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Abstract: In this note we analyze the relative scales for the GUT and twin sectors in

the F-theory model discussed in ref. [1]. There are a number of volume moduli in the

model. The volume of the GUT surface in the visible sector (1) (with the Wilson line

GUT breaking) defines the GUT scale MG ∼ 2 × 1016 GeV as the unification scale with

precise gauge coupling unification of SU(3)×SU(2)×U(1)Y . We choose the GUT coupling

constant, α−1G ∼ 24. We are then free to choose the ratio αG(2)/αG(1) = m1/m2 with m1

and m2 independent volume moduli associated with the directions perpendicular to the

two asymptotic GUT surfaces. We then analyze the effective field theory of the twin sector

(2), which may lead to a SUSY breaking gaugino condensate. Of course, all these results

are subject to the self-consistent stabilization of the moduli.
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1 Relative scales in F-theory GUT

The effective low energy field theory of an F -theory GUT is defined on a real 10-dimensional

manifold M10 = R3,1 × B3 where B3 is a smooth complex projective complex 3-fold with

ample anti-canonical bundle, that is, a Fano threefold. Gravity fills all of this real 10-

dimensional space-time while the GUT theory resides on a smooth two-dimensional anti-

canonical complex surface SGUT ⊆ B3. The GUT surface SGUT is defined by the vanishing

of z ∈ H0(K−1B3
).

1.1 Semi-stable degeneration of the F -theory model

More precisely, as in [1] we consider the family

B3,δ = P[u0,v0] ×B2.

where B3 = B3,1. For the affine coordinates

(a, b) ∈ C2 ⊆ P1
a × P1

b

we set

a = δ1/2
u0 − v0
u0 + v0

b = δ1/2
u0 + v0
u0 − v0

and consider the closure P[δ] of the subset

a · b = δ ∈ [0, 1]

so that

B3,δ = P[δ] ×B2.

– 1 –



J
H
E
P
0
4
(
2
0
2
0
)
0
0
4

Here B2 is constructed from the ‘last’ toric del Pezzo D6 endowed with its canonical

toric metric g(6) as in (1.3) of [2] with respect to which the Z4-action in [1] is isometric

with finite fixpoint set.1 We then blow up a single general Z4-orbit, the resulting del Pezzo

D2 ⊆ D6 × P1

where Z4 acts trivially on P1 and the metric g(2) on D2 = B2 is induced by the above

inclusion. Thus we have one real degree of freedom in the choice of the scaling constant on

the standard SU (2)-invariant metric on P1.

Similarly P1
a carries the standard SU (2)-invariant metric ga with volume m1 and P1

b

carries the standard SU (2)-invariant metric gb with volume m2. The metric gδ on B3,δ is

the one induced by restriction of the metric

ga ⊕ gb ⊕ g(2)

on P1
a × P1

b ×B2. This allows two additional scaling constants, the first giving volume m1

to the standard SU (2)-invariant metric on Pa and the second giving volume m2 to the

standard SU (2)-invariant metric on Pb.
The Einstein-Hilbert action is given by

SEH ∼M8
∗

∫
R3,1×B3

R
√
−gδd10x. (1.1)

As a consequence, the four-dimensional Planck constant is given by

M2
Pl 'M8

∗ · V ol (B3,δ) . (1.2)

The semi-stable limit of the F -theory geometry as δ goes to zero is the union of two

components or ‘gauge sectors’

B
(1)
3 ∪B

(2)
3

crossing along a copy of B2 over (a, b) = (0, 0) where

B
(1)
3 = P1

a ×B2

B
(2)
3 = P1

b ×B2.

We call B
(1)
3 with induced metric g1 the ’visible sector’ and B

(2)
3 with induced metric g2

the ‘hidden or twin sector.’ Thus

V ol (B3,0) = V ol (B2) · (m1 +m2) .

1.2 Asymptotic position of SGUT

As δ varies, the GUT surface SGUT,δ is defined by the vanishing of

zδ = δ · z + (1− δ) · (u20 − v20) · q ∈ H0
(
K−1B3,δ

)
1This metric is not the Kähler-Einstein metric on D6. See [3].

