s because the

photon couples to the external legs of the diagram. Note also that the specific threshold

(4m2
s/m

2
b , 4m2

c/m
2
b or 4m2

b/m
2
b) can be determined from the charge coupling (whether the

diagram is proportional to Qs, Qc or Qb). This relates to the discussion in section 2.5, and

applies also to the counterterm contributions.

From the explicit results obtained here for the contribution to ∆C7,9 from each group of

diagrams and counterterms, we can check this analytic structure. This is done in two steps:

1. Checking explicitly that the discontinuity lies where it is expected, and that the

values of each contribution below threshold is real or complex as predicted.

2. Checking appropriate dispersion relations, thus supporting the absence of further

singularities besides the expected branch cuts. This is done by checking, for each

diagram class, the following equation:

F
(j)
i (s1)− F (j)

i (s0) =
s1 − s0

2πi

∫ ∞
sth

dt
F

(j)
i (t+ i0)− F (j)

i (t− i0)

(t− s1)(t− s0)
, (5.1)
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s = q2/m2
b z = (0.25)2 z = (0.29)2 z = (0.33)2

−0.6

F
(7)
1 = −0.597− 0.043 i F

(7)
1 = −0.534− 0.028 i F

(7)
1 = −0.472− 0.017 i

F
(9)
1 = −2.962 + 0.044 i F

(9)
1 = −3.642 + 0.035 i F

(9)
1 = −4.214 + 0.024 i

F
(7)
2 = +3.580 + 0.257 i F

(7)
2 = +3.206 + 0.168 i F

(7)
2 = +2.831 + 0.100 i

F
(9)
2 = +4.940− 0.265 i F

(9)
2 = +3.654− 0.207 i F

(9)
2 = +2.511− 0.144 i

−0.5

F
(7)
1 = −0.620− 0.049 i F

(7)
1 = −0.555− 0.032 i F

(7)
1 = −0.489− 0.019 i

F
(9)
1 = −3.714 + 0.047 i F

(9)
1 = −4.364 + 0.038 i F

(9)
1 = −4.895 + 0.027 i

F
(7)
2 = +3.721 + 0.293 i F

(7)
2 = +3.327 + 0.192 i F

(7)
2 = +2.935 + 0.114 i

F
(9)
2 = +5.180− 0.284 i F

(9)
2 = +3.768− 0.228 i F

(9)
2 = +2.531− 0.162 i

−0.4

F
(7)
1 = −0.645− 0.056 i F

(7)
1 = −0.576− 0.037 i F

(7)
1 = −0.508− 0.022 i

F
(9)
1 = −4.626 + 0.051 i F

(9)
1 = −5.221 + 0.043 i F

(9)
1 = −5.688 + 0.031 i

F
(7)
2 = +3.872 + 0.337 i F

(7)
2 = +3.458 + 0.220 i F

(7)
2 = +3.046 + 0.131 i

F
(9)
2 = +5.452− 0.306 i F

(9)
2 = +3.887− 0.255 i F

(9)
2 = +2.542− 0.186 i

−0.3

F
(7)
1 = −0.673− 0.065 i F

(7)
1 = −0.600− 0.043 i F

(7)
1 = −0.528− 0.025 i

F
(9)
1 = −5.763 + 0.055 i F

(9)
1 = −6.261 + 0.049 i F

(9)
1 = −6.626 + 0.036 i

F
(7)
2 = +4.036 + 0.392 i F

(7)
2 = +3.599 + 0.256 i F

(7)
2 = +3.165 + 0.152 i

F
(9)
2 = +5.755− 0.332 i F

(9)
2 = +4.004− 0.292 i F

(9)
2 = +2.531− 0.218 i

−0.2

F
(7)
1 = −0.702− 0.077 i F

(7)
1 = −0.625− 0.050 i F

(7)
1 = −0.549− 0.030 i

F
(9)
1 = −7.233 + 0.062 i F

(9)
1 = −7.556 + 0.058 i F

(9)
1 = −7.758 + 0.045 i

F
(7)
2 = +4.213 + 0.462 i F

(7)
2 = +3.750 + 0.302 i F

(7)
2 = +3.293 + 0.179 i

F
(9)
2 = +6.079− 0.370 i F

(9)
2 = +4.094− 0.348 i F

(9)
2 = +2.470− 0.269 i

−0.1

F
(7)
1 = −0.734− 0.092 i F

(7)
1 = −0.652− 0.060 i F

(7)
1 = −0.572− 0.036 i

F
(9)
1 = −9.235 + 0.078 i F

(9)
1 = −9.226 + 0.078 i F

(9)
1 = −9.154 + 0.062 i

F
(7)
2 = +4.404 + 0.554 i F

(7)
2 = +3.915 + 0.362 i F

(7)
2 = +3.432 + 0.215 i

F
(9)
2 = +6.353− 0.465 i F

(9)
2 = +4.072− 0.470 i F

(9)
2 = +2.270− 0.373 i

Table 1. Values for the functions F
(7,9)
1,2 (q2) at negative q2, for three choices of z = m2

c/m
2
b . The

