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ON THE ORBITAL STABILITY OF THE DEGASPERIS-PROCESI
ANTIPEAKON-PEAKON PROFILE

BASHAR KHORBATLY AND LUC MOLINET

Abstract. In this paper, we prove an orbital stability result for the Degasperis-Procesi peakon with respect
to perturbations having a momentum density that is first negative and then positive. This leads to the orbital
stability of the antipeakon-peakon profile with respect to such perturbations.

1. Introduction

In this paper, we consider the Degasperis-Procesi equation (DP) first derived in [5], usually written as

(1)
{
ut − utxx + 4uux = 3uxuxx + uuxxx, (t, x) ∈ R+ × R,
u(0, x) = u0(x), x ∈ R .

The DP equation has been proved to be physically relevant for water waves (see [2]) as an asymptotic
shallow-water approximation to the Euler equations in some specific regime. It shares a lot of properties
with the famous Camassa-Holm equation (CH) that reads
(2) ut − utxx = −3uux + 2uxuxx + uuxxx, (t, x) ∈ R+ × R .

In particular, it has a bi-hamiltonian structure, it is completely integrable (see [6]) and has got the same
explicit peaked solitary waves. These solitary waves are called peakons whenever c > 0 and antipeakons
whenever c < 0 and are defined by

(3) u(t, x) = ϕc(x− ct) = cϕ(x− ct) = ce−|x−ct|, c ∈ R∗, (t, x) ∈ R2 .

Note that to give a sense to these solutions one has to apply (1− ∂2
x)−1 to (1), to rewrite it under the form

(4) ut + 1
2∂x(u2) + 3

2(1− ∂2
x)−1∂x(u2) = 0, (t, x) ∈ R+ × R.

However, in contrast with the CH equation, the DP equation has also shock peaked waves (see for instance
[14]) which are given by

u(t, x) = − 1
t+ k

sgn(x)e−|x|, k > 0 (t, x) ∈ R+ × R .

Another important difference between the CH and the DP equations is due to the fact that the DP conserva-
tions laws permit only to control the L2-norm of the solution whereas the H1-norm is a conserved quantity
for the CH equation. In particular, without any supplementary hypotheses, the solutions of the DP equation
may be unbounded contrary to the CH-solutions. In this paper we will make use of the three following
conservation laws of the DP equation :

M(u) =
∫
R
y, E(u) =

∫
R
yv =

∫
R

(
4v2 + 5v2

x + v2
xx

)
(5)

and F (u) =
∫
R
u3 =

∫
R

(
−v3

xx + 12vv2
xx − 48v2vxx + 64v3) ,(6)

where y = (1− ∂2
x)u and v = (4− ∂2

x)−1u.
It is worth noticing that these two variables, the momentum density y = (1− ∂2

x)u and the smooth variable
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v = (4− ∂2
x)−1u play a crucial role in the DP dynamic. In the sequel we will often make use of the fact that

(1) can be rewritten under the form
(7) yt + uyx + 3uxy = 0, (t, x) ∈ R+ × R,
which is a transport equations for the momentum density as well as under the form
(8) vt = −∂x(1− ∂2

x)−1u2, (t, x) ∈ R+ × R.
Note that, in the same way as v is associated with u, we will associate with the peakon profile ϕc the so-called
smooth-peakon profile ρc that is given by

(9) ρc = (4− ∂2
x)−1ϕc = 1

4e
−2|·| ∗ ϕc = c

3e
−|·| − c

6e
−2|·| ≥ 0 .

In [13] (see also [10] for a great simplification) an orbital stability1 result is proven for the DP peakon

(a) Peakon and antipeakon profiles (b) Smooth peakon and smooth an-
tipeakon profiles

Figure 1. (A) Peakon and antipeakon representative curves with speed c = ±1. They
are even functions that admit a single maximum c (resp. maximum −c) at the origin. (B)
Smooth peakon and smooth antipeakon representative curves with speed c = ±1. They are
even C2 functions that admit a single maximum c/6 (resp. minimum −c/6) at the origin.

by adapting the approach first developed by Constantin and Strauss [4] for the Camassa-Holm peakon.
However, in deep contrast to the Camassa-Holm case, the proof in [13] (and also in [10]) crucially use that
the momentum density of the perturbation is non negative. This is absolutely required for instance in [[13],
Lemma 3.5] to get the crucial estimate on the auxiliary function h (see Section 5 for the definition of h)).
Up to our knowledge, there is no available stability result for the Degasperis-Procesi peakons without this
requirement on the momentum density and one of the main contribution of this work is to give a first stability
result for the DP peakon with respect to perturbations that do not share this sign requirement. At this
stage, it is worth noticing that the global existence of smooth solutions to the DP equation is only known
for initial data that have either a momentum density with a constant sign or a momentum density that is
first non negative and then non positive.

The first part of this paper is devoted to the proof of a stability result for the peakon with respect to
perturbations that belong to this second class of initial data. We would like to emphasize that the key
supplementary argument with respect to the case of a non negative momentum density is of a dynamic
nature. Inspired by similar considerations for the Camassa-Holm equation contained in [17], we study the
dynamic of the momentum density y(t) at the left of a smooth curve x(t) such that u(t, ·) − ϕc(· − x(t))
remains small for all t ∈ [0, T ] with T > 0 large enough. This is in deep contrast with the arguments in the

1See [17] for an asymptotic stability result in the class of functions with a positive momentum density.
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case y ≥ 0 and with the common arguments for orbital stability that are of static nature : They only use
the conservation laws together with the continuity of the solution.

In a second time, we combine this stability result with some almost monotony results to get the orbital
stability of the DP antipeakon-peakon profile and more generally of trains of antipeakon-peakons.

Before stating our results let us introduce some notations and some function spaces that will appear in
the statements. For p ∈ [1,+∞] we denote by Lp(R) the usual Lebesgue spaces endowed with their usual
norm ‖ · ‖Lp . We notice that by integration by parts, it holds

‖u(t, ·)‖2L2 =
∫
R

(4v − vxx)2dx =
∫
R

(
16v2 + 8v2

x + v2
xx

)
dx

and thus
E(u) ≤ ‖u‖2L2 ≤ 4E(u) .

Therefore, E(·) is equivalent to ‖ · ‖2L2(R) and in the sequel of this paper we set

(10) ‖u‖H =
√
E(u) so that ‖u‖H ≤ ‖u‖L2 ≤ 2‖u‖H

As in [3], we will work in the space Y defined by

(11) Y :=
{
u ∈ L2(R) with u− uxx ∈M(R)

}
where M(R) is the space of finite Radon measure on R that is endowed with the norm ‖ · ‖M where

‖y‖M := sup
ϕ∈C(R),‖ϕ‖L∞≤1

|〈y, ϕ〉| .

Hypothesis 1. We will say that u0 ∈ Y satisfies Hypothesis 1 if there exists x0 ∈ R such that its momentum
density y0 = u0 − u0,xx satisfies

(12) supp y−0 ⊂]−∞, x0] and supp y+
0 ⊂ [x0,+∞[.

where y+
0 and y−0 are respectively the positive and the negative part of the Radon measure y0.

Theorem 1 (Stability of a single Peakon). There exists 0 < ε0 < 1 such that for any c > 0, A > 0 and
0 < ε < ε0

1∧c2

(2+c)3 , there exists 0 < δ = δ(A, ε, c) ≤ ε4 such that for any u0 ∈ Y satisfying Hypothesis 1 with

(13) ‖u0 − ϕc‖H ≤ δ ≤ ε4

and

(14) ‖u0 − u0,xx‖M ≤ A,

the emanating solution of the DP equation satisfies

(15) ‖u(t, ·)− ϕc(· − ξ(t))‖H ≤ 2(2 + c) ε, ∀t ∈ R+

and

(16) ‖u(t, ·)− ϕc(· − ξ(t))‖L∞ ≤ 8(2 + c)2ε2/3, ∀t ∈ R+ ,

where ξ(t) ∈ R is the only point where the function v(t, ·) = (4− ∂2
x)−1u(t, ·) reaches its maximum on R.

Combining the above stability of a single peakon with the general framework first introduced in [16] and
more precisely following [7]-[8] we obtain the stability of a train of well-ordered antipeakons and peakons.
This contains in particular the stability of the antipeakon-peakon profile.

Theorem 2. Let be given N− ∈ N∗ negative velocities c−N− < .. < c−1 < 0, N+ ∈ N∗ positive velocities
0 < c1 < .. < cN+ and A > 0. There exist B = B(~c) > 0, L0 = L0(A,~c) > 0 and 0 < ε0 = ε0(~c) < 1 such
that for any 0 < ε < ε0(~c) there exists 0 < δ(ε,A,~c) < ε4 such that if u ∈ C(R+;H1) is the solution of the
DP equation emanating from u0 ∈ Y , satisfying Hypothesis 1 with

(17) ‖u0 − u0,xx‖M ≤ A,
3



and

(18) ‖u0 −
N+∑

j=−N−
j 6=0

ϕcj (· − z0
j )‖H ≤ δ ≤ ε4

for some z0
−N− < .. < z0

−1 < z0
1 < · · · < z0

N+
such that

(19) z0
j − z0

q ≥ L ≥ L0, ∀(j, q) ∈
(

[[−N−, N+]] \ {0}
)2
, j > q ,

then there exist N− +N+ functions ξ−N−(·), .., ξ−1(·), ξ1(·), .., ξN+(·) such that

(20) sup
t∈R+

‖u(t, ·)−
N+∑

j=−N−
j 6=0

ϕcj (· − ξj(t))‖H < B(ε+ L−1/8)

and

(21) sup
t∈R+

‖u(t, ·)−
N+∑

j=−N−
j 6=0

ϕcj (· − ξj(t))‖L∞ . ε2/3 + L−
1

12 .

Moreover, for any t ≥ 0 and i ∈ [[1, N+]](resp. i ∈ [[−N−,−1]]), ξi(t) is the only point of maximum (resp.
minimum) of v(t) on [ξi(t)− L/4, ξi(t) + L/4].

2. Global well-posedness results

We first recall some obvious estimates that will be useful in the sequel of this paper. Noticing that
p(x) = 1

2e
−|x| satisfies p ∗ y = (1− ∂2

x)−1y for any y ∈ H−1(R) we easily get
‖u‖W 1,1 = ‖p ∗ (u− uxx)‖W 1,1 . ‖u− uxx‖M

and t
‖uxx‖M ≤ ‖u‖L1 + ‖u− uxx‖M

which ensures that
(22) Y ↪→

{
u ∈W 1,1(R) with ux ∈ BV (R)

}
.

It is also worth noticing that for u ∈ C∞0 (R), satisfying Hypothesis 1,

(23) u(x) = 1
2

∫ x

−∞
ex
′−x(u− uxx)(x′)dx′ + 1

2

∫ +∞

x

ex−x
′
(u− uxx)(x′)dx′

and

ux(x) = −1
2

∫ x

−∞
ex
′−x(u− uxx)(x′)dx′ + 1

2

∫ +∞

x

ex−x
′
(u− uxx)(x′)dx′ ,

so that for x ≤ x0 we get

ux(x) = u(x)− e−x
∫ x

−∞
ex
′
y(x′) dx′ ≥ u(x)

whereas for x ≥ x0 we get

ux(x) = −u(x) + ex
∫ +∞

x

e−x
′
y(x′) dx′ ≥ −u(x)

Throughout this paper, we will denote {ρn}n≥1 the mollifiers defined by

(24) ρn =
(∫

R
ρ(ξ) dξ

)−1
nρ(n·) with ρ(x) =

{
e1/(x2−1) for |x| < 1
0 for |x| ≥ 1.

Following [19] we approximate u ∈ Y satisfying Hypothesis 1 by the sequence of functions

(25) un = p ∗ yn with yn = −(ρn ∗ y−)(·+ 1
n

) + (ρn ∗ y+)(· − 1
n

) and y = u− uxx,
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that belong to Y ∩H∞(R) and satisfy Hypothesis 1 with the same x0. It is not too hard to check that

(26) ‖yn‖L1 ≤ ‖y‖M.

Moreover, noticing that

un = −
(
ρn ∗ (p ∗ y−)

)
(·+ 1

n
) +

(
ρn ∗ (p ∗ y+)

)
(· − 1

n
),

with p ∗ y∓ ∈ H1(R) ∩W 1,1(R), we infer that

(27) un → u ∈ H1(R) ∩W 1,1(R) .

that ensures that for any u ∈ Y satisfying Hypothesis 1 it holds

(28) ux ≥ u on ]−∞, x0[ and ux ≥ −u on ]x0,+∞[ .

The following propositions briefly recall the global well-posedness results for the Cauchy problem of the DP
equation (see for instance [9] and [15] for details of the proof) and its consequences.

Proposition 1. (Strong solutions [15], [9])
Let u0 ∈ Hs(R) with s ≥ 3. Then the initial value problem (4) has a unique solution u ∈ C

(
[0, T ];Hs(R)

)
∩

C1([0, T ];Hs−1(R)
)

where T = T
(
‖u0‖

H
3
2 +

)
> 0 and, for any r > 0, the map u0 → u is continuous from

B(0, r)Hs into C
(
[0, T (r);Hs(R)

)
.

Moreover, let T ∗ > 0 be the maximal time of existence of u in Hs(R) then

(29) T ∗ < +∞ ⇔ lim inf
t↗T∗

ux = −∞ .

If furthermore y0 = u0 − u0,xx ∈ L1(R) and u0 satisfies Hypothesis 1 then T ∗ = +∞ and y = u − uxx ∈
L∞loc

(
R+;L1(R)

)
with

(30) ‖y(t)‖L1 ≤ e3t2‖u0‖L2 +2t‖u0‖L∞ ‖y0‖L1 , ∀t ∈ R+,

and

(31)
∫
R
y(t, x) dx =

∫
R
y(0, x) dx, ∀t ∈ R+ .

Proposition 2. (Global Weak Solution [9])
Let u0 ∈ Y satisfying Hypothesis 1 for some x0 ∈ R.

1. Uniqueness and global existence : (4) has a unique solution

u ∈ C
(
R+;H1(R)

)
∩ C1(R+;L2(R)

)
∩ L∞loc

(
R+;Y

)
.

M(u) = 〈y, 1〉, E(u) = 〈y, v〉 and F (u) are conservation laws . Moreover, for any t ∈ R+, the density
momentum y(t) satisfies supp y−(t) ⊂]−∞, x0(t)] and supp y+(t) ⊂ [x0(t),+∞[ where x0(t) = q(t, x0) with
q(·, ·) defined by

(32)
{
qt(t, x) = u(t, q(t, x)) , (t, x) ∈ R2

q(0, x) = x , x ∈ R .

2. Continuity with respect to initial data : For any sequence {u0,n} bounded in Y that satisfy
Hypothesis 1 and such that u0,n → u0 in H1(R), the emanating sequence of solutions {un} satisfies for any
T > 0

(33) un → u in C
(
[0, T ];H1(R)

)
.

and

(34) (1− ∂2
x)un ⇀

n→∞
∗ (1− ∂2

x)u in L∞
(
]0, T [;M(R)

)
.