– 2 –



J
H
E
P
0
4
(
2
0
2
0
)
0
0
4

where q ∈ H0(K−1B2
) is a section in the (−1)-eigenspace for the Z4-action on B2. We let

C ⊆ B2 denote the smooth genus-one curve defined by the vanishing of q.

Here the gauge action is given by

Sgauge ∼ −M6
∗

∫
R3,1×B3,0

(
Tr(F 2

1 )
√
−g1 + Tr(F 2

2 )
√
−g2)

)
δ2(z0) d

10x.

Fi denotes the (limiting) curvature tensor of the Yang-Mills connection on the i-th gauge

sector B
(i)
3 . Also SGUT,0 ⊇ S1 ∪ S2 where

S1 := ({a =∞}×B2) ∪
(
P1
a × C

)
S2 := ({b =∞}×B2) ∪

(
P1
b × C

)
.

Therefore

Vol (Si) = MG (i)−4 = Vol (B2) +mi ·Vol (C) .

(See appendix A for more detail on the relationship between S1 ∪ S2 and SGUT,0.)

2 Scaling the effective 4-D theory

Hence in the effective 4-dimensional theory we should have GUT coupling constant

αG(i)−1 ∼M6
∗ Vol(Si) R

2
⊥i, i = 1, 2

where R2
⊥i ≡ mi is the size of the perpendicular scale for the gauge sectors 1, 2. This

calculation is complicated by the fact that each Si has two components whose perpendic-

ular scales do not coincide geometrically nor numerically. The perpendicular scale to the

component Si ⊆ B(i)
3 that projects onto B2 is clearly mi. However the perpendicular scale

for the P1 × C ⊆ Bi must be defined. We do that by recalling that the defining section q

of the curve C ⊆ B2 is a section of the anti-canonical bundle of B2 and this bundle has a

metric induced from the fixed toric metric on B2. Thus we define the perpendicular scale

for the P1 × C component to be norm ∫
B2

|q|2 .

Substituting we obtain

αG(i)−1 ∼M6
∗

(
Vol(B2) ·mi + Vol (C) ·mi ·

∫
B2

|q|2
)
, i = 1, 2

We then find

αG (i)M2
Pl ∼M2

∗
Vol (B2) (m1 +m2)

Vol(B2) ·mi + Vol (C) ·mi ·
∫
B2
|q|2

=M2
∗

(
m1 +m2

mi

)
Vol (B2)

Vol(B2) + Vol (C) ·
∫
B2
|q|2

.
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Therefore the relative size of the GUT coupling constants and the GUT scales for the

visible and twin sectors depends on the relative sizes of the perpendicular directions in B3

to the GUT surface.

Let’s define the sector labeled (1) as the visible sector with GUT coupling constant,

αG(1)−1 = 24 at the GUT scale MG(1) = 2×1016 GeV . Then the twin sector is sector (2).

The ratio αG(2)/αG(1) = m1/m2 with MG(2) > MG(1). Let’s take MG(2) = 3×1016 GeV

and αG(2)−1 = 8.7 or m1/m2 = 2.8. Below the scale MG(2) the effective field theory is

SU(3)× SU(2)×U(1)Y , just as in the visible sector. However the twin QCD coupling will

become strong at a scale much greater than the visible QCD scale. The effective twin QCD

theory has NC = 3 and Nflavors = 6. Hence it is described by Seiberg duality [6]. In the

magnetic phase, we have an effective superpotential given by

W = qiaTi,a
j,bq̄j,b + λuijq

iaHuaq̄j1 + λdijq
iaHdaq̄j2 (2.1)

where q (q̄) are left-handed color triplets (anti-triplets) with the family index, i = 1, 2, 3,

and SU(2)isospin index, a = 1, 2. When 〈q〉0 = 〈q̄〉0 = 0, the theory has a flat direction for

the fundamental meson field, Ti,a
j,b. Note, since the twin electroweak group is gauged, we

should identify Ti,a
j,1 ≡ (Tua)i

j and Ti,a
j,2 ≡ (Tda)i

j . The twin supersymmetric SU(2) ×
U(1)Y gauge interactions introduce a quartic potential for Tu, Td, Hu, Hd such that

there is a flat direction for 〈(Tu1)ij〉 = 〈(Td2)ij〉 = Tδi
j and Hu1 = Hd2 = T . Then all

twin quarks and leptons obtain mass at the scale T and, moreover, the twin electroweak

gauge symmetry is broken down to twin U(1)EM . For T ∼ MG(2), we find a twin gluino

condensate occurs at the scale ΛtQCD = T exp(− 2π
9αG(2)

) ∼ 6.9× 1013 GeV .