renormalization scale has been fixed to µ = mb. These numbers do not depend on whether one

includes an infinitesimal positive or negative imaginary part for s.
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for any two points {s0, s1} in the complex plane. Any additional singularities will

(generically) produce extra contributions beyond the integral in the r.h.s., and thus

the fact that this dispersion relation holds is consistent with the absence of additional

singularities anywhere on the complex plane, away from the real interval [sth,∞).

Concerning the discontinuities along the real axis, figure 4 and figure 5 show the

contribution to the form factors for each diagram class, evaluated above and below the

real axis, for a reference value of z = 0.1. We see that the results obey the branch cut

structure laid out above. Since the contributions from diagrams b, d and e are real below

threshold, the branch-cut discontinuity is purely imaginary, as can be seen from the plots.

On the contrary, the contributions from diagrams a and c are complex-valued below the

thresholds since they have on-shell cuts in the variable p2
b . This leads to a complex-

valued branch-cut discontinuity (with a non-zero real part) in the ranges 0 < s < 4z and

4z < s < 1 respectively.

Besides explicitly confirming the expected branch-cut structure of the two-loop con-

tributions, we find two features that we consider noteworthy:

• The discontinuities in diagrams a and c become purely imaginary for s > 4z and

s > 1, respectively.

• The contribution from diagrams c features a pole on the real axis when approaching

the point s = 1 from the negative imaginary plane. This pole is related to an

anomalous threshold.

The same structure of branch cuts is found for the various counterterms: discontinuities

starting at s > 0, s > 4z and s > 1 for F
ct(7,9)
i,Qs

(s), F
ct(7,9)
i,Qc

(s) and F
ct(7,9)
i,Qb

(s) respectively.

We refrain from showing the corresponding plots for brevity.

Concerning the dispersion relation, we have checked that eq. (5.1) is satisfied with

good numerical accuracy separately for all diagram classes, each with its corresponding

threshold. To give an example, we consider F
(7)
2,(b)(s) with z = 0.1. As discussed above, this

function contains a branch cut starting at sth = 4. We find that its discontinuity can be

fitted approximately by

DiscF
(7)
2,(b)(s) = F

(7)
2,(b)(s+ i0)− F (7)

2,(b)(s− i0)

' i θ(s− 4)

{
− 3.087 + e−0.0217 s

[
22.65

s2
− 2.231

s
+ 2.227

+0.0532s− 5.67 · 10−5 s2 − 0.6028
√
s− 4

]}
. (5.2)

Using this fit (for the sake of rapid integration) we find, for example taking s1 = −3 + i

and s0 = −1− 2i in eq. (5.1):

F
(7)
2,(b)(−3 + i)− F (7)

2,(b)(−1− 2i) = 0.0894864− 0.160827 i , (5.3)

−2 + 3i

2πi

∫ ∞
4

dt
DiscF

(7)
2,(b)(t)

(t+ 3− i)(t+ 1 + 2i)
= 0.0894966− 0.160839 i . (5.4)

– 23 –



J
H
E
P
0
4
(
2
0
2
0
)
0
1
2









++

++
++

++
+
+
+

+

+

+

+

+
++

+

+

+

+

+++++++++++++++++++++++++++++

-0.5 0.0 0.5 1.0 1.5 2.0

0.15

0.20

0.25

0.30

0.35

0.40


















++++++++
++

+++
+
+
+

+

+

+

+
++

+
+++

+++++++++++++++++++++++++

-0.5 0.0 0.5 1.0 1.5 2.0

-0.2

-0.1

0.0

0.1

0.2

                   