5



Proof. Assertion 1. is proved in [9] except the conservation of F (u). But this is clearly a direct consequence
of the conservation of F for smooth solutions together with (33). So let us prove Assertion 2. We first assume
that {u0,n} is the sequence defined in (25). In view of the conservation of H and (30), the sequence {un} of
smooth solutions to the DP equation emanating from {u0,n} is bounded in C([0, T ];H1) ∩L∞(]0, T [;Y ) for
any fixed T > 0. Therefore, there exists w ∈ L∞(R+;H1(R)) with (1 − ∂2

x)w ∈ L∞loc(R+;M(R)) such that,
for any T > 0,

un ⇀
n→∞

w ∈ L∞(]0, T [;H1(R)) and (1− ∂2
x)un ⇀

n→∞
∗ (1− ∂2

x)w in L∞(]0, T [;M(R)) .

Moreover, in view of (4), {∂tun} is bounded in L∞(]0, T [;L2(R) ∩ L1(R)) and Helly’s, Aubin-Lions com-
pactness and Arzela-Ascoli theorems ensure that w is a solution to (4) that belongs to Cw([0, T ];H1(R))
with w(0) = u0. In particular, wt ∈ L∞(]0, T [;L2(R)) and thus w ∈ C([0, T ];L2(R)). Since w ∈
L∞(]0, T [;H 3

2−(R)), this actually implies that w ∈ C([0, T ];H 3
2−(R)) and thus wt ∈ C([0, T ];L2(R)). There-

fore, w belongs to the uniqueness class which ensures that w = u and that (34) holds for this sequence. In
particular passing to the limit in (30) we infer that for any u0 ∈ Y satisfying Hypothesis 1 it holds

(35) ‖y(t)‖M ≤ e3t2‖u0‖L2 +2t‖u0‖L∞‖y0‖M,∀t ∈ R+ .

With (35) in hands, we can now proceed exactly in the same way but for any sequence {u0,n} bounded in Y
that converges to u0 in H1(R). This shows that (34) holds. Finally, the conservation of E(·) together with
the weak convergence result in Cw([0, T ];H1(R)) lead to a strong convergence result in C([0, T ];L2(R)) that
leads to (33) by using that u ∈ L∞loc(R+;H 3

2−(R)). �

In the sequel, we will make a constant use of the following properties of the flow-map q(·, ·) established
for instance in [20] : Under the hypotheses of Proposition 2,

(1) The mapping q(t, ·) is an increasing diffeomorphism of R with

(36) qx(t, x) = exp
(∫ t

0
ux
(
s, q(s, x)

)
ds
)
> 0, ∀(t, x) ∈ R+ × R.

(2) If moreover u0 ∈ H3(R) then

(37) y
(
t, q(t, x)

)
q3
x(t, x) = y0(x), ∀(t, x) ∈ R+ × R.

In particular, for all t ≥ 0,

(38) y
(
t, x0(t))

)
= y
(
t, q(t, x0)

)
= 0, ∀(t, x) ∈ R+ × R.

3. Some uniform L∞-estimates

In [15] it is proven that as far as the solution to the DP equation stays smooth, its L∞-norm can be
bounded by a polynomial function of time with coefficients that depend only on the L2 and L∞-norm of the
initial data. In this section we first improve this result under Hypothesis 1 by showing that the solution is
then bounded in positive times by a constant that only depends on the L2-norm of the initial data. This
result is not directly needed in our work but we think that it has its own interest. In a second time we
use the same type of arguments to prove that any function that is L2-close to a peakon profile and satisfies
Hypothesis 1, is actually L∞-close to the peakon profile. This last result will be very useful for our work
and will for instance enable us to prove that as far as u stays L2-close to a translation of a peakon profile,
the growth of the total variation of its momentum density can be control by an exponential function of the
time but with a small constant in front of the time. This will be the aim of the last lemma of this section.

Lemma 1. For any u0 ∈ Y satisfying Hypothesis 1, the associated solution u ∈ C(R+;H1) to (4) given by
Proposition 2 satisfies

(39) ‖u(t)‖L∞(R) ≤ 2(1 +
√

2)‖u0‖H, ∀t ∈ R+.
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Proof. We fix t ∈ R+, x ∈ R and denote by E(x) the integer part of x. Since u(t, ·) ∈ H1(R) ↪→ C(R), the
Mean-Value theorem for integrals together with (10) and the conservation of ‖ · ‖H ensure that there exists
η ∈

[
E(x)− 1, E(x)

]
such that

u2(t, η) =
∫ E(x)

E(x)−1
u2(t, θ)dθ ≤ ‖u(t, ·)‖2L2(R) ≤ 4‖u(t, ·)‖2H = 4‖u0‖2H.

Therefore, by (28) and (10), since 0 ≤ x− η ≤ 2, one may write

u(t, x) = u(t, η) +
∫ x

η

uθ(t, θ)dθ ≥ −2‖u0‖H −
∫ x

η

|u(t, θ)| dθ ≥ −2‖u0‖H − 2
√
x− η‖u0‖H

≥ −2(1 +
√

2)‖u0‖H .(40)

Now, suppose that there exists x∗ ∈ R such that u(t, x∗) > 2(1 +
√

2)‖u0‖H. Then, on one side the Mean-
Value theorem for integrals similarly ensures that there exists γ ∈

[
E(x∗) + 1, E(x∗) + 2

]
such that

u2(t, γ) =
∫ E(x∗)+2

E(x∗)+1
u2(t, θ)dθ ≤ ‖u(t, ·)‖2L2(R) ≤ 4‖u0‖2H .

On the other side, (28) again leads to

(41) u(t, γ) = u(t, x∗) +
∫ γ

x∗

uθ(t, θ)dθ > 2(1 +
√

2)‖u0‖H − 2
√
γ − x∗‖u0‖H > 2‖u0‖H .

The fact that the two above estimates are not compatible completes the proof of the lemma. �

Lemma 2 (L∞ approximations). Let ψ ∈W 1,∞(R) ∩ L2(R) and u ∈ Y , satisfying Hypothesis 1, then

(42) ‖u− ψ‖L∞(R) ≤ 2‖u− ψ‖2/3H
(
1 +
√

2‖u− ψ‖2/3H + ‖ψ‖L∞ + ‖ψ′‖L∞
)
.

In particular, for any (c, r) ∈ R2 it holds

(43) ‖u− ϕc(· − r)‖L∞(R) ≤ 2‖u− ϕc(· − r)‖2/3H
(
1 +
√

2‖u− ϕc(· − r)‖2/3H + 2c
)
.

Proof. We first notice that (43) follows directly from (42) by taking ψ = ϕc(· − r) and using that ‖ϕc‖L∞ =
‖ϕ′c‖L∞ = c.

Let us now prove (43). We set α = ‖u− ψ‖2/3H . Fixing x ∈ R, there exists k ∈ Z such x ∈
[
kα, (k + 1)α

[
.

Therefore, applying the Mean-Value theorem on the interval
[
(k − 1)α, kα

]
, we obtain that there exists

η ∈
[
(k − 1)α, kα

]
such that

(44)
[
u(η)− ψ(η)

]2 = 1
α

∫ kα

(k−1)α

[
u(θ)− ψ(θ)

]2
dθ ≤ 4

α
‖u− ψ‖2H = 4α2.

Now, in view of (28), we get

(45) u(x)− ψ(x) = u(η)− ψ(η) +
∫ x

η

[ux(θ)− ψ′(θ)]dθ ≥ −2α−
√

2α
∥∥|u|+ |ψ′|∥∥

L2(](k−1)α,(k+1)α[).

and the triangular inequality together with (10) yield∥∥|u|+ |ψ′|∥∥
L2(](k−1)α,(k+1)α[) ≤

∥∥|u−ψ|+ |ψ|+ |ψ′|∥∥
L2(](k−1)α,(k+1)α[) ≤ 2‖u−ψ‖H+

√
2α (‖ψ‖L∞+‖ψ′‖L∞).

We thus eventually get

(46) u(x)− ψ(x) ≥ −2α
(
1 +
√

2α+ ‖ψ‖L∞ + ‖ψ′‖L∞
)
.

Now, suppose that there exists x∗ ∈ R such that

u(x∗)− ψ(x∗) > 2α
(
1 +
√

2α+ ‖ψ‖L∞ + ‖ψ′‖L∞
)

7



Similarly, there exists k∗ ∈ R such that x∗ ∈
[
k∗α, (k∗ + 1)α

[
and applying the Mean-Value theorem for

integrals on
[
(k∗ + 1)α, (k∗ + 2)α

]
we obtain that there exists γ ∈

[
(k∗ + 1)α, (k∗ + 2)α

]
such that, on one

hand, [
u(γ)− ψ(γ)

]2 = 1
α

∫ (k∗+2)α

(k∗+1)α

[
u(θ)− ψ(θ)

]2
dθ ≤ 4α2 .

On the other hand, proceeding as above we get

u(γ)− ψ(γ) = u(x∗)− ψ(x∗) +
∫ γ

x∗

[ux(θ)− ψ′(θ)]dθ

> 2α
(

1 +
√

2α+ ‖ψ‖L∞ + ‖ψ′‖L∞
)
−
√

2α
(

2α3/2 +
√

2α(‖ψ‖L∞ + ‖ψ′‖L∞)
)
> 2α .

The incompatibility of the two above estimates completes the proof of the lemma. �

Lemma 3. Let u0 ∈ Y satisfying Hypothesis 1 and u ∈ C(R+;H1) ∩ L∞(R+;Y ) be the associated solution
to DP given by Proposition 2. If for some c ≥ 0, 0 < α < 1 and T > 0 it holds

(47) sup
t∈[0,T ]

inf
r∈R
‖u(t, ·)− ϕc(· − r)‖H ≤ α,

then

(48) u(t) ≥ −4α 2
3 (2 + c), ∀t ∈ [0, T ]

and

(49) sup
t∈[0,T ]

‖y(t)‖M ≤
(
1 + 2e8α

2
3 (2+c)t)‖y0‖M.

Proof. According to Proposition 2, approximating u0 by the sequence u0,n given by (25), it suffices to prove
the result for smooth initial data u0 ∈ Y ∩H∞(R) satisfying Hypothesis 1. We notice that since ϕc > 0 on
R, (47) together with Lemma 2 ensure that for all t ∈ [0, T ],

u(t, ·) ≥ −2α2/3(1 +
√

2α2/3 + 2c
)
≥ −4α 2

3 (2 + c) on R .

Therefore, according to (7), (32), (38) and (28), we have

d

dt

∫
R
y−(t, x)dx = − d

dt

∫ q(t,x0)

−∞
y(t, x)dx = 2

∫ q(t,x0)

−∞
ux(t, x)y(t, x)dx

≤ −2
∫ q(t,x0)

−∞
(−u(t, x)) y(t, x)dx

≤ 8α 2
3 (2 + c)

∫
R
y−(t, x)dx.

Hence, Grönwall’s inequality yields

(50)
∫
R
y−(t, x)dx ≤ e8α

2
3 (2+c)t

∫
R
y−0 (x)dx.

Moreover, since, according to Proposition 1, M(u) =
∫
R
y is conserved for positive times, it holds

∫
R
y+(t, x)dx =∫

R
y0(x)dx+

∫
R
y−(t, x)dx and thus

(51) ‖y(t, ·)‖L1(R) ≤
(
1 + 2e8α

2
3 (2+c)t)‖y0‖L1(R).

�
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4. A dynamic estimate on y−

In this section we assume that supt∈[0,T ] infr∈R ‖u(t)−ϕc(·−r)‖H < ε for some T > 0 and some 0 < ε < 1
small enough. Then we can construct a C1-function x : [0, T ] → R such that supt∈[0,T ] ‖u(t) − ϕc(· −
x(t))‖H . ε and we study the behavior of y− in an growing with time interval at the left of x(t).

Lemma 4. There exist ε̃0 > 0, 0 < κ0 < 1 and K ≥ 1 such that if a solution u ∈ C([0, T ];H1(R)) to (4)
satisfies for some c > 0 and some function r : [0, T ]→ R,

(52) sup
t∈[0,T ]

‖u(t, ·)− ϕc(· − r(t))‖H < cε̃0,

then there exist a unique function x : [0, T ] −→ R such that

(53) sup
t∈[0,T ]

∣∣x(t)− r(t)
∣∣ ≤ κ0 < ln(3/2)

and

(54)
∫
R
v(t, x)ρ′(x− x(t)) dx = 0, ∀t ∈ [0, T ] .

where v = (4− ∂2
x)−1u and ρ = (4− ∂2

x)−1ϕ. Moreover, x(·) ∈ C1([0, T ]) with

(55) sup
t∈[0,T ]

∣∣ẋ(t)− c
∣∣ ≤ c

8 ,

and if

(56) sup
t∈[0,T ]

∥∥u(t, ·)− ϕc(· − r(t))
∥∥
H < ε,

for some 0 < ε ≤ cε̃0 then

(57) sup
t∈[0,T ]

∥∥u(t, ·)− ϕc(· − x(t))
∥∥
H ≤ Kε .

Proof. We follow the same approach as in [10], by requiring an orthogonality condition on v = (4− ∂2
x)−1u

instead of u. This will be useful to get the C1-regularity of x(·). In the sequel of the proof, we endow H2(R)
with the norm (that is equivalent to the usual norm)

‖v‖2H2 :=
∫
R

4v2 + 5v2
x + v2

xx = ‖(4− ∂2
x)v‖2H

where the last identity follows from (6). Let 0 < ε < 1. For r ∈ R we introduce the function Y : (−ε, ε) ×
BH2

(
ρ(· − r), ε

)
−→ R defined by

Y (y, v) =
∫
R

[
v(t, x)− ρ(x− r − y)

]
ρ′(x− r − y)dx.

It is clearly that Y
(
0, ρ(· − r)

)
= 0 and that Y is of class C1. Moreover, by integration by parts, it holds
∂Y

∂y
(y, v) = −

∫
R
v(t, x)ρ′′(x− r − y)dx.

Hence, by integration by parts we may write

(58) ∂Y

∂y

(
0, ρ(· − r)

)
= −

∫
R
ρ(x− r)∂2

xρ(x− r)dx = ‖∂xρ(· − r)‖2L2(R) = 5
54 6= 0.

From the Implicit Function Theorem we deduce that there exist ε̃0 > 0, 0 < κ0 < ln(3/2) and a C1-function
yr : BH2

(
ρ(· − r), ε̃0

)
−→]− κ0, κ0[ which is uniquely determined such that

Y
(
yr(v), v

)
= Y

(
0, ρ(· − r)

)
= 0, ∀v ∈ BH2

(
ρ(· − r), ε̃0

)
.

In particular, there exists C0 > 0 such that if v ∈ BH2
(
ρ(· − r), β

)
, with 0 < β ≤ ε̃0, then

(59)
∣∣yr(v(t, ·))

∣∣ ≤ C0β.
9



Note that by a translation symmetry argument ε̃0, κ0, and C0 are independent of r ∈ R. Therefore, by
uniqueness, we can define a C1-mapping x̃ :

⋃
r∈RBH2

(
ρ(· − r), ε̃0

)
−→]− κ0, κ0[ by setting

x̃(v) = r + yr(v) ∀v ∈ BH2
(
ρ(· − r), ε̃0

)
.