We expect that the effective 4D QCD Lagrangian contains a term

L ⊃ 1

2

∫
d2θ

2∑
i=1

(
S(i)

4
TrWαWα(i) + h.c.

)
(2.2)

with

S(i) =
1

4παG(i)
+ iθ = eln(K(i)mi)−φ + ib, (2.3)

where φ, b is the dilaton, axion fields, and mi is as above the volume of the P1 direction

perpendicular to the GUT surface in the visible and twin sectors and K(i) ∼M6
∗ MG(i)−4.

We also expect a non-perturbative superpotential term of the form [7–9]

WNP ⊃ A[e−8π
2S(2)/9T ]3. (2.4)

As a consequence, the twin QCD condensate will contribute SUSY breaking effects to both

the twin and visible sectors of the theory. In this local SUSY theory, we find an effective

low energy SUSY breaking scale given by

m3/2 = Λ3
tQCD/M

2
Pl ∼ 60 TeV. (2.5)

Of course, whether supersymmetry is broken (or not) depends on stabilizing all the moduli.

The low energy supersymmetric theory contains 3 families of twin neutrino super-

fields (assuming that the three right-handed neutrinos obtain mass near the GUT scale),
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19 chiral charged and neutral Higgs superfields (which include the massless components

of Hu, Hd and Tu, Td), and the twin photon superfield. Renormalizing from MG(2) we

find αtEM (m3/2) ∼ 1/105. There do not appear to be any portals to the twin sector.

Clearly, the twin sector introduces new candidates for dark matter, but a complete analy-

sis of the cosmological implications of this sector for the theory is beyond the scope of the

present paper.

3 Conclusion

In conclusion, we have analyzed the relative scales of the visible and twin sectors in the

global F -theory GUT with Wilson line breaking given in [1]. We have found that there

is sufficient freedom to have independent GUT scales and couplings in order to have in-

teresting physics coming from the twin sector. In particular, if we assume that the GUT

coupling for the twin sector is larger than that of the visible sector, then it is possible to

spontaneously break the twin electroweak theory at the GUT scale with all twin quarks

and charged leptons obtaining mass at that scale. In addition, a twin gluino condensate

can then occur at a scale of order ΛtQCD ∼ 6.9× 1013 GeV which leads to an effective low

energy SUSY breaking scale, m3/2 = Λ3
tQCD/M

2
Pl ∼ 60 TeV which affects both the twin and

visible sectors. There is clearly more analysis that needs to be done on the consequences

of these results, including the stabilization of moduli, which we leave for the future. For

example, the model also includes 11 D3 branes and fluxes which must be considered [10].

A Asymptotic position of SGUT with regards to the Heterotic theory

The Heterotic dual is the smooth Calabi-Yau threefold [V3 = B
(1)
3 ∩ B(2)

3 ] over a = b =

0. Each B
(i)
3 encodes the structure of an E8-bundle with Yang-Mills connection on the

Heterotic model V3 via the equivalence of Yang-Mills E8-bundles and dP9-bundles given

by the dictionary in §4.2 of [4]. A slightly subtle point in the encoding is that the factor

q in z0 is irrelevant to the determination of the E8-bundle, since over each point b2 ∈ B2,

q (b2) simply re-scales the vector [s, t] in the Weierstrass form[
y2 = 4x3 −

(
g2t

4 − β1st3 − . . .− β4s4
)
x−

(
g3t

6 − α2s
2t4 − . . .− α6s

6
)]

for the equation of each dP9-fiber of B
(i)
3 /B2. Thus the Weierstrass form, and so the

isomorphism class of the dP9-bundle, is unaffected. Said otherwise, Heterotic “SGUT” is

simply the union of the section {a =∞} of B
(1)
3 /B2 and the section {b =∞} of B

(2)
3 /B2.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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