         

+ + + + + + + + + + + + + + + + + + + +
+
+
+
+
+
+
+

+

+ + + + + + + + + +

-1 0 1 2 3 4 5 6

-0.6

-0.4

-0.2

0.0

0.2

0.4

                           













+ + + + + + + + + + + + + + + + + + + + + + + + + + + +

+

+
+
+
+
+
+
+
+
+

-1 0 1 2 3 4 5 6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6













+++++

+++++
++++

++++
++++

+++++
++++

+

+
++
+

+

+

+

+

++++++++++++++++++++++++++++++++++

-0.5 0.0 0.5 1.0 1.5 2.0

1

2

3

4




+++++++++++++++++++++++++++++++++
++
+
+
+
+
+
+
+
+
+
+
++
+

+

+

+

+

+

+
+
++++++++++++++++++++++++++

-0.5 0.0 0.5 1.0 1.5 2.0

0

10

20

30

40

        









           

+ + + + + + + + +
+

+

+

+
+

+ + + + + + + + + + + +

-0.5 0.0 0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

2.5

         


























+ + + + + + + + + +

+
+

+

+
+

+
+

+
+

+
+

+
+

+
+

+

-0.5 0.0 0.5 1.0 1.5 2.0

-1.0

-0.5

0.0

0.5

1.0

Figure 4. Contributions to the form factor F
(7)
2 from each diagram class, evaluated above (blue

squares) and below (orange crosses) the real axis. The discontinuities appear where expected and

are real or imaginary as expected in each case. We have set z = 0.1 and ε = 10−8.
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Figure 5. Contributions to the form factor F
(9)
2 from each diagram class, evaluated above (blue

squares) and below (orange crosses) the real axis. The discontinuities appear where expected and

are real or imaginary as expected in each case. We have set z = 0.1 and ε = 10−8.
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As another example including a point at s0 > 0: For s1 = −1 and s0 = 0.7, we find:

F
(7)
2,(b)(−1)− F (7)

2,(b)(0.7) = 0.117263 , (5.5)

−1.7

2πi

∫ ∞
4

dt
DiscF

(7)
2,(b)(t)

(t+ 1)(t− 0.7)
= 0.117265 , (5.6)

again showing that the dispersion relation is very well verified. For applications with s0 on

the cut, the dispersion integral must include the prescription (t−s0−iε) in the denominator

of the integrand, in order to regulate the pole (cf. eq. (2.23)). Thus, numerically the value

taken for ε will determine the precision with which the discontinuity and the dispersion

integral are evaluated.

5.2 OPE coefficients with flavor separation

At this point we can collect the separate contributions to the OPE coefficients ∆C7,9(q2)

proportional to the charge factors Qc and Qs/b. Denoting these two contributions by ∆C
(c)
7,9

and ∆C
(sb)
7,9 , they are given by

∆C
(c)
7 = −αs

4π

∑
i=1,2

Ci

[
F

(7)
i(c) + F

(7)
i(d) + F

ct(7)
i,Qc

]
, (5.7)

∆C
(c)
9 = f

(9)
LO −

αs
4π

∑
i=1,2

Ci

[
F

(9)
i(c) + F

(9)
i(d) + F

(9)
i(e) + F

ct(9)
i,Qc

]
, (5.8)

∆C
(sb)
7 = −αs

4π

∑
i=1,2

Ci

[
F

(7)
i(a) + F

(7)
i(b) + F

ct(7)
i,Qs

+ F
ct(7)
i,Qb

]
, (5.9)

∆C
(sb)
9 = −αs

4π

∑
i=1,2

Ci

[
F

(9)
i(a) + F

(9)
i(b) + F

ct(9)
i,Qs

+ F
ct(9)
i,Qb

]
, (5.10)

where in (5.7) we have omitted the term F
(7)
i,(e) = 0. These OPE coefficients will contribute

separately to the functions HOPE
λ,c (q2) and HOPE

λ,sb (q2) appearing in the two different disper-

sion relations in eq. (2.25). As discussed above, they have the proper analytic structure with

branch cut discontinuities starting at s > 0 and s > 4z, for ∆C
(sb)
7,9 and ∆C

(c)
7,9 respectively.