Now, according to (52), it holds { 1
cv(t, ), [0, T ]} ⊂ ∪z∈RBH2(ρ(· − z), ε̃0) so that we can define the function

x(·) on R by setting x(t) = x̃(v(t)). By construction x(·) satisfies (53)-(54). Moreover, (56) together with
(59) ensure that for any c > 0 and any 0 < ε < cε̃0, it holds

(60) ‖1
c
u(t)− ϕ(· − x(t))‖H ≤ (ε

c
) + sup

|z|≤C0
ε
c

‖ϕ− ϕ(· − z))‖H .
ε

c

which proves (57).
In view of (4), any solution u ∈ C(R;H1(R)) of (D-P) satisfies ut ∈ C(R;L2(R)) and thus belongs to

C1(R;L2(R)). This ensures that v ∈ C1(R;H2(R)) so that the mapping t 7→ x(t) = x̃(v(t)) is of class C1 on
R.

Now, we notice that applying the operator (4− ∂2
x)−1 to the two members of (4) and using that

(61) (4− ∂2
x)−1(1− ∂2

x)−1 = 1
3(1− ∂2

x)−1 − 1
3(4− ∂2

x)−1 ,

we get that v satisfies

(62) vt = −1
2∂x(1− ∂2

x)−1u2 .

On the other hand, setting R(t, ·) = cρ(· −x(t)) and w = v−R and differentiating (54) with respect to time
we get ∫

R
wtρ
′(· − x(t)) = ẋ(t)

∫
R
w ρ′′(· − x(t))

= −ẋ(t)
∫
R
∂xw ρ

′(· − x(t))

= (ẋ(t)− c)O(‖w‖H1) + cO(‖w‖H1) .(63)

Substituting v by w +R in (62) and using that R satisfies

∂tR+ (ẋ− c)∂xR = −1
2∂x(1− ∂2

x)−1ϕ2
c(· − x(t)) ,

we infer that w satisfies

wt − (ẋ− c)∂xR = −1
2∂x(1− ∂2

x)−1
(
u2 − ϕ2

c

)
= −1

2∂x(1− ∂2
x)−1

(
(u− ϕc)(u+ ϕc)

)
.

Taking the L2-scalar product of this last equality with ρ′(· − x(t)) and using (63) together with (52) and
(57) we get, for all t ∈ [0, T ],∣∣∣(ẋ(t)− c)

(∫
R
∂xR(t, ·) ρ′(· − x(t)) + cO(‖w‖H1)

)∣∣∣ ≤ O(‖w‖H1) +O(‖u− ϕc(· − x(t)‖H) . Kc ε̃0 .

Therefore, by recalling (58) and possibly decreasing the value of ε̃0 > 0 so that Kε̃0 � 1, we obtain (55). �

Proposition 3. There exists ε0 > 0 such that for any u0 ∈ Y ∩H∞(R) satisfying Hypothesis 1, if the solution
u ∈ C(R+;H∞(R)

)
emanating from u0 satisfies for some c > 0, T > 0 and some function r : [0, T ]→ R,

(64) sup
t∈[0,T ]

‖u(t, ·)− ϕc(· − r(t))‖H < ε0(1 ∧ c2),

then for all t ∈ [0, T ],

(65) ‖y−(t, ·)‖L1(]r(t)− 1
16 ct,+∞[) ≤ e−ct/8‖y0‖L1(R).

where y− = max(−y, 0) and x(·) is the C1-function constructed in Lemma 4.
10



Proof. Let ε̃0 > 0 and K ≥ 1 be the universal constants that appears in the statement of Lemma 4. Assuming
(56) with

ε < min(cε̃0, 10−20(1 ∧ c2)/K) ≤ 10−20 ∧ ε̃0

K
(1 ∧ c2) ,

(57), Lemma 2 ensure that
(66) sup

t∈[0,T ]
‖u(t, ·)− ϕc(· − x(t))‖L∞ ≤ 10−5c .

where x(·) is the C1-function constructed in Lemma 4. Therefore, setting

(67) ε0 := 10−20 ∧ ε̃0

K
,

(64) ensures that (66) holds.
Let t ∈ [0, T ], we separate two possible cases according to the distance between x0(t/2) and x(t/2), where

x0(·) is defined in Proposition 2.
Case 1:
(68) x0(t/2) < x(t/2)− ln(3/2).
In view of (66) and the monotony of ϕ on R−, it holds

(69) u(τ, x) ≤ ϕc
(
− ln(3/2)

)
+ c

16 = 2
3c+ 1

16c ≤
3
4c, ∀x ≤ x(τ)− ln(3/2) with τ ∈ [0, T ] .

In particular (68) and (32) lead to

(70) ẋ0(t/2) = u
(
t/2, x0(t/2)

)
≤ 3

4c.

Therefore, since (55) forces ẋ(t) ≥ 7c/8 on [0, T ], a classical continuity argument ensures that x0(·) <
x(·)− ln(3/2) on [t/2, T ] and thus ẋ0(·) ≤ 3

4c on [t/2, T ]. It follows from (53) that

r(t)− x0(t) ≥ x(t)− x0(t)− ln(3/2) =
∫ t

t/2

[
ẋ(θ)− ẋ0(θ)

]
dθ + x(t/2)− x0(t/2)− ln(3/2) ≥ c

16 t .

This proves that y−(t, ·) = 0 on ]r(t)− 1
16ct,+∞[ and thus that (65) holds in this case.

Case 2:
(71) x0(t/2) ≥ x(t/2)− ln(3/2).
Then we first claim that
(72) x0(τ) ≥ x(τ)− ln(3/2) ∀τ ∈ [0, t/2].
Indeed, assuming the contrary, we would get as above that x0(·) < x(·) − ln(3/2) on [τ, T ] that would
contradicts (71). Second, we notice that (66) ensures that

(73) u
(
τ, x(τ)− ln(3)

)
≥ ϕc(− ln(3))− c

16 ≥
c

4 , ∀τ ∈ [0, T ] .

Since (28) forces ux(τ) ≥ u(τ) on ]−∞, x0(τ)] for any τ ∈ R+, (72)-(73) then ensure that u(τ) is increasing
on [x0(τ)− ln(2), x0(τ)] and

(74) ux(τ, x) ≥ u(τ, x) ≥ c

4 , ∀(τ, x) ∈ [0, T ]× [x0(τ)− ln 2, x0(τ)] .

Now, in this case we divide the proof into two steps.
Step : 1. The aim of this step is to prove the following estimate on y(t/2) :

(75)

∣∣∣∣∣
∫ x0(t/2)

x0(t/2)−ln 2
y(t/2, s)ds

∣∣∣∣∣ ≤ e− 1
4 ct‖y0‖L1(R).

For τ ∈ R+, we denote by q−1(τ, ·) the inverse mapping of q(τ, ·). Then, the change of variables along the
flow θ = q−1(t/2, s) leads to

(76)
∫ x0(t/2)

x0(t/2)−ln 2
y(t/2, s)ds =

∫ q−1(t/2,x0(t/2))

q−1(t/2,x0(t/2)−ln 2)
y
(
t/2, q(t/2, θ)

)
qx(t/2, θ) dθ.

11



Since x0(τ) = q(τ, x0) it clearly holds x0 = q−1(t/2, x0(t/2)) and (74) together with (32) force
∂tq
(
τ, q−1(t/2, x)

)
≤ ẋ0(τ), ∀ (τ, x) ∈ [0, t/2]× [x0(t/2)− ln 2, x0(t/2)] .

This ensures that for all τ ∈ [0, t/2],
(77) 0 < x0(τ)− q(τ, q−1(t/2, x0(t/2)− ln 2)) ≤ x0(t/2)− q(t/2, q−1(t/2, x0(t/2)− ln 2)) = ln 2
In particular, for any θ ∈ [q−1(t/2, x0(t/2)−ln 2), x0] and any τ ∈ [0, t/2], it holds q(τ, θ) ∈ [x0(τ)−ln 2, x0(τ)]
and (74) yields

ux(τ, q(τ, θ)) ≥ u(τ, q(τ, θ)) ≥ c/4 .
In view of (36) we thus deduce that

qx(t/2, θ) = exp
(∫ t/2

0
ux(τ, q(τ, θ)) dτ

)
≥ exp( c8 t) .

Plugging this estimate in (76), using (37), (77) and that y(τ, ·) ≤ 0 on ]−∞, x0(τ)] for τ ≥ 0, we eventually
get ∫ x0(t/2)

x0(t/2)−ln 2
y(t/2, s)ds ≥ e−

c
4 t

∫ q−1(t/2,x0(t/2))=x0

q−1(t/2,x0(t/2)−ln 2)
y
(
t/2, q(t/2, θ)

)
q3
x(t/2, θ) dθ

≥ e−
c
4 t

∫ x0

x0−ln 2
y(0, θ) dθ

which proves (75).
Step : 2. In this step, we prove that

(78)

∣∣∣∣∣
∫ x0(t)

x(t)−ln(3/2)− c
16 t

y(t, s) ds

∣∣∣∣∣ ≤ ect/8
∣∣∣∣∣
∫ x0(t/2)

x0(t/2)−ln 2
y(t/2, s) ds

∣∣∣∣∣
Clearly, (78) combined with (75) and (53) prove that (65) also holds in this case which completes the proof
of the proposition.

First, for any t1 ≥ 0 we define the function qt1(·, ·) on R+ × R as follows

(79)
{

∂tqt1(t, x) = u(t, qt1(t, x)), ∀(t, x) ∈ R+ × R,
qt1(t1, x) = x, x ∈ R.

The mapping qt1(t, ·) is an increasing diffeomorphism of R and we denote by q−1
t1 (t, ·) it inverse mapping. As

in (36) we have

∂xqt1(t, x) = exp
(∫ t

t1

ux
(
s, qt1(s, x)

)
ds
)
> 0, ∀(t, x) ∈ R+ × R,

and
(80) y

(
t, qt1(t, x)

)
(∂xqt1)3(t, x) = y(t1, x), ∀(t, x) ∈ R+ × R.

In particular, (48), (28) together with (66) ensure that for any τ ∈ [t/2, t] and any x ≤ x0(t/2),

(81) ∂xqt/2(τ, x) ≥ exp
(
−
∫ t

t/2
2−5c ds

)
≥ e−2−4ct .

Using the change of variables θ = q−1
t/2(t, s) we eventually get∫ x0(t)

qt/2(t,x0(t/2)−ln 2)
y(t, s) ds =

∫ x0(t/2)

x0(t/2)−ln 2
y(t, qt/2(t, θ))∂xqt/2(t, θ) dθ

and (80)-(81) lead to

(82)
∫ x0(t)

qt/2(t,x0(t/2)−ln 2)
y(t, s) ds ≥ ect/8

∫ x0(t/2)

x0(t/2)−ln 2
y(t/2, θ) dθ

Now, we notice that (66) forces
(83) x0(τ) ≤ x(τ) + ln(4/3), ∀τ ∈ [0, T ] .

12



Indeed, otherwise since u(τ, x(τ)) ≥ c − c
16 and ux(τ, ·) ≥ u(τ, ·) on ] − ∞, x0(τ)] this would imply that

u(τ, x(τ) + ln(4/3)) ≥ 15
16c that is not compatible with ϕc(ln(4/3)) = 4

3c and (64). From (83) we deduce that
for all τ ∈ [0, T ],
(84) x0(τ)− ln(2) ≤ x(τ)− ln(3/2)
and thus

u(τ, x0(τ)− ln(2)) ≤ ϕc(x0(τ)− x(τ)− ln(2)) + c

16 ≤ ϕc(− ln(3/2)) + c

16 ≤
3c
4 .

Combining this last inequality at τ = t/2 with (79), (55) and a continuity argument we infer that

ẋ(τ)− ∂tqt/2(τ, x0(t/2)− ln(2)) ≥ c

8 , ∀τ ∈ [t/2, T ] ,

which yields

(85) qt/2(t, x0(t/2)− ln(2)) ≤ x(t)− ln(3/2)− c

16 t .

Combining (82) and (85), (78) follows. �

Corollary 1. Under the same hypotheses as in Proposition 3, for all t ∈ [0, T ], it holds

(86) u(t, ·)− 6v(t, ·) ≤ e9− ct
32 ‖y0‖L1(R) on ]r(t)− 8,+∞[ ,

where v = (4− ∂x)−1u.

Proof. By (61), it hods

6v − u = (1− ∂2
x)−1y − 2(4− ∂2

x)−1y = 1
2e
−|·| ∗ y − 1

2e
−2|·| ∗ y

= 1
2(e−|·| − e−2|·|) ∗ y

≥ −1
2(e−|·| − e−2|·|) ∗ y− ≥ −1

2e
−|·| ∗ y−.(87)

Therefore, for x ≥ r(t)− 8, (49), (65) and (67) lead to

6v(x)− u(x) ≥ −1
2

∫ r(t)− c
16 t

−∞
e−|x−z|y−(z) dz − 1

2

∫ +∞

r(t)− c
16 t

e−|x−z|y−(z) dz

≥ −1
2e

0∧(8− c
16 t)(1 + 2e2−5ct)‖y0‖L1 − 1

2e
−ct/8‖y0‖L1(R)

≥ −e9− ct
32 ‖y0‖L1(R) .

�

5. Proof of Theorem 1

Before starting the proof, we need the two following lemmas that will help us to rewrite the problem in a
slightly different way. The next lemma ensures that the distance in H to the translations of ϕc is minimized
for any point of maximum of v = (4− ∂2

x)−1u.

Lemma 5 (Quadratic Identity [13]). For any u ∈ L2(R) and ξ ∈ R, it holds

(88) E(u)− E(ϕc) = ‖u− ϕc(· − ξ)‖2H + 4c
(
v(ξ)− c

6

)
,

where v = (4− ∂2
x)−1u and ξ is any point where v reaches its maximum.

We will also need the following lemma that is implicitly contained in [10].

Lemma 6. Let u ∈ L∞(R) ∩ L2(R) such that
(89) ‖u− ϕc(· − r)‖L∞ ≤ 10−5 c

for some c > 0 and some r ∈ R. Then v = (4− ∂2
x)−1u has got a unique point of maximum ξ on R and

(90) ‖u− ϕc(· − ξ)‖H ≤ ‖u− ϕc(· − r)‖H .
13



Finally, ξ ∈ Θr = [r − 6.7, r + 6.7], is the only critical point of v in Θr and

(91) sup
x 6∈Θr

(
|u(x)|, |v(x)|, |vx(x)|

)
≤ c

100 .

Proof. Let us first recall that v − ρc = 1
4e
−2|·| ∗ (u− ϕc) so that Young convolution inequalities yield

(92) ‖v − ρc‖L∞ ≤ ‖
1
4e
−2|·|‖L1‖u− ϕc‖L∞ ≤

1
4‖u− ϕc‖L

∞ and ‖(v − ρc)′‖L∞ ≤
1
2‖u− ϕc‖L

∞ .

Moreover, (v − ρc)′′ = 4(v − ρc)− (u− ϕc) leads to
‖(v − ρc)′′‖L∞ ≤ 2‖u− ϕc‖L∞ .

Now, the crucial observations in [11] are that

(93) ρ′′ ≤
√

2− 2
6 on V0, ρ′(x) = −ρ′(−x) ≥ 10−4, ∀x ∈ Θ0/V0 ,

where, ∀r > 0, Vr = [r − ln
√

2, r + ln
√

2]. Therefore, (89) together with (93) ensure that v′ is strictly
decreasing on Vr and that v′ > 0 on [r− 6.7, r− ln

√
2] and v′ < 0 on [r+ ln

√
2, r+ 6.7]. This proves that v

has got a unique critical point ξ on Θr that is a local maximum and that ξ ∈ Vr ⊂ Θr. Moreover ρ(0) = 1/6
together with the direct estimates
(94) ρ ∨ |ρ′| ≤ 5× 10−4 on R/Θ0 and ϕ ∨ |ϕ′| ≤ 5× 10−3 on R/Θ0 ,

ensure that this is actually the unique point of maximum of v on R. This proves the first part of (91) whereas
the second part follows again from (94). Finally, (90) follows directly from Lemma 5 together with the fact
v(ξ) is the maximum of v on R. �

Now, let us recall that, by (25), we can approximate any u0 ∈ Y satisfying Hypothesis 1 by a sequence
{u0,n} ⊂ Y ∩H∞(R) satisfying Hypothesis 1 such that

u0,n → u0 in H1(R) ∩W 1,1(R) and ‖yn‖L1 ≤ ‖y‖M , ∀n ∈ N.
Therefore the continuity with respect to initial data in Proposition 2 ensures that to prove Theorem 1 we
can reduce ourself to initial data u0 ∈ Y ∩H∞.

Let ε0 be the universal constant defined in (67) and let us fix

(95) 0 < ε < ε0
1 ∧ c2

(2 + c)3 .

Let us also fix A > 0. From the continuity with respect to initial data (33) at ϕc, the fact that t 7→ ϕc(·− ct)
is an exact solution and the translation symmetry of the (D-P) equation, there exists
(96) 0 < δ = δ(A, ε, c) ≤ ε4

such that for any u0 ∈ Y satisfying Hypothesis 1 and (14)-(13) with A and δ, it holds

(97) ‖u(t)− ϕc(x− ct)‖H ≤ 2(2 + c) ε, ∀t ∈ [0, Tε],with Tε = max
(

0, 32
c

(
9 + ln(A/ε2)

))
,

where u ∈ C(R+;H1(R)) is the solution of the (D-P) equation emanating from u0. So let u0 ∈ Y ∩H∞(R)
that satisfies Hypothesis 1 and (14)-(13) with A and δ. (97) together with the definition (67) of ε0 and
Lemma 2 then ensure that
(98) ‖u(t)− ϕc(x− ct)‖L∞ < 10−5c, ∀t ∈ [0, Tε],
and Lemma 6 then ensures that
(99) ‖u(t)− ϕc(x− ξ(t))‖H ≤ 2(2 + c) ε , ∀t ∈ [0, Tε],
where ξ(t) is the only point where v(t) = (4− ∂2

x)−1u(t) reaches its maximum.
By a continuity argument it remains to prove that for any T ≥ Tε, if

(100) inf
r∈R
‖u(t)− ϕc(x− r)‖H ≤ 3(2 + c) ε on [0, T ]

then v(T ) = (4− ∂2
x)−1u(T ) reaches its maximum on R at a unique point ξ(T ) and

(101) ‖u(T )− ϕc(x− ξ(T ))‖H ≤ 2(2 + c) ε .
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At this stage it is worth noticing that, as above, (100) together with the definition (67) of ε0 and Lemma 2
ensure that

inf
r∈R
‖u(t)− ϕc(x− r)‖L∞ ≤ 10−5c, ∀t ∈ [0, T ] .

Therefore applying Lemma 6 and again Lemma 2 we obtain that

(102) ‖u(t)− ϕc(x− ξ(t))‖H ≤ 3(2 + c) ε and ‖u(t)− ϕc(x− ξ(t))‖L∞ ≤ 10−5c, ∀t ∈ [0, T ],

where ξ(t) is the only point where v(t) = (4 − ∂2
x)−1u(t) reaches its maximum. Moreover, (100) together

with (95), (67), Corollary 1 and the definition of Tε in (97) then ensure that

(103) u(t, ·)− 6v(t, ·) ≤ ε2 on Θξ(t), ∀t ∈ [0, T ] .

To prove (101), we follow closely the proof in [10], keeping (103) in hands. The idea comes back to [4]
and consists in constructing two functions g and h that permits to link in a good way E(u), F (u) and the
maximum M of v = (4−∂2

x)−1u. This was first implement in [13] for the (DP)-equation under the additional
hypothesis that the momentum density of the initial data is non negative.

Lemma 7 ( See [13]). Let u ∈ L2(R) and v = (4− ∂2
x)−1u ∈ H2(R). Denote by M = maxR v(·) = v(ξ) and

define the function g by

(104) g(x) =
{

2v(x) + vxx(x)− 3vx(x) = u(x)− 6vx(x) + 12v(x), ∀x ≤ ξ,
2v(x) + vxx(x) + 3vx(x) = u(x) + 6vx(x) + 12v(x), ∀x ≥ ξ.

Then it holds

(105)
∫
R
g2(x)dx = E(u)− 12M2,

and

(106)
∫
R
g2(x)dx =

∥∥u− ϕc(· − ξ)∥∥2
H − 12

( c
6 −M

)2
≤
∥∥u− ϕc(· − ξ)∥∥2

H .

Proof. The first identity is proven in [13] by combining integration by parts and the fact that vx(ξ) = 0. To
prove the second identity we remark that by the definition of ρc in (9), it holds{

2ρc(· − ξ)− ρ′′c (· − ξ) + 3ρ′c(· − ξ) = 0, ∀x ≤ ξ,
2ρc(· − ξ)− ρ′′c (· − ξ)− 3ρ′c(· − ξ) = 0, ∀x ≥ ξ.

Therefore, setting w = v − ρc(· − ξ) = (4− ∂2
x)−1[u− ϕc(· − ξ)] one may rewrite g as

(107) g =
{

2w + wxx − 3wx on ]−∞, ξ],
2w + wxx + 3wx on [ξ,+∞[

and (106) follows by applying (105) with u replaced by u− ϕc(· − ξ). �

Lemma 8 (See [13]). Let u ∈ L2(R) and v = (4− ∂2
x)−1u ∈ H2(R). Denote by M = maxR v(·) = v(ξ) and

define the function h by

(108) h(x) =
{
− vxx(x)− 6vx(x) + 16v(x), ∀x ≤ ξ.
− vxx(x) + 6vx(x) + 16v(x), ∀x ≥ ξ.

Then, it holds

(109) F (u)− 144M3 =
∫
R
h(x)g2(x)dx.

Gathering Lemmas 5, 7 and 8 and making use of (103) we derive the crucial relation that linked E(u),
F (u) and the maximum M of v = (4− ∂2

x)−1u.
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Lemma 9. Let ε > 0 and u ∈ L2(R) be such that v = (4− ∂2
x)−1u has got a unique point ξ of maximum on

R with
(110) ‖u− ϕc(· − ξ)‖H ≤ 3(2 + ε)ε, ‖u− ϕc(· − ξ)‖L∞ ≤ 10−5c and u− 6v ≤ ε2 on Θξ .

Then, setting M = v(ξ), it holds

(111) M3 − 1
4E(u)M + 1

72F (u) ≤ (2 + c)2

8 ε4 .

Proof. The key is to show that the function h defined in Lemma 8 satisfies h ≤ 18M + ε2 on R. We notice
that h may be rewritten as

h(x) =
{
u(x)− 6vx(x) + 12v(x), ∀x ≤ ξ.
u(x) + 6vx(x) + 12v(x), ∀x ≥ ξ.

and that (92) together with the second inequality in (110) force
(112) |M − c/6| ≤ 10−5c .

Moreover, Lemma 6 ensures that vx > 0 on ]ξ − 6.7, ξ[ and vx < 0 on ]ξ, ξ + 6.7[.
We divide R into three intervals. For x ∈ R/Θξ, (91) with r = ξ and then (112) ensure that

h(x) ≤ |u(x)|+ 6|vx(x)|+ 12|v(x)| ≤ 19c
100 ≤ 18M.(113)

For ξ − 6.7 < x < ξ, then vx ≥ 0 and using that u− 6v ≤ ε2 on Θξ, we get

h(x) ≤ 18M + ε2.

If ξ < x < ξ + 6.7, then vx ≤ 0 and using that u− 6v ≤ ε2 on Θξ, we get

h(x) ≤ 18M + ε2.

Therefore it holds,
h ≤ 18M + ε2 on R .

Combining (105), (106), (109) and the first inequality in (110), one eventually gets

F (u)− 144M3 =
∫
R
h(x)g2(x)dx ≤ 18M

(
E(u)− 12M2)+ ε2‖u− ϕc(· − ξ)‖2H

≤ 18ME(u)− 72M3 + 9(2 + c)2ε4 .

that completes the proof of the lemma. �

Finally, we will need the following lemma that links the distance between F (u0) and F (ϕc) to the distance
between u0 and ϕc in L2(R).

Lemma 10. Let u0 ∈ Y that satisfies Hypothesis 1. If for some 0 < γ < 1 it holds
‖u0 − ϕc‖H ≤ γ

then
(114) |E(u0)− E(ϕc)| ≤ 2γ(2 + c)
and
(115) |F (u0)− F (ϕc)| ≤ 6γ(2 + c)2 ,

where ϕc, ρc are defined in (3), (9).

Proof. By the triangle inequality and (5),
|E(u0)− E(ϕc)| ≤ ‖u0 − ϕc‖H(‖u0‖H + ‖ϕc‖H)

≤ ‖u0 − ϕc‖H(‖u0 − ϕc‖H + 2‖ϕc‖H)

≤ γ(γ + 2√
3
c)
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Now,

|F (u0)− F (ϕc)| ≤ ‖u0 − ϕc‖L2

∥∥∥u2 + 2uϕc + ϕ2
c

∥∥∥
L2

≤ ‖u0 − ϕc‖L2

[
‖u0‖L∞‖u0‖L2 + ‖ϕc‖L∞(2‖u0‖L2 + ‖ϕc‖L2)

]

and Lemma 2 together with (10) then yield

|F (u0)− F (ϕc)| ≤ 2γ
[
4√γ(2 + c) + c(4γ + 3c)

]
.

�

According to (102)-(103) and Lemma 9, setting M = v(ξ(T )), we get

M3 − 1
4E(u)M + 1

72F (u) ≤ (2 + c)2ε4

8 .

The conservation of E and F together with Lemma 10 and (96) then lead to

M3 − 1
4E(ϕc)M + 1

72F (ϕc) ≤ 1
4 |E(u0)− E(ϕc)|+

1
72 |F (u0)− F (ϕc)|+

(2 + c)2ε4

8
≤ ε4(2 + c)2(116)

Now, by (5) and (6) one can check that E(ϕc) = c2/3 and F (ϕc) = 2c3/3, so that (116) becomes( c
6 −M

)2 (
M + c

3

)
≤ ε4(2 + c)2 .

Finally, since according to (112) M ≥ 0, we deduce that∣∣ c
6 −M

∣∣ ≤√3
c

(2 + c)ε2

which together with Lemma 5 , Lemma 10 and (96) ensure that

‖u(T )− ϕc(x− ξ(T ))‖2H ≤ ε2
(

4
√

3c(2 + c) + 2(2 + c)ε2
)
≤ 4(2 + c)2ε2 .

This completes the proof of (101) and thus of (15). Note that (16) then follows by using Lemma 2.

6. Stability of a train of well-ordered antipeakons-peakons

In this section, we generalize the stability result to the sum of well ordered trains of antipeakons-peakons
(see fig 2 and fig 3). Let be given N− +N+ ordered speeds ~c = (c−N− , .., c−1, c1, .., cN+) ∈ RN−+N+ with

(117) c−N− < .. < c−1 < 0 < c1 < .. < cN+ .

We set

(118) ‖~c‖1 =
N+∑

j=−N−

|cj | and σ(~c) = min
i∈[[1−N−,N+]]

|ci − ci−1|

where to simplify the notations we set

(119) c0 = 0 .

For α > 0 and L > 0 and ~c satisfying (117)-(118), we define the following neighborhood of all the sums of
N− + N+ well-ordered antipeakons and peakons of speed c−N− , .., c−1, c1, .., cN+ with spatial shifts zj that
satisfied zj − zq ≥ L for j > q.

(120) U(α,L,~c) =
{
u ∈ L2(R), inf

zj−zq>L, j>q

∥∥u− N+∑
j=−N−
j 6=0

ϕcj (· − zj)
∥∥
H < α

}
.
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(a) Two antipeakons at speeds ci = 1, 4. (b) Two peakons at speeds ci = 2, 4.

Figure 2. Summing two antipeakons and peakons profiles at time t = 1 with different speeds.

(a) At time t = 1. (b) At time t = 3.

Figure 3. Three well-ordered trains of antipeakons and peakons profiles at different speeds
ci = 3, 6, 9.

We start by establishing the following lemma that linked the distance in L∞ to the train of antipeakons-
peakons with the distance in H. Indeed, applying Lemma 2 with ψ =

∑N+
j=−N−
j 6=0

ϕcj (· − zj) and observing

that

‖ψ‖L∞ + ‖ψ′‖L∞ ≤ 2
N+∑

j=−N−
j 6=0

‖ϕcj‖L∞ ≤ 2‖~c‖1 ,

we get the following lemma.
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Lemma 11 (L∞ approximations). Let (cj , zj) ∈ R2, j ∈ [[N−, N+]] \ {0}, and u ∈ Y , satisfying Hypothesis
1, then

(121)
∥∥∥u− N+∑

j=−N−
j 6=0

ϕcj (·−zj)
∥∥∥
L∞(R)

≤ 2
∥∥∥u− N+∑

j=−N−
j 6=0

ϕcj (·−zj)
∥∥∥2/3

H

(
1+
√

2
∥∥∥u− N+∑

j=−N−
j 6=0

ϕcj (·−zj)
∥∥∥2/3

H
+2‖~c‖1

)
.

In particular, if moreover ‖u−
∑N+

j=−N−
j 6=0

ϕcj (· − zj)‖H ≤ 1/2 then

(122)
∥∥∥u− N+∑

j=−N−
j 6=0

ϕcj (· − zj)
∥∥∥
L∞(R)

≤ 4(1 + ‖~c‖1)
∥∥∥u− N+∑

j=−N−
j 6=0

ϕcj (· − zj)
∥∥∥2/3

H
.

6.1. Control of the distance between the peakons. In this subsection we want to prove that for a
given ~c satisfying (117) , there exists α = α(~c) and L = L(~c) such that as soon as the solution u(t) stays in
U(α,L,~c) the different bumps of u that are individually close to a peakon or an antipeakon get away from
each others as time is increasing. This is crucial in our analysis since we do not know how to manage strong
interactions.