A comparison of the size of the two different contributions to each NLO function is

shown in figure 6, where we plot the two functions F
(j)
2,c and F

(j)
2,sb, defined by:

F
(j)
i,c = F

(j)
i(a) + F

(j)
i(b) + F

ct(j)
i,Qs

+ F
ct(j)
i,Qb

, (5.11)

F
(j)
i,sb = F

(j)
i(c) + F

(j)
i(d) + F

(j)
i(e) + F

ct(j)
i,Qc

. (5.12)

The corresponding results for F
(j)
1,x are qualitatively similar. The conclusion is that, within

the LCOPE region q2 < 0, the contribution proportional to the charge factor Qc is in most

cases a few times larger than the one proportional to Qs/b.
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Figure 6. Comparison between the two contributions proportional to Qc and Qs/b to the full

renormalized form factors F
(7,9)
2 , in the q2 < 0 region. In these plots we have set z = (0.29)2.

6 Conclusions and outlook

The determination of non-local effects in exclusive b→ s`` processes is of great phenomeno-

logical interest, but very challenging theoretically. These effects are associated with the

matrix element of a bi-local operator (cf. eq. (2.5)), which is significantly more complex

than the usual “local” form factors that govern the naively-factorizable part of the ampli-

tudes (such as the ones arising from semileptonic and electromagnetic dipole operators).

The current approach to non-local effects is to write an OPE for the bi-local operator in a

kinematic region where the OPE converges (even if unphysical) and then to extrapolate the

results to the physical region using analyticity or dispersion relations. At the level of the

OPE, the non-local matrix element can then be expressed in terms of simpler form factors,

and OPE coefficients that are determined from a perturbative matching calculation.

The leading OPE coefficients have been known up to NLO for some time, but only in

certain expansions on q2 and/or z = m2
c/m

2
b [17, 18]. Here we have presented a recalculation

of these two-loop contributions, fully analytic in both variables. This calculation has

made use of the formalism of differential equations in canonical form, and the results

are expressed in terms of Generalized Polylogarithms up to weight four. A particular

attention has been put in obtaining an analytic continuation of the Feynman integrals

with the desired singularity structure; for this purpose, special care is needed in fixing

the integration constants in the solution of the differential equations. Numerically, our

results agree with previously known expanded results within their range of applicability,

but deviate notably for q2 . −10 GeV2.
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With the fully analytic results at hand, we have been able study the analytic properties

of the non-local form factors, and we have confirmed the expectations from unitarity. In

particular, we have verified the dispersion relations and checked the absence of singularities

beyond the branch cuts from intermediate states in the q2 channel.

In addition, we have presented the complete set of results separated into contributions

proportional to different charge factors. This allows to study the extrapolation to the

physical region separately for cc̄ states, ss̄ and bb̄ states, and light states [7, 22].

While the contributions from the operators O1,2 considered here are the dominant

ones in the SM for b → s transitions, it would be interesting to complete this calculation

including the full set of four-quark operators in the general Weak Effective Theory [24].

This is important for an improved analysis beyond the SM [38], and also for the case of

b→ d transitions, where the up-quark contributions are not CKM suppressed [39].
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A Details on Supplementary material

A.1 A code to evaluate GPLs

As discussed in section 4.1, we use GiNaC [35] and a C++-Mathematica interface to evaluate

the GPLs appearing in our NLO results, and we provide this interface as an ancillary

package here. The package includes two files:

1. The C++ program GPLs.cpp. This program must be compiled and an executable with

the name GPLs.out must be created. A typical command-line compilation would be

g++ -std=c++11 GPLs.cpp -o GPLs.out -w -lcln -lginac

where the appropriate libraries have been linked. On Ubuntu, these libraries can be

installed using the system package manager, e.g. via

sudo aptitude install libginac-dev

The executable GPLs.out uses GiNaC to evaluate GPLs with unit argument and no

trailing zeroes (see section 4.1).
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2. The Mathematica program GPLs.m. This program defines the Mathematica routine

I GPL[{weights},argument]

which expresses the original GPL in terms of GPLs with unit argument and no trailing

zeroes, using eqs. (4.2), (4.3), and then uses GPLs.out to evaluate such GPLs.