Lemma 12. (Decomposition of the solution around a sum of antipeakons and peakons). Let u0 ∈ Y satisfying
(17)-(19). There exist α0(~c) > 0, L0(~c) > 0 and K̃(~c) ≥ 1 such that for all 0 < L0 < L if for some T > 0

(123) u ∈ U(α0, L/2,~c) on [0, T ]

then there exist N− + N+ C1-functions x−N−(·) < .. < x−1(·) < x1(·) < .. < xN+(·) defined on [0, T ] such
that for all t ∈ [0, T ] we have,

(124)
∫
R

(
v(t, x)−

N+∑
j=−N−
j 6=0

ρcj
(
x− xj(t)

))
∂xρci

(
x− xi(t)

)
dx = 0, ∀i ∈ [[−N−, N+]],

(125) |ẋi(t)− ci| ≤
σ(~c)

8 , ∀i ∈ [[−N−, N+]]\{0},

and

(126) xi(t)− xj(t) ≥ 3L/4, ∀(i, j) ∈ ([−N−, N+]] \ {0})2, i > j,

where v = (4− ∂2
x)−1u and ρci = (4− ∂2

x)−1ϕci .
Moreover, if

(127) u ∈ U(α,L/2,~c) on [0, t0]

for some 0 < α < α0(~c), then

(128)

∥∥∥∥∥∥∥u(t, ·)−
N+∑

i=−N−
i6=0

ϕci(· − xi(t))

∥∥∥∥∥∥∥
H

≤ K̃α,

(129)

∥∥∥∥∥∥∥v(t, ·)−
N+∑

i=−N−
i6=0

ρci(· − xi(t))

∥∥∥∥∥∥∥
C1(R)

≤ K̃α,

Proof. The strategy is to use a modulation argument to construct N− + N+ C1-functions t 7→ xi(t), i ∈
[[−N−, N+]]\{0} on [0, T ] satisfying the orthogonality conditions (124). The proofs of the above estimates
are direct adaptations of similar estimates proved in Lemma 4. We refer to [10, 8] for details. �
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6.2. Monotonicity property. Thanks to the preceding lemma, for α0 > 0 small enough and L0 > 0 large
enough, one can construct C1-functions x−N−(·) < ... < xN+(·) defined on [0, T ] such that (128), (129), (125)
are satisfied. In this subsection we state the almost monotonicity of functionals that correspond to the part
of the functional E(·) − λF (·) at the right of a curve that travels slightly at the left of the ith bump of u.
To control the growth of the mass of y(t) we will also need an almost monotonicity result on E(·) + γM(·)
at the right of a curve that travels slightly at the left of the smallest positive bump of u. As in [16], we
introduce the C∞-function Ψ defined on R by

(130) Ψ(x) = 2
π

arctan
(

exp(x/6)
)

It is easy to check that Ψ(−·) = 1−Ψ on R, Ψ′ is a positive even function and that there exists C > 0 such

(a) Representative curve of Ψ (b) Representative curves of Ψ′,Ψ′′,Ψ′′′

Figure 4. Profiles of Ψ and its derivatives.

that ∀x ≤ 0,

(131) |Ψ(x)|+ |Ψ′(x)| ≤ C exp(x/6) .

Moreover, by direct calculations (see fig 5), it is easy to check that

(132) |Ψ
′′′
| ≤ 1

2Ψ′ on R,

and that

(133) Ψ′(x) ≥ Ψ′(2) = 1
3π

e1/3

1 + e2/3 , ∀x ∈ [0, 2] .

Setting ΨK = Ψ(·/K), we introduce for j ∈ {1, .., N+} and λ ≥ 0,

(134) Jj,λ(t) = Jj,λ,K
(
t, u(t, x)

)
=
∫
R

([
4v2(t, x) + 5v2

x(t, x) + v2
xx(t, x)

]
− λu3(t, x)

)
Ψj,K(t) dx ,

where Ψj,K(t, x) = ΨK(x− yj(t)) with yj(t), j = 1, .., N+, defined by

(135) y1(t) = x1(0) + c1
2 t−

L

4 ,

and

(136) yi(t) = xi−1(t) + xi(t)
2 , i = 2, .., N+.

Proposition 4. (Almost monotony of the functional energy Ji,λ,K) Let T > 0 and u ∈ C(R+;H1) be the
solution of the DP equation emanating from u0 ∈ Y , satisfying Hypothesis 1 with (17)-(18) on [0, T ]. There
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Figure 5. Profiles of |Ψ′′′| (blue) with respect to 1
2Ψ′ (black).

exist α0(~c) > 0 and L0(~c) > 0 such that if 0 < α < α0(~c) � 1 and L ≥ L0 > 0 then for any 1 ≤ K .
√
L

and 0 ≤ λ ≤ 1
2c1

,

(137) Jj,λ,K(t)− Jj,λ,K(0) ≤ O(e− L
48K ), ∀j ∈ {1, ..., N+}, ∀t ∈ [0, T ] .

The proof of this proposition relies on the following virial type identities that are proven in the appendix.

Lemma 13. (Viral type identity). Let u ∈ C(R+;H∞(R)) be a solution of equation (4). For any smooth
function g : R 7→ R, it holds

(138) d

dt

∫
R

(4v2 + 5v2
x + v2

xx)(t, x)gdx = 2
3

∫
R
u3(t, x)g′dx− 4

∫
R
u2(t, x)v(t, x)g′dx

+ 5
∫
R
v(t, x)h(t, x)g′dx+

∫
R
vx(t)hx(t, x)g′dx,

(139) d

dt

∫
R
u3(t, x)gdx = 3

4

∫
R
u4(t, x)g′dx+ 9

4

∫
R

(h2 − h2
x)(t, x)g′dx,

and

(140) d

dt

∫
R
yg dx =

∫
R
yug′ dx+ 3

2

∫
R

(u2 − u2
x)g′ dx

where y = (1− ∂2
x)u, v = (4− ∂2

x)−1u, and h = (1− ∂2
x)−1u2.

Proof of Proposition 4 We first note that combining (136) and (125), it holds for j = 1, ..., N+,

(141) 3
2cN+ ≥ ẏj(t) ≥

c1
2 .

Now, using (134), (138) and (139) with g = Ψj,λ,K(· − yj(t)), j ≥ 1, one gets
d

dt
Jj,λ,K(t) = −ẏj(t)

∫
R

(4v2 + 5v2
x + v2

xx)Ψ′j,K(x− yj(t))dx+
∫
R

(2
3u− 4v)u2Ψ′j,Kdx(142)

+
∫
R

(5vh+ vxhx)Ψ′j,Kdx+ λẏj(t)
∫
R
u3Ψ′j,Kdx

− 3
4λ
∫
R
u4Ψ′j,Kdx−

9
4λ
∫
R

(h2 − h2
x)Ψ′j,Kdx

= −ẏj(t)
∫
R
(4v2 + 5v2

x + v2
xx)Ψ′j,K(x− yj(t))dx+ F1 + F2 + ...+ F5.(143)
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We claim that for k = 1, 2, 3, it holds

(144) Fk ≤
c1
10

∫
R

(4v2 + 5v2
x + v2

xx)Ψ′j,K(x− yj(t))dx+ C

K
e−

1
6K (σ(~c)t+L/8).

For all t ∈ [0, T ] and each j ∈ [[1, N+]] divide R into two regions Dj = Dj(t) and Dc
j with

Dj(t) = [xj−1(t) + L/4, xj(t)− L/4] for j ∈ [[2, N+]] and D1(t) = [x1(0)− L/2, x1(t)− L/4] .
First, in view of (125) and (135)-(136), one can check that for x ∈ Dc

j(t), we have
(145) |x− yj(t)| ≥ σ(~c) t+ L/8,
with σ(~c) defined in (118). Indeed, for j ∈ [[2, N+]] it holds

|x− yj(t)| ≥
xj(t)− xj−1(t)

2 − L/4 ≥ cj − cj−1

4 t+ L/8 ≥ σ(~c)t+ L/8.

and for j = 1,
|x− y1(t)| ≥ c1

4 t+ L/4 ≥ σ(~c)t+ L/8.
Second, noticing that
(146) u2 = (4v − vxx)2 ≤ 20v2 + 5v2

xx ≤ 5(4v2 + 5v2
xx + v2

xx),
and proceeding as for the estimate (43) with the help of (128)-(129) and the exponential decay of ϕcj on
Dj , it holds

‖v(t, ·)‖C1(Dj) + ‖u(t, ·)‖L∞(Dj) .
N+∑

j=−N−
j 6=0

‖ϕcj (· − xj(t))‖L∞(Dj) + ‖u−
N+∑

j=−N−
j 6=0

ϕcj (· − xj(t))‖L∞(Dj)

+
N+∑

j=−N−
j 6=0

‖ρcj (· − xj(t))‖L∞(Dj) + ‖v −
N+∑

j=−N−
j 6=0

ρcj (· − xj(t))‖L∞(Dj)

≤ O(e−L/8) +O(
√
α) .(147)

Now to estimate F1, we note that combining (145)-(147) and the exponential decay of Ψ′j,K on Dc
j , we

get

F1 ≤ 4(‖u‖L∞(Dj) + ‖v‖L∞(Dj))
∫
R
u2Ψ′j,Kdx+ 4(‖u‖L∞(Dc

j
) + ‖v‖L∞(Dc

j
))‖Ψ′j,K‖L∞(Dc

j
)‖u‖2L2(R)

≤ 20(‖u‖L∞(Dj) + ‖v‖L∞(Dj))
∫
R

(4v2 + 5v2
x + v2

xx)Ψ′j,Kdx+ 20
K
‖u0‖3He−

1
6K (σ(~c)t+L/8),

where we used (39) and that, thanks to (5) and (10),

‖v‖L∞(R) ≤
1√
2
‖v‖H1 ≤ 1

2
√

2
‖u‖H = 1

2
√

2
‖u0‖H .

Therefore, for 0 < α < α0(~c)� 1 small enough and L > L0 > 0 large enough, it holds

F1 ≤
c1
10

∫
R
(4v2 + 5v2

x + v2
xx)Ψ′j,K(x− yj(t))dx+ C

K
e−

1
6K (σ(~c)t+L/8).

Let us now tackle the estimate of F2. We first remark that from the definition of Ψ in Section 6.2, and in
particular (132), we have for K ≥ 1,

(148) (1− ∂2
x)Ψ′j,K ≥ (1− 1

2K2 )Ψ′j,K ⇒ (1− ∂2
x)−1Ψ′j,K ≤

(
1− 1

2K2

)−1Ψ′j,K
and, by Young’s convolution estimates and (10),

(149) ‖h‖L2 ≤ 1
2‖e
−|·|‖L2‖u2‖L1 ≤ 1

2‖u‖
2
L2 ≤ 2‖u‖2H .

We also notice that

h(x) = 1
2e
−x
∫ x

−∞
ex
′
u2(x′) dx′ + 1

2e
x

∫ x

−∞
e−x

′
u2(x′) dx′,
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and
hx(x) = −1

2e
−x
∫ x

−∞
ex
′
u2(x′) dx′ + 1

2e
x

∫ x

−∞
e−x

′
u2(x′) dx′,

so that
(150) |hx(x)| ≤ h(x) ∀x ∈ R.

and thus

(151) F2 ≤
∫
R

(5v + |vx|)hΨ′j,K .

Therefore, according to (146)-(147) and (148)-(151), we have

F2 ≤ 6‖v‖C1(Dj)

∫
R
hΨ′j,Kdx+ ‖Ψ′j,K‖L∞(Dc

j
)‖h‖L2(5‖v‖L2 + ‖vx‖L2)

≤ 6‖v‖C1(Dj)

∫
R
u2(1− ∂2

x)−1Ψ′j,Kdx+ 2‖Ψ′j,K‖L∞(Dc
j
)‖u‖2H(5‖v‖L2 + ‖vx‖L2)

≤ 30‖v‖C1(Dj)
(
1− 1

2K2

)−1
∫
R

(4v2 + 5v2
x + v2

xx)Ψ′j,Kdx+ 6‖Ψ′j,K‖L∞(Dc
j
)‖u‖3H .

Using (10) and the exponential decay of of Ψ′j,K on Dc
j with (145), we thus get

F2 ≤ 30
(
1− 1

2K2

)−1‖v‖C1(Dj)

∫
R

(4v2 + 5v2
x + v2

xx)Ψ′j,Kdx+ 6‖u0‖3He−
1

6K (σ(~c)+L/8),

so that by (151) F2 satisfies (144) for 0 < α < α0(~c)� 1 small enough and L > L0 � 1 large enough.

To estimate F3, remark that using (141) and (146) one may write

F3 ≤
15
2 λcN+‖u‖L∞(Dj)

∫
R
(4v2 + 5v2

x + v2
xx)Ψ′j,Kdx+ 3

2λcN+‖Ψ′j,K‖L∞(Dc
j
)‖u‖L∞(R)‖u‖2L2(R) .

Using that, by hypothesis 0 ≤ λ ≤ (2c1)−1, the exponential decay of Ψ′j,K on Dc
j , (10) and (39), we deduce

that F3 satisfies (144) for 0 < α < α0(~c)� 1 small enough and L > L0(~c)� 1 large enough.

Finally, Ψ′j,K ≥ 0, λ ≥ 0 and (150) ensure that F4 + F5 is non positive. Gathering (141)-(144) we thus
infer that

d

dt
Jj,λ,K(t) ≤ C

K
‖u0‖3He−

1
6K (σ(~c)t+L/8).

Integrating this inequality between 0 and t, (137) follows and this proves the proposition for smooth initial
solutions. Finally, approximating the initial data as in (25), the strong continuity result with respect to
initial data (33) in Proposition 2 ensures that (137) also hold for u0 ∈ Y satisfying Hypothesis 1. �

We will also need the following monotonicity result on E+ γM at the right of the curve y1(·). We introduce
the function φ defined by

(152) Φ(x) =

 0 for x ≤ 0
x/2 for x ∈ [0, 2]

1 for x ≥ 2

Lemma 14. Let u ∈ C([0, T ];H∞∩L∞(0, T ;Y ) be the solution to (4) satisfying Hypothesis 1 and (123) for
some L > 0. Assume moreover that u satisfies

(153) x0(t) ≤ x1(0)− L/4 + c1t

2 , ∀t ∈ [0, T ],

where x1(·) is defined in Lemma 12. There exists L0 = L0(~c) > 0 such that if L ≥ L0 then on [0, T ], it holds
(154)∫
R

(
4v2+5v2

x+v2
xx

)
(t)Ψ(·−y1(t))+ c1

29 yΦ(·−y1(t)) ≤
∫
R

(
4v2

0+5v2
0,x+v2

0,xx

)
Ψ(·−y1(0))+ c1

29 y(0)Φ(·−y1(0))+O(e− L
48 )

where y1(·) is defined in (135) and Ψ is defined in (130).
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Proof. Applying (138) with g(t, x) = Ψ(x − y1(t)) and (140) with g(t, x) = Φ(x − y1(t)) and recalling the
definition (135) of y1(·), we get

(155) d

dt

[
E(u) + c1

29M(u)
]

= −c12

∫
R

[
Ψ′(4v2 + 5v2

x + v2
xx) + c1

29 Φ′y
]

+ 3c1
210

∫
R

(u2 − u2
x)φ′ + c1

29

∫
R
uyΦ′ + J

where thanks to (144),

J =
∫
R
(2
3u− 4v)u2Ψ′dx+

∫
R

(5vh+ vxhx)Ψ′dx

≤ c1
24

∫
R
(4v2 + 5v2

x + v2
xx)Ψ′ + C ‖u0‖3He−

1
6 (σ(~c)+L/8) .(156)

We first observe that

(157)
∫
R

(u2 − u2
x)Φ′ ≤

∫
R
u2Φ′ =

∫
R

(4v − vxx)2Φ′ ≤ 5
∫
R

(
4v2 + 5v2

x + v2
xx

)
Φ′ ,

where, according to the definition (152) of Φ, it holds

(158) 3c1
210 5Φ′ ≤ c1

4 Ψ′ on R .