A.2 Results for the functions F
(7,9)
1,2 in electronic form

The results for the renormalized two-loop functions F
(7,9)
1,2 , as well as the separate contri-

butions from each diagram class F
(j)
i(diag), diag = {a, b, c, d, e}, and the counterterm con-

tributions F
ct(j)
i,Qq

and F
ct(j)
i , are given as well in Mathematica format as Supplementary

material. We provide two Mathematica files:

1. The file functionsNLO.m. This program contains all the relevant LO and NLO

functions:

• The LO functions F170, F270, F190 and F290 defined by

f
(7)
LO = C1 F170 + C2 F270 , f

(9)
LO = C1 F190 + C2 F290 .

We note that F170 = F270 = 0.

• The counterterm contributions:

F17ct = F
ct(7)
1 , F27ct = F

ct(7)
2 , F19ct = F

ct(9)
1 , F29ct = F

ct(9)
2 ,

as well as the separate contributions with different charge factors,

F17ctQs = F
ct(7)
1,Qs

, F27ctQs = F
ct(7)
2,Qs

, F19ctQs = F
ct(9)
1,Qs

, F29ctQs = F
ct(9)
2,Qs

,

F17ctQc = F
ct(7)
1,Qc

, F27ctQc = F
ct(7)
2,Qc

, F19ctQc = F
ct(9)
1,Qc

, F29ctQc = F
ct(9)
2,Qc

,

F17ctQb = F
ct(7)
1,Qb

, F27ctQb = F
ct(7)
2,Qb

, F19ctQb = F
ct(9)
1,Qb

, F29ctQb = F
ct(9)
2,Qb

,

• The two-loop contributions from each diagram class:

F27b = F
(7)
2(b) , F27c = F

(7)
2(c) , F27d = F

(7)
2(d) , F27e = F

(7)
2(e) ,

F29b = F
(9)
2(b) , F29c = F

(9)
2(c) , F29d = F

(9)
2(d) , F29e = F

(9)
2(e) ,

and F27aupper, F29aupper, F27alower, F29alower which correspond to F
(7,9)
2(a)

for positive and negative Im(s) respectively, as in this case the boundary condi-

tions are fixed separately for the two cases (see section 3.5).

All these functions are given in terms of the variables xa= xa, ya= ya, . . . , xe= xe,

ye= ye (cf. eq. (3.20)), vb= vb, tb= tb (cf. eq. (3.22)), mub= µ/mb, and the funcion

G representing the GPL.
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2. The program FFNLO.m. This is the master program to evaluate all the functions. It

requires GPL.m and functionsNLO.m (which are evaluated at the beginning of the

program), and defines two useful Mathematica routines:

I FFNLO[s, z, µ/mb]

For given values of s, z, µ/mb this routine calculates the full renormalized form factors

F
(7,9)
1,2 (denoted by F17, F27, F19 and F29), as well as the separate contributions

discussed in section 5.2:

F17Qc = F
(7)
1(c) + F

(7)
1(d) + F

(7)
1(e) + F

ct(7)
1,Qc

, F17Qsb = F
(7)
1(a) + F

(7)
1(b) + F

ct(7)
1,Qs

+ F
ct(7)
1,Qb

,

F27Qc = F
(7)
2(c) + F

(7)
2(d) + F

(7)
2(e) + F

ct(7)
2,Qc

, F27Qsb = F
(7)
2(a) + F

(7)
2(b) + F

ct(7)
2,Qs

+ F
ct(7)
2,Qb

,

F19Qc = F
(9)
1(c) + F

(9)
1(d) + F

(9)
1(e) + F

ct(9)
1,Qc

, F19Qsb = F
(9)
1(a) + F

(9)
1(b) + F

ct(9)
1,Qs

+ F
ct(9)
1,Qb

,

F29Qc = F
(9)
2(c) + F

(9)
2(d) + F

(9)
2(e) + F

ct(9)
2,Qc

, F29Qsb = F
(9)
2(a) + F

(9)
2(b) + F

ct(9)
2,Qs

+ F
ct(9)
2,Qb

,

and gives as a result a replacement rule for all twelve functions.