Second, (153) together with (135) and the definition (152) of Φ ensure that y(t, ·) is non negative on the
support of Φ′(· − y1(t)) that is [y1(t), y1(t) + 2]. Therefore (147) leads to

c1
29

∫
R
uyΦ′ ≤ c1

29 ‖u‖L∞(]y1(t),y1(t)+2[)

∫
R
yΦ′dx ≤ c1

211

∫
R
yΦ′ dx .(159)

Therefore (157)-(159) and(128) we obtain

−ẏ1(t)
∫
R

[
Ψ′(4v2 + 5v2

x + v2
xx) + c1

29 Φ′y
]

+ 3c1
210

∫
R

(u2− u2
x)Φ′+ c1

29

∫
R
uyΦ′ ≤ −c14

∫
R

Ψ′(4v2 + 5v2
x + v2

xx)dx

that leads to
d

dt

[
E(u) + c1

29M(u)
]
≤ C ‖u0‖3He−

1
6 (σ(~c)+L/8) .

This proves (154) by integrating in time. �

6.3. Control of the growth of ‖y‖L1 . The control of the growth of the mass of y(t) is more delicate than
in the case of the stability of a single peakon. Indeed, in this last case we deeply use that u stays L∞-close to
the peakon that is positive and thus the negative part of u stays small. In the present case, this is of course
no more true because our train of antipeakon-peakons is no more positive. To overcome this difficulty we
make use of the monotony argument for E(u) + γM(u) proven in Lemma 14.

Proposition 5. Let u0 ∈ Y ∩ H∞(R) satisfying Hypothesis 1 and u ∈ C(R+;H∞) ∩ L∞loc(R+;Y ) be the
associated solution to DP given by Proposition 2. There exist α0 = α0(~c) and L0 = L0(~c) such that if

(160) u(t) ∈ U(α,L,~c) , ∀t ∈ [0, T ]

with 0 < α ≤ α0 and L ≥ L0 then

(161) ‖y(t, ·)‖L1(R) ≤ e17+2−5(c1∧|c−1|)t (‖~c‖1 + 1)3

(c1 ∧ |c−1|)2 (1 + ‖y0‖L1) , ∀t ∈ [0, T ].

Proof. In view of Lemma 12, there exists N−+N+ C1-functions x−N−(·) < .. < x−1(·) < x1(·) < .. < xN+(·)
defined on [0, T ] that satisfy (125)-(126) and (128)-(129).

We separate two cases depending on the place of x0(0) with respect to x1(0).
Case 1. x0(0) ≤ x1(0)− L/3. Then according to (125), (128), the definition (32) of x0(·) and a continuity
argument, x0(t) ≤ x1(t)− L/3 and in particular ẋ0(t) ≤ c1/2 for all t ∈ [0, T ]. This ensures that

x0(t) + L/12 ≤ y1(t) = x1(0)− L/4 + c1
2 t, ∀t ∈ [0, T ],
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where y1(·) is defined in (135).
Therefore Lemma 14 leads to∫
R

(4v2+5v2
x+v2

xx)Ψ(·−y1(t))+ c1
29

∫
R
yφ(·−y1(t)) ≤

∫
R
(4v2+5v2

x+v2
xx)Ψ(·−y1(0))+ c1

29

∫
R
y(0)φ(·−y1(0))+O(e−

L0
48 )

Making use of the conservation of E and of the definition of Ψ, if follows that for L large enough,∫ +∞

y1(t)+2
y(t, x) dx ≤ 29

c1
E(u0) + ‖y0‖L1 +O(e−

L0
48 ) ≤ 1 + 29

c1
E(u0) + ‖y0‖L1 , ∀t ∈ [0, T ] .

On the other hand, according to (28), ux ≥ −u on ]x0(t),+∞[ and by Lemma 11 ∀t ∈ [0, T ] we have,

u(t) ≤
N+∑
i=1

ci+O(
√
α0) on [y1(t)+2,+∞] and u(t) ≤ O(

√
α0)+O(e−L0/8) ≤ O(

√
α0) on [x0(t), y1(t)+2] ,

where to get the last inequality we take L0 > 0 such that O(e−L0/8) ≤ √α0. Therefore, according to (7)
and (38), we have

d

dt

∫
R
y+(t, x)dx = d

dt

∫ +∞

q(t,x0)
y(t, x)dx = −2

∫ +∞

x0(t)
ux(t, x)y(t, x)dx

≤ 2
∫ y1(t)+2

x0(t)
u(t, x)y(t, x)dx+ 2

∫ +∞

y1(t)+2
u(t, x)y(t, x)dx

≤ 2
(
‖~c‖1 +O(

√
α0)
)(

1 + 29

c1
E(u0) + ‖y0‖L1

)
+O(

√
α0)

∫
R
y+(t, x)dx.

Hence, Grönwall’s inequality yields ∀t ∈ [0, T ]

(162)
∫
R
y+(t, x)dx ≤ eC

√
α0t
(
‖y0‖L1 + 2t

(
‖~c‖1 + 1

)(
1 + 29

c1
E(u0) + ‖y0‖L1

))
,

for some universal constant C > 0. Since, according to Proposition 1, M(u) =
∫
R
y is conserved for positive

times, it follows that

(163) ‖y(t, ·)‖L1(R) ≤ 2eC
√
α0t
(
‖y0‖L1 + 2t

(
‖~c‖1 + 1

)(
1 + 29

c1
E(u0) + ‖y0‖L1

))
.

Taking α0 ≤ (c1 ∧ |c−1|)2(C 210)−2 we thus deduce that

‖y(t, ·)‖L1(R) ≤ 2e2−10(c1∧|c−1|)t
(
‖y0‖L1 + 2t

(
‖~c‖1 + 1

)(
1 + 29

c1
E(u0) + ‖y0‖L1

))
.

Since for t ≥ 0, te2−10(c1∧|c−1|)t ≤ te2−6(c1∧|c−1|)te2−5(c1∧|c−1|)t ≤ e2−5(c1∧|c−1|)t

2−6(c1∧|c−1|) e
−1, it follows that

(164) ‖y(t, ·)‖L1(R) ≤ 2e2−5(c1∧|c−1|)t
(
‖y0‖L1 + 27

(
‖~c‖1 + 1

)
(c1 ∧ |c−1|)

(
1 + 29

(c1 ∧ |c−1|)
E(u0) + ‖y0‖L1

))
.

Finally, taking α0 ≤ 1, (160) ensures that E(u0) ≤ (‖~c‖1 + 1)2, and noticing that
‖~c‖1 + 1
c1 ∧ |c−1|

≥ 1,

we eventually get (161).
Case 2: x0(0) ≥ x1(0)− L/3. Then by (126), we must have x0(0) ≥ x−1(0) + L/3.
In this case, we make use of the fact that the DP equation is invariant by the change of unknown

u(t, x) 7→ ũ(t, x) = −u(t,−x). Clearly ũ(0) also satisfies hypothesis 1 with x̃0(t) = −x0(t). Morever, ũ
satisfies (128) on [0, T ] with N− and N+ respectively replaced by Ñ− = N+ and Ñ+ = N−, ci replaced by
c̃i = −c−i and xi(t) replaced by x̃i(t) = −x−i(t). In particular, it holds

x̃0(0) = −x0(0) ≤ −x−1 − L/3 = x̃1(0)− L/3,
and thus ũ satisfies the hypothesis of Case 1. Therefore ỹ = ũ− ũxx = −y(t,−·) satisfies (164) with c−1 and
c1 respectively replaced by c̃−1 = −c1 and c̃1 = −c−1. This completes the proof of (161) . �
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Let us now state the adaptation of Proposition 3 in the present case. The role of x(·) will be now play
by x1(·) that localizes the slowest peakon. The proof is essentially the same as the one of Proposition 3.
However, in the present case (48) is not available anymore on R but we actually only need that it holds on
[x−1(t) + L/4,+∞[ that is verified since

∑N+
j=−N−
j 6=0

ϕcj ≥ O(√α0) +O(e−L0/8) on this interval.

Proposition 6. There exists α0(~c) > 0 and L0(~c) > 0 such that for any u0 ∈ Y ∩ H∞(R) satisfying
Hypothesis 1, if the solution u ∈ C(R+;H∞(R)

)
emanating from u0 satisfies for some 0 < α < α0, L ≥ L0

and T > 0,

(165) u ∈ U
(
α,L/2,~c

)
on [0, T ],

then for all t ∈ [0, T ],
(166) ‖y−(t, ·)‖L1(]x1(t)− 1

16 c1t,+∞[) ≤ e−c1t/8‖y0‖L1(R),

where y− = max(−y, 0), and x1(·) is the C1-function constructed in Lemma 12. Moreover it holds

(167) u(t, ·)− 6v(t, ·) ≤ e27− c1t
32

(‖~c‖1 + 1)3

(c1 ∧ |c−1|)2 (1 + ‖y0‖L1) on ]x1(t)− 8,+∞[ ,

where v = (4− ∂x)−1u .

Proof. As mentioned above we mainly proceed as in Proposition 3 but with x(·) replaced by x1(·). Hence,
for t ∈ [0, T ], we separate two possible cases according to the distance between x0(t/2) and x1(t/2).
Case 1:
(168) x0(t/2) < x1(t/2)− ln(3/2).
In this case, the same continuity argument as in the proof of Proposition 3 ensures that

(169) x1(t)− x0(t) ≥ ln(3/2) + c1
16 t .

This proves that y−(t, ·) = 0 on ]x1(t)− 1
16c1t,+∞[ and thus that (166) holds in this case.

Case 2:
(170) x0(t/2) ≥ x1(t/2)− ln(3/2).
Then, as in the proof of Proposition 3, (166) is a consequence of the two following estimates :

(171)

∣∣∣∣∣
∫ x0(t/2)

x0(t/2)−ln 2
y(t/2, s)ds

∣∣∣∣∣ ≤ e− 1
4 c1t‖y0‖L1(R)

and

(172)

∣∣∣∣∣
∫ x0(t)

x1(t)−ln(3/2)− c1
16 t

y(t, s) ds

∣∣∣∣∣ ≤ ec1t/8

∣∣∣∣∣
∫ x0(t/2)

x0(t/2)−ln 2
y(t/2, s) ds

∣∣∣∣∣ .
(171) can be obtained exactly as (75) in Proposition 3. We thus focus on (172) where there is the main change.
Indeed, we are not allowed to use (48) in order to prove the crucial estimate (81). The idea to overcome this
difficulty is to notice that actually we only need such estimate from below on u in [x−1(t) + L/4,+∞[.

Indeed, let qt be the flow-map defined in (79). For L large enough, (126) and (170) ensure that x =
qt/2(t/2, x) ≥ x−1(t/2) + L/2 as soon as x ∈ [x0(t/2)− ln 2, x0(t/2)]. Therefore, by (125), (129), (122) and
a continuity argument, for τ ∈ [t/2, T ] it holds

qt/2
(
τ, x
)
− x−1(τ) ≥ L/2, ∀x ∈ [x0(t/2)− ln 2, x0(t/2)] .

On the other hand, (129) and (122) ensure that for all τ ∈ [0, T ],
u(τ, x) ≥ −2−5c1 on [x−1(τ) + L/4,+∞[ .

Combining the two above estimates with (28) we obtain as in Proposition 3 that for any τ ∈ [t/2, t] and any
x ∈ [x0(t/2)− ln 2, x0(t/2)],

(173) ∂xqt/2(t, x) ≥ exp
(
−
∫ t

t/2
2−5c1 ds

)
≥ e−2−4c1t .
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Once we have the above estimate, the rest of the proof of (166) follows the same lines as in the proof of
Proposition 3.

Finally to prove (167), we take α0 and L0 that are suitable for Proposition 5 . (87) together with (166) ,
(161) ensure that for x ≥ x1(t)− 8 it holds

6v(x)− u(x) ≥ −1
2

∫ x1(t)− c1
16 t

−∞
e−|x−z|y−(z) dz − 1

2

∫ +∞

x1(t)− c1
16 t

e−|x−z|y−(z) dz

≥ −e0∧(8− c1
16 t)e2−5(c1∧|c−1|)t e17 (‖~c‖1 + 1)3

(c1 ∧ |c−1|)2 (1 + ‖y0‖L1)

−1
2e
−c1t/8‖y0‖L1(R)

≥ −e18 e9− c1t
32

(‖~c‖1 + 1)3

(c1 ∧ |c−1|)2 (1 + ‖y0‖L1) .

�

6.4. An approximate solution. A new difficulty with respect to the case of a single peakon will be that

t 7→
N+∑

j=−N−
j 6=0

ϕcj (· − z0
j − cjt)

is not an exact solution of the DP equation. The aim of the following lemma is to overcome this difficulty
by proving that if L > 0 is large enough then this is an approximate solution with an error in L2(R) of order
e−L/2 on a time interval of order ln(L3/4).

Lemma 15. Let be given N− ∈ N∗ negative velocities c−N− < .. < c−1 < 0, N+ ∈ N∗ positive velocities
0 < c1 < .. < cN+ and z0

−N− < ..z0
−1 < z0

1 < .. < z0
N+

. There exists L0 > 0 only depending on ~c such that for
any L ≥ L0 if
(174) z0

i − z0
j ≥ L for i > j

then the solution u to (4) emanating from u0 =
N+∑

j=−N−
j 6=0

ϕcj (· − z0
j ) satisfies

sup
t∈[0,25(c1∧|c−1|)−1 ln(L3/4)]

∥∥∥u(t)−
N+∑

j=−N−
j 6=0

ϕcj (· − z0
j − cjt)

∥∥∥
H
≤ e−L/2 .

Proof. We set u(t) =
N+∑

j=−N−
j 6=0

ϕcj (· − z0
j − cjt). Using that ϕc(x− ct) is a solution to (4), one can check that

u satisfies

(175) ut + uux + 3
2∂x(1− ∂2

x)−1(u2) = F

with
F :=

∑
i<j

cicj

(
1 + 3(1− ∂2

x)−1
)
∂x

(
ϕ(· − z0

i − cit)ϕ(· − z0
j − cjt)

)
.

On account of (174), straightforward calculations lead to

sup
t∈[0,T ]

∥∥∂x(ϕ(· − z0
i − cit)ϕ(· − z0

j − cjt)
)
‖L1 + ‖∂2

x

(
ϕ(· − z0

i − cit)ϕ(· − z0
j − cjt)

)∥∥
M . (L+ 1)e−2L/3 .

so that
(176) sup

t∈R+

‖F (t)‖L1 + ‖Fx(t)‖M . (L+ 1)e−2L/3 .

Note also that for all t ≥ 0 it holds supt∈[0,T ] ‖(u− uxx)(t)‖M = ‖~c‖1.
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Now, since u(0) = u0 clearly satisfies Hypothesis 1, the solution u to (4) emanating from u0 = u(0) exists
for all positive times in Y . For T > 0 we set

MT = sup
t∈[0,T ]

‖u− uxx‖M .

At this stage it s worth noticing that Proposition 5 ensures that

(177) MT ≤ e17+2−5(c1∧|c−1|)T (‖~c‖1 + 1)4

(c1 ∧ |c−1|)2 .

Setting w = u − u, using exterior regularization and proceeding as in [3] (see also [9] for the DP equation
pp: 480-482), we get on [0, T ]

d

dt

(∫
R
|ρn ∗ w|+ |ρn ∗ wx|

)
.(MT + ‖~c‖1)

(∫
R
|ρn ∗ w|+ |ρn ∗ wx|

)
+
∫
R

(|ρn ∗ F |+ |ρn ∗ Fx|) +Rn(t)

where (ρn)n≥0 is defined in (24),

Rn(t)→ 0 as n→ +∞ and |Rn(t)| . 1, n ≥ 1, t ∈ R+.

Therefore Gronwall inequality and since w(0) = wx(0) = 0, yields to

(178)
∫
R
|ρn ∗ w(t)|+ |ρn ∗ wx(t)| .

∫ t

0
eC(MT+‖~c‖1)(t−s)

(∫
R
|ρn ∗ F (s)|+ |ρn ∗ Fx(s)|+ |Rn(s)|

)
ds .

Letting n tends to +∞ and making use of (176) and then (177), we thus get that for L large enough

sup
t∈[0,T ]

‖w(t)‖H ≤ sup
t∈[0,T ]

‖w(t)‖L2 ≤ sup
t∈[0,T ]

‖w(t)‖W 1,1 ≤ eC(1+MT+‖~c‖1)T e−5L/8 .(179)

This estimate together with (177) ensure that there exists L0(~c) ≥ 1 such that for all L > L0,

(180)
∥∥∥u(t)− u(t)

∥∥∥
H
≤ e−L/2

as soon as

(181) 0 ≤ t ≤ 25(c1 ∧ |c−1|)−1 ln(L3/4) .

Indeed, as soon as (180)-(181) are satisfied, (177) gives

MT ≤ e17 (‖~c‖1 + 1)4

(c1 ∧ |c−1|)2L
3/4

so that (179) leads to
‖u(t)− u(t)‖H ≤ exp

(
C1 + C2 L

3/4 ln(L3/4)
)
e−5L/8 .

where C1 = C1(~c) > 0 and C2 = C2(~c) > 0. This gives (180) for L large enough and proves the result by a
continuity argument. �

6.5. Two global estimates. The following generalization of the quadratic identity in Lemma 5 was proved
in [10].

Lemma 16. (Global quadratic identity) Let u ∈ L2(R) and assume that z−N− < .. < z−1 < z1 < .. < zN+

with zi − zj ≥ L/2 for i > j. Then it holds
(182)

E(u)−
N+∑

i=−N−

E(ϕci) =

∥∥∥∥∥∥u−
N+∑

i=−N−

ϕci(· − zi)

∥∥∥∥∥∥
2

H

+4
N+∑

i=−N−

ci

(
v(zi)−

ci
6

)
+O(e−L/2) i ∈ [[−N−, N+]]\{0}.

where v = (4− ∂2
x)−1u.
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Proof. First, according to the definition of the energy space (5) we notice that∥∥∥∥∥∥u−
N+∑

i=−N−

ϕci(· − zi)

∥∥∥∥∥∥
2

H

= E(u) + E

 N+∑
i=−N−

ϕci(· − zi)

− 2
N+∑

i=−N−

〈
(1− ∂2

x)ϕci(· − zi), v
〉

= E(u) + E

 N+∑
i=−N−

ϕci(· − zi)

− 4
N+∑

i=−N−

civ(zi).(183)

where we used that (1− ∂2
x)ϕci(· − zi) = 2ciδzi with δzi the Dirac mass applied at point zi. However,

E

 N+∑
i=−N−

ϕci(· − zi)

 =
N∑
i=1

N∑
j=1
〈(1− ∂2

x)ϕci(· − zi), ρcj (· − zj)〉

= 2
N+∑

i=−N−

N+∑
j=−N−

ciρcj (zi − zj)

= 1
3

N+∑
i=−N−

c2i + 2
N+∑

i=−N−

ci

N+∑
j=−N−
j 6=i

ρcj (zi − zj) .(184)

From the definition of ρcj in (9) and the fact that zi − zj ≥ 2L/3 for i > j, it follows that∣∣∣ N+∑
j=−N−
j 6=i

ρcj (zi − zj)
∣∣∣ =

∣∣∣ N+∑
j=−N−
j 6=i

1
4

(
e−2|·| ∗ ϕcj (· − zj)

)
(zi)
∣∣∣ =

∣∣∣ N+∑
j=−N−
j 6=i

cj
3 e
−|zi−zj | − cj

6 e
−|zi−zj |

∣∣∣
≤ ‖~c‖1e−2L/3 ≤ O(e−L/2)(185)

Gathering (183), (184), (185) with E(ϕci) = c2i /3 then (182) holds for L > L0 � 1 large enough. �

The following lemma is an adaptation of Lemma 6 in the present case.

Lemma 17. Let u ∈ L∞(R) ∩ L2(R) such that

(186)
∥∥∥u− N+∑

j=−N−
j 6=0

ϕci(· − zj)
∥∥∥
L∞(R)

≤ 10−5

N− +N+
(c1 ∧ |c−1|)

for some c−N− < .. < c−1 < 0 < c1 < .. < cN+ and some Z ∈ RN−+N+ with zi − zj ≥ 2L/3 for all
i > j. Then there exists L0 > 0 only depending on ~c, such that for L > L0 � 1 large enough, the function
v = (4 − ∂2

x)−1u has got a unique point of local maximum (resp. minimum) ξi on Θzi = [zi − 6.7, zi + 6.7]
for any 1 ≤ i ≤ N+(resp. −N− ≤ i ≤ −1). Moreover,

(187)

∥∥∥∥∥∥∥u−
N+∑

j=−N−
j 6=0

ϕcj (· − ξj)

∥∥∥∥∥∥∥
H

≤

∥∥∥∥∥∥∥u−
N+∑

j=−N−
j 6=0

ϕcj (· − zj)

∥∥∥∥∥∥∥
H

+O(e−L/4) .

and
(188) ξi ∈ Vi = [zi − ln

√
2, zi + ln

√
2], ∀i ∈ [[−N−, N+]] \ {0} .

Finally, for any (y1, .., yN+) ∈ RN+ , such that
z−1 + L/4 < y1 < z1 < y2 < z2 < ·· < yN+ < zN+

with |yi − zj | ≥ L/4 for (i, j) ∈ [[1, N+]]2 it holds

(189) sup
x∈]yi,yi+1[\Θzi

(
|u(x)|, |v(x)|, |vx(x)|

)
≤ c1 ∧ |c−1|

100 , i ∈ [[1, N+]] ,

where we set yN++1 = +∞.
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Proof. Since zi − zj ≥ 2L/3 for all i > j it holds

(190)
N+∑

j=−N−
j 6=0

ρcj (x− zj) = ρci(x− zi) + ‖~c‖1O(e−L/4), ∀x ∈ [zi − L/3, zi + L/3] .

Therefore repeating the proof of Lemma 6 on each [zi−L/3, zi+L/3], we obtain that, for L large enough, the
function v = (4−∂2

x)−1u has got a unique point of maximum (resp. minimum) ξi on Θzi = [zi−6.7, zi+6.7]
for any 1 ≤ i ≤ N+(resp. −N− ≤ i ≤ −1) and that moreover ξi ∈ Vi. In particular, ξi − ξj ≥ L/2 for i > j
and thus applying (182) for the z′is and then the ξ′is, (187) follows.

�

6.6. Beginning of the proof of Theorem 2. Let ~c and A > 0 be fixed and let B = B(~c,A) ≥ 1 to be
fixed at the end of this section. Let α̃0 be the minimum and L̃0 be the maximum of respectively all the
α0(~c) and all the L0(~c) appearing in the preceding statements of Section 6. We set

(191) ε0 = min
(10−20

BK̃

( c1 ∧ |c−1|
(1 + ‖~c‖1)(N− +N+)

)2
, α̃0

)
.

where K̃ is the constant depending on ~c that appear in Lemma 12. For α > 0 we also set

(192) Tα = max
( 25

c1 ∧ |c−1|)
(9 + ln(A0

α2 )), 0
)

with
A0 = e27 (‖~c‖1 + 1)3

(c1 ∧ |c−1|)2 (1 +A) .

For 0 < ε < ε0 and L > L̃0, we set α = B(ε+L−
1
8 ). Since α ≥ L−1/8, we have ln(1/α2) ≤ ln(L1/4) and thus

Tα ≤
25

c1 ∧ |c−1|
ln(L3/4) ,

as soon as L ≥ A4
0 ∨ e36. Therefore we set

(193) L0 = max(ε−8
0 ,A4

0, L̃0) .

According to Lemma 15, for L ≥ L0, this ensures that the solution u to (4) emanating from u0 =
N+∑

j=−N−
j 6=0

ϕcj (·−

z0
j ) satisfies ∥∥u(t)−

N+∑
j=−N−
j 6=0

ϕcj (x− z0
j − cjt)

∥∥
H ≤ e

−L/2 ≤ L−1/8, ∀t ∈ [0, Tα] .

On the other hand, according to the continuity with respect to initial data (see Proposition 2), for any ε > 0
there exists δ = δ(A, ε, c) > 0 such that for any u0 ∈ Y satisfying Hypothesis 1 and (17)-(18) with A and δ,
it holds

‖u(t)− u(t)‖H ≤ ε, ∀t ∈ [0, Tα] ,
where u ∈ C(R+;H1(R)) is the solution of the (D-P) equation emanating from u0. Gathering the two above
estimates we thus infer that

(194)
∥∥u(t)−

N+∑
j=−N−
j 6=0

ϕcj (x− z0
j − cjt)

∥∥
H ≤ ε+ L−1/8, ∀t ∈ [0, Tα] .

So let u0 ∈ Y ∩H∞(R) that satisfies Hypothesis 1 and (17)-(18) with A, δ and L ≥ L0. (194) together
with the definitions (191)-(193) and Lemma 11 then ensure that

(195)
∥∥u(t)−

N+∑
j=−N−
j 6=0

ϕcj (x− z0
j − cjt)

∥∥
L∞

<
10−5

N− +N+
(c1 ∧ |c−1|), ∀t ∈ [0, Tα],
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Applying Lemma 17 with the zj = z0
j + cjt we obtain the existence of the local maxima (or minima) ξj(t).

Note that (188) ensures that ξi(t)− ξj(t) ≥ 2L/3 for i > j and (189) ensures that ξi(t) is the only point of
maximum (resp. point of minimum) of v(t) = (4 − ∂2

x)−1u(t) on [ξi(t) − L/4, ξi(t) + L/4] for i ∈ [[1, N+]]
(resp. i ∈ [[N−,−1]]).

By a continuity argument it remains to prove that for any T ≥ Tα, if

(196) u(t) ∈ U
(

2B(ε+ L−1/8), L/2
)

on [0, T ]

then there exists ξN−(T ) < ..ξ−1(T ) < ξ1(T ) < ..ξN+(T ) with ξi(T )− ξj(T ) ≥ 2L/3 for i > j such that

(197)
∥∥u(t)−

N+∑
j=−N−
j 6=0

ϕcj (x− ξj(T ))
∥∥
H ≤ B(ε+ L−1/8), ∀t ∈ [0, T ] .

and ξi(T ) is the only point of global maximum (resp. point of global minimum) of v(t) on [ξi(T )−L/4, ξi(T )+
L/4] for i ∈ [[1, N+]] (resp. i ∈ [[N−,−1]]). Now it is worth noticing that (196) together with the definitions
(191)-(193) and Proposition 6 ensure that there exist xN−(T ) < ..x−1(T ) < x1(T ) < ..xN+(T ) with xi(T )−
xj(T ) ≥ 3L/4 for i > j such that

(198)
∥∥u(t)−

N+∑
j=−N−
j 6=0

ϕcj (x− xj(t))
∥∥
H ≤ K̃B(ε+ L−1/8), ∀t ∈ [0, T ] .

and Lemma 11 together with (191)-(193) ensure that

∥∥u(t)−
N+∑

j=−N−
j 6=0

ϕcj (x− xj(t))
∥∥
L∞
≤ 10−5

N− +N+
(c1 ∧ |c−1|), ∀t ∈ [0, T ] .

Applying Lemma 17 with the zj = xj(t) we obtain the existence of the local maximum (or minimum) ξj(t).
Note that (188) ensures that ξi(t)− ξj(t) ≥ 2L/3 for i > j and (189) ensures that ξi(t) is the only point of
global maximum (resp. point of global minimum) of v(t) = (4 − ∂2

x)−1u(t) on [ξi(t) − L/4, ξi(t) + L/4] for
i ∈ [[1, N+]] (resp. i ∈ [[N−,−1]]). Moreover, (187) and again Lemma 11 prove that for L ≥ L0 large enough

(199)
∥∥u(t)−

N+∑
j=−N−
j 6=0

ϕcj (x− ξj(t))
∥∥
H ≤ 2K̃B(ε+ L−1/8)

and ∥∥u(t)−
N+∑

j=−N−
j 6=0

ϕcj (x− ξj(t))
∥∥
L∞
≤ 10−5

N− +N+
(c1 ∧ |c−1|), ∀t ∈ [0, T ] .

Finally, Proposition 6 together with the definition (192) of Tα and (188) then ensure that

(200) u(t, ·)− 6v(t, ·) ≤ α2 = (ε+ L−1/8)2 on [x1(t)− 8,+∞[ ∀t ∈ [Tα, T ] .

For the remaining of the proof we need the following localized versions of Lemmas 7-10, where the global
functional E and F are replaced by their localized versions Ei and Fi.

6.7. Localized estimates. In the sequel we set

(201) K =
√
L/8 .