I FFapplied[s, z, µ/mb,function]

For given values of s, z, µ/mb, this routine evaluates the function function, which can

be any of the functions defined in functionsNLO.m (thus allowing the evaluation of

the individual contributions to F
(7,9)
1,2 ), or in fact any function involving G functions

(GPLs).

These routines operate by first collecting a list of the different GPLs that appear, in

order to evaluate each GPL only once. This leads to a huge increase in the speed of

the evaluation.

B List of Master Integrals

In this appendix we collect the list of all Master Integrals (MIs) Ji,k that appear in the

calculation of the two-loop diagrams a-e in figure 2. The notation is described in section 3.2.

For diagrams a there are 7 MIs:

Ja,1 = j[a, 1, 1, 0, 0, 0, 0, 0] Ja,2 = j[a, 1, 1, 0, 0, 1, 0, 0] Ja,3 = j[a, 2, 1, 0, 0, 1, 0, 0]

Ja,4 = j[a, 0, 1, 0, 1, 1, 0, 0] Ja,5 = j[a, 0, 1, 1, 0, 1, 0, 0] Ja,6 = j[a, 1, 1, 0, 1, 1, 0, 0] (B.1)

Ja,7 = j[a, 2, 1, 0, 1, 1, 0, 0]

For diagrams b there are 9 MIs:

Jb,1 = j[b, 0, 1, 0, 0, 1, 0, 0] Jb,2 = j[b, 1, 1, 0, 0, 0, 0, 0] Jb,3 = j[b, 1, 1, 0, 1, 0, 0, 0]

Jb,4 = j[b, 1, 1, 0, 0, 1, 0, 0] Jb,5 = j[b, 2, 1, 0, 0, 1, 0, 0] Jb,6 = j[b, 0, 1, 0, 1, 1, 0, 0] (B.2)

Jb,7 = j[b, 1, 1, 0, 1, 1, 0, 0] Jb,8 = j[b, 2, 1, 0, 1, 1, 0, 0] Jb,9 = j[b, 1, 1, 0, 2, 1, 0, 0]
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For diagrams c there are 9 MIs:

Jc,1 = j[c, 0, 1, 1, 0, 0, 0, 0] Jc,2 = j[c, 1, 0, 1, 0, 1, 0, 0] Jc,3 = j[c, 1, 0, 1, 1, 0, 0, 0]

Jc,4 = j[c, 1, 1, 1, 0, 0, 0, 0] Jc,5 = j[c, 1, 1, 1, 0, 1, 0, 0] Jc,6 = j[c, 1, 2, 1, 0, 1, 0, 0] (B.3)

Jc,7 = j[c, 2, 0, 1, 0, 1, 0, 0] Jc,8 = j[c, 2, 0, 1, 1, 0, 0, 0] Jc,9 = j[c, 2, 1, 1, 0, 1, 0, 0]

For diagrams d there are 15 MIs:

Jd,1 = j[d,0,1,1,0,0,0,0] Jd,2 = j[d,0,0,1,0,1,0,0] Jd,3 = j[d,0,1,1,0,1,0,0]

Jd,4 = j[d,0,1,1,1,0,0,0] Jd,5 = j[d,0,2,1,1,0,0,0] Jd,6 = j[d,1,0,1,0,1,0,0]

Jd,7 = j[d,2,0,1,0,1,0,0] Jd,8 = j[d,1,1,0,0,1,0,0] Jd,9 = j[d,1,1,1,0,0,0,0] (B.4)

Jd,10 = j[d,0,1,1,1,1,0,0] Jd,11 = j[d,0,2,1,1,1,0,0] Jd,12 = j[d,1,1,1,0,1,0,0]

Jd,13 = j[d,1,2,1,0,1,0,0] Jd,14 = j[d,2,1,1,0,1,0,0] Jd,15 = j[d,1,1,2,0,1,0,0]

For diagrams e there are 5 MIs:

Je,1 = j[e, 0, 1, 0, 0, 1, 0, 0] Je,2 = j[e, 0, 1, 0, 1, 1, 0, 0] Je,3 = j[e, 0, 1, 1, 0, 1, 0, 0] (B.5)

Je,4 = j[e, 0, 2, 0, 1, 1, 0, 0] Je,5 = j[e, 1, 1, 1, 0, 1, 0, 0]

C Weights

In this appendix we collect the different weights appearing in the GPLs. In GPLs with

argument xi, the weights are constants:

w0 = 0 , w1 = 1 , w2 = i , w3 = 2 +
√

3 , w4 = 2−
√

3 . (C.1)

In GPLs with argument yi, vb or tb, the weights are xi-dependent (with xi depending on

the diagram class):

w0(x) = 0 , w1(x) = 1 , w2(x) = x , w3(x) = 2x2/(1 + x2) , w4(x) = 2x/(1− x)2 ,

w5(x) = 2x/(1 + x)2 , w6(x) = 2ix/(1− x2) , w7(x) = 8x2/(1− 6x2 + x4) ,

w10(x) = (4x2 − 2
√

2
√
x2 + 4x4 + x6)/(1 + x2)2 , (C.2)

w11(x) = (4x2 + 2
√

2
√
x2 + 4x4 + x6)/(1 + x2)2 .

D Explicit examples for fixing integration constants

We first consider the master integral from diagram e with four propagators, i.e. Je,5. Solving

the corresponding differential equations in the canonical basis and then transforming the

solution to the ordinary basis we get, for the ε−2 part of Je,5

J
(−2)
e,5 = − 1

256π4
+

9c2 + 1
256π4

y2
e

, (D.1)

– 31 –



J
H
E
P
0
4
(
2
0
2
0
)
0
1
2

where c2 is an integration constant. Imposing the condition that J
(−2)
e,5 is nonsingular for

s→ 0 (which is equivalent to ye → 0), we get c2 = − 1
2304π4 , leading to

J
(−2)
e,5 = − 1

256π4
. (D.2)

In the same way we get, for the ε−1 part of Je,5,

J
(−1)
e,5 =

1

128π4y2
e

[
1 + iπ + 1152c1π

4 − 2y2
e − iπy2

e + y2
eG(−1;xe) + y2

eG(1;xe)

− 2y2
eG(0;xe) + yeG(−1; ye)− yeG(1; ye) + 2 log(2)− 2y2

e log(2)
]
. (D.3)

Again imposing the condition that J
(−1)
e,5 is nonsingular for ye → 0, we obtain c1 =

−1+iπ+2 log(2)
1152π4 , leading to

J
(−1)
e,5 =

1

128π4ye

[
−2ye − iπye + yeG(−1;xe) + yeG(1;xe)

− 2yeG(0;xe) +G(−1; ye)−G(1; ye)− 2ye log(2)
]
. (D.4)

The results for J
(0)
e,5 and J

(1)
e,5 are obtained analogously.

As a second example we consider the MIs Jc,2 and Jc,7 of diagram c. Solving the cor-

responding differential equations in the canonical basis and then transforming the solution

to the ordinary basis, we get for the ε−2 parts of Jc,2 and Jc,7,

J
(−2)
c,2 =

(xc − 1)(xc + 1)
(
12288π4c1

2x
2
c + 4096π4c1

2 − x2
c + 1

)
4096π4x4

c

,

J
(−2)
c,7 =

4096π4c1
2x

2
c + 4096π4c1

2 − x2
c + 1

1024π4x2
c

. (D.5)

Jc,2 has three propagators. Jc,7 also has three propagators but one of them is squared.

This means that Jc,2 ∼ z and Jc,7 ∼ z0 for large z. Or in terms of xc, Jc,2 ∼ x−2
c and

Jc,7 ∼ x0
c when xc → 0. Imposing these conditions, we find c1

2 = − 1
4096π4 , leading to

J
(−2)
c,2 =

(1− xc)(1 + xc)

1024π4x2
c

,

J
(−2)
c,7 = − 1

512π4
. (D.6)

In the same way one can derive the results for J
(−1)
c,2 , J

(−1)
c,7 , J

(0)
c,2 , J

(0)
c,7 , and J

(1)
c,2 , J

(1)
c,7 .
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