Let x−N−(·) < .. < x−1(·) < x1(·) < .. < xN+(·) be the N− +N+ C1-functions defined on [0, T ] (see (198))
and define the function Φi = Φi(t, x), i = 1, .., N+, by

(202)
{

ΦN+(t) = ΨN+,
√
L/8(t) = Ψ√L/8(· − yN+(t))

Φi(t) = Ψi,
√
L/8(t)−Ψi+1,

√
L/8(t) = Ψ√L/8(· − yi(t))−Ψ√L/8(· − yi+1(t)), i = 1, ..., N+ − 1,
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where Ψi,K and the yi’s are defined in Section 6.2 (130)-(135). It is easy to check that the Φi’s are positive

functions and that
N+∑
i=1

Φi ≡ Ψ1,
√
L/8. Since L ≥ L0 ≥ 1, (201) and (131) ensure that Φi satisfies for

i ∈ {1, ..., N+},

(203)
∣∣1− Φi

∣∣ ≤ 2e−
√
L on

]
yi + L

8 , yi+1 −
L

8

[
,

and

(204)
∣∣Φi∣∣ ≤ 2e−

√
L on R\

]
yi −

L

8 , yi+1 + L

8

[
,

where we set yN++1 := +∞.
It is worth noticing that, somehow, Φi(t) takes care of only the ith bump of u(t). We will use the following
localized version of E and F defined for i ∈ {1, .., N+}, by

(205) Ei(t) =
∫
R

(4v2 + 5v2
x + v2

xx)Φi(t) and Fi(t) =
∫
R

(
−v3

xx + 12vv2
xx − 48v2vxx + 64v3)Φi(t) .

In the statement of the four following lemmas we fix the time. This corresponds to fix x−N− < .. < x−1 <
x1 < .. < xN+ with xi − xj > 3L/4 for i > j such that

(206)
∥∥u(t)−

N+∑
j=−N−
j 6=0

ϕcj (x− xj)
∥∥
H ≤ K̃B(ε+ L−1/8)

and to fix (y1, .., yN+) ∈ RN+ , such that

x−1 + L/4 < y1 < x1 < y2 < x2 < ·· < yN+ < xN+ < yN++1 = +∞

with |yi − xj | ≥ L/4 for (i, j) ∈ [[1, N+]]2. In particular, Ei and Fi do not depend on time.
For i = 1, ..., N+, we set Ωi =]yi − L/8, yi+1 + L/8[, the interval in which the mass of each peakon ϕci (and
smooth peakon ρci) is concentrated. One can see that

(207)
N+∑

j=−N−
j 6=0

ρcj (x− xj) = ρci(x− xi) +O(e−L/4), ∀x ∈ Ωi,

and that ρci(x− xi) = O(e−L/4) for all x ∈ R\Ωi. We will decompose Ωi as in Section 5 by setting

(208) Θi = [xi − 6.7, xi + 6.7], where 6.7 ' ln
(

20
20−

√
399

)
> ln

√
2, with ρci(±6.7) ' ci/2400.

Lemma 18 (See [10]). Let u ∈ L2(R) satisfying (206). Denote by Mi = maxx∈Θi v(x) = v(ξi) and define
for i = 1, ..., N+ the function gi by

(209) gi(x) =
{

2v(x) + vxx(x)− 3vx(x), ∀x < ξi,

2v(x) + vxx(x) + 3vx(x), ∀x > ξi.

Then it holds

(210)
∫
R
g2
i (x)Φi(x)dx = Ei(u)− 12M2

i + ‖u‖2HO(L−1/2),

and ∫
R
g2
i (x)Φi(x)dx = Ei(u− ϕci(· − ξi))− 12

(ci
6 −Mi

)2
+ ‖u− ϕci(· − ξi)‖2HO(L−1/2)

≤ O(‖u− ϕci(· − ξi)‖2H)(211)

Proof. The proof is similar to the one of Lemma 4.3 in [10] using (203) and |Φ′| + |Φ′′| ≤ O(L−1/2) since
K =

√
L/8. The second identity follows as (106) in Lemma 7. �
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Lemma 19 (See [10]). Let u ∈ L2(R) satisfying (206). Denote by Mi = maxx∈Θi v(x) = v(ξi) and define
for i = 1, ..., N+ the function hi by

(212) hi(x) =
{− vxx − 6vx + 16v, x < ξi,

− vxx + 6vx + 16v, x > ξi.

Then, it holds

(213)
∫
R
hi(x)g2

i (x)Φi(x)dx = Fi(u)− 144M3
i Φi(ξi) + ‖u‖3HO(L−1/2).

Proof. The proof is similar to the one of Lemma 4.3 in [10] using the fact that K =
√
L/8 and thus

|Φ′|+ |Φ′′| ≤ O(L−1/2). �

Lemma 20 (Connection between the conservation laws Ei and Fi). Let u ∈ L2(R) satisfying Hypothesis 1
and (206).
If
(214) u− 6v ≤ α2 on [x1 − 8,+∞[
and for i ∈ [[1, N+]],

(215) sup
x∈]yi−L8 ,yi+1+L

8 [\Θξi
(|u(x)|, |v(x)|, |vx(x)|) ≤ ci

100 ,

then it holds
(216) Fi(u) ≤ 18MiEi(u)− 72M3

i +O(α4) + ‖u‖3HO(L−1/2), i = 1, ..., N+.

Proof. Recall that, according to Subsection 6.6, v = (4− ∂2
x)−1u has a got a unique global maximum ξi on

ξi ∈]yi + L/8, yi+1 − L/8[ for i ∈ [[1, N+]]. , it follows from (203) that Φi(ξi) = 1 + O(e−
√
L). Combining

this with K =
√
L/8, (210) and (213) one may deduce that

(217)
∫
R
g2
i (x)Φi(x)dx = Ei(u)− 12M2

i + ‖u‖2HO(L−1/2),

and

(218)
∫
R
hi(x)g2

i (x)Φi(x)dx = Fi(u)− 144M3
i + ‖u‖3HO(L−1/2).

Now, in view of (204) and (39) it holds∣∣∣∣∣
∫
R\Ωi

hi(x)g2
i (x)Φi(x)dx

∣∣∣∣∣ = ‖u‖2H(‖u‖L∞ + ‖u‖H)O(e−
√
L/8) = ‖u‖3HO(e−

√
L/8) .

It thus remains to show that the function hi defined in Lemma 19 satisfies hi ≤ 18Mi +α2 on Ωi. We divide
Ωi into three intervals. If x ∈ Ωi \Θξi , then using (214), it holds

hi(x) ≤ |u(x)|+ 6|vx(x)|+ 12|v(x)| ≤ 19ci
100 ≤ 18Mi.(219)

If ξi − 6.7 < x < ξi, then vx ≥ 0 and using that u− 6v ≤ α2, we get
(220) hi(x) ≤ 18Mi + α2.

If ξi < x < ξi + 6.7, then vx ≤ 0 and using that u− 6v ≤ α2, we get
hi(x) ≤ 18Mi + α2.

Combining (217), (204), and (218), one deduce that

Fi(u)− 144M3
i =

∫
R
hi(x)g2

i (x)Φi(x)dx+ ‖u‖3HO(L−1/2)

=
∫

Ωi
hi(x)g2

i (x)Φi(x)dx+ ‖u‖3HO(L−1/2)

≤ 18Mi

(
Ei(u)− 12M2

i

)
+O(α4) + ‖u‖3HO(L−1/2),
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that completes the proof of the lemma. �

Lemma 21. Let u0 ∈ Y satisfying Hypothesis 1 and (17)-(19). It holds∣∣Ei(u0)− E(ϕci)
∣∣+
∣∣Fi(u0)− F (ϕci)

∣∣ ≤ O(ε4) +O(e−
√
L), i ∈ [[−N−, N+]] \ {0}.(221)

Proof. It follows easily from (17)-(19), (205), the exponential decay of ϕci and Φi and the choice K =
√
L/8

(see Lemma 4.7 in [10] for details). �

6.8. End of the proof of Theorem 2. For i ∈ [[1, N+] we set Mi = v
(
T, ξi(T )

)
and δi = ci/6 −Mi. It

is worth recalling that Lemma 17 ensures that for 1 ≤ i ≤ N+, v(T, ξi(T )) = max[yi(T ),yi+1(T )] v(T, ·), where
the yi’s are defined in (136). For a function f : R+ −→ R, we set

∆T
0 f = f(T )− f(0).

Summing (216) over i ∈ {1, ..., N+}, we get
N+∑
i=1

∆T
0 Fi(u) ≤ 18

N+∑
i=1

Mi∆T
0 Ei(u) +

N+∑
i=1

[
− 72M3

i + 18MiEi(u0)− Fi(u0)
]

+O(α4) +O(L−1/2)

that can be rewritten after some computations as

(222)
N+∑
i=1

[
M3
i −

1
4MiE(ϕci) + 1

72F (ϕci)
]
≤ 1

4

N+∑
i=1

(
Mi∆T

0 Ei(u)− 1
18∆T

0 Fi(u)
)

+ 1
4

N+∑
i=1

Mi

∣∣Ei(u0)− E(ϕci)
∣∣+ 1

72

N+∑
i=1

∣∣Fi(u0)− F (ϕci)
∣∣+O(α4) +O(L−1/2).

Using Abel transformation, the fact that E(ϕci) = c2i /3, F (ϕci) = 2c3i /3 and definition (134), (noticing that
0 ≤ 1/18M1 < 2/3c1 ) we obtain

(223)
N+∑
i=1

δ2
i

[ci
2 − δi

]
≤ 1

4M1∆T
0 J1, 1

18M1
,K + 1

4

N+∑
i=2

(
Mi −Mi−1

)
∆T

0 Ji,0,K

+ 1
4

N+∑
i=1

Mi

∣∣Ei(u0)− E(ϕci)
∣∣+ 1

72

N+∑
i=1

∣∣Fi(u0)− F (ϕci)
∣∣+O(α4) +O(L−1/2).

Now, in view of Lemma (199) and (207)

Mi = ci
6 +O(e−L/4) +O(α),

and thus for 0 < α < α0(~c)� 1 small enough and L > L0 � 1 large enough, it holds
(224) 0 < M1 < ... < MN+ and δi < ci/4, with i = 1, ..., N+.

Combining (221), (223), (224) and (137), we obtain

(225)
N+∑
i=1
|ciδi| ≤ O(ε2 + L−1/4) .

Now, it is again crucial to note that (D-P) is invariant by the change of unknown u(t, x) 7→ ũ(t, x) =
−u(t,−x). As in the proof of Proposition 5 it is clear that ũ(0, ·) = −u0(−·) satisfies Hypothesis 1 with
x̃0 = −x0 and then x̃0(t) = −x0(t) for all t ≥ 0. ũ satisfies (198) on [0, T ] with N− and N+ respectively
replaced by Ñ− = N+ and Ñ+ = N−, xi(t) replaced by x̃i(t) = −x−i and ci replaced by c̃i = −c−i . Also
we notice that the definition of Tα is symmetric in c1 and −c−1 so that ũ also satisfies (200) with v replaced
by ṽ and x1(t) replaced by x̃1(t). Therefore, applying the above procedure for ũ we obtain as well that

(226)
N−∑
i=1
|c−i(c−i/6−M−i)| =

Ñ+∑
i=1
|c̃i(c̃i/6− M̃i)| ≤ O(ε2 + L−1/4) ,
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with M̃i = −M−i where M−i = v(T, ξ−i) = minΩi v(T, ·).
To conclude the proof we need the following estimate on the left-hand side member of (182).

Lemma 22. For any u0 ∈ L2(R) satisfying (18)-(19), it holds∣∣∣E(u0)−
N+∑

i=−N−

E(ϕci)
∣∣∣ ≤ O(ε4) +O(e−L/2)(227)

Proof. It follows easily from (18)-(19) and the exponential decay of ρci = (4− ∂2
x)−1ϕci (see Lemma 4.7 in

[10] for details). �

Gathering (225)-(226), Lemma 16 and (227) with δ ≤ ε4 we obtain that there exists C > 0 only depending
on ~c such that ∥∥∥∥∥∥∥∥u(T )−

N+∑
i=−N−
i 6=0

ϕci(· − ξi(T ))

∥∥∥∥∥∥∥∥
H

≤ C(ε+ L−1/8),

and (196) holds by choosing B = C ∨ 1.

7. Appendix

7.1. Proof of Lemma 13. Identity (138) is a simplified version of the one derived in [10] Appendix 4.4.
We start by applying the operator (4− ∂2

x)−1(·) on the both sides of equation (4) and using the fact that

(228) (4− ∂2
x)−1(1− ∂2

x)−1(·) = 1
3(1− ∂2

x)−1(·)− 1
3(4− ∂2

x)−1(·),

we infer that v = (4− ∂2
x)−1u satisfies

(229) vt + 1
2hx = 0,

where h = (1− ∂2
x)−1u2. With this identity in hand one may check that

4 d
dt

∫
R
v2gdx = 8

∫
R
vvtgdx = −4

∫
R
vhxgdx .

Since ∂2
x(1− ∂2

x)−1(·) = −(·) + (1− ∂2
x)−1(·), (229) then leads to

5 d
dt

∫
R
v2
xgdx = 10

∫
R
vxvxtgdx = −5

∫
R
v(1− ∂2

x)−1∂2
x(u2)gdx = 5

∫
R
u2vxgdx− 5

∫
R
vxhgdx

= 5
∫
R
u2vxgdx+ 5

∫
R
vhxgdx+ 5

∫
R
vhg′dx .

Moreover in the same way one may write
d

dt

∫
R
v2
xxgdx = 2

∫
R
vxxvxxtgdx = −

∫
R
vxx(1− ∂2

x)−1∂3
x(u2)gdx =

∫
R
∂x(u2)vxxgdx−

∫
R
vxxhxgdx

= A1 +A2,

where since vxx = u− 4v, it holds

A1 = −
∫
R
∂x(u2)ugdx+ 4

∫
R
∂x(u2)vgdx = 2

3

∫
R
u3g′dx− 4

∫
R
u2vxgdx− 4

∫
R
u2vg′dx

and

A2 =
∫
R
vx(1− ∂2

x)−1∂2
x(u2)gdx+

∫
R
vxhxg

′dx = −
∫
R
u2vxgdx+

∫
R
vxhgdx+

∫
R
vxhxg

′dx.

Gathering the above identities, (138) follows. We now concentrate on the proof of (139). Using equation (8)
one may write

(230) d

dt

∫
R
u3gdx = −3

2

∫
R
u2(u2)xgdx−

9
2

∫
R
u2hxgdx = I1 + I2.
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First, by integration by parts one may have

I1 = 3
4

∫
R
u4g′dx.

Second, substituting u2 by h− hxx and integrating by parts we get

I2 = −9
2

∫
R
hhxgdx+ 9

2

∫
R
hxhxxgdx = 9

4

∫
R

(h2 − h2
x)g′dx

that proves (139). Finally, (140) can be deduced directly from (7) by integrating by parts in the following
way :

d

dt

∫
R
yg dx = −

∫
R
∂x(yu)g − 3

∫
R
yuxg

=
∫
R
yug′ − 3

∫
R
(u− uxx)uxg

=
∫
R
yug′ + 3

2

∫
R

(u2 − u2
x)g′ .